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Abstract

In this paper we examine a multi-rate control scheme for nonholonomic path planning using
constant control inputs over different time periods. For chained systems, an exact point-to-
point trajectory is generated. Simulation results are presented for a three-input system, and
comparisons are made with a sinusoidal method for path planning.

1 Introduction

Our interests in this paper are in finding paths for nonholonomic systems. These systems are
characterized by having nonintegrable constraints on the state velocities which do not restrict the
reachable configuration space. There is a classical result from nonlinear control theory [8] which
can be used to prove that such systems are completely controllable, implying that a feasible path
exists between any two points in free space. This result, however, does not have a constructive
proof. The problem we consider in this paper is the construction of a path between the start and
goal states.

We transform the path-planning problem with constraints on the velocities into the dual control
problem with fewer control inputs than degrees of freedom. Many researchers have attacked this
control problem by looking at specific classes of input functions. Some early work by Murray and
Sastry [6, 7] used sinusoidal inputs at varying frequencies to plan paths for systems in a special
chained canonical form. More recently, it has been shown by Monaco and Normand-Cyrot [5] that
piecewise constant controls may be used for nonholonomic path planning. In fact, a digital control
procedure, referred to as multi-rate control, was initially introduced within the nonlinear control
context when digital control of a continuous time system was investigated [4]. This method is based
on a faster sampling of the control variables than the state ones, and gives the necessary degrees
of freedom on the control in order to solve some specific problems. For instance, a multi-rate
control strategy is efficient for preserving under sampling properties such as feedback linearization
or input-output decoupling of a continuous time system.

The system that we use as our example was originally examined in [1]. It has three control
inputs and six states, and can be shown to be completely nonholonomic or completely controllable.
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The Firetruck System

In Section 2, we define this system and show how it can be "nilpotentized,, through a change of
coordinates. In fact, the system can be transformed into a specific class ofnilpot ent systems called
chained form systems. In Section 3, we apply the multi-rate control scheme to the example system,
using the chained form coordinates as defined in the previous section. We show how to choose the
inputs to steer the system from any initial point to any other final position. Finally, we present
some simulation results in Section 4, comparing the multi-rate and sinusoidal algorithms on three
different trajectories. Our findings are that the paths generated by the multi-rate control scheme
are shorter and more direct than the paths generated by the sinusoidal path-planning algorithm.

2 The Firetruck System

One example of a non-holonomic system with three inputs is a firetruck. The truck is driven exactly
like an ordinary car. The ladder is carried on a long trailer, the rear wheels ofwhich can be steered,
allowing extra maneuverability around tight corners. Asketch of the system is shown in Figure 1.
There are six states in the system: the (x,y) position of the truck, the angles of the truck and
trailer with respect to the inertial frame (0O and 0X respectively), the angle of the front wheels with
respect to the truck (<fo), and the angle of the rear wheels with respect to the trailer (fa). The
position of the rear wheels of the trailer, (xuy\) can be uniquely expressed in terms of the other
six states. There are two length constants: /0 is the distance between the front and rear wheels of
the truck, and lt is the distance between the rear wheels of the truck and the rear wheels of the
trailer. The kinematic equations are derived in [1], and are stated here for convenience:
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The three inputs correspond to driving and steering: w, is the linear velocity of the truck, «2 is the
angular velocity of the front wheels, and w3 is the angular velocity of the rear wheels. As shown
in [1], this system can be put into a special three-input chained form by a change of coordinates
and state feedback. We will find it convenient to use this chained form for our path-planning
algorithm, since the Lie algebra, generated by the transformed input vector fields is nilpotent. We
state here the coordinate transformation and the resulting chained form equations. More details
on the derivation can be found in [1].
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Figure 1: A sketch of the Firetruck System showing the state variables

z& = y

The corresponding input transformation is:
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It can be shown that this coordinate transformation is valid on the entire state space, except where
0o»0(h or 01 is equal to f. With a little algebra and some trigonometric identities, one can check
that the system equations in these coordinates reduce to:

Z\ = Vi

h = V2

Z3 = v3

£4 = *2 Vi

h = Z3*>1

^6 = 24 t'l

From this point on we will consider the system in these coordinates.

(2)

3 Multi-Rate Controls for the Firetruck Example

The idea of using piecewise constant inputs with different holding times for nonholonomic motion
planning was first introduced in [5]. Although this multi-rate control can be applied to almost any
system, it is especially powerful for systems admitting an exact discretization, since in this case, an
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exact point-to-point trajectory can be generated. The derivation for a system in chained canonical
form, introduced in [7], has a particularly simple expression which will be detailed here for the
firetruck system.

First, we recaU some theoretical tools used within the framework of the discrete time control
system. Let A' be any formal operator. Then the exponential Lie operator is defined as follows:

=Ep^ =l+A- +lY2 +... +lYfc+. (3)

where "F represents the identity operator, and A'* the kth iterated composition of the operator A*.
Proposition 1 ([3]) Let us consider the driftlcss continuous time system:

E : x = vigi(x) + v2g2(x) + ... + vmgm(x) (4)

driven by piecewise constant controls of the form:

Vi(t) = v?(k) forte[k6,(k+l)6[, k>0, i = l,...,m (5)
then the exact discretized system is given by

SD : x°{k +1) =Fs(6,x°(k), vftk)) =e'di *L«>(fc)|*DW (6)
where Vd* is the identity function, and6€]0,60[ is the sampling period. For the same initialization
[x (0) _ x(0)) andxD{k) = x^ks, SD reproduces at the sampling instants the input-state behavior
of the continuous time system S. n

Under the controllability condition of the continuous time system, the idea which was developed
in [5] is used to provide the extra degrees of freedom needed to span all of Mn.

If we denote by mthe multi-rate order on the controls v{ (i =1,...,m), then ££, mmust be
at least equal to the dimension of the state space, namely Cfor the case of the firetruck system.

Choosing the following configuration for the controls:

vi{t) = Vf Iorte[kS,(k+l)6[
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one can write the associated sampled dynamics as the composition of exponential forms. Indeed,
using the discretization formula (6), we ha.ve

^(H^e^fU^
M*+*sM («)
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where 6= f, A\ = vfLgi + v^L92 + v^L^ and V& = v3D2. Thus,

which may be rewritten, using a property of theexponential operator

2i<k+l) =eSx>oeSx>(Id)Hk) (10)
where "o" is the composition operator. By iteration, one finally obtains

z(le + 1) = eSx>oelx>oeSx>(Id)lz{k) (11)

The sampled dynanucs (11) defined on M6 is a function of the six multi-rate controls:

(»fi, V?2, t>21> V?2, VJ3, t£lf v%2)

and is referred to as the multi-rate sampled dynamics.

Using the formula (11), the discretization of the firetruck system in chained form coordinates
leads to an exact form given by:

' *l(*+l) = 2l(*)+36lf
z2(k+l) = z2{k) + 6{vft +1£2+ t£3)
z3(k + l) = *3(*) + *(i& + 2t&)

s4(* + l) = z4(k) +Z6vfz2(k) +%(5v$1 +3v& + t/&)t;f (12)
*5(* +1) = z5(Ar) + 36vJ>23(ifc) + §(5^ + 4vf2)tif

I zeik + 1) = M*) +3*ttf*4(*)+3rW2*a(*) + §(19b?1 + 7h& + v&){vf)2

The motion planning problem can be stated as: given an initial state z° = (z^z$tZ$,z%,z$tz$)T
and adesired final state z* =(z{>z{,zi,z{,z{,z{) ,find control inputs (t>f,t>231,t>2Vt>2Vt&,t»£2) such
that the system described above with initial condition z{k) = z° satisfies the endpoint condition
z(k + l) = z'.

Proposition 2 Given a jxiir of states {z°,z*} with z{ - z\ ^ 0, then then exists a multi-rate
control steering exactly z° to z* in one step of amplitude S.

D

Proof : The proof is straightforward. Indeed, solving the set ofequations (12), one obtains

ttfsMAj)-1 (*/-*?) (13)

/ zi -z° \( <'2Di \

V 1'23 /
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Simulation Results and Comparisons

=(A^(44:lf.)
Ai=3* (1C)

AH ¥2»? IPtf i,Pvf I ,17)
®P{v?f

As -(3 VJr '̂f 2^2l,iD/ (18)
The nonsingularity of the matrices A§ and A| is ensured by the condition ttf different from zero,
in other words srf ^ 20. nn

The case ^ = 2°, when 4 # 2°, is generally referred in the literature as the parallel park
ing problem. In the real system, tlus corresponds to moving sideways, without changing the .-in
coordinate. There are several approaches that can be taken to solve the problem of parallel parking.
The first one consists of a higher multi-rate order on the controls, giving more degrees of freedom.
The number of inputs is then greater than the number of equations to be solved, and an optimiza
tion method may be used to find the "best solution" according to some criterion, for example, least
norm.

The second approach, chosen here, is somewhat simpler. When aparallel parking trajectory is
required, we plan the path in two stages. An intermediate point is chosen that is halfway between
the initial and final values in all the coordinates except x, and the intermediate x value is chosen
to be the initial x increased by the difference between the initial and final yvalues.

4 Simulation Results and Comparisons

We include three trajectories here. In all cases, the simulations were done in the chained form
coordinates, and the results have been transformed back into the standard coordinates for ease of
presentation and interpretation. We note here that we have chosen the lengths /0 = 1and h = 3.

For each pair of start and goal points, we have planned a trajectory using two different methods.
Oho mot hod is the multi-rate scheme which we propose in this paper. As a moans of comparison,
we have also followed the step-by-step sinusoids algorithm presented in [1]. This algorithm which
plans paths for systems in chained form requires one step for each level of achain. For example, the
firetruck system has a three-level chain and so three steps are needed. At the first step, constant
inputs vuv2,v3 are chosen to steer states zuz2, and z3 to their desired values. The next step
calls for out-of-phase sinusoids to steer the first level states in the two chains. These inputs are
t»i - osinM), v2 = (3 cosM), and v3 = 7cosM). After this step, the states s, z5 are in their
final positions. The last step uses a double-frequency sinusoid to steer the state 3*, the second
level of the chain. The inputs Pl = «sinM),r2 = 0cos(2u;<), and v3 = 0 will result in the system
arriving at the goal position.
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The multi-rate path The sinusoidal path

Figure 2: The trajectories planned by the two algorithms for the arbitrary path. Note the directness
of the multi-rate path. The start and goal points are the same in the two cases, and indeed, both
algorithms plan paths that successfully reach the goal configuration.

This sinusoidal scheme is interesting because it relies on frequency cancellations to achieve the
desired motions. It is particularly powerful on "parallel parking" trajectories, since the parallel
parking direction corresponds exactly to zq and so only one step is needed. However, as we will see.
it does not take into account any of the properties of the system, and can therefore plan somewhat
impractical trajectories.

The first trajectory was rather arbitrarily chosen to go from an initial position of

(*•* 0u,0o,0i,0i) = (-2,2,0.1,0.2,0.5.0,1)

to a final position of (0,0,0,0,0,0). The traces of this trajectory as planned by both the multi-rate
and sinusoidal algorithms can be seen in Figure 2.

The second trajectory shown here is a parallel parking trajectory, illustrating our technique
of choosing a point distant from the given points, and then using two multi-rate controls. The
corresponding trajectory has therefore twice as many input variables, but is planned as two separate
connecting paths. The initial position here is

U-,t/, 0o, #o,0i,0i) = (0,5,0,0,0.0)

and the goal is once again the origin. (0.0.0.0.0.0). For the multi-rate path, the intermediate
point is chosen to be (5,2.5.0.0,0,0). See Figure 3 for the traces of these two trajectories.

The third path we have chosen to plan is a corner trajectory, where the firetruck starts out
more or less aligned with the y axis, and ends up aligned with the x axis (due to the singularity in
the coordinate transformation, we have not planned a full 90° turn). The initial position in both
cases is

(xt.(/. 0o, 0o. 0i , 0i) = (-5, -5.0.1.27.0.1.27)

and the goal point is (0.0.0.0.0.0). Both algorithms successfully steer the system from the start
to the goal, but this example illustrates very clearly the advantages of the multi-rate algorithm.
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The multi-rate path The sinusoidal path

Figure 3: The trajectories planned by the two algorithms for parallel parking. Note the similarities
between the two methods for this case. This is partly due to the way the multi-rate algorithm as
proposed deals with the special case of parallel parking. Two paths are planned, the first from the
start to an intermediate point halfway between the start and the goal in all variables except ,-r, with
the ^-coordinate increased to a value of the total desired change in y. In this case, the intermediate
point is (5,2.5,0,0,0,0). The second path leads from the intermediate point to the goal.

The sinusoidal algorithm in the first step drives the system forwards until the s-coordhiate is at its
desired final position, and in doing so, diverges radically from the area of interest.

5 Conclusion

In this paper we have examined themulti-rate control algorithm as applied to the problem ofpath
planning for nonholonomic systems. We have presented the theory for this control algorithm, and
applied it to the specific example of a three-input nonholonomic system. The simulation results
presented here attest to the practicality of this method for planning short, direct paths from the
start to the goal. This is especially evident when contrasted with the method using sinusoids, also
discussed here.

It should be noted that the multi-rate control is most useful for planning short paths which
satisfy the nonholonomic constraints. Ifthe robot were required to traverse a long distance oravoid
obstacles, a holonomic path could first be planned using well-known standard techniques (see for
example [2]). The main controller could choose a series ofpoints along this path, which could then
be connected using feasible paths generated by the multi-rate algorithm.
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