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Abstract

Chaos has been widely reported and studied in Chua's circuit family, which is characterized by a
21 parameter family of odd-symmetric piecewise-linear vector fields in R3. In this tutorial paper, we
shall prove that, up to a topological equivalence, all the dynamics of this family are subsumed within
that of a single circuit : Chua's oscillator, directly derived from Chua's circuit by adding a resistor in
series with the inductor. We provide explicit formulas of the parameters of Chua's oscillator leading to a
behavior qualitatively identical to that of any system belonging to Chua's circuit family. These formulas
are then used to construct, in an almost trivial way, a gallery of (quasi-periodic and strange) attractors
belonging to Chua's circuit family. A user-friendly program is available to allow a better understanding
of the evolution of the dynamics as a function of the parameters of the canonical circuit, and to follow
the trajectory in the eigenspaces.

1 Introduction

In this paper, we shall focus on a class of particularly simple three-dimensional chaotic systems : Chua's
circuit family. This class of dynamical systems , henceforth denoted by C, is characterized by a three-region,
continuous, piecewise-linear vector field F with odd symmetry i.e. F(-x) = —F(x) where we assume that
there is no plane or line parallel to the boundary planes B+ and B- which is invariant under the action
of F in the middle region (by continuity, this properties will also hold true for the outer regions). Since,
as we shall see, the origin is an equilibrium point, this last assumption is equivalent to assuming that the
eigenspaces * through the origin are not parallel to the boundary plane. As shown in Fig.l, the Jacobian
matrices of the vector field F in the inner region D0, and in the outer regions D\ and i?_i, are denoted by
M0 and Mi, respectively, b is a vector ofR3, which ensures thecontinuity ofF on the boundary planes B+
and B-. We shall denote by f*i,/*2 and /*3 the eigenvalues of Mo, and by i/i,i^ and 1/3 the eigenvalues of
Mi. In order to avoid complex numbers, we shall introduce the following notation:

{
Pi = f*l + \*2 + f*3 qi = V1 + *>2 + ^3
P2 = t*ll*2+t*2l*3 + l*3f*l 92 = V\V2 + V2V3 + V3V\ (1)
V3 = f*lf*2f*3 ?3 = V\VzV3

The fact that the elements of Ccan be considered as three affine systems glued together, each of which
having a well-known solution, simplifies the theoretical study of these systems. These properties allow an
in-depth study of the dynamics in C. In particular, it has made it possible to give a rigorous proof of chaos
in Chua's circuit [1]; an element ofC [2] [3] shown in Fig.2(a) and known as the simplest autonomous circuit
which exhibits chaos.

From a physical point of view, the circuits which belong to Care very simply built. They only have one
nonlinear element : a Chua's diode [4], a five-region piecewise linear resistor whose i-v characteristic, in the

1eigenvector or eigenplane
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Figure 1: A three-region piecewise-linear system

(a) (b)

Figure 2: (a) Chua's circuit (b) characteristic of Chua's diode

special case of Chua's circuit [2], is given in Fig.2(b). For other members of Chua's circuit family C, the slopes
mo and mi for the two inner segments may assume any real number, positive or negative. However, from a
physical point of view, in a real circuit, the slope m2 of the two outer segments is always positive, because
otherwise the system could gain an infinite amount of energy which is physically impossible. However in
most examples to date, these two segments do not play any interesting role in the chaotic dynamics. When
a three-region system is simulated (without these outer segments), the trajectory might diverge, due to
an improper choice of parameters or initial conditions. In this paper, we shall only include the two inner
segments of slopes m0 < 0 and mi > 0 as shown in Fig.3.

The possibility of a simple and robust realization of the elements of C is certainly an advantage for their
study. This is all the more interesting since, as we shall see in this paper, there exists some circuits [5] which
are imbued with all the complicated dynamicsof C. These circuits allow us to realizeany eigenvalue patterns.
The first circuit having these properties, namely: Chua's canonical circuit [6] [7] has been proposed in 1987.
In this paper, we introduce another circuit having these properties: Chua's oscillator [8]. It is remarkable
that this circuit is directly derived from Chua's circuit by adding only a linear a resistor in series with the
inductor 2. We shall first transform the state equations of Chua'soscillator into a dimensionless form. Then
we shall give values of the parameters of Chua's oscillator, as well as those of its dimensionless form (after

Note that in a real circuit it is impossible to realize a pure inductance, therefore it is logical to add a resistance in series
with the inductance anyway.



Chua's diode
characteristic

Figure 3: Three-region characteristic of Chua's diode

a time rescaling), correponding to any prescribed eigenvalue pattern 3

(/*;") = (^1, f*2,f*3] vi, i>2, **)) or (p; q) = (pi,p2, P3\ qi,92, qs) (2)

If, as proven in section 5, two elements of C having the same eigenvalues exhibit the same qualitative
behavior, all the complicated dynamics of C are subsumed within that of Chua's oscillator or its associated
dimensionless form.

In section 3 we shall illustrate the properties ofChua'soscillator with someexamples. Weshall determine
the parameters of Chua's oscillator and of its associated dimensionless form leading to some well-known
attractors belonging to C.

In section 4, we shall systematically determine them for all the attractors found so far in C. For each
attractor, we shall give the Lyapunov dimension, the eigenvalue pattern, the parameters of Chua's oscillator
dimensionless form, and a phase portrait.

In section 5 we shall present some basic concepts relative to the dynamics of C. In this tutorial paper,
written for the non-specialist, this section can be considered as both a short introduction to chaoticdynamics
and a simple answer to questions that mightarise in the reading of the first foursections. In the samespirit,
we wait for the end of this paper to prove that two elements ofChaving the same eigenvalues (n,v) exhibit
the same dynamics. This is the basis of this paper and will be assumed in the first five sections.

2 Chua's oscillator

2.1 The circuit and its equations

Our aim in this section is to provide a circuit to realize any prescribed eigenvalue pattern associated with a
vector field belonging to C. First of all, since the system is of the third order, the circuit must have three-
dynamic elements. In addition, since our objective is a three-region symmetric piecewise-linear continuous
vector field, we can allow only one nonlinear resistor, the Chua's diode [4], whose v-i characteristic shown
in Fig.3 is odd-symmetric and 3-segment piecewise linear. All other elements must be linear.

In an autonomous linear RC circuit which has two elements, there is only one natural frequency v —1
/ RC. Therefore, to produce a prescribed natural frequency, R or C can be assigned an arbitrary value (
e.g., let C=l ) and then the value of the other parameters can be calculated. In other words, to synthesize
a circuit having n arbitrarily prescribed eigenvalues, at least (n + 1) circuit parameters are necessary.

If we are given 6 eigenvalues, then we need at least 7 parameters. We already have 3 dynamic elements
and 2 slopes for the nonlinear resistor; therefore, 2 more linear resistors are the minimum requirement. The
chosen circuit, so-called Chua's oscillator [5] [9] isshown in Fig.4. It is remarkable that this circuit issimply

3Note that (/*; v) is obtained from (p; q) with (1). Conversely, m (resp. v{) are the roots of thepolynomial: M3 - Pi M2 +
P2M - P3 =0 (resp. i/3 - qiv2 + q2u - 93 =0) . We shall assume without any loss ofgenerality that m (resp. 1/1) isreal.



obtained from Chua's circuit by adding a resistance R inseries with the inductance. The state equations of
Chua's oscillator, henceforth denoted by Ec are :

where

Ci* = G(V2-t,i)-/>i)
C2% = G(v1-v2) + i3

= -V2 - Ri3Ldt
dt

f(v) = Gbv + -(Ga-Gb)(\v + Bp\-\v-Bp\)
is the v-i characteristic of the Chua's diode shown in Fig.3.

AMr
G

VC2 vcr
C2 C1

Figure 4: Chua's oscillator

We can transform the state equation Ec into a dimensionless form by defining

x = vi/Bp y = v2/Bp z = i3/(BpG)
r = tG/C2 m0 = Ga/G mx = Gb/G
a = C2/Ci p = C2/{LG2) y = C2R/(LG)

The corresponding dimensionless state equations are given by :

x = <x(y —x —f{x))
y = x-y+z

z = -py - yz

where :
1

{
f(x) = mix -f -(m0 - mi)(| x + l|-|a;-l|)

(3)

(4)

(5)

(6)

(7)

Note that in (6), x = 4fc and also that thoughout the paper we shall assume that Bp = 1 which does
not affect the dynamics 4 . The system (6) has a qualitatively identical behavior to that obtained from
(3), provided that G/C2 > 0. If G/C2 < 0, an attractor in (3) becomes a "repeller" in (6) because the
dimensionless time r < 0 when t > 0. Hence, we have a negative time reseating in (5). In this case, we can
still use (6) to obtain an attractor of (3) , by merely integrating (6) backwards in time. This is equivalent to
integrating the following alternate dimensionless equation in forward time:

{
x = a(x - y + f(x))
y = y-x—z

* = Py + yz

4If Bp^ 1, we simplydividex, y and z by Bp to find the solution of Ec

(8)



where the parameters a,/? and 7 and the function / are the same as in (6). Equations (6) and (8) can be
combined into a single equation :

Ed

x = ka(y —x —f(x))
y = k(x - y + z)
z = k(-/3y - yz)

(9)

where k = 1 if G/C2 > 0 and k = —1 if G/C2 < 0. Equations (9), henceforth denoted by E«j are known
as the Chua 's oscillator dimensionless equations. Observe that we only have five dimensionless parameters
a,/?,7,mo and mi, compared to the twenty one parameters required to completely define an element of C,
as shown in Fig.l.

Let us first assume, as it will be proven in section 5, that the qualitative behavior of C is determined
by its six eigenvalues : /xi,A*2)A*3)^ii^2 and 1/3. As we shall see, in the outer regions, for all the examples
presented in this paper, we shall always find one real and two complex conjugate eigenvalues that can be
denoted by :

V\ =71 V2 = <T\ + jUfi V3 —(T\- jui (10)

Since we are only interested in preserving the qualitative behavior of the system, we can assume that
o>i = 1 so that only five parameters need to be matched by those of E<j. This assumption is equivalent to a
change in the time scale and hence involves no loss of generality. Note that if the eigenvalues in the outer
regions were all real, we could assume one eigenvalue, for example v\, to have a norm equal to 1 and proceed
as above.

2.2 Explicit formulas for calculating the parameters of Chua's oscillator

Given any prescribed set of eigenvalues, [5] gives the explicit formulas for calculatingthe circuit parameters
Ci,C2,L,R} G, Ga and Gb of the Chua's oscillator shown in Fig. 4. As mentioned before, among the seven
parameters, we can assign an arbitrary value to any one of them. Assuming C\ = 1, the other circuit
parameters are given as follows :

c2 = sW

where:

G= £
Ga =

Gb = -gi -•£- ^^
L = 1

ri «a pi-qi

Jbi = -p3 + **=** (p! + £2=22.)
x ™ T 91 -pi \yi ^ gi-pij

ko = D9 —32=22. 4. Pa-fla (p*-<I** f£ ?1_pi -r qi-pi \q1-p1
k -E2=<12

11-pi k*

(ii)

-rPi (12)

Observe that the parameters cannot be found whenever the denominator in one of the equations (11) or
(12) is equal to zero. This is the case when :

Pi = qi

or

- P3 + Pi + = 0
9i - Pi V 9i - Pi /

or

93 ~P3 , P2-g2 n
P2 1 = 0

9i - Pi 91 - Pi

or

(13)

(14)

(15)



P2~92

9i-Pi

-P3 +

P2

03 -2=22. (Pl + E2=£2.)
_ <ls-Pa I P2-Q2

?i -Pi ^ ?i-Pi

= 0 (16)

Each of these four equations (13)-(16) represents a 5-dimensional hyper-surface in the six-dimensional space
(Pi,—93)- The eigenvalue patterns that cannot be realized exactly by Chua's oscillator belong to one of
these four hyper-surfaces, and therefore constitute a set of measure zero; weshall denote it by Sc. Given an
eigenvalue pattern (p; q), we can always perturb it in order to obtain :

(Pl + tfpi>P2 + #P2,P3 + &P3] 91 + %i 92 + $92, 93 + ^3) (17)

where Spt and 6qi are arbitrarily small, so that the resulting eigenvalue pattern (16) does not belong to
Sc and hence can be generated by Chua's oscillator. If 6pi and Sqi are chosen sufficiently small, which is
always possible since Sc is a zero-measure set, it follows that by the continuity property of ODE with respect
to parameters, that the qualitative behavior of the system will be preserved. We will illustrate this with
examples in section 3.

2.3 Explicit formulas for calculating the parameters of Chua's oscillator dimen
sionless equations

Our aim is now to obtain the parameters of Chua's oscillator dimensionless equations as a function of the
eigenvalues. Consider an eigenvalue pattern (ft,u) and its corresponding circuit parameters obtained from
(11). From these circuit parameters we can determine the dimensionless parameters from (5), assuming in
the process of finding the parameters and the time rescaling, we do not encounter any denominator having
a value equal to zero. Regarding the time rescaling r = tG/C2, it follows from (11) that it cannot be equal
to zero. The fact that the time rescaling cannot be found equal to zero is an interesting property of Chua's
oscillator that Chua's canonical circuit does not have (see [7]). Weshall denote by Sd the zero-measure set of
eigenvalues for whichwecannot find the dimensionless parameters; note that Sd C Se- Alsonote that (except
for IG/C2I = 1, which is a zero-measure set), when we find the dimensionless parameters coresponding to
(fiyU), this does not mean that the eigenvalues of Ed are (i*;v), but that there exists a system Ec, that
has the eigenvalues (f*t v) and whose dynamics is equivalent to that of E<j (up to a positive time rescaling).
Therefore Ed has the same qualitative behavior as any element of C having the eigenvalues (f*7 v).

In order to obtain directly the parameters of Chua's oscillator dimensionless equations as a function of the
eigenvalues, we can substitute (11) into (5). Another possibility consists of directly deriving these formulas
from (9). Fortunately, in both cases, i.e., by substitution of (11) into (5) or by direct derivation, wefind the
same result :

where:

a =
1

P = K3Ki

7=-*?*s+ ;&>£=£
mo = —1 — p +22=32.

[yi ^ qi-Pl

mi = -l- (qi + £2=j2.
k = sgn(K\K2)

*. =-»+S3»(pi +g=g)

to = &=12 _ *1
qi—pi ki

The zero-measure set for which the parameters of Chua's oscillator dimensionless equations cannot be
determined is defined by any one of the following constraints :

Pi =9i

(18)

(19)

(20)



or

-»+£^(pi+&^0=o
9i - Pi \ 9i - Pi /

93 ~P3 ,
P2 r

or

P2-92 /P2 - 92 . \
I 1- Pl J =

91-Pi \9i ~Pi /9i — Pi 9i _Pi \9i — Pi

Note first that (20), (21) and (22) are the same as (13), ( 14) and ( 15) respectively. Second, in (5), only
1/L appears (not L), and assuming that pi ^ 9i,l/L alwaysexists (see (11)); that is why (16) is not present
in Sd.

(21)

0 (22)

2.4 Equilibrium points and eigenspaces

In this section we shall determine the equilibrium points and the eigenspaces corresponding to the Chua's
oscillator dimensionless equations. These formulas constitute the basis of a user-friendly program, presented
in Appendix A, that determines the equilibrium points and displays the trajectory in the eigenspaces, starting
from any initial conditions. Let us first determine the equilibrium points 5 of Chua's canonical equations.
Consider the equilibria:

y-x- f(x) - 0
x-y + z =0 (23)
Py + yz = 0

From a physical point of view, (23) can be interpreted as the equations of the circuit at dc, when the
capacitors are open-circuited and the inductor short-circuited. The equation of the load line is:

w = —
P

y + P
x where w = y-x (24)

The only interesting case, which can lead to complicated dynamics, is when the circuit has three dc-
operating points. The nonlinear function F(-) and the load line are shown in Fig.5.

W

.Load line

N^Chua diode
characteristic

Figure 5: dc operating points of the Chua diode

The load line intersects the outer segment if and only if the operating point I has an abscissa

xi =
mp — mi

greater than 1 as in Fig.5, leading to an equilibrium point in each of the three regions.

Po = (0,0,0) € A)

P- = (-*/,- («/» _jL.
7+/?~-"7+/3

*/) € D.

»Inour case, the equilibrium points are the points where the vector field is equal to zero

(25)



In the case ofthree equilibrium points, let us now study their stability, i.e., the nature ofthe eigen spaces
present in the neighborhood of P+,P0and P_. One of the advantages of a piecewise-linear vector field is
that in each region these eigenvalues are constants and the eigen spaces (plane or eigenvector) are constant,
therefore we do not have to do any local approximation in order to determine the Jacobian matrices of the
system. Let us first examine the stability of the origin P0. In the region D0 the state equation is :

X = M0X (26)

where the Jacobian matrix is the constant matrix :

/ -1 - m0 1 0 \
Mo =k[ 1 -11 (27)

\ 0 p y)
and its chracteristic polynomial is :

| A/-Mo | = A3 + ibA2(2 + m0 - 7)
+A((1-7)(1 +m0)-7 + 0-1) (28)
+k(-(mo + l)(y + p) + y) = 0

The eigenvalues of the Chua's canonical equations are the roots of (28). In order to determine the type of
the eigenvalue pattern associated with Afo, let us introduce T :

T = i[3((l-7)(l +m0)-7+/?-l)-(2 + mo-7)2]2
+ 3k[2fc(2 + mo - 7)3 - 9*(2 + m0 - 7)(t(2 + m0 - 7) (29)
+27*(-(m0 + l)(7 + /?) + 7)]3

According to the value of T, there are three different cases:
(a) (r > 0) : one real and two complex conjugate eigenvalues
(b) (r = 0) : three real eigenvalues of which at least two are equal.
(c) (r < 0) : three real and unequal eigenvalues.
If we have determined the dimensionless parameters from an eigenvalue pattern (/x; u)} we already know

the type of eigenvalue pattern. However as we have already noticed, the eigenvalues of E<* are not (fi;v) but
1*1*2 Ka*; ") where &i and K2 are given in (18). This multiplication of the eigenvaluesby a positive coefficient
does not affect the qualitative behavior of the system. After having found the eigenvalues of E<j, in each of
the three cases (a),(b) and (c), we shall determine the corresponding eigen spaces:

Case(a) The eigenvector V\Ri corresponding to the real eigenvalue Xr, is determined up to a multiplica
tive constant by:

M0VXr = XrVXr (30)

and a solution of (26) is:

Vx = ( m0 +1+ Xr I (31)
\ Ar-7 /

Note that if A were equal to 7, (30) would imply that p is equal to zero. This would mean that the last
equation of (9) is uncoupled which cannot lead to any interesting behavior. The eigenplane Pq corresponding
to the complex conjugate eigenvalues

Xc± = u±iv (32)

is determined as a linear combination of the two vectors U and V such that:

(t:,7:u'0(")=° (33)
By definition of u and vt the determinant of the linear system (33) which has six unknowns and 6 equations
is equal to zero. By giving an arbitrary value to one of the coordinates of U or V, we obtain a full rank,



namely, 5, Cramer system that can be easilysolved by classical methods. Note that T^0 implies that there
exists such a fifth-order Cramer system of equations in (33).

Case(b) This case corresponds to a measure-zero set of parameters. Therefore, as it has been explained
in 2.2, it is possible to slightly perturb the parameters without changing the behavior of the system and
obtain a system that belongs to case (a), or in the following case (c). This case could also have been directly
treated.

Case(c) The coordinates of the three eigenvectors corresponding to the real eigenvalues Xr can directly
be determined by (31).

The study of the stability of the outer equilibrium points is very similar to that at P0, except that the
Jacobian matrix of the vector field is now:

Mi = k\ 1 -11 (34)

Therefore, we can determine the eigenvalues and eigenspaces in the outer regions by substituing mi
into mo in the equations obtained in the inner region. In the next section, we shall examine examples of
eigenvalue and eigenspace patterns in C

3 Mapping other chaotic circuits and systems into Chua's oscil
lator

3.1 Introduction

In this section, we have two objectives. First wewant to show with some well-known examples that it is easy
to obtain the dynamics of any elements6 of C from Chua's oscillator and from its associated dimensionless
system. In each case we shall verify that we find the same trajectory with Chua's oscillator dimensionless
equations as with the original system 7 (the trajectories are copied from the original paper). Second, we
shall take advantage of these examples to present some aspects of the dynamics in C, in particular the role
of the eigenspace and the eigenvalues in the dynamics of an element of C.

For each element of C considered in this section, we shall give the expression of the vector field before
giving the eigenvalue pattern corresponding to each attractor. To avoid any confusion with the notations,
the parameters relative to the original systemwill have a tilde (i.e. a,/?....) . All these systems belong to C,
therefore they have the same three-region piecewise linear nonlinearity:

f(x) = mix + -(m0 - mi)(|a:+ 1| - \x- 1|) (35)

When there are three real eigenvalues in the middleregion D0, (t*>v) is said to be of type I. If there is
one real and two complex conjugateeigenvalues in Do, ((*, v) is said to be of type II.

3.2 Three examples of attractors from Chua's circuit

The dimensionless formof Chua's circuit state equations [10] [11] [12] is :

x = a(y-x-f(x))
y = x-y + z (36)
i = -py

As shown earlier in this paper, Chua's oscillator is directly derived from Chua's circuit, therefore it is
easy to obtain the parameters of Ec or of E<j or of its associated dimensionless form by merely keeping the
same values of circuit parameters and dimensionless coefficients and choosing R = 0 and (7 = 0,* = l)8 ,

6Chua's circuit, Chua's torus circuit, Ogorzalec ladder circuit, Brockett andSparrow's systems
with the restrictions introduced in section 5

8a = a,(3 = (3tmo = mo, mi = mi



respectively. Since the vector field corresponding to Ed is exactely the same as the original dimensionless
form of Chua's circuit, the trajectories will be the same. We do not have to verify that the trajectories are
identical, but we shall take advantage of the next three examples to introduce some basic concepts relative
to piecewise linear sytems.

3.2.1 Rossler-type attractor.

For a = 8.5,/? = 14.28, m0 = -8/7, and m, = 5/7, (36) has a chaotic attractor [13], as shown in Fig.6-a,.
This corresponds to the following set of eigenvalues :

111 = 0.677
vx = -1.22

f*2 = -0.304 + J0.901
v2 = -0.304 -f-jl.00

//3 = -0.304 - jO.901
u3 = -0.304 - jl.00

(37)

The trajectory obtainedfrom the dimensionless equations ofChua'soscillator is shown in Fig.6-a. Suppose
that starting from the initial conditions (xo,yo, z0) we obtain the trajectory T\ shown in Fig. 6-a. If we
change the initial conditions into (—xo, —yo, —zq) , we would obtain a trajectory which is the symmetric
image of Ti with respect to the origin, as shown in Fig.6-b. Provided that the vector field E<* is symmetric
with respect to the origin, if we find a trajectory T from any element of C, it is always possible to find
its symmetric "twin" by choosing the associated odd-symmetric initial conditions. Note that the symmetric
image of T is T itself for all odd-symmetric periodic orbit. Our attractor in the next example appears also to
be odd symmetric, however it is only an illusion, since the double scroll presented below cannot be periodic.
Indeed with sufficient computer precision, one can always find its distinct symmetric twin, which will look
almost identical to its twin.9

Figure 6: A Rossler-type attractor and its odd-symmetric twin obtained from E<f

3.2.2 The Double Scroll attractor

For a = 9,0 = 14.28,m0 = -1/7 and mi = 2/7, (36) has a chaotic attractor [14] [15], called the double
scroll, as shown in Fig. 7. This corresponds to the following set of eigenvalues :

/ii = 0.728
vx = -1.29

H2 = -0.317 + jO.889
u2 = 0.0608 + jl.00

/i3 = -0.317 - jO.889
1/3 = 0.0608 - jl.00

(38)

Observe that the doublescroll attractor can be considered as the result of the mergingof the two Rossler
attractors shown in Figs.6-a - 6-b.

A typical trajectory of the double scroll and its eigenspaces are shown in Fig.8. The eigenvalue pattern
(n,v) is of type II; in each region, there is one eigenvector corresponding to the real eigenvalue and one
eigenplane corresponding to the two complex conjugate eigenvalues. One can recognize in Fig.8 a middle

see section 5 for more details

10



Figure 7: Phase portrait of the double scroll attractor obtained from E<*

Figure 8: Typical trajectories and eigen spaces for the double scroll attractor

region D0, separated by the two boundary planes U\ and U-\, an upper outer region D\ which is the half
space above U\, and a lower outer regions D-\ which is the symmetric image of D\ with respect to the
origin 0. As pointed out earlier, one of the advantages of C is that in each region ( D-\,Dq and D\ ), the
system is affine, therefore it has a well-known behavior. Before going any further, let us recall the solution
of a linear 10 system whose dynamics are determined by a state equation of the type:

X = MX (39)

If the matrix has one real eigenvalue Xr and two complex-conjugate eigenvalues Xc± = cr ± jcu, there exists
a basis B where the matrix M is in the form 'J :

We assume that the origin of the basis B is located at an equilibrium point
11Namely, the real Jordon form

11

(40)



A solution of (39) is of the type :

x = Gex"x
y = eat(Hcos(ut) - Ksin{wt))
z = eat(Hsin(ut) + Kcos{ut))

(41)

The behavior of the system crucially depends on the sign of Xr and a, this will determine the sign of the
coefficient located before t in the exponentials in the equations (41) . We have to consider four cases as
shown in Fig.9. In the case (a), the system isstable, and the trajectory isattracted along the real eigenvector
towards the eigenplane where it spirals inwards towards the equilibrium point at the origin. This cannot
lead to any interesting dynamics, because if we have such an eigenvalue pattern in a region £>,, as soon
as a trajectory enters D, it is attracted towards the corresponding equilibrium point. In the case (b), the
trajectory is attracted towards the eigenplane while spiraling outwards. In the case (c), the trajectory spirals
inwards while diverging along the real eigenvactor. In the last case (d), the trajectory spirals outwards while
diverging along the real eigenvector.

(a) XR < 0 ; a < 0 (b) XR < 0 ; a > 0

(c) Xr > 0 ; cr < 0 (d) Xr > 0 ; a > 0

•0.5 1

Figure 9: Four types of trajectory in an affine system with one real and two complex-conjugate eigenvalues

For the double scroll, we have case(c) in the middle region and case (b) in the outer regions. Let us
for example start from a point X0 in the region Di. The trajectory is strongly (i/i «C 0) attracted towards
the eigenplane EU(P+) while it spirals outwards. Since we have assumed that in Cno eigenspace can be
parallel to the boundary plane, it follows that the trajectory must exit from Di. In D0, we have case (b), the
trajectory spirals inwards in Es(0), and diverges along the real eigenvector Es(0). Schematically, as shown
in Fig.8, if a trajectory enters D0 above Es(0) it will return to Dlf and ifit enters D0 below Es(0) it will go
to D_2. Thus, one can easily understand the evolution of the trajectory. However, although deterministic,
it cannot be predicted exactly over a long period of timeas it is chaotic. For us, this means that the system
exhibits a sensitive dependence onthe initialconditions. Ifinstead ofstartingfrom z0,we started from a point
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xQ infinitesimally close to xo (but different), we would eventually find two different uncorrected trajectories.
If we integrate these two trajectories simultanetely, the distance between two corresponding points ( one
on each trajectory) does not remain infinitesimally small (it increases exponentially with time until the two
trajectories are practically uncorrected). For example, one of the two trajectories comingfrom the region
Do would go to D\ while the other one would go to D-\. In Fig.10 weshow the time series coresponding to
the trajectories T\ and T2 (dash line)starting from(0.001,0.001,0.001) and (0.0015,0.001,0.001), respectively
.The two trajectories are close to each other until t = 280 when T\ and T2 are both in the middle region Do.
Then Tx goes to the region D\ while T2 returns to D-\. After this, T\ and T2 are completely uncorrected.

Figure 10: Two time series of the double scroll attractor obtained from Ed, starting from two different but
close initial conditions

3.2.3 The double hook attractor

For 5 = 9,p = 14.28,m0 = -1/7, and mi = 2/7, (36) has a chaotic attractor [16], as shown in Fig 11. This
corresponds to the following set of eigenvalues :

til = 1.15
Ui = -0.89

1*2 = -2.98
v2 = 0.15 + jl.00

1*3 = -5.70
i/3 = 0.15- jl.00

(42)

This eigenvalue pattern is of Type I. In the middle region, instead of having one real eigenvector and an
eigenplane as it was the case so far, there are three real eigenvectors. Two of them are stable and the third
one is unstable. The Jordan form of the Jacobian matrix of the linear dynamical system present in Do is a
diagonal matrix with the eigenvalues on its diagonal. The associated dynamical system has a solution of the
type :

x - Ge^
y = He***
z = Re"**
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Figure 11: Phase portrait of the double hook attractor obtained from Ed

3.3 Two examples of attractors from Chua's torus circuit

The dimensionless form of Chua's torus circuit [17] is

{
§ = -af(y-x)
f = -f(y-x)-z
If = to

(44)

3.3.1 A two-dimensional quasi-periodic torus

For a = 2,0 = l,m0 = 0.1, and mi = -0.07, (44) leads to a quasi-periodic 2-torus 12 [17], as shown in Fig
11-a . It corresponds to the following set of eigenvalues :

Hi = 0.1955
7i = -0.1381

This is equivallent to

i*2- -0.04794 + J1.004
v2 = -0.03419 -fjl.00

Pi = 0.09958
<Zi = -0.06970

p2 = 0.9917
q2 = 0.9917

1*3 = -0.04794 -jl.004
V2- -0.03419 -jl.00

p3 = 0.1975
qs = -0.1382

(45)

(46)

We cannot apply (11) or (18) to obtain the parameters ofEc and Ed because the eigenvalue pattern belongs
to 5C and Sd- One can check that equation (14), (15) and (22) are satisfied by (46). As it has been explained
earlier, we shall have to perturb the eigenvalues in order to use Chua's oscillator to obtained the attractor
shown in Fig. 12. Let us add for example 10~6 to /ii and obtain the following perturbated values for the
parameters ofChua'soscillator ( resp. Chua's oscillator dimensionless equations) :

Ci = 1 ; C2 = 22.67 x 108 ; G= -47421 ; Ga = 47421 ; Gb = 47421 ; L= 210"10 ; R= 0.0
(resp. a = 22.67 x 108 ; /? = 47.42 x 108 ; y = -0.7175 ; m0 = -0.9999 ; mi = -1.0000; Jfe = -1

Unfortunately, when we integrate the system Ed, with ourprogram, we do not find the trajectory shown
in Fig.ll-a, because the calculations are not made with enough precision. After our perturbation of/*i, K\
and K3 defined in (12) are not equal to zero any more, they are 1.2 x 10~5 and 6.7 x 10"6 respectively.
These coefficient are different from zero, but they remain small. Let us try to perturb the eigenvalues a little
bit more. We now add 10~2 to n\. In this case, we find :

Ci = 1 ; C2 = 31.553 ; G= -5.572 ; Ga = 5.531 ; Gb = 5.701 ; L = 0.01581 ; R = 0.001866
(resp. oc = 31.553 ; p = 64.257 ; y = -0.6683 ; m0 = -0.9926 ; m2 = -1.0230; k= -1 )
With these parameters, using Ed, we obtain the trajectory shown in Fig.l2-b. One can verify that it is

identical to that obtained directly from the torus circuit shown in Fig.l2-a.
12see 5.3 for a definition
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(a)

Figure 12: Two-dimensional quasi-periodic torus obtained from (a) the original Chua's torus system and
from (b) Ed

Figure 13: Typical trajectories and eigenspaces for the 2-torus

Aswe did for the double scroll, let us also examine the typical trajectories and the associated eigenspaces
represented in Fig.11 . The eigenvalue pattern is also of type (c) in the middle region, and of type (b) in the
outer region. However, there are two slight differences :

- The magnitude of |-yx| = 0.14 is not as large as for the double scroll (1-29) and therefore the "flattening"
onto EU(P±) is relatively weak.

- Es(0) and EU(P±) are almost parallel to each other.
The reader can verify that if we increase (a) further, we would evenetually find a double scroll (a = 30).

A time series of the quasiperiodic attractor is given in Fig.ll. It is characteristic of a quasi-periodic system
with two incommensurate frequencies.

Note that the coefficient obtained after perturbing ^ by 10~6 would lead to a trajectory identical to
that obtained in Fig.11a if our calculations have better precision 13. The question is : how much can we
perturb the eigenvalues and still obtain the same trajectory ? There is no general answer to this question, as
it depends on the attractor 14. We know that in theory, if the perturbation is small enough, we shall find a
system that has the same qualitative behavior. In practice, in section 4, we have found without any difficulty

13For example, one can verify that in E<* we are in fact interested in mo+1, which is close to 2 X10-8. Our program, does
not allow us to carry out the calculation with enough precision

14see 5.2 for more details
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Figure 14: Time series of a quasi-periodic torus obtained from Ed

the coefficients of Ed, that give the expected trajectory with our program. As we shall see in this section,
one must identify where the singularity comes from (K\ = 0 and K3 = 0 in our case) and slightly modify
the eigenvalue pattern to avoid the singularity. Note that in our case, by changing one of the eigenvalues we
shall exit from Sd, if we change several eigenvalues we should verify that we do not stay inSd-

3.3.2 A folded torus

For a = 15,p = l,m0 = 0.1, and mi = -0.07, (44) has an attractor [17], as shown in Fig 12-a,. It
corresponds to the following set of eigenvalues :

{
1*1 = 1.408
1/1 = -0.997

f*2 = -0.0161 + J1.006
u2 = 0.01695 + jl.00

This is equivalent to
Pi = 1.376
<Zi = -0.9634

p2 = 0.9634
q2 = 0.9664

1*3 = -0.0161 -jl.006
i/2 = 0.01695 -jl.00

P3 = 1.425
q3 = -0.9976

(47)

(48)

As above, we have to perturb the eigenvalues Let us add 0.01 to pi, to obtain the following values of the
parameters for Chua's oscillator ( resp. Chua's oscillator dimensionless equations) :

Ci = l; C2 = 13.325; G = -0.9309; Ga = -0.4412; Gb = 1.8984; L = 0.07214; R = 0.004742
( resp. a = 13.325 ; p = 213.12 ; 7 = -0.9408 ; m0 = 0.4740 ; mi = 2.0393; k = -1 )
Observe that the trajectory shown in Fig.15b is identical to that of Fig.15a.

3.4 Ogorzalek's example

In order to simplify the equations of his ladder circuit, Ogorzalek assumes in [18] that R% = R2 = R3 = in
and C\ = C2 = C3 = IF. The state equation becomes :

+ 1 0 \f(x3) (49)

For m0 = —33.03 and mi = 400, Ogorzalek obtains the trajectory shown in Fig.l3-a . The eigenvalue
pattern of this system is :

( f*i = -0.809 f*2 = 0.00753 -1- jO.4045 1*3 = 0.00753 - jO.4045
\ vi = 0.9234 v2 = -0.8588 + jl.00 u3 = -0.8588 - jl.00

this is equivalent to :
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Figure 15: Folded torus obtained from (a) the original Chua's torus system, and (b) from Ed-

Pi = -0.794
9i = -0.794

p2 = 0.151
92 = 0.151

p3 = -0.132
g3 = 1-604 (51)

Observe that since pi =91, we have to perturb the eigenvalue pattern in order to be able to determine the
parameters of Ec and Ed. If we modify one of the eigenvalues, it will have an effect on pi or 91 and therefore
we shall be able to calculate the parameters of Ec and Ed- In the case of the torus we have seen that
if the perturbation is too small the parameters exist but in practice for numerical reasons the integration
of the system does not lead to the expected trajectory. On one hand, we want to avoid a singularity of
the type * . On the other hand, we do not want to change the eigenvalues too much because then it
is very likely that we shall not find the same qualitative behavior. The best way to find a numerically
appropriate pertubation is to modify (p;q) directly, instead of (li\v). By proceeding this way we are sure
that we eliminate the singularity as efficiently as possible for a minimum perturbation of the eigenvalues.
In our case, let us add 0.1 to pi and substract 0.1 from 91, in order to maximize p\ —q\. This leads to the
following eigenvalue pattern :

P! = -0.694
91 = -0.894

p2 = 0.151
92 = 0.151

which is equivalent to :

Hi = -0.746
^1 = 0.918

/i2 = 0.00926+ J0.431
v2 = 0.922 +jl.00

p3=-0.132

93 = 1.604

t*3 = 0.00926 -jO.431
V2 = -0.922 + jl.00

(52)

(53)

and to the following parameters for chua's oscillator (resp dimensionless equations)
d = 1 ; C2 = -90.364 ; G = 70.549 ; Ga = -69.769 ; Gb = -69.737 ; L = 0.0002037 ; R =

0.0001590

(resp. a =-90.364 ; p= -89.114; 7 = -1.000; m0 =-0.98893 ; mi = -0.98848; k= -1 )
The trajectories on Fig. 16a and Fig. 16b do not look quite the same. This is however only an illusion.

As shown in Fig. 16c, the illusion is caused by the geometry because in this example, the trajectory is
flattened onto a plane P that does not correpond to any of the planes x = 0, y = 0 or z —0. Therefore
there is no way of expending the trajectory along one of the axes. However, as shown in Fig. 16d-e, if we
rotate the attractor around the y-axis through an angle of 44.6 degrees to expose the third dimension of the
attractor in greater details, we would eventually obtain the attractor shown in Fig. 16f that looks identical
to the original one in Fig. 16a.
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(a) (b)

Figure 16: Attractor from Ogorzalec's example obtained from (a) the original system and from (b) Ed-

3.5 Brockett's example

In [19], Brockett studies the following single loop feedback system:

where

g(y) =
-ky
2ky - Zk
-Zk sgn(y)

if

if

if

M<1
K Ivl < 3
W>3

9(*i) (54)

(55)

The only interest of the region \y\ > 3 is to claim that all solutions of (57) are bounded when t goes to
infinity [20]. This region does not play any role in the dynamics of the system, therefore we replace the
function g by f defined by mo = —k and mi = —Zk. The numerical integrations are conducted for k = 1.8.

The phase portrait obtained in [19] from (57) is shown in Fig. 17-a. As in the previous case, we find
Pi = <Zi» after adding 0.05 to pi and subtracting 0.05 from 91 we obtain :

Pi = -0.95
91 = -1.05

p2 = 1.25
?2 = 1.25

this is equivalent to

l*i = 0.500
vi = -1.12

1*2 = -0.576 + J0.913
i/2 = -0.201 +jl.00

p3 = 1.8
93 = -3.6

1*3 = -0.576 -jO.913
i/3 = -0.201-jl.00

(56)

(57)

and to the following parameters for Chua's oscillator (resp dimensionless equations)
Ci = l; C2 = 52.056; G = -36.003; Ga = 36.656 ; Gb = 36.724 ; L = 0.0007397; R=.0005116
(resp. a = 52.056 ; p = 54.290 ; 7 = -1.00 ; m0 = -1.01812 ; mx = -1.02003; k = -1 )

3.6 Sparrow's example

Sparrow studies in [21] the following system of single-loop feedback system :

(58)
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Figure 17: Attractor from Brockett's example obtained from (a) the original system, and from (b) Ed.

where:

{

S(X\ - { = "8Mz +3-35
»W-\ = 8.14rz -0.25 - 3.6r

This system does not directly belong to C but after making the system symmetrical with respect the
origin, Sparrow obtained the double sided attractor shown in Fig. 18a. The only thing that change in
the vector field is the nonlinear function that becomes / given in (35) with m0 = —8.4 and mi = 8.4r.
The numerical integrations are conducted for r=19. After adding 0.1 to pi and substracted 0.1 from 91 we
obtained the following eigenvalue pattern:

HX = 0.677 i*2 = -0.304 + jO.901 f*Z = -0.304 - jO.901
vi = -1.22 v2 = -0.304 + jl.00 1/3 = -0.304 - jl.00

and the following parameters for Chua's oscillator (resp. Chua's dimensionless oscillator equations ):
Ci = l; C2 =-100.1; G = 62.019; Ga = -61.40; Gb = -61.35; L- 0.0002635; R = 0.0001631
(resp. a = 100.18 ; p = -98.823 ; 7 = -1.00 ; m0 = -0.99002 ; rm = -0.98933; k= -1 )
This leads to the trajectory shown in Fig. 18b. For the same reasons as in the case of Ogorzalec's

example, we do not obtain a trajectory similar to that in Fig. 18a. However, after a rotation around the
x-axix throughan angle of44.6 degrees, we find the trajectory shown in Fig. 18c. Observe that the attractor
has the same geometrical structure as that obtained from Ogorzalec's example. Although these two systems
have different eigenvalue patterns, the structure ofthe attractors is the same. We had already seen insection
3.4 that it is not always obvious to recognize that two attractors have the same geometrical structure, but
it is not always obvious either that two attractors have different geometrical structures. In the next section
where we present a gallery of attractors, we have checked carefully that this is not the case.

3.7 Conclusion

For each example considered in thissection, it hasbeen possible to find easily the parameters for both Chua's
oscillator and of its dimensionless equations that lead to the same behavior. Through these examples, we
have also presented a method to perturb the eigenvalues when needed. This method can be used to map the
dynamics of any system ofCinto that of Ec or Ed, as soon as we know its eigenvalue pattern. The reader
can directly use the program provided with this article, or Chua's oscillator to study the dynamics ofany
element of C. In the next section, we shall give a list of all the attractors discovered so far in C.

4 A gallery of attractors

In this section, we present a zoo ofattractors obtained from elements of Chua's canonical family. As it has
already been explained earlier, all these attractors lie in the dynamics of Chua's oscillator and in that of
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Figure 18: Attractor from Sparrow's example obtained from (a) the original system and from (b) Ed.

its associated dimensionless form. We shall use this last system Ed to generate the trajectories of each of
them. For each attractor, we shall also provide the eigenvalue pattern, the parameters of Chua's oscillator
dimensionless equations Ed, as well as the Lyapunov dimension 15 16 . All of these information are gathered
in a table given in appendix B.

Among this zoo of attractors, we first find those studied in the previous section : Rossler's attractor,
the double scroll attractor, the double hook attractor, the quasi-periodic and folded tori, and the Ogorzalec,
Brockett and Sparrow's examples. In the case of Chua's circuit we present six new attractors. In addition
to the attractors originally discovered from one of the system presented in the previous section, we add 12
other attractors reported in Chua's oscillator.

4.1 Attractors obtained from Chua's circuit

In addition to the Rddotoss\erys attractor, the double scroll attractor, and the double hook attractor, we add
six other attractors obtained from Chua's circuit17 :

- a torus obtained for large values of 5 and /?.18 : a = 1800.0;/?= 10000.0; m0 = -1.026; mi = -0.982
and of course as it has already been explained in section 3.2, 7 = 0.

- three attractors obtained for the following values of parameters for the dimensionless form of Chua's
circuit :

a = -4.087;/?= -2.0; m0 = -1.1429; mi = -0.7142 (Fig. 19b)
a = -6.691;/?= -1.520; m0 = -1.1429; mi = -0.7142 (Fig. 19c)
a = 8.342;/?= 11.925;m0 = -1.146; mj = -0.8533 (Fig. 19d)
- Two attractors obtained for the same values of parameters but different initial conditions. One of them

is not symmetrical with respect to the origin, therefore we can consider its symmetric image as a third
attractor. These attractors are obtained for : 5 = 15.6,/? = 28.58, mo = —8/7, and mi = —5/7 and the
following initial conditions (for Ed):

x = 0.1; y = 0.1; z = 0.1; (Fig. 19e)
x = 1.163764; y = -0.09723353; z = -.90565; (Fig. 19f)
x = —1.163764; y = 0.0972335; z = .90565; (the symmetric image of the previous one )
The theory of confinors [22] [23] made it possible to prove rigorously that these three attractors are

different. As we shall see in the next section, this is a non-trivial problem that will not be tackled in this

15see 5.4
16obtained with the software package DNSITE
17as it has been explained in section 3.2 the coefficientsof Chua's oscillatorare immediately obtained from those of Chua's

circuit

18Note that it is the first torus obtained in Chua's circuit
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paper. Let us say that all the geometrical structure of the attractors discovered so far in C is close to that
of one of the attractors presented in our gallery.

4.2 Concluding remarks

As explained earlier in this paper, all of the dynamics of C lie in a five-parameter family of dynamical system
: Ed- The corresponding five-dimensional parameter space Pd is huge and a systematic scanning of Pd
is almost impossible. So far, only a tiny portion of Pd has been explored, many more new attractors are
expected. The aim of this gallery is mainly to give an idea of the wealth of the complicated dynamics in C
and to encourage the reader to look for new attractors with programs like that proposed in this article or
that in [24]. Note that knowing the five coefficients of Ed one can use (5) backwards to determine the seven
circuit parameters of Ec. There are two degrees of freedom in this process, the reader can take advantage
of them to choose values of the circuit parameters most convenient for its own implementation of Chua's
oscillator. Equation (11) could also be directely applied.

Figure 19: Attractors originally obtained from Chua's circuit

Figure 20: Some other attractors obtained from Chua's oscillator

5 Elements of dynamics in C

5.1 Comparison of the original system and the corresponding Chua's canonical
systems Ec and Ed

Let us first recall the exact relation between the original dynamical system and that obtained from Chua's
oscillator Ec or from its associated dimensionless system Ed- Let us denote by F0,FC and Fd the vector field
of the original circuit, that of Ec, and Ed, respectively. As it is proven in section 6, there exists two invertible
matrices Jc and Jd, and a positive non-zero constant Sd, such that19:

=J~lFoJc (60)( Fc = J-^F
\ Fd = SdJj F0Jd

If X(t, xo) is a solution of the original equation

X(t) = F(X) (61)

where / is the time and xo the initial condition (i.e. the value of X at t = 0), then

JeX(t) = JCX = JCFC(X) = Fe(JcX(t)) (62)

and

TdT = JdX = SdJdFd(X) = SdFd(JdX(t)) (63)
Equation (62) implies that JeX(t) is a solution of Ec, and (63) implies that JdX(Sdt) is a solution of Ed.
This means that the trajectory obtained from Chua's canonical circuit is the same as X(t), but in a different
basis. The trajectory obtained from Chua's canonical equation is also the same as X(t) in a different basis,
but after a time rescaling 20. Therefore, wehave to comparetwo trajectories whichare not in the same basis.

19 J and Je are said to be linearlyconjugate,while J and Jj are said to be linearlyequivalent
Note that we cannot see this time rescaling in a phase portrait
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Ifthere exists a relation of the type (60) between two vector fields (after a small perturbation ifneeded) the
two systems are said to have the same qualitative behavior. In section 3, we did not insist on this point. By
choosing the appropriate view point, we were able to verify that the trajectories obtained from the original
system and from Ed look the same. Regardless ofthis, strictly speaking, we had not the same trajectory in
two different basis, but two different trajectories. Indeed, we should not think in term oftrajectory but in
term of attractor as we explain below.

5.2 Steady-state behavior and attracting sets
Let us first give some definitions:

A steady state refers to the asymptotic behavior as t -* oo.
A point y is a limit point of x if, for every open neighborhood U of y, X(t,x) repeatedly enters U as

t —• oo.

The set of all limit points of x is called the limitset ofX(t, x).
A limit set L is said to be attracting if there exists an open neighborhood of L such that the steady-state

of X(t, x) is L for any x of U.
The basin of attraction of an attracting set L is B(L) such that every trajectory starting fromB(L) tends

toward L as t —*• oo.

Attracting limit sets are the only set that can be observed in physical systems. This does not mean
that a nonattracting set cannot have an influence on the transient (before the steady-state is reached). The
definition of limit sets that we gave is in fact too simple for complex steady-state behaviors such as those
existing in chaotic systems. The term strange attractorhas been introduced as the set on which the trajectory
accumulates. For us we shall use interchangeably attracting limit set and attractor. Note that in a stable
linear system there is only one limit set but in a nonlinear system there are typically several attracting sets
with their own basins of attraction. The initial conditions determine in which limit set the system settles.

5.3 Equilibrium points, periodic orbits, quasi-periodic orbits and chaos

Xeq is an equilibrium point if for all t: X(t,Xeq) = Xeq.
X(t,Xo) is a periodic solution if there exists a minimalperiod T such that X(t}Xo) = X(t + T,Xo) for

all*.

X(t, Xo) is a quasi-periodic solution if it canbewritten as the sumofperiodic functions : X(t) = £, hi(t)
where hi has a minimal period 7} and a frequency /,-. In addition to this, there exists a finite set of base
frequencies (fi,..fp) such that

- there does not exist a nonzero set of integers (ki, ..kp) such that kifi + .. + kpfp = 0
- it forms a finite integral basis for any /,-.
The base frequency is not unique but p is. A quasi-peiodic solution with p base frequencies is called

p-periodic.
From a practical point of view, chaos can be defined as none of the above; that is, a bounded steady-

state behavior that is not an equilibrium point, not periodic, and not quasi-peiodic. The limit set for chaotic
behavior is not a simple set like a circle or a torus but it is related to fractals and Cantor sets [25].

Another property of chaotic system is its sensitive dependence on initial conditions already mentioned
in section 3.2.2. Consider two different initial conditions arbitrarily close to each other, the trajectories
corresponding to these two points diverge at a rate characteristic of the system before becoming uncorrelated
for all practical purposes. Even if two different initial conditions are very close to each other, so that they
cannot be distinguished, the corresponding trajectories will diverge and become uncorrelated after a finite
amount of time. Therefore, no matter how precisely the initial conditions are known, the long term behavior
of a chaotic system cannot be predicted. That is why chaotic systems, although deterministic, are said to
exhibit a "random behavior". This is the reason why it is impossible to reproduce with Chua's canonical
system exactly the same trajectory as with the original system. In the previous section, we in fact verified
that the attractorsobtained from the original system from Ed look the same. The reader caneasily imagine
that to prove that two chaotic attractors are identical, or different, is a non trivial task [23]. When we donot
have to perturb the parameters, the dynamical systems E0, Ec and Ed are equivalent. Therefore the same
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attractors should be present in the three systems. In fact this is not obvious either. Indeed the vector fields
are not defined with infinite precision. Fortunately, except in some pathological cases, attractors are said to
be stucturally stable which means that they are preserved under perturbations of the system (otherwise we
could not see them). This is equivalent to the continuity property of the ODE with respect to parameters.
One can also refer to a real circuit where the components are not defined with an infinite precision, but still
give birth to the "same" attractor. Assuming that an attractor is stable, it has an open basin of attraction.
On one hand, we cannot reproduce the same initial conditions in Chua's canonical systems (Ec and Ed) as in
the original system. On the other hand, it is possible to start in the same basin of attraction and therefore
obtain the same attractor. That is what we did in the previous section. Also note that if the notion of the
attractor is a non-trivial one, then it is not obvious either to determine whether or not two attractors are
distinct, if their bassins of attraction are distinct. In this paper we shall not tackle this problem. In the
previous section, we do not pretend to have given an exhaustive list of all the existing attractors in Chua's
canonical circuit but rather that all the attractors discovered so far in C have a geometrical structure close
to that of one presented in the gallery. There are in fact many attractors present, thinking for example of
a bifurcation sequence where the attractors evolve, merge, etc... [13] [26]. We have also seen in section 3.4
that it is not always easy to recognize that two attractors are similar. To build a complete list of attractors,
it would be at the same time difficult to be exhaustive but also to make sure not to list the same attractor

twice. In addition to the phase portrait, one of the criteria to characterize an attractor is its Lyapunov
exponents.

5.4 Lyapunov exponents

After this brief presentation of what chaos is, we introduce a generalization of the eigenvalues at the equi
librium points. The Lyapunov exponents are used to determine the stability of any asymptotic behavior
(behavior when t —• oo) including chaotic and quasi-periodic solution for which they provide valuable infor
mation. They are defined in the terms of solutions of the variational equation as follows: let {rrii(t)}3=1 be
the eigenvalues of the Jacobian matrix of F(X) evaluated at X = X(ttXo). The Lyapunov exponents are
defined by :

Xi = lim -ln\rm{t)\ (64)
t—*oo t

if the limit exists 21. To have a better understandingofwhat these Lyapunovexponents are, let us for example
find them at the equilibrium point P+. The eigenvalues of the Jacobian matrix Mi are (*i(t)3=1 = e^W.
Therefore :

A,- = limt-.oo j/n|m,(<)| ( .
= lim^oo \Re[f*i]t = Re[L*i] {00)

Hence, in this special case, the Lyapunov exponents are equal to the real part of the eigenvalues at the
equilibrium point; they indicate the rate of contraction (At- < 0) or expansion (A,- > 0) near the equilibrium
point.

Suppose that xo ^ P+ but X(t, xq) —• P+ as t —*• oo, which means that xq is in the basin of attraction
of P+. Since the Lyapunov exponents are defined as the limit as t —• oo, the Lyapunov exponents of xq and
P+ are identical. In general, every point of an attractor has the same Lyapunov exponents as the attractor
22; therefore we can refer to the Lyapunov exponents of an attractor. It is proven in dimension n that at
least one of the Lyapunov exponents must be equal to zero. In addition to this , note that for an attractor,
the contraction must outweight expansion so :

n

X><0 (66)
i'=0

From these Lyapunov exponents :
Ai > A2 > ....An (67)

21 lim can be replaced by lim. sup to guarantee existence of the Lyapunovexponents. Our short presentation is only true
when the limit exists.

22We should say for almost everypoint in some cases of strange (or chaotic) attractors, but it is always true for non-strange
attractors

23



Kaplan and Yorke defined the Lyapunov dimension as

Ai + A2 + Aj
jPx=j+ *V (68)

Aj+l

where j is the largest integer such that Ai + A2 + Xj > 0.

5.5 Classification of Attracting sets

Having now a better idea of what attractors are, let us classify them. One of the features of chaos is its
sensitive dependence on initialconditions. This occurs only in an expanding flow. Hence, what distinguishes
a chaotic (or strange) attractor from the other types of attractor is the presence of at least one positive
Lyapunov exponent. In the three-dimensional case, wecan only have one positive Lyapunov exponent 23 but
in systemsof higher dimension, it is possible to havemore than one positive Lyapunov exponent; the system
is then termed hyper chaotic. Among the attracting sets, it is possible to classify these sets as follows:

Classification of attracting sets
Steady-state Attracting set Lyapunov

exponents
Lyapunov
dimension

Equilibrium point point 0 > Ai > ...An 0

Periodic closed curve Ai = 0; 0 > A2 > ...An 1

Quasi-periodic K-torus Aj = 0 = ... = XK = 0;0 > XK+i > ...Xn K

Chaotic Cantor-like Ai>0;£A,<0 noninteger

6 Linear conjugacy of two systems having the same eigenvalue
pattern

Our aim in this section is to prove the following proposition :
- Two elements of C, whose vector fields F and F§ have the same eigenvalue pattern (/*; u) or (p; q) 24

are linearly conjugate, i.e. : there exists a non-singular matrix H such that:

HoF=FoH (69)

Equation (69) immediately implies that the two dynamical systems associated with F and F' have the
same qualitative behavior. If X is a solution of the dynmical system

in the basis B, then:

therefore X = HX is a solution of :

X = F(X)

HX = HoF(X) = F'(HX)

(70)

(71)

X = F (X) (72)

This means that if (70) leads to a trajectory, (72) leads to a qualitatively similar trajectory 25 in another
basis defined from B by H (we invite the reader to verify that this is equivalent to what has been said in
section 5.1).

More precisely, in order to prove our proposition, we shall show that any vector field of C with an
eigenvalue pattern (p,q) is linearly conjugate to some vector field Fpq uniquely determined by (p;g). By
transitivity, this implies that two vector fields having thesame eigenvalue pattern (p; q) are linearly conjugate.
The proof is decomposed into three steps :

23oneis equalto zero,and their sum has to be negative
24 In thissection, it will more convenient to define theeigenvalue patterns by (p;q), let usrecall that there exists a bisection

between (n; v) and (p; 9)
25 with the restrictionsof the previous section
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6.1 Step 1

Let us first express the vector field F of any element of C in a form in which our proposition will be easier
to prove. First, let us recast the vector field F in a basis B where the equations of the boundary planes are
x = 1 and x = —1, respectively. The vector field F can be expressed in the form 26:

{BX-rc foi(<W,X>)<-l
AX for|< jy,X>|<l (73)
BX-c for(<W,X>)>l

where:

A = (a,j) is the Jacobian matrix of F in the middle region, denoted by Mo in Fig.l.
B = (bij) is the Jacobian matrix of F in the outer region, denoted by Mi in Fig.l.
c=(ci.C2, C3) is a vector of R3 that ensures the continuity of F on the boundary point.
W = (1,0,0)T is a vector of R3.
The coordinates of a point belonging to the boundary plane Bi can be expressed by (1, y, z) where y and

z are two real numbers. The assumption that F is continuous on Bi is equivalent to :

Vy.zGfl, A\ y | =B \ y | + c (74)

which can be explicitly written as follows :

{an —bn —ci +

a2i — &21 — C2 +
<*3i — &31 — C3 +

(ai2-&i2)y + {<*i3-bi3)z = 0
Vy, z € R, { a2i - 621 - c2 + (a22 - 622)2/ + (<*23 - 623)2 = 0 (75)

(a32-&32)y + (a33-633)2 = 0

Eq.(75) implies that the last two columns of the matrices A and B are identical. Thus there exists a
vector

(-611 - ci \
-621-c2 (76)
-631 - C3 /

such that

B = i + P(l,0,0) (77)
Therefore / can be expressed as follows [15] [14] :

f(X) = AX +\p(\<W}X>-\\ +(<W,X>-\))
- (| <W,X >+1| - (< W,X >+1))

Let us now note that there exists a nonsingular matrix H such that A = HAH'1 is in its Jordan form
[27]. The equation of /(•) as defined in (73) in a basis B, becomes

HfiH-^X) = HAH~lX +±HP{(\<(H-1)TW,X>-1\
+(<{H-1)TW,X>-lj)

/ ' (791
-(|<(^-1f^,^>+l|
-«(H-*)TW,X>+lj)}

in a basis B characterized by the coordinate transformation matrix H from 5 to 5. A, P and W are
transformed into HAH'1, HP and (i/-1)TW*, respectively, and denoted by A,P and W. Therefore, we can
suppose, without loss of generality that F A is in the form

26<>> denotes thevector dotproduct. Ifforexmplex= (a;i,X2,X3)T andy = (yi,j/2»!/3)T then< x,y >=x\y\ +*2i/2+a?3y3
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F(X) = AX-r±P(\<W,X>-l\ + (<W,X>-l)) ,ftm
-(\<W,X>+1\-(<W,X> +1)) m

where A is in its Jordan form. Note that W is not necessarily equal to (1,0,0)T.

6.2 Step 2

In our second step, we shall prove that there exists a basis B' which transforms A into A' and W into W,
where A' is in its horizontal companion form 27 :

0 1 0 \
(81)

and W is equal to (1,0,0)T. Let us recall that we have assumed above that A is in its Jordan form, where
there are four possible cases :

where a,b and c are distinct and w ^ 0. In each case, we shall make some assumptions regarding the
vector W. They correspond to the fact that, as stipulated in the introduction, there is no plane or line
parallel to the boundary plane which is invariant under the action of the linear vector field f in the middle
region. Let us now examine these four cases :

6.2.1 Case (a)

Assume that W = (tui,«>2»u>3)T satisfies wi ^ 0. W is tranformed by the matrix wil into W = (l,y,z)T
which in turn is tranformed by the matrix :

/ 1 y 2 \
(82)

into W = (1,0,0)T. The matrix A corresponding to Case (a) is invariant under these transformations.
Choosing

K = | a 1 0 | (83)

A is transformed into

0 1 0 \
A' = KAK-1 = ( 0 0 1 (84)

3a -3a2 a3 /

and W is transformed into W = (K-1)TW = (1,0,0)T.

rOnecan easilyverify that r\ = pi,r2 = —P2 and r2 = pz
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6.2.2 Case (b)

Assume that W= (u>i,u>2,«>3)T satisfies u>i ^ 0 and 102 # 0. W is tranformed by the matrix

wi 0 0 \
0 ui2 0 (85)
0 0 u>3 /

into VK = (1,1,z)T which in turn is tranformed by the matrix

1 0 0 \
0 1 z \ (86)
0 0 1/

into W = (1,0,0)T. The matrix A corresponding to Case (b) is invariant under these transformations.
Choosing

/ 1 0 0 \
K= [a b 1 (87)

\ a2 b2 26 /

A is transformed into

/ 0 1 0 \
A' = KAK-1 = 0 0 1 (88)

\ a62 -(2a + 6)6 a+ 26 /
and W is transformed into W = (if-1)^ = (1,0,0)T.

6.2.3 Case(c)

Assume that W = (iui, iU2> u>3)T satisfies wi ^ 0, 102 ^ 0 and ty3 ^ 0. W is tranformed by the matrix

wi 0 0 \
0 u* 0 (89)
0 0 W3 )

into iy = (1,1,1)T. The matrix A corresponding to Case (c) is invariant under these transformations.
Choosing

/ 1 0 1 \
K = a 6 c (90)

V a2 62 c2 /
j4 is transformed into

/ 0 1 0 \
A! = tf^/ir1 =0 0 1 (91)

\ a6c —(a6 + 6c + ca) a + 6+ c /

and W is transformed into W = (tf-1)7W = (1,0,0)T.

6.2.4 Case(d)

Assume that W= (u>i, u>2, u>3)T satisfies wi ^ 0 and uv| + iwj ^ 0. W is tranformed by the matrix

wi 0 0

0 t«2 1113 I (92)
0 -IO3 V)2
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into W—(1,1,1)T. The matrix A corresponding to Case (d) is invariant under these transformations.
Choosing

/ 1 1 0 \
K=\ a <r -co (93)

\ a2 <r2 + u;2 -2w2 /
A is transformed into

/ 0 1 0 \
A' = KAK-1 =0 0 1 (94)

\a +2o- -(2a<r-r<r2-r(j2) a{a2 +u2))
and W is transformed into W = {K^fW = (1,0,0)T.

6.2.5 Conclusion

In each case, there exists a matrix K such that :

/ 0 1 0\
A' = KAK'1 =0 0 1 (95)

\ P3 -P2 Pl /

W' = (K^fW = (l,0,0)T (96)

6.3 Step 3

The vector field expressed in (80) is defined by A,W and P. We have proven that there exists a basis B'
defined by K from B where simultaneously A is in its companionform (completely defined by pi,P2 and p3
) and W' = (1,0,0)T. The last unknown is

p/ = ^p=(ei,e2,e3)T (97)

We are now going to prove that it is also uniquely defined by (p; q). Indeed, from (80), the Jacobian matrix
of the vector field in the outer regions is the matrix :

/ ei 1 0 \
B' = p'w'T + A'=l e2 0 1 (98)

\ e3 + p3 -P2 Pi /

Its characteristic polynomial is :

P(X) = \XI-B\ = A3-A2(pi+ei)
+A(eip1+p2-e2) (99)
+(e3 + P3+P2ei -Pie2) = 0

but it is also, by definition of qi,q2 and 53,

P(X) = A3 - giA2 + q2X - q3 (100)

This leads to the following set of equations

ei = qi - pl
e2 = -92+P2~Piei (101)
63 = -93-P3-P2Ci+Pie2

that uniquely defines p . Therefore, we have exhibited a vector field Fpq uniquely determined byPi, P2, P3,9i, 92
and 03 that is linearly conjugate to any element f of L with the same eigenvalue pattern.
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7 Conclusion

In this paper, we have shown how rich the dynamics of a hugefamily of dynamical systems Care, but also
howall these dynamics can be subsumed within that of a simplecircuit or of its associated dimensionless form
driven by onlyfive parameters. Since the onlynonlinearity in the system is a three-segment piecewise-linear
function, in each of the three regions the system is affine, thereby makingthe study of the dynamics easier.
With some examples, it has been possible to give some intuitions about the evolution of the trajectory,
mainly in terms of the eigenspaces and the eigenvalues, and to introduce the notion of sensitive dependence
to initial conditions. The program available with this article constitutes a complement for the study of
attractors in a more interactive way and allows a better understanding of the structure of the attractors.
This paper is aimed for the non-specialist. We tried to make full use of the simplicity of the structure of the
vector fields in C. However, the theory of chaotic dynamics is much more complex than it appears in this
paper. The simplicity of the elements of C provides a vehicle for finding an answer to many questions still
opened about chaos. Reference [25] constitutes a good introduction to chaotics dynamics, [28] will provide
the necessary algorithms to study these systems. To close this paper we remark that the elements of Chua's
circuit family can be built with standard components, thereby providing a useful real-time complement to
their study.
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8 Appendix

8.1 Appendix A : Description of the user-friendly program

The aim of this C-program available on PC is to simulate Chua's canonical equations and to display the
trajectory, the eigen spaces, the boundary planes, and to rotate them, and to provide the eigenvalues. In
this appendix, we give a brief description of the main menu presented at the top of the screen. To have
access to any of the following features, click on the corresponding rectangle with the mouse or press the first
letter of the option on the keyboard 28:

Parameters
Choose the values of a,P,y, mo, mi and k. To set the value of a particular parameter, choose the

parameter option in the main menu and then select the parameter to be modified by clicking on the
appropriate menu button. When the parameter is chosen, a tick mark appears in the box along side the
name of the parameter. Enter the parameter value by typing the desired number in the dialogue box and
pressing modify, or by incrementing/decrementing the digits of the display by clicking on the arrow keys.
Note that k can only take the value 1 and -1, by clicking on the button k one sets the opposite value.

The calculate button initiates the circuit equations from the chosen initial conditions.
continue uses the last point of the previous integration as the new initial condition and continues to

solve the equations.
Load
Instead of typing in a new set of parameters each time one runs the program, one may load the values

from an option file by choosing the load option from the main menu. Pressing this button brings up the
search path for a file. Complete the path name to the desired subdirectory and press the return key. A
scrolling window appears which displays the content of a subdirectory. Use the arrow keys or scroll bar to
move through the list of files; select a file by highlighting it and pressing the Okay button. Press Cancel
to return to the main menu.

Initial conditions
The window for choosing for the initial conditions of the simulation is similar to that for setting the

parameters. Each state variable is initialized by clickingthe appropriate state button (x, y or z), and either
incrementing/decrementing the current values by mean of the up and down arrows, or typing the value in
the dialogue box and pressing modify. The default values are : xo = yo = zq = 0.1. Note that if one uses
continue in the menu Parameters to integrate the equations, he can press initial condition in the main
menu and henceforth obtain the coordinates of a current point on the trajectory (the initial condition of the
next iteration).

Algorithm
In our program, the user may choose to solve Chua's dimensionless equations by means of the forwards

Euler, fourth order Runge-Kutta, or sixth order Adams-Bashforth algorithm. The user specifies the value of
the integration step. He also gives an upper bound on the relative local truncation error |T„|/|x(in)|. The
program puts out an alert if the current step size causes the LTE estimate to exceed the bound.

plOt
Choose what you want to display on the screen : eigenplanes and eigenvector in the middle region and

in the outer regions , boundary planes, equilibrium points. When the button is lighted, the corresponding
element is displayed. The users can also choose the speed option which displays the trajectory slowly so
that he can have a better understanding of the evolution of the trajectory. This is particularly interesting
when the eigen elements are displayed. When the selections are done, press Okay and the graphic display
appears.

If you click on the button of the mouse with the cursor inside the graphic screen, a menu appears that
allows one to rotate the attractor, either step by step (10 degrees) or automatically by chosing the option
auto. To exit the menu type cancel, reset sets back the attractor to its initial position (before any
rotation). For convenience, it is also possible to rotate the attractor directly from the keyboard without even
selecting the rotation menu : Q and A rotate the attractor around the axis X in both directions, W and S
around the axis Y, and E and D around the axis Z.

28 except for Plot, type O
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Save

The save option prompts the user for the names of files in which to save options and/or data from a
simulation. Data files include the parameters for the simulation as a header and are written in ASCII format.

Quit
The quit button exits the program gracefully

8.2 Appendix B : eigenvalues, parameters and Lyapunov dimension for the
gallery of attractors

In this last appendix we have collected the data relative to the gallery of attractors in table 1. For each
attractor, wefirst give the number of the figure whereit is displayed, the Lyapunov dimension, the eigenvalue
pattern 29 and the parameters of the dimensionless equations.

29Mi»M2 , and fiz are the eigenvalues corresponding to the inner region. As mentioned in section 2.1 in the outerregion we
always find one real real and two complex-conjugate eigenvalues, and therefore it is possible to divide the system by a non-zero
positive number and assume that the imaginary part of the complex eigenvalues has a norm equal to one. With the notations
used in the table : u\ = in, p2 = 01 + jl.00 and ,nz = o2 —jl.00
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