
 

 

 

 

 

 

 

 

 

Copyright © 1992, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



A SIMPLE ODE WITH MORE THAN 20

STRANGE ATTRACTORS

by

Leon O. Chua

Memorandum No. UCB/ERL M92/141

19 August 1992



A SIMPLE ODE WITH MORE THAN 20

STRANGE ATTRACTORS

by

Leon O. Chua

Memorandum No. UCB/ERL M92/141

19 August 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A SIMPLE ODE WITH MORE THAN 20

STRANGE ATTRACTORS

by

Leon O. Chua

Memorandum No. UCB/ERL M92/141

19 August 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A simple ODE with more than 20 strange
attractors

Leon 0. Chua

University of California, Berkeley

Abstract. This paper presents a glimpse at some complicated nonlinear dynamics and bifurcation
phenomena of a remarkably simple 3rd-order ODE whose only nonlinearity is a scalar function of
a single variable f(x). This ODE is derived from a real electronic circuit imbued with more than
20 strange attractors. This circuit, which contains only 5 linearelements (2 resistors, 1 inductor,
and 2 capacitors) and a nonlinear resistor is the simplestelectronic circuit that can become chaotic
for certain parameter values.

The significance of this 5-parameter ODE is that it is topologically conjugate to a 21-parameter
family of piecewise-linear odd-symmetric vector fields. Moreover, virtually every known bifurca
tion phenomena from nonlinear dynamics is exhibited by this ODE. Although over a hundred
papers on a subclass of this chaotic circuit have already been published, a rigorous and in-depth
mathematical study of the nonlinear dynamics of the associated ODE remains a challenging re
search problem.

1. The Canonical ODE

The circuit shown in Table 1 is described by the following system of 3rd-order ordinary
differential equations:

Civ'i = js(v2-vi)-f(vi)
C2y2 = ^ (vi - v2) + i*3 (1)
Lis = —v2 —Rot3

where C\,C2,LiRiRo are real numbers, and

!{vr) = GbvR + -(Ga - Gb) {\vR + Bp\-\vR- Bp\} (2)

denotes the 3-segment odd-symmetric voltage-current characteristic of the nonlinear resis
tor (knownas Chua's diode [Ke]) with slopes Ga,Gb and breakpoints located at vr = —Bp
and vr = Bp, respectively. By an appropriate change of variables, we can transform Eq
(l)-(2) into the following dimensionless form:
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Table 1 Chua's oscillator circuit and a typical bifurcation sequence with
Ro = 0 (Chua's circuit), 7 = 0, a = -f, b= -f and 0 = 16. In (a)-(e),
the attractor and its twin lying symmetrically with respect to the origin
and the three equilibrium points P+, 0, P~ are also shown, (a) Period 1
limit cycle (a = 8.8). (b) Period 2 limit cycle (a = 9.05). (c) Period 4 limit
cycle (a = 9.12). (d) Period 8 limit cycle (a = 9.162). (e) Rossler attractor
(a = 9.3). (f) Double Scroll attractor (a = 9.8).

(a)

T2'-u-1 -a*0, «

(d)

(b)

(e)

(c)

^Tli-l' -050 OJ 1 '•» *

(f)



Case I: RC2 > 0

Case II: RC2 < 0

where

x = a(y-x- f(x))
if = x-y + z
z = -/?y - yz

x = a (-y + x + /(»))
y = -a: + y - z

z = fiy + yz

/(«) =te +i(o-6){|« +l|-|*-l|}

_ A «jl
x — Bp>

a = i2Ga,

V Bp>
ft A .RaCo
^ ~ L
b^RGb) and r-isfe[

(3)

(4)

(5)

(6)

and the derivatives in Eq (3)-(4) are with respect to the dimensionless variable r which
corresponds to time rescaling. Observe that Eq (4) is equivalent to integrating Eq (3) in
reverse time. The literature cited in the reference section is concerned almost exclusively
with the special case called Chua's circuit [Ma,Ch] where 7 = 0 (corresponding to Rq = 0)
and Eq (3) and (5) are used. A typical bifurcation sequence for this case with a = —|,
b= —|, /? = 16 and a varying from a = 8.8 to a = 9.8 is shown in Table 1. Observe
that the dimensionless system of ODE in (3)-(5) is uniquely specified by the 5 parameters
{a, /?, 7, a, b}.Note that the vector field F(-) described by (3)-(5) is odd symmetric; namely

F(x,ytz) = -F(-x,-y,-z) (7)

In the case of Chua's circuit (7 = 0), equations (3)-(5) give the following 3 equilibrium
states:

P+: (x,y,z) = (x*,0,-x*)
O : (*,y,*) = (0,0,0) (8)
P~: (x,y,z) = (-**, 0,**)

where x* > 0 is a solution of the equilibrium equation

f(x) = -x (9)

Remark The nonlinear function f(x) in equations (3)-(4) is represented by the piecewise-
linear function in Eq (5) in order to allow the application of linear system analysis. For
more analytical studies, it is often desirable to represent f(x) by a C°° function. For
example,

f(x) = aQx + aix3 (10)

is used in [Al.Ha] and in several papers in a 2-volume special issue devoted to Chua's
circuit [Mda,Mdb]. In fact, Chua's diode characterized by almost any non-linear function,



not necessarily piecewise-linear or symmetric, can be fabricated by standard electronic
circuit techniques [Chu]. Consequently, from both mathematical and physical point of
view, it is meaningful and significant to conduct an in-depth mathematical study of the
ODE (3)-(4), where f(x) is replaced by various classes of C°° functions.

2. A Gallery ofAttractors from Chua's Oscillator

In the general case where Ro ^ 0 and hence 7^0, the circuit in Table 1 is called a
canonical Chua's circuit, or Chua's oscillator [Md] in the literature. The addition of the
linear term yz in the original Chua's circuit [Ma] serves as a global unfolding of the ODE
from Chua's circuit, and allows us to uncover many more non-periodic attractors, 24 of
which are exhibited in Table 2, along with their parameter values. It is reasonable to
expect that many more attractors will be discovered in the future.

The attractors in Table 2 are arranged according to the relative locations of the eigen
values {^i)^2 lAte} in the inner linear region. For the first 5 attractors, all eigenvalues are
real. For the next 15 attractors, there is a pair of complex-conjugate eigenvalues and a real
positive eigenvalue. For the final 4 attractors there is a pair of complex-conjugate eigen
values and a negative real eigenvalue. In the outer region, there is always 1 real eigenvalue
and a pair of complex-conjugate eigenvalues. We will henceforth refer to the location of
these eigenvalues as the eigenvalue pattern. Note that the attractors in Table 2 (c), (f),
(k)-(n) and (u) are obtained from Chua's circuit (7 = 0).

The circuit in Table 1 with Rq ^ 0 is said to be canonical because given any set of real
and/or complex-conjugate eigenvalues

{Ati>/*2i/<3; pi, 1^,14} (11)
there exists a set of parameter values

{a, 0,7, a, 6} (12)

such that Eq (3)-(5) has the above prescribed eigenvalues, except possibly for a set of
measure zero, in which case a set of parameter values {or,/?,7,a, 6} exists which realizes
the nearby eigenvalues

{/ii + 8m, /42 + 6fi2, /i3 + fy3; i>! + 6vi,v2 -\- 6v2, u3 + 61/3} (13)

where {fyi, 8/i2) fyx3,6vi,6v2,61/3} are arbitrarily small perturbations (allexcept one may
be zero). Indeed, the explicit formulas for calculating {a, 0,7, a, 6} are as follows:

a
1

^ ^*f*fpi-*i Pl-qi *i*3
y — 1 I -Pa+«7a 1
' Pl-qi *i*3

a = -1-fpi +T^fK

k = sgn(fcifc3)

(14)
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where

and

Pi

Pi

Ps

k2

*3

_D9 _ (22=32. _ v.\ 22=22. 4.£3^3
yz \pi-«i rxJ P1-11 P1-91

_ -Pa-Ma 1
Pi-li *i + 1*

A*l + /*2 + /*3

A*lA*2 + A*2^3 + A*3A*1
/*l/*2#»

91 = ^1 + ^2 + ^3
g2 = J/!l/2 + V2V3 + I/3I/1

93 = V\V2V3

(15)

(16)

In Eq (14), if k = 1, then Eq (3) is used. If k = -1, then Eq (4) is used.

3. Theorem on Topological Conjugacy

The system of ODE described by Eq (3)-(5) is a special caseof the family Cof all continuous
odd-symmetric, 3-region (partitioned by 2 parallelplanes) piecewise-linear vectorfields in
K3. By changing coordinates if necessary, each memberof Ccan be written in the form:

= <

an 012 013 X

a21 a22 «23 y

031 <*32 033 . z

' «11 012

Ao

Ol3 X \h 1
021 022 023 y + b2

. 631 632 033 _ Z [63 J

if \x\ < 1

(17)

if|x|>l

Ai bi

where Ao denotes the linear vector field in the "inner" region Mo (\x\< 1) which contains
the origin and where {Ai,bi} defines the affine region in the two symmetric "outer"
regions M+ (x > 1), and M~ (x < -1), respectively.

Equation (17) represents a 21-parameter family of vector fields. We nowstate the main
result of this paper which asserts essentially that, except for the degenerate cases where
an eigenvector or eigenplane (corresponding to a pair of complex-conjugate eigenvalues)
of Ao or Ai is parallel to a boundary planeof the given vector field F € C, there exists a
unique set of parameters {a, p,y, a, 6} such that either the ODE in Eq (3) and (5) or the
ODE in Eq (4) and (5) has identical qualitative behaviors.

Main Theorem The Chua'soscillator circuit is canonical in the sense that, except for a
set ofmeasure zero in the space ofequivalent eigenvalue parameters {pi,p2,P3',qi,q2)q3}
in M6 (as defined by Eq. (16)), every member F in the 21-parameter family ofvector fields
in C, such that there is no planeor lineparallel to the boundary planes which is invariant



under the action ofF in the middle region, is linearly conjugate to a unique vector field F
defined by the ODE in Eq (3) and (5), or the ODE in Eq (4) and (5).

Proof. A vector field in the set C can be rewritten in the following form by a suitable
change of basis [CK]:

x = F(x) = Ax + - {| < w,x > +1| - | < w,x > -l|}b (18)

where A € M3x3 is in a Jordan canonical form and x,w,b € K3. Setting x = K-1y,
equation (18) transforms to

y=KFtK^y) =KAK^y +\{\< (K^Vy >+1| - |<(K"1)Tw,y >-1|} Kb
(19)

For each of the following Jordan form matrices A and some conditions on w =
(wi,W2,W3)T, there exists a nonsingular matrix K such that KAK"1 is in companion
form, namely:

/ 0 1 0 \
KAK"1 = I 0 0 1 (20)

\ 93 -92 91 /

and (K_1)Tw = (1,0,0)T. The conditions on w correspond to the assumption that there
is no plane or line parallel to the boundary planes which is invariant under the action of
F in the middle region. In particular, K is defined explicitly as follows:

(a 0 0 \

0 6 0

0 0c/
twi ^ 0, w2 ?£ 0, IU3 # 0

/ a 0 0 \
A = I 0 a -u I

(1 1 1 \ / wi 0 0
a b c 1 I 0 w2 0

a2 b2 c2 / V 0 0 «,3

2,2// \ a *32 *33 / \ ° w3 w2

/ 1 ci c2 \ / w\ 0 0
K = [ a C10- + C2W c2<r —c\u) | ( 0 w2 —U13

™1 # 0, ^2 + «>3 # 0

where

(21)

&32 = CiO-2 + 2c2<TW -CiW2, £33 = C2<T2 —2c\(T(ji —C2U>2 (22)

and a, b and c are distinct and u> ^ 0. The set of eigenvalue parameters which does
not correspond to the above Jordan forms has measure zero. Next we show that Kb =
(ei,e2,e3)T is uniquely determined by the two prescribed sets of eigenvalues {/xi,A*2>A*3}



and {uiiu2iU3}} or equivalently {pi,P2>P3} and {91,92193}- From equation (19) the Jaco-
bian matrix of the vector field in the inner region Mo is given by:

ei 1 0 \
e2 0 1 (24)

e3 + 93 -92 9i /

Its characteristic polynomial is given by:

A3 - A2(gi + ei) + A(eigi -f q2 - e2) - (e3 + 93 + 92ei - 9^2) = A3 - piA2 + p2A - p3 (25)

Equating the respective coefficients, we obtain

ei = Pi - 9i

e2 = -P2 + 92 + 91C1 (26)
e3 = P3 - 93 - 92ei + 91^2

which uniquely defines Kb = (ei,e2,e3)T. We have thus shown that almost every vector
field in the class C can be transformed into a canonical form with A in companion form
and w = (1,0,0)T. Therefore almost any two vector fields in the class C with the same
eigenvalue parameters can be transformed into the same canonicalform and by transitivity
these two vector fields are linearly conjugate. Theproofis then complete, since by Eq (14)-
(16) any set of eigenvalue parameters, except for a set of measure zero, can be realized by
Eq (3)-(5). D

4. Concluding Remarks

We have presented a simpleODE which represents not only an excellent model of a real
physical electronic circuit, but is also imbued with virtually every known dynamical and
bifurcation phenomena, including chaos. This ODE is canonical in the sense that it is the
simplest ODE imbued with the most complexdynamics. Muchfuture research remains to
be done by replacing the piecewise-linear function f(x) by an arbitrary C°° function.
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