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Abstract

We consider the stability of the equilibrium arrival rate for service facilities with
multiple classes of customers who are self-selecting. The model we study is a gener
alization of the specific single class model introduced by Stidham. We determine the
dynamical properties of arrival rate at the service facility and show that these results
apply to a very large classof user distributions and queues. If the capacity of a queue is
large enough we find the equilibrium arrival rate to be stable. However, if the capacity
of the queue is insufficient then the arrival rate is unstable and can oscillate. Although
the equilibrium arrival rate may be unstable in a strict sense, the oscillatory solutions
may be stable and close to the equilibrium.

1 Introduction

The stability of arrival rates is of great importance in the design and planning of service
facilities. Given that the precise nature of the customer population and the detailed prop
erties of the facility axe typically not known in advance, it is not possible to compute the
arrival rate, a priori. Rather, the arrival rate will vary over time due to the self-selection



by customers. If the dynamics of this adjustment process is not stable then the arrival rate
may not reach equilibrium and could instead fluctuate, perhaps wildly.

In a recent paper Stidham [Sti92] considers the problem of stability of an m/m/1 queue
with a single class of customers, which is a model of a service facility. For a specific example
he showed that if the capacity of this facility is large enough, then the equilibrium arrival
rate will be stable. This is crucial for the successfuloperation of such a facility. However, his
model is very specific, and it is unclear what will occurin more general queues with multiple
customer classes.

Our results are an attempt to answer this question. In the next section we present a
general model of a service facility with multiple classes of customers. We then show that
Stidham's example is a special case of this more general model. Using techniques from
nonlinear dynamics [GH86] we can easily rederive Stidham's result, and can in fact compute
the analytic solution for his example. We then consider a naturalgeneralization of this model
to multiple user classes. We find that similar stability results hold for this class of problems.

We then turn to our general model of service facilities with many customer classes. Here,
we allow the customer classes to have any smooth distribution for their value of service
and allow the service facility to have an arbitrary delay function, subject to several mild
restrictions. We show that if the capacity of the service facility is too low then the system
typically becomes unstable in a specific manner. In particular, the equilibrium arrival rate
undergoes a 'period-doubling bifurcation' [GH86] and becomes unstable, creating a stable
periodic orbit nearby. Thus, even though the equilibrium arrival rate is unstable, the arrival
rate always ends up near the equilibrium, and makes small oscillations about it.

2 The Model

We consider a general model of a service facility with multiple classes of customers. This is a
generalization of the model studied in Stidham [Sti92], which was based on work by Dewan
and Mendelson [DM89].

Consider a service facility with capacity p anda delay function -D„(A), where D^X) is the
expected delay given the arrival rate A. A customer is charged p to enter the facility. Here
we consider the short run problem where the capacity \i is fixed. In the long run problem the
capacity is varied in order to maximize profit or social benefit. We consider only the short
run problem here, and will to discuss the long run problem in a future paper.

We assume that each customer has a linear delay cost and a specific value of service. A
class i of customers is a group of customers all having the same delay cost hi. Within this
class different customers may have different values of service. These are represented by a



distribution r,(v), where rt(v) is the density of customers in class i with value of service v. A
customer will enter the queue if her value of service is greater than her total expected cost,
which is the sum of the delay cost and the price.

These customers will enter the queue based on self selection. It is easy to see that for a
given delay d the arrival rate of customers from class i will be

fyd) = f°° ri(v) dv
Jp+hid

As in Stidham, we break time up into discrete periods. Customers in period n +1 decide
whether to enter the queue basedon the expected delay, which they assumewill be the same
as the delay in the previous period. Specifically, letting Aj, denoting the arrival rate from
customer class i in period n, then the arrival rate in period n + 1 can be computed from
AJ,+1 = L*p(dn), where dn = ^(SjA^). From an abstract point of view we can describe
the dynamics as a nonlinear mapping X\+1 = H(A*, A*,..., A™) where ^(A*, A*,..., A™) =
W*(E,A')).

Note that our model is very general. It allows for wide variations of customer classes
and service facilities. In the next section we consider the specific example first analyzed by
Stidham [Sti92].

3 Stidham's Example

In [Sti92], Stidham considers a service facilty that is an m/m/1 queue with a single class
of customers. Their values of service are distributed uniformly on the interval [0, a] with
maximum arrival rate A and delay cost h per unit time. In this case r(v) = A/a for all v < a
and r(v) = 0 for v > a. In our notation, Lp(d) —A(a—p—hd)/a. Since the service facility is
an m/m/1 queue we see that D(A) = (// - A)"1 [Kle75]. The dynamics is therefore described
by

An+1 =T(Xn) =A'(l - -^j-), (1)
where following Stidham we have defined A' = [(a —p)/a]A and a! = a —p. Note that T
is non-increasing. (See figure 1.) We must require a' > hj\i or else no customers will ever
enter the queue1.

1There is an important restrictions implicit in this formula, namely 0 < A< A. Thus if T(0) > r_1(0)
(which corresponds to A' > /i + h(A'/fi - l)/a') then points near the boundary, A = 0, will be mapped
beyond T_1(0) and then to 0, and the arrival rate will eventually oscillate between 0 and T(0).



The equilibrium arrival rate satisfies A* = T(A*). Thus A* is a fixed point of the mapping
and is illustrated in figure 1. Since T is non-increasing this fixed point must be unique and
is given by

A* = (A'+ fi - [(A' + p)2 - 4AV - h/a')]*)l2

A fixed point A* is said to be locally stable if there exists a neighborhood S of A* such
that

lim Tn(A0) = A*

for any A0 e 5, where we define Tn(A) = T(r(---T(A))) to be the functional composition
of the map n times. This implies that if the arrival rate begins in the neighborhood S of
the equilibrium, then it will converge to the equilibrium. A fixed point is globally stable if
any initial arrival rate converges to the equilibrium, in which case S can be taken to be the
entire domain of the function.

In [Sti92], Stidham showed that the equilibrium arrival rate was globally stable if the
capacity of the queue was large enough. We now present an easy proof of this result. Our
goal hereis to develop a simple method whichcanbe extended to more complicated problems.

We observe that the map can be simplified by defining pn = p. —An, a = p —A', and
j3 = A'h/a'. The simplified map, T(/>), takes the form

f(p) =a + fi/p. (2)

Note that T(p) is defined on the interval 0 < p < p.
Now we will show that the fixed point is globally stable by showingthat T2 is a contraction

mapping for // > A. A contraction mapping f2 satisfies \f2(x)-f2(y)\ < \x —y\ for all x ^ y
and guarantees that the mapping has a unique globally attracting fixed point [Dev86]. It is
easy to understand why a contraction mapping must have a unique fixed point. Consider
any two points x, y. By the contracting nature of the map the distance between them will
decrease monotonically and thus they willconverge to the samepoint. This obviously applies
to any collection of points, showing that all initial conditions must converge to a single point.

Lemma 1 For a > 0, T2 is a contraction mapping.

Proof: From equation (2) we find that the second iterate of the map is



Now we compute

\t\X)-f\y)\ =

and note that

x

1+ xJ 1+irf

1

(i+ !*)(! +fa,)|x yl

(1 + J«)(l +|y)

showing the contracting nature of T2. o

Theorem 1 For p > A', A* is a globally attracting fixed point ofT.

Proof: Since a = p —A' the theorem requires that a > 0. In this case f2 is a contraction
mapping andtherefore T must have aunique fixed point by the contraction mapping theorem.
Since T is isomorphic to T their dynamics must be the same. Note that p > A' implies that
T(0) < T~1(0), thus avoiding difficulties with the boundary. D

We point out that for p< A', f2 is an expansion mapping which satisfies \f(x)-f(y)\ >
\x —y\ for all x ^ y. This implies that any initial condition A0 # A* will eventually run into
the boundary.

Finally, we note that the mapping T has a very special structure which allows us to give
a complete analytical solution. T is a linear fractional transformation [Her66] and thus by
using its group structure we can write the arrival rate at period n as an explicit function of
the initial arrival rate A0. We find

A =TV1 ^- (7?+1 ~7;+')fc ~ A,) - (7+7;+1 ~7-7:+t)
" (°> (7=_T?)(^-A.)-(7+72-7_7?)

where

7±

<1 Va,P,x,y>0,

.^.^E^f.
We note, however, that for more general mappings no analytic solution exists. Thus we

avoid using analytic solutions in our analysis as we are interested in ideas and techniques
which will generalize to complicated situations.



4 Multi-Class Extension of Stidham's Example

Before considering the general multi-class service facility, we first analyze the dynamics of a
particular multi-class extension of Stidham's example. We show that the same techniques we
used for analyzing the single class example can be easily applied to this multi-class problem
as well.

Consider m classes of customers with delay cost 6, per unit time and uniform distribution
parameterized by a,-,/*,- and A; as in the previous example. The service facility is still modeled
as an m/m/1 queue, but now there are multiple customer classes each with its own arrival
rate A*. For this model the delay d depends on the sum of the individual arrival rates. Thus
we write d = Z?(A), where A = £,- A*. As before D(X) = (p —A)"1.

We see that the dynamics is described by

aU =̂ =a;(i-^),
where we define AJ- = [(a,- —p)/a,-]Aj and a\ = a,* —p. Note that Ti is non-increasing for all
classes i.

Again, the map can be simplified by defining p*n = p/m —AJ,, a,- = p/m — AJ, and
/?,- = Aj/ij/aJ. We therefore study the map Ti given by

totA+i = r<(ft) = oi + A/rf

where p£* =£,•/£.
Define aM = £,at, j3tot = Y*k and A' = E.AJ. We now show that there exists a

globally stable fixed point of T for atot > 0.

Lemma 2 For atot > 0, T has a unique fixed point.

Proof: The key step is to note that one can construct a map for the quantity p*°l which
takes the simple form pjj+j = atot + P^/p™. Now using the same argument as in Lemma 1,
we see that there is a unique fixed point of this map which we denote by p*. Thus the fixed
point of the map T must be p%* = Ti(p*). o

Now we prove the global stability of this fixed point for a service facility with sufficient
capacity.

Theorem 2 For p > A', there exists a globally attracting fixed point ofT.



Proof: A simple extension of the proof in Theorem 1 yields the desired result since T and t
are isomorphic. D

For sake of completeness we mention that, as in the single class case, we can compute
the complete analytical solution to this problem. The fixed point of the map T is

where

A" =£_(<*+#/„•)
m

The arrival rate AJ,, expressed in terms of the initial rate Aq, is given by

K = /*/* - fi
where

j Mt? - 7?) + Mir1 - -fir1)]* - °n(t+t- - 7-7;) - ft(7+7r' - 7-7;-1)
*" ' (72 - 7?)ft. - (7+7= - 7-7?)

and
atot (fJtat

2

Thus this particular multi-class extension of Stidham's example exhibits many of the same
features as the single class case.

We now return to the general model as defined in Section 2.

5 General Theory

The examples in the previous sections are somewhat artificial. Service facilities are usually
not m/m/1 queues and customers service values do not typically have a uniform distribution.
Thus the crucial question is whether the results obtained in these examples apply to more
general service facilities.

In this section we show that subject to a few mild restrictions any service facility with
multiple customer classes has a unique globally stable equilibrium arrival rate if the capacity
of the service facility is sufficiently large. Since we are not restricting ourselves to a specific
queueing model for the service facility, we must carefully define what we mean by capacity p.
We do this by imposing restrictions on the delay functions DM(A). Thus we will represent the
service facility by a parametrized family of functions Dp(A) which must satisfy the following
conditions.



1. Positivity and Convexity: ^(A) is a non-negative, monotonically increasing, differen-
tiable convex function.

2. Capacity: D^(p) = oo.

3. Delay : DM(A) < D^(X) if p > p'.

4. Marginal increase in delay: D'^X) < D'^X) i£p>p'. (Here D'^X) =^&.)

5. Sufficient marginal capacity: Ve > 0,A, there exists a p such that D^X) < e.

These restrictions are quite mild and are satisfied by any reasonable queue, e.g. m/m/c,
GI/GI/c [Kle75]. We discuss them briefly here. Conditions (1) and (2) state that the delay
is positive, convex, smooth, and becomes infinite as the capacity is reached. Conditions (3)
and (4) imply that larger capacity is always more desirable. Condition (5) states that any
service demand could be satisfied with sufficient capacity. Note that in this model p can be
interpreted as the number of servers, as well as the speed of the server.

Our restriction on the customer classes is that the value of service r,-(v) is continuous,
bounded and non-zero over a finite interval2. Also, the total arrival rate is finite, which is
equivalent to X,(0) < oo.

Our main result is that for any service facilities and customer classes satisfying the above
assumptions, the equilibrium arrival rate will be globally attracting if the capacity is large
enough. We prove this using an argument similar to that used for the examples.

Theorem 3 There exists a pg > 0 such that if p > pg, A* is a globally attracting fixed point
ofT.

Proof: Define An = £, A*n. Then we see that An+i = f (An) = E,^(An). Defining L(d) =
^2iLi(dj, it follows that L is non-increasing and differentiable, with bounded derivative.
Define / = L(0) and A; = max^ [m/&tr;(<f)]. Thus we can write f as f (A) = ^(^(A)). Note
that for all n > 0, 0 < An < /. Now by condition (5) of the definition for D^ there exists a
pg such that D'^ (/) < 1/ife and 3^(0) < f-^O).

Now for 0 < A < / we see that

|f'(A)| =|I'(0„,(A))| •|P;t(A)| <1

2If r,(t>) isnotbounded then various pathologies can occur. For example, if r,(d) has support on aCantor
set then Li(d) could be a 'devil'sstaircase' [Dev86]. Then even for a service facility with a very highcapacity
the equilibrium arrival rate may not be attracting, and could lead to sustained, highlycomplexfluctuations.
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since ^'(D^A))! < k. This implies that

|f(x) - f(y)\ <\x-y\

showing that T is a contraction mapping. Therefore T must have a unique fixed point A*
which is globally attracting. Noting that A1* = T,(A*) completes the proof. •

Thus, as in the specific examples, the general case has a globally attracting equilibrium
for a facility with large enough capacity p > pg. However, below the critical point (p < pg)
the behavior is in general quite different. In the previous examples the equilibrium arrival
rate is globally repellent below the critical point, since the arrival rate eventually hits the
boundary. However, for most models, when the equilibrium arrival rate loses global stability
it would either become locally stable, or it would become locally unstable and give rise to
small, but stable, oscillations. We describe this process in the next section.

6 Period-Doubling Bifurcation

In Stidham's example and in our specific multi-class generalization of it, we saw that as soon
as the equilibrium arrival rate lost stability, the system became totally unstable since all
initial arrival rates would rapidly diverge from the equilibrium, until they hit the boundaries.
However, this is not the typical behavior for general queues and customer classes. Instead
we find that the arrival rate begins to oscillate in the vicinity of the equilibrium. Consider
the following example.

EXAMPLE: Consider a m/m/1 service facility with a single class of service with linear delay
cost 6=1. Now let r,(v) = 3 —ufor0<u<3 and 0 otherwise and set p = 1. It is easy to
compute that L(d) = 2 —2d + d?/2 and

T(X-yp) =2--^— +
p-X 2(p-X)2

The equilibrium arrival rate of T can be found by setting X*(p) = T(X*(p)] p) and solving a
cubic equation. For p > 3/2 we see that the fixed point is A*(3/2) = 1/2, which is locally
stable since

0>«£gM>_L
oX

A more careful analysis reveals that for all p > 3/2 the fixed point is in fact globally stable.
However, when p < 3/2 the equilibrium becomes unstable and small but stable oscilla

tions near the equilibrium arise. This occurs due to a 'period-doubling bifurcation' [GH86].



In order to understand this we consider the second iterate of the map, T2(A; /j), and approx
imate it near the 'bifurcation point' A* = 1/2, p* = 3/2 using a Taylor expansion.

Define G(X; p) = T2(A, p). Keeping only the 'important' terms in the expansion [GH86].
we write

^/x x „ dG,* x*x dG, *x &G /, x*x, .x &G,X ^x3/„G(X;p)*G+-(X- A*) + -(p - p*) + —(A - A*)(p - ?) + —(A - A-)»/6

where all derivatives are evaluated at (X*,p*).
We find that G takes the form

G(A; p) *|+(A - A') - (A - A*)(/< - /*') - (A~A*)3.
Solving for the fixed points (G(A; p) = A) we find three solutions: A* =1/2, A+ =1/2 +\J2(p* —p),
and A- =1/2 - yj2(pm - p).

The solution A* simply corresponds to the equilibrium arrival rate. However the fixed
points A+,A~ of the map G(X;p) represent oscillatory solutions of the map T(X;p). In
particular, the arrival rate will jump back and forth between A+ and A~ with each iteration.
A ^-cycle' is said to have formed. Note that this 2-cycle (A+, A") grows out of the equilibrium
arrival rate A*, since A+, A~ coincide with A* at p = //*, and begin to move outward as p is
decreased below p*. Since this 2-cycleis stable, the arrival rate will converge to this 2-cycle
from any initial value.

Thus, even though the arrival rate is unstable, it is still very well behaved and remains
close to the equilibrium. Thus, instability of the equilibrium arrival does not completely
destabilize the service facility. However, as the capacity of the service facility is decreased
further the periodic orbit may move farther away from the equilibrium arrival rate, thus
making the service facility unstable in a practical sense.

The emergence of a stable 2-cycle (aperiod-doubling,,) is not just a special feature of
this specific example. Rather, we can show that this phenomenon is what can typically be
expected to occur in general models of multi-class service facilities. Formally, we say that
this behavior is generic. Thus the absence of this period-doubling bifurcation in Stidham's
example should be viewed as an anomaly resulting from the special propertiesof his example.

The following theorem asserts that a globally stable equilibrium rate will generically
undergo a period-doubling bifurcation when it becomes unstable. The only way that this
will not occur is if several derivatives of the mapping T happen to cancel, a rare event. (This
is precisely what happens in Stidham's example.)
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Theorem 4 Let pg be the parameter at which the equilibrium arrival rate X*(pg) first be
comes unstable and assume that for p > pg the equilibrium is globally attracting. Then
if

dTv(X) aT,(A) a2r„(A)
dp. aAJ "*" d\dp r

and

9%wY +1?%M QIt aA2 7^3 aA3
a period-doubling bifurcation will occur as p is decreased below pg, creating a stable 2-cycle
for p < pg. This 2-cycle will be close to A* for p close to pg. (Note that all derivatives in
the above expressions are evaluated at (X*,p*).)

Proof: This is proved by combining the monotonicity of TM, with the theorem in Gucken-
heimer and Holmes [GH86, p. 158], and noting that the bifurcation must be supercritical
since the equilibrium is globally attracting for p > pg. D

7 Conclusions

We have shown that for a very large class of service facilities with multiple customer classes
the equilibrium arrival rate is stable if the capacity of the facility is large enough. This
generalizes the work of Stidham by allowing for multiple classes of service, non-uniform
distributions and general service facilities.

We have also determined how the loss of stability typically occurs, through the creation
of small stable oscillations. Typically, when the equilibrium arrival rate loses global stability
the fixed point will either become only locally stable, or else will undergo a period-doubling
bifurcation, creating a stable oscillatory solution in a neighborhood of the equilibrium. In
both cases the arrival rate remains in the vicinity of the equilibrium. (Thus Stidham's
example is quite atypical in the manner in which it loses stability.)

An important aim of this work is to demonstrate the use of techniques from nonlinear
dynamics that greatly simplify the analysis of service facility dynamics. These methods can
also be used to prove generic properties of these systems, even when the precise dynamics is
not known. Since the dynamics of these systems is typically not known (queueing delays are
difficult to compute exactly, customer distributions must often be estimated, and delay costs
are quite subjective), it is very important that qualitative results obtained from a specific
model should hold even if there are small inaccuracies in the model.
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The problem of stability is very important for analysis and planning of service facilities.
Thus our analysis of the short run problem has implications for the long run analysis as well.
Another interesting aspect of this problem arises if prices are dynamically adjusted. This
could be used to increase the stability of the arrival rate, or to adjust the equilibrium to a
more desirable value. Such systems where price varies dynamically can be quite complicated.
We plan to discuss these issues in future work.
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Figure 1: The mapping T(X) versus X for a single class of
uniformly distributed customers with A'=l, h=a-l, u=2.
The fixed point is X.*=.3819.
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