

Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE POSTGRES USER MANUAL

Edited by

the POSTGRES Group

Memorandum No. UCB/ERL M92-120

27 April 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California

94720

The POSTGRES User Manual

Edited by the POSTGRES Group
ComputerScience Div.,Dept. ofEECS

University ofCalifornia at Berkeley

POSTGRES it oofiyngbt 91989t1994 bytlic Regents ofthe Uoivenily ofCtlifoinit. Pennittion touse, copy, modify, dis
tribute diis software tad its documentation for ednatfional, researdb, and non-foofit pmposes and witbont fee is hei^ gianted, pio-
vided that the above copyngfat notioe i^ipear inall copies and diat both that copyright notioe and diis pennisskm notice i^ipear in*"p-
pofting docamentarion, and that the name ofthe Univeisity ofCalifonia not bensed inadvertising orpriUidfy r*a«»tning todistribu
tion ofthe software without specific, written primr pennissioa Peimission toinooiponte this software iirto products can
be obtained from die Campus Stdtware (Mfice, 295 Evans Hall, Univetsily cdCaliftmiia, Beikd^, Ca., 94720. HieIhiivenifyttfQd-
ifomia makes noiqaesentations about the suitability ofthis software for aoy puipose. It isprovided "as is" without eaqpiess orim
plied wairasfy.

1. INTRODUCTION

This document is the user manual for the POSTGRES database management system devel
oped at the University of California at Beikeley. Thisproject, led by Professor Michael
Stonebraker, has been sponsored by the Defense Advanced Research Projects Agency
G!)ARPA), the Army Research Office (ARC), die National Science Foundation O^SF),
and ESL, Inc.

The first part of diis manual goes over some basic system concepts and procedures for
starting die POSTGRES system. We then turn to a tutorial overview of the POSTQUEL
data model and queiy language, introducing a few of its advanced features. Next, we
explain the POSTGRES approach to extensibility and describe how users can extend
POSTGRES by adding user-defined Qrpes, operators, aggregates, andbothquery language,
and programming language functions. After an extremely brief overview of the POST
GRES rule system, the manualconcludes with a detailed appendix that discussessome of
the more involved and operating system-specific procedures involved in extending the
system.

1.1. What is POSTGRES?

Traditional relational database management systems (DBMSs) support a datamodel con
sisting of a collection ofnamed relations, each attribute of which hasa specific type. In
current commercial systems, possible types including floating point numbers, integers,
character strings, money, anddates. It is commonly recognized that diismodel is inade
quate for future data processingapplications.

The relational model succeeded in replacing previous models in part because of its sim
plicity. However, as mentitmed, the **Spaitan simplicity" of the relational model often
makes the implementation of certain applications very difficult The POSTGRES data
model offers substantial additional power by incorporating the following four additional
basic constructs:

classes

inheritance

types
functions

in such a way thatusers caneasily extend thesystem. In addition, POSTGRES siq^rts a
powerful productimi rule system.

IX A Short History of the POSTGRES Project
hnplementation of the POSTGRES DBMS began in 1986. The initial concepts for the
system werepresented in [STON86] and the definition of the initial modelqq)eared
in [ROWE87]. The design of tiie rule system at that time was described in [STON87a].

The rationale and aichitectuie of the storage manager weie detailed in [STON87b].

POSTGRES has undeigone several major releases since then. The first "demo-ware** sys
tem became operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference.
We released Version 1, described in [STON90a]» to a few external users in June 1989. In
response to a critique of the first rule system [STON89], the rule system was redesigned
[STON90b] and Version 2 was released in June 1990 with the new rule system. Version 3
appeared in 1991 and added support for multiple storage managers, an improved query
executor and a rewritten rewrite role system. For the most part, releases since then have
focused on portability and reliability.

POSTGRES has been used to implement many different research and production applica
tions. These include: a financial data analysis system, a jet engine performance monitor
ing package, an asteroid tracking database, a medical informatics database and several
geographic information systems. POSTGRES has also been used as an educational tool at
several universities. Finely, at least two companies (Multimedia Information Systems
and Montage Software) have picked up the prototype code and commercialized it

POSTGRES became foe primary data manager for foe Sequoia 2(XX) scientific computing
project in late 1992. Furthermore,foe size of foe external user community nearly doubled
during 1993. It became increasinglyobvious that maintenance of foe prototype code and
support was taking up large amounts of time that should have been devoted to database
research, hi an effort to reduce this support burden, foe project officially ended with Ver
sion 4.2.

13. About This Release

Version 4.2, foe current version of POSTGRES, is about 2(X),(X)0 lines of code in the C
programming language. POSTGRES is available free of charge, and (as of this writing)
has been installed by qiproximately 600 sites around the world.

This manual describes Version4.2 of POSTGRES. The POSTGRES group has compiled
and tested Version 4.2 on foe following platforms:

architecture processor operating system

DECstation 3(XX)

DECstation 31(X) and 5000

Sun4

H-P 9000/700 and 800
IBM RS/6000

Alpha AXP
MIPS

SPARC

PA-RISC

POWER

OSF/11.3
ULTRIX 4.2,4.3A

SunOS 4.1.3

HP-UX 9.00,9.01
AIX 3.2.5

Previous versions of POSTGRES ran on Sun Nficrosystems Sun3 and Sequent Symmetry
madiines. POSTGRES no longer runson these systems, nor does it currently run on Sun
Microsystems computers running the Solaris 2 (SunOS 5) operating system. Outside
users have ported previous releases of POSTGRES to many platforms, inrinriing

mux it a tRdcnuuk of Unix Systems Labcsaiories. Sibi4, SPARC, SunOS endSolaris aie tiademaiics ofSonKficrosysteins,
Inc. DEC, DECstarion, AlfhaAXP and ULTRIX aretrademarks ofDigital EqoqMnem Cosp. PA-RISC and HP-UX areuademaiks
Hewlett-Packard Ca RS/6000, POWER and AK aretrademaiks ofLatenutknal Bosiness Madunes Coip. OSF/1 is a trademaik
the Open Systems Foondatioa. NeXisi lif isa tiademaik ofNeXT Compnter, Inc. MIPSandlRIXaretndemaiksofSilicaiGiapli-
ic8,Ia&

NeXTSTEP, Solaris 22^ IRIX« Intel System V Release 4, Linux and NetBSD.

Version 42 has been tuned modestly. On the Wisconsinbenchmaric, one ^ould expect
perfonnance about twice that of the public domain. University of California version of
INGRES, a lelational prototype from the late 1970s.

2. WHAT YOU SHOULD READ

This manual is primarily intended to provide a broad overview of the system, as well as
to illustrate how C programmers can tie their own code into the POSTGRES database
server (commonlylefened to as the backendserver, or simply"backend**)*

In addition to this manual, there is another document, the POSTGRES Reference Manual.
The Reference Manual gives full descriptions of the syntax and options for each com
mand in a format not unlike UNIX 'inan pages.** (In fact, the contents of the Reference
Manual should be available on-line as actual man pages.) However, the Reference Man
ual is designed as a complete reference for the experiencedPOSTGRES user and contains
few tutorial examples. This User Manual does not attemptto provide all of the informa
tion that the Reference Manual provides. Instead, it describes the major conceptsof the
system,gives examples of the use of the major constructs, and then provides pointers to
the appropriate place in the Reference Manual in which you can find more information if
you so desire.

If youarenew to POSTGRES, youshould probably readthismanual first, followed by the
partsof the POSTGRES Reference Manual necessary to buildyour i^lication. hi partic
ular, you should read the Reference Manual section on UBPQ if you intend to build a
client applicationaround POSTGRES, as that library is not discussed in this manual.

If youarenot already familiar withrelational databases, youshould probably find a good
inhnoductory text on the subject This manual assumes that you already have some
knowledge of the relational model, and it doesn*t hurt to knowa query language such as
QUELorSQL.

3. POSTGRES ARCHITECTURE CONCEPTS

Before we continue, you should understand the basic POSTGRES system architecture.
Understanding how the paits of POSTGRES interactwill make the next ch^>tersomewhat
clearer.

In database jaigon, POSTGRES uses a simple **piocess-per-usef" client/server model. A
POSTGRES session consists of three cooperating UNIX processes (programs):

• A supervisoiy daemon process (the postmaster),
• the user*s fiontend application(e.g., the monitor program), and

USER

APPLICATION
UBPQ

(a) fktmtend sends request to
postmaster via well-known
network socket

USER

APPUCATION
UBPQ

oomectioa

(b) postmaster creates backend sorer

USER

APFUCAHON
UBPQ

(c) fkontend connected
to backend server

POSTMASTER

server host

jfoikschild

Figure 1. How a coimection is established.

• the backend database seiver (the postgres process itself).

A single postmaster manages a given collection of databases on a single host Such a
collection of databases is called an installation or site. Frontend applications that wish to
access a given database within an installation make calls to the UBPQ libraiy. The
library forwards the user requests over the netwoik to the post:master (Figure 1(a)),
which in tum starts a new backend server process (Figure 1(b)) and connects the fiontend
process to its server (Figure 1(c)). From that point on, the frontend process and the back-
end server communicate without intervention by the postmaster. Hence, the post
master is always running, waiting for requests, whereas the fiontend and backend pro
cesses come and go.

One implication of this architecture is that the postmaster and the backend always run
on the same machine (the database server), while the frontend ai^lication may or may
not be running on a separate machine (e.g., a client workstation). Youshould keep this in
mind, because this means that the files that you can access on your machine may not be
accessible (or may only be accessed using a different filename) on the database server
machine.

You should also be aware that the postmaster and the postgres server run with the
user-id of the POSTGRES '*superuser.** Note that the POSTGRES superuser does not have
to be a special user (e.g., a user named '̂postgres")- Furthermore, the POSTGRES supe
ruser should definitely not be the UNIX superuser, **root"! In any case, all files relating to
a database should belong to this POSTGRES supemser.

4. GETTING STARTED WITH POSTGRES

Before youcan start learningthe POSTQUEL query language, you need to have a working
POSTGRES system. This section discusses how to start POSTGRES and set up your own
envirorunentso that you can use firontend applications.

Some of the steps listed in this section will apply to all POSTGRES users, and some will
apply primarily to the site database administrator. This site administrator is the person
who installed Ae software, created the database directories and started the postmaster
process. This person does not have to be the UNIX superuser, "root,** or the computer
system administrator.

In this section, items for end users are labelled "User** and items interxled for die site

administrator are labelled "AdmiiL**

Throughout diis manual, any examples that begin with the character "%** are commands
that should be typed at the UNIX ^ell prompt. Examples that begin widi the character
" **' are commands in the POSTGRES query language,POSTQUEL.

4.1. Admin: Installing POSTGRES

Detailed installation instructions can be found in the POSTGRES source code distribution.
The troff source is located in the file src/doc/postgres-setup.me and a for
matted version is located at the top of the distribution directory tree. Those instructions
vary from release to release and will not be duplicated here. However, if you are
installing POSTGRES now, you must read these instructions and carry them out before
going any further.

A reminder: don't run the regression tests as the "postgres** user. Part of the test is a
check of the POSTGRES security mechanisms that turns ofT superuser permissions. If you
run the test as "postgres,** you may not be able to add users later.

4.2. Admin/User: Setting Up Your Environment

Figure 2 shows how the POSTGRES distribution is laid out when installed in the default
way. The system can be installed such that the various top-level directories can be scat
tered around your disks, but for the sake of simplifying this manual we will assume that
this is not die case, hi die examples that follow, we will assume diat POSTGRES has been
installed in the directory /usr/local/postgres. Therefore, whereveryou see the
directory /usr/local/postgres you should substitute the name of the directory
where POSTGRES is actually installed.

All POSTGRES commands are installed in the directory
/usr / local /postgres /bin. Therefore, you should add this directory to your shell
commandpath. If you use a variant of the Berkeley C shell, such as csh or tcsh, you
would put

8

[.bia files] temphtel nwdb

I
pgjclasspg_cl8ss
[private classes] tpnv^classes]

bin lib bichide nc doc

I I
„„ monitor postgres postmaster.... libpqji libpqJi ~..

(sband classes]

DATA EXECUTABLB AFFUCATION

PROGRAMS KVELOPMENT

ENVIRONMENT

Figure 2. POSTGRES file layout

% set path = (/usr/local/postgres/bin $path)

in the . login file in your home directory. If you use a variant of the Bourne shell, such
as sh, ksh orbash, ^en you would put

% PATH=/usr/local/postgres/bin:$PATH
% export PATH

in the .profi le file in your home directory.

From now on, we will assume that you have put the POSTGRES bin directory in your
path. In addition, we will make frequent reference to ''setting a ^11 variable** or"setting
an envirmimentvariable** throughout this document If you did not fiilly understand the
last paragnq>h on modifyingyour searchpath, you shouldconsult the UNIX manualpages
that describe your user shell before going any further.

43. Admin: Starting the Pdstmaster

It riiould be clear from the preceding discussion that nothing can happen to a database
unless the postmaster process is rurming. As the site administrator, there are a num
ber of things you should remember before starting the postmaster. These are dis
cussed in the section of this manual titled, "Administering POSTGRES.** However, if
POSTGRES has been installed by following the installation instructions exactly as written,
the following simple commandis all you should need to start the postmaster:

% postmaster &

If the postmaster does not start, but instead prints a series of cryptic error messages.

you ^ould consult the Reference Manual under the heading postmaster. This manual
page contains troubleshooting tips.

The postmaster occasionally prints out messages to the shell that started it This is
often helpful during troubleshooting. If you do not wish to see these messages, you can
type

% postmaster -S

and the postmaster will be **S**ilmit Notice diat there is no ampersand (**&**) at the
mid ofthe last example.

4.4. Admin: Adding Users

The createuser command enables specific users to access POSTGRES. Please read
the descriptions of these commands in the Reference Manual for specific instructions on
their use.

4.5. User: Starting Applications

Assuming that your site administrator has properlystartedthe postmaster processand
authorized you to use the database, you (as a user)may beginto start up applications. As
previously mentioned, you should add /usr/local/postgres/bin to your shell
search path. Inmost cases, fiiis isallyou should have todoin terms ofpreparation.*
If you get the following error message from a POSTGRES command (such as monitor
or createdb):

FATAL: StreamOpen: connect() tailed: errno=61

FATAL: Failed to connect to postmaster (host=xxx, port=4321)
Is the postmaster running?

it is usually because (1) the postmaster is not running, or (2) you are attmnpting to
coimect to the wrong server host

If you get the following error message:

FATAL l:Feb 17 23:19:55:process userid (2360) !=
database owner (268)

it meansthat the site administrator startedthe postmaster as the wronguser. Tellhim
to restart it as the POSTGRES superuser.

' Ifyour sitesdmrnistrstor hasnotsetdtings opindiedefault way, yon may have some moie woik todo. For if the
databasesetvermachineis a remotemadiine, yon win needto set the PGHOST environment variableto the nameof die databasesetv-
ermadune. the environment variable PGPORT may also have tobeset. Thebottomlineisdustifyon tiytostaitantriplication pio-
giamandit cnmplnins dist it cannot connect to the postmascer, yon should hnmediatdy yonr site adminiAiator to
soiB dialyourenvitooment is piopeilyset t^.

10

4.6. User: Managing a Database

Now that POSTGRES is up and ninning we can make some databases with which to
experiment Here, we describe the basic commands for managing a database.

4.6.1. Creating a Database

Let's say you want to create a database named f oo. You can do this with the following
command:

% createdb foo

POSTGRES allowsyou to create anynumberof databasesat a givensite and you automat
ically become the database administrator of the database just created. Database names
must have an alphabetic firstcharacterand are limitedto 16 charactersin length.

Not every user has authorization to become a database administrator. If POSTGRES
refuses to createdatabases for you,then the site administrator needsto grant you permis
sion to create databases. Consult your site administrator if this occurs.

4.6.2. Accessing a Database

Once you have constructeda database,there are three waysto access it:

• You can run die POSTGRES terminal monitor (the monitor program) whichallows
you to interactively enter, edit, and execute commands in the POSTQUEL query lan
guage.

• You can interact with POSTGRES from a C program by using the LIBPQ subroutine
library. This allows you to submitPOSTQUEL commands finom C and get answers and
status messages back to your program. This interface is discussed further in the
LIBPQ section of the Reference Manual.

• You can use ib& fast path facility, which allows you to execute functions within the
server program itself. This facility is (minimally) described in the Reference Manual
under **Fast Path."

This manual will only discuss access through tiie tftrminal monitor.

The terminal monitor canbe activated for the foo database by typing the command:

% monitor foo

Youwill be greeted with the followingmessage:

Welcome to the POSTGRES terminal monitor

Go
★

This [xompt indicates that the terminal monitor is listening to you and fiiat you can type
POSTQUEL queries into a workspace maintained by the terminal monitor.

Themonitor program responds to escape codes thatbegin with thebackslash character,
*W For example, you print the current contents ofthe workspace bytyping:

11

* \p

Once you have finished ^tering yourqueries into the woikspace* youcan pass the con
tents ofdie workspace to the POSTGRES serverby typing:

* \g

This tells the serverto go. If you makea ^ing mistake, youcan invoke the vi text edi
tor by typing:

* \e

The workspace willbe passed to theeditor, andonceyouexitvi, youreditedquerywill
placed in the terminal monitor workspace. You can then submit die contents of the
workspace to POSTGRES by using the \g command as described above.

Tb get out of the monitorand retum to UNIX, type

* \q

and monitor will quit and return you to your command shell.

There are two other things diat monitor understands that make it easier to write nice-
looking scripts. First, white space(i.e., spaces, tabs and newlines) may be used fieely in
POSTQUEL queries. Second, comments that look liVft those used in the C programming
language, e.g.,

/* This is a comment. */

may also be used in your queries. Beware: you carmotcommentout an escape code, hi
other words, this doesnTwork as you might expect:

/* I don't want to send this!\g */
retrieve (message = "but I want to send this!") \g

For a (Ximplete descriptionof the monitor commands and its options, see the Reference
Manual under the heading monitor.

4,63, Destroying a Database

If you are the database administrator for the database £00, you can destroy it using the
following UNIX command:

% destroydb foo

This action physically removes all of the UNIXfiles associated with the database and can
not be undone,so this shouldonly be done with a greatdeal of forethought

12

5. THE POSTQUEL QUERY LANGUAGE

POSTQUEL is the POSTGRES query language. POSTQUEL was derived from the QUEL
language developed by the University of California INGRES project, but die two lan
guages aie different in many ways. This section provides an overview of how to use the
more QUEL-like features ofPOSTQUEL to perform simple operations.

hi the examples that follow, we assume that you have created the foo database as
described in the previous subsection and have started the terminal monitor.

Before you start reading, take a look at the directory
/usr/local/postgres/src/examples. This directory contains all of the
POSTQUEL queries listed in this manual (the ones that aren't examples of things that
don't work, that is) broken down by chapter. Instead of typing the queries below into the
monitor program, you can just cut and paste out of the appropriate file or use the \ i
command at the terminal monitor.

5.1. Concepts

The fundamental notion in POSTGRES is that of a class, which is a named collection of
object instances. Each instance has the same collection of named attributes, and each
attribute is of a specific type. Furthermore, each instancehas a permanentobject identi
fier (OID) that is unique throughout the installation.

As previously discussed, classes are grouped into databases, and a collection ofdatabases
managed by a single postmaster process constitutes an installation or site.

5.2. Creating a New Class

You can create a new class by specifying the class name, along with all attribute names
and their types:

* create EMP (name = text, salary = int4,
age = int4, dept s charl6) \g

* create DEPT (dneune = charl6, floor s int4,

manager = text) \g

The POSTQUEL base types used above are a variable-lengtharray of printable characters
(text), a 4-byte signed integer (int4), and a fixed-length array of 16 characters
(charlS.)

So far, the POSTGRES create command looks exactly like the command used to create a
table in a traditional relationalsystem. This exact syntax was used in QUEL, the original
INGRES query language. However, we will presentlysee that classes have propertiesthat
are extensions ofthe relational model, so we use a different word to describe them.

13

53. Populating a Class with Instances

The append command is used to populate a class with instances:

* append EMP (neune = "Claire", salary = 2000,
age = 40, dept = "shoe") \g

* append EMP (name = "Joe", salary = 1400,
age = 40, dept = "shoe") \g

* append EMP (name = "Sam", salary = 1200,
age = 29, dept = "toy") \g

* append EMP (name = "Bill", salary = 1600,
age = 36, dept = "candy") \g

* append DEPT (dname = "shoe", floor = 5,
manager = "Claire") \g

* append DEPT (dname = "toy", floor = 3,
manager = "Sam") \g

* append DEPT (dname = "candy", floor = 4,
manager = "(None)") \g

This adds four instances to the EMP class, one for each append command.

You can also use the copy command to perform load laige amounts of data from flat
(ASCn) flies. See the Reference Manual under copy for details.

5.4. Querying a Class

The EMP class can be queried with normal relational selection and projection queries.
Tte FOSTQUEL equivalent of the SQL select statement is retrieve. As in SQL, the state
ment is divided into a target list (the part that lists the attributes to be returned) and a
qualification (the part that specifies any restrictions). For example, to find the employees
under 35 years of age, type:

* retrieve (EMP.neune) where EMP.age < 35 \g

and file output should be:

neune

Sam

Note that, unlike SQL, parentheses are required around the target list, EMP .name.

POSTQUEL allows you to return arbitrary computations in the target list as long as they
are given some kind ofname:

* retrieve (result = EMP.salary / EMP.age)
where EMP.nsune = "Bill" \g

14

result

T4

In tibis case, we divided Bill*s salary by his age and called the result result. (Of
4

course, the answer is really 44 -, but division of two integers produces another integer so
y

the fraction is lost).

Arbitrary Boolean curators and, or and not) are allowed in the qualification of any
query. For example.

* retrieve (EMP.all)

where EMP.age <30
or not EMP.name = •Joe" \g

neune salary age dept

Claire 2000 36 shoe

Sam 1200 29 toy

Bill 1600 36 candy

As a final note, you can specify that fiie results of a retrieve can be returned in a sorted
order or with duplicate instances removed. See the Reference Manual under retrieve for
more information.

55. Redirecting Retrieve Queries

Any retrieve query can be redirected to a new class in the database:

* retrieve into temp (EMP.name)
where EMP.age < 35 and EMP.salary > 1000 \g

This executes an implicit create command, creating a new class temp with the attribute
names and types specified in the target list of the retrieve into command. We can then,
of course, perform any operations on the resulting class that we can perform on other
classes.

* retrieve (temp.all) \g

name

Sam

5.6. Joins Between Classes

Thus far, ourqueries have onlyaccessed oneclass at a time. (Queries canaccess multiple
classesat once,or access the sameclass in such a way that multipleinstancesof the class
are being processed at the same time. A query that accesses multiple instances of the

15

same or differentclasses at one time is called a join query.

As an example,say we wish to find the names of employees which are the same age. hi
effect, we need to compare the age attribute ofeach EMP instance to the age attribute of
all other emp instances.^ We can do this with the following queiy:

* retrieve (El.name, E2.name)
from El in EMP, E2 in EMP

where El.age = E2.age and El.name != E2.name \g

name neime

Bill Claire

Claire Bill

In this case, both El and E2 are surrogates for an instance of the class EMP, and both
range over all instances of the class, (hi the terminology of most database systems. El
and E2 are known as **iange variables.**) A POSTQUEL query can contain an arbitrary
numberofclass names and surrogates.^

5.7. Updates

Youcan update existing instances using the replace command:

* replace EMP (salary = E.salary)
£rom E in EMP

where EMP.name = "Joe" and E.neune = "Sam" \g

This command replaces the salary ofJoe by that ofSam.

Notice that diis example is actually another join query. Here, we are using the actual
class name C*EMP**) as one range variable and a suirogate name for EMP (**E*') as
another range variable.

5.8. Deletions

Deletions are performed using the delete command:

* delete EMP where EMP.salary > 0 \g

Since all employeeshave positive salaries, this command will leave the EMP class empty.

*TUiis o(dy a ooBoeptoal modd. Theactual joinmay bepeifonned ina more eflSdent manner, butthisis invisOde todienser.

' The semantics ofsndiajob atethat the quaUficatioo isa troth etqpressko defined for theCartesian jnodoct cf the in-
dicatedb the qoeiy. Fm thoseinstancesb the Cartesianpiodnctfor ndncfa die ^udificationis troe,POSTORES and retnms
die vdoes qiedfied b die taiget list

POS1X92EL doesnot assign anymeanbg to dqilicatevahes b sncfa etqnessioos. Thismeans diatPOSTORES sometimes reoompotes
diesametargetlist several times—diis fieqaeotly hr^jpens udieaBoolean caqnessioos are connected withan or. Toremovesncfa dn-
plicates,yoa most ose the retrieve ttniqae statement. See theReferenceManualonder retrieve for mote details.

16

One shotdd be waiy ofqueries of the foim

delete classname

^thout a qualification, the delete command will simply delete all instances of the given
class, leaving it empty. The system will not request confirmation before doing this.

Before going on, repopulate your EMP database using the append commands listed
above.

5.9. Using Functions

POSTQUEL queries can contain function calls as well as operators. If we wanted to
express our very first retrieve query as:

* retrieve (EMP.name) where int4It(EMP.age, 35) \g

name

Sam

we coulddo so. Obviously, if we needto compute somefunction of more than two argu
ments, we must use the functionsyntaxinsteadof the operatorsyntax.

5.10. Using Aggregate Functions

Likemostother query languages, POSTGRES supports aggregate functions. However, the
current implementation of POSTGRES aggregate functions is very limited. Specifically,
while there are aggregates to compute suchfunctions as the count, sum, average, maxi
mumandminimum overa set of instances, aggregates canonly qjpear in the targetlist of
a query andnot in the qualification (where clause). As an example,

* retrieve (howjnany = count{EMP.name)) \g

how_many

counts all employees, and

* retrieve (avg_salary =
int4ave{EMP.salary

where EMP.dept = "toy"}) \g

avg_salary

1200

computes the average salary of all employees in the toy department However, the fol
lowing query (to find out who makes more money than any of the toy department

17

employees) will not woik:

* retrieve (EMP.name) where

EMP.salary > int4zneuc{EMP.salary
where EMP.dept = "toy") \g

WARNiMar 3 00:40:54:parser: syntax error at or near "{"

because theaggregate is not in the taigetlist hi addition, if thequalification of the aggre
gate expression contains anyjoin clauses (references to otherclasses), the aggregate may
or may not return fiie right result (In other words, aggregates with join clauses are nei
ther disallowed nor are they correctly supported.) See the Reference Manual under
postquel for more details.

5.11. Help! What Are the Valid T^pes, Operators and Functions?

So far, we have been rather cavalier in our use of types (such as char16), operators
(such as <), and aggregate functions (such as count). A large number of pre-defined
types, operators and aggregates are available by default in POSTGRES, and these are
listed in the section ofthe Reference Manual lulled built-in. This would be a good
time to go ahead and take a peek at that section.

In a later sectionof this manual,we will describehow to query the systemto findout the
current list ofall valid types, operators,functions,etc. knownto the system.

18

6. ADVANCED POSTQUEL FEATURES

Having covered die basics of using POSTQUEL to access your data, we will now discuss
those features of POSTGRES that distinguish it from conventional data managers. These
features include inheritance, time travel and non-atomic data values (array- and set-
valued attributes).

6.1. Inheritance

First, if you haven't done so already, re-populate the EM?class by repeating the append
commands in section 5.3. Then, create a second class STUD.EMP, and populate it as fol
lows:

* create STUD_EMP (location = point) inherits (EMP) \g

* append STUD_EMP (name = "Sunita", salary = 4000,
age = 23, dept = "electronics",
location = "(3, 5)") \g

In this case, an instance of STUD_EMP inherits all data fields (name, salary, age, and
dept) from its parent, EMP. Furthennore, student employees have an extra field, loca
tion, that shows their address as a coordinate pair, hi POSTGRES, a class can inherit
from zero ormore other classes,^ and a query can reference either all instances ofa class
or all instancesof a class plus all of its descendants. For example, the following queiy
finds file employees over 20:

* retrieve (E.name) from E in EMP where E.age > 20 \g

name

Claire

Joe

Sam

Bill

On the other hand, to find fiie namesof all employees, including studentemployees, over
age 20, the query is:

* retrieve (E.name) from E in EMP* where E.age > 20 \g

l̂a, dm mheritancehimidiyisadiiectod acydicgiii]A.

19

which returns:

name

Claire

Joe

Sam

Bill

Sunita

Here the * after EMP indicates that the query should be run over EMP and ail classes
below EMP in the inheritance hierarchy. Many of the conunands that we have already
discussed—retrieve* replace and delete—support this * notation, as do others, such as
the rename and addattr commands. See the Reference Manual entries for these com

mands for additional details.

Note that location in STUD_EMP is not a traditional relational data type. As we will
see later, POSTGRES can be customized with an arbitrary number of user-defined data
types.

62, HmeTVavel

POSTGRES supports the notion of time travel. This feature allows a user to run historical
queries. For example, to find Sam*s current salary,one wouldquery:

* retrieve (E.salary) from E in EMP["now"]
where E.name = "Sam" \g

salary

1200

POSTGRES will automatically find the version of Sam*s record valid at the correct time
and get the appropriate salary.

One can also give a time range. For example to see all the salaries that Sam has ever
eamed, one would query:

* retrieve (E.salary)
from E in EMP["epoch", "now"]
where E.name = "Sam" \g

where **epoch** irxlicates the beginning ofthe system clock.^ If you have executed all of
the examples so far, then the above query returns:

*OnUNIX systems, this isalways midoight, January 1,1970 GMT.

20

salary

1200

1200

Notice that there are two salaries for Sam because he was deleted from and then re-

appended to the EMP class.

The default beginning of a time range is the earliest time representable by the system and
the default end is the current time; thus, the above time range can be abbreviated as
** [,] See Section 3 of the Reference Manual, Built-Ins, and the introduction to Sec
tion 4, POSTQUEL, for a frill description of the time types (absolute time, relative time
and time ranges).

63. Non-Atomic Values

One of the tenets of the relational model is that the attributes of a relation are atomic,
POSTGRES does not have this restriction; attributes can themselves contain sub-values
that can be accessed from the query language. For example, you can create attributes that
are arrays ofbase types or sets of any type.

63.1. Arrays

POSTGRES allows attributes of an instance to be defined as fixed-length or variable-
length multi-dimensional arrays. Arraysof any base type or user-defined type can be cre
ated. To illustrate their use, we firstcreate a class with arrays ofbase types.

* create SAL_EMP (name = text,

pay_by_quarter = int4[],
schedule = charl6[][]) \g

The above query will create a class named SAL.EMPwith a text string (name), a one-
dimensional array of int4 (pay_by_quarter), which represents the employee's
salary by quarter and a two-dimensional array of char16 (schedule), which repre
sents the employee's weekly schedule. Now we do some appends; note that when
appending to an array, we enclosethe valueswithinbraces and separatethem by commas.
If you know C, this is not unlike the syntax for initializing structures.

* append SAL_EMP (name = "Bill",

pay_l:y_quarter[4] = "(10000, 10000, 10000, 10000)",
schedule[7][2] = "{{"meeting", "lunch"), {))") \g

* append SAL.EMP (neune = "Carol",

pay_by_quarter = "{20000, 25000, 25000, 25000)",
schedule[5][2] = "{{"talk", "consult"), {"meeting"))") \g

By default, POSTGRES uses the "one-based" numbering convention for arrays — that is,
an array of n elements starts with array[l] and ends with array[n]. Note that the elements
of an array do not have to be completely ^ctfied. For example, you may have noticed
that we did not initialize all of the elements of the attribute schedule above. The value
of an uninitialized element is undefined, but it can be updated later using the replace

21

command.

Now, we can nm some queries on SAL_emp. First, we show how to access a single ele
ment of an array at a time. Hiis query retrieves the names of the employees whose pay
changed in the second quarter

* retrieve (SAL_EMP.naine)

where SAL_EMP. pay_l::y_quarter [1] ! ==
SAL_EMP.pay_by_quarter[2] \g

name

Carol

This query retrievesthe third quarter pay ofall employees:

* retrieve (SAL__EMP.pay_l:y_quarter t3]) \g

pay_by_quarter

10000

25000

We can also access arbitrary slices of an array, or subarrays. This query retrieves the first
item on BiU*s schedule for the first three days of the week. ill.

* retrieve (SAL_PMP.schedule[1:3][1:1])
where SAL_EMP.name = "Bill" \g

schedule

{{"meeting'

Similarly, the replace command can be used to update a single array element or an
arbitrary subarray. This query iqxlates Carors schedule for the second and third day of
the week.

* replace SAL_EMP (schedule [2:3][1:2]=:
•{{"debugging", "shopping"), {"meeting", "present"}}")
where SMj_EMP.n6Uite = "Carol" \g

This query gives a $1CXX) raise in the first quarter to all members whose first item on
schedule for the first working day is debugging:

* replace SAL_EMP (pay_by_quarter[l] =
SAL_EMP.pay_lv_quarter[1] + 1000)

where SMj_EMP.schedule[l][1] = "debugging" \g

22

63.2. Sets

Class attributes can also be sets that are defined in an intentional, or declarative, manner.
For example, let*s say that we want to create a new kind of department class. A depart
ment consists of a department name as well as a query that lists all members of the
depaitmenL

* create NEW_DEPT (deptnaine « char16,
members = setof EMP) \g

* append NEW_DEPT (deptname = "shoe",
members = "retrieve (EMP.all)

where EMP.age >s 40") \g

* append NEWLDEPT (deptname = "toy",
members = "retrieve (EMP.all)

where EMP.name = \\"Sam\\"") \g

* append NEW_DEPT (deptname = "candy",
members = "retrieve (EMP.all)

where EMP.name 1= \\"Sam\\"

and EMP.age <40") \g

These amount to our businessrules: all people over 40 work in die shoe department,Sam
works alone in the toy department, and everyoneelse works in the candy department

We can retrieve (but not update) individual attributes of each member of a set-valued
attribute. We do with the nested-dot notation.

* retrieve (NEW_DEPT.deptname,
NEW_DEPT. members. name) \g

deptname name

shoe Claire

shoe Joe

toy Sam

candy Bill

That is, we project attributes fiom our set-valued attribute, NEW_DEPT.members, by
adding die reference to the emp attribute . name. There are two caveats: the shorthand
. all doesn't work for set-valued attributes, and retrieval of more than one attribute fiom
a set-valued attribute may produce unexpected results.

The mainadvantage of representing sets in a declarative way(instead of storingthe actual
values, or EMPs, in this example) is that die set declaradons automadcally maintfltn dieir
consistency. If we hire someone new, diey will be assigned to the proper NEVtLDEPT
whether we explicidy give them a department or not

/* whoops, we forgot to put Ginger in a department. 7

23

* append EMP (name = "Ginger", salary = 2000,
age =34) \g

/* ...but it's ok */

* retrieve (NEW_DEPT.deptname,
NEW_DEPT.members.name) \g

deptname name

shoe Claire

shoe Joe

toy Sam

candy Bill

candy Ginger

Noticetbat POSTGRES letums severalresults for each of the departments that have more
than one employee. Hiis is because POSTGRES **flattens'* the result when a set attribute
contains multiple instances, hi other words, an instance is retumed for each of the set
elonents and the contents of the other attributes (in diis case, deptname) is just dupli
cated in each ofthose instances.

24

7. EXTENDING POSTQUEL: AN OVERVIEW

In the sections hiat follow, we will discuss how you can extend the POSTQUEL queiy lan
guage by adding:

• functions

• types
• operators

• aggregates

We will then give some integrated examples of their use.

7.1. How Extensibility Works

POSTGRES is extensible because its operation is catalog-driven. If you are ftuniliar with
standard relational systems, you know that they store information about databases, tables,
columns, etc., in what are commonly known as system catalogs. (Some systems call this
the data dictionary). The catalogs appear to the user as tables, like any other, but the
DBMS stores its internal bookkeeping in them. One key difference between POSTGRES
and standard relational systems is that POSTGRES stores much more information in its
catalogs — not only information about tables and columns, but also information about its
types, functions, access methods, and so oa These tables can be modified by the user,
and since POSTGRES bases its internal operation on these tables, this means that POST
GRES can be extended by users. By comparisoa conventional database systems can only
be extended by changing hard-coded procedures within the DBMS or by loading modules
specially-written by the DBMS vendor.

POSTGRES is also unlike most ofiier data managers in fiiat the server can incorporate
user-written code into itself through dynamic loading. That is, the user can specify an
object code file (e.g., a compiled . o file or sharedlibrary)fiiatimplements a new type or
function and POSTGRES will load it as required. Code written in the POSTQUEL query
language ar^evenmoretrivial to addto the server.
This ability to modify its operation **on the fly** makes POSTGRES uniquely suited for
r^id {Hototyping ofnew applications and storage structures.

7.2. The POSTGRES Type System

The POSTGRES type system can be broken down in several ways.

Typesare dividedinto base types and composite types. Base types are those, like int4,
that are implemented in a language such as C. They generally correspond to what are
often known as "abstract datatypes**; POSTGRES canonly operate on suchtypes through
methods provided by the user and only understands the behaviorof such types to the
extent that the user describes fiiem. Composite types are created whenever the user cre
ates a class. EMP is an example of a composite type. POSTGRES stores these types in
only one way (within the file that stores all instancesof the class) but the user can "look

25

inside" at the attributes of these types from the query language and optimize their
retrievalby (for example)definingindices on the attributes.

POSTGRES base types are further divided into built-in types and user-defined types.
Built-in types (like int4) are those that are compiled into the system. User-defined
types are diose created by the user in the matmer to be described below.

13. About the POSTGRES System Catalogs
Having introduced the basic extensibility corKepts, we can now take a look at how the
catalogs are actually laid out You can ^p this section for now, but some later sections
will be incomprehensible without die information givenhere, so markdiis page for later
reference.

All system catalogs have names that begin with pg_. The following classes contain
information that may be useful to die end user. (There are many other system catalogs,
but there should rarelybe a reasonto query themdirecdy.)

catalog name description

pg_database databases

pg_class classes

pg__attribute class attributes

pg_index secondary indices

pg_proc procedures (both C and POSTQUEL)
pg_type types (both base and complex)
pg—operator operators
pg_aggregate aggregates and aggregate functions

pg_am access methods

pg_amop access method operators
pg^anproc access method support functions
pg_opclass access method operator classes

The Reference Manual gives a more detailed explanation of these catalogs and their
attributes. However, Figure 3 ^ows the major entitiesand their relationships in the sys
tem catalogs. (Attributes that do not refer to other entitiesare not shownunless they are
part ofa primary key.)

This diagramis more or less incomprehensible until you actuallystart looking at the con
tents of the catalogs and see how they relate to each other. For now, the main things to
take away from this diagram are as follows:

(1) In severalof the sections that follow, we will present variousjoin queries go. the
system catalogs that display information we need to ext^ul the syst^. Looking
at this diagram should make some of these join queries (which ate often three- or
four-way joins) more understandable, because you will be able to see that the
attributesused in the queries form foreignkeys in otter classes.

(2) Many different features (classes, attributes, functions, types,access methods, etc.)
are tightly integrated in this schema. A simple define command may modify

26

AuOnP]

bidproc pg language

mdexfelid

13J4
pg^attribote

- •attntid

KEY:

DEPENDENT

C/brdjgif

INDEPENDENT

noit'Oidprimary
key any)

PgiZPe

•• typrehd
typii^xit
typoo^Kit

Qipnceive
typaeod

•mgeduple

uninsat

undelete

emgrtettr

unbeginscui
U8RSCUI

emaxiscen

umnulqios
unrestipos

unbuild

opdooal
muxhtoiy

pgOToe

proargtypa[S\

pg op«>«tor

>pmght

prresult

indiHtesdtesekqr valuesueelleniatepriinuykqfB
0^ thisclen is geaendtyidentifiedby oid butmay be
ideotified by the noo-oidprimuy in otherooigexts).

Figure 3. The major POSTGRES systemcatalogs.

(3)

many of these catalogs,

l^pes and procedures^ are central to the schema. Neaily eveiy catalog contains

Pg-gnop

pU

awn^fchM

pg OPCMM

M ""P"*

some reference to instances in one or both of these classes. For example.

*We usethewords pfocedStor aad,^im:(HiR move orku inteidiangabfy.

27

POSTGRES finequently uses type signatures (e.g., of functions and operators) to
identifyunique instances of other catalogs.

(4) Thereare manyattributes and relationships diat haveobviousmeanings, but there
are many (particulariy those that have to do with access methods) that do not
The relationships between pg_am, pg_amop, pg__amproc, pg_operator
and pg__opclass are particulariy hard to understand and will be described in
depth (in the section on interfacing types and operators to indices) after we have
discussed basic extensions.

28

8. EXTENDING POSTQUEL; FUNCTIONS

As it turns out, part of defining a new type is the definition of functions that describe its
behavior. Consequently, while it is possible to define a new function without defining a
new type, the reverse is not true. We therefore describe how to add new functions to
POSTGRES before describing how to add new types.

POSTQUEL provides two types of functions: query languagefunctions (functions written
in POSTQUEL) and programming language functions (functions written in a compiled
programming language such as C.) Either kind of function can take a base type, a com
posite type or some combination as arguments (parameters). In addition, botfi kinds of
functions can return a base type or a composite type. It*s easier to define POSTQUEL
functions, so we*ll start with those.

29

8.1. Query Language (POSTQUEL) Functions

8.1.1. POSTQUEL Functions on Base Types

The simplestpossible POSTQUEL function has no aiguments and simply returns a base
type, such as int4:

* define function one

(language = "postquel", returntype = int4)
as "retrieve (one = 1)" \g

* retrieve (answer = one()) \g

answer

Notice that we defined a taiget list for die function (with the name one), but the taiget
list of the query that invoked the function overrode the function's taiget list Hence, the
result is labelled answer instead of one.

It's almost as easy to define POSTQUEL functions that take base ^ypes as aiguments. In
the example below, notice how we refer to the aiguments within the function as $1 and
$2 and specify their types using the arg is clause.

* define function add__pq
(language = "postquel", returntype = int4)
arg is (int4, int4)
as "retrieve (sum = $1 + $2)" \g

* retrieve (answer = add_pq(l, 2)) \g

answer

8.1.2. POSTQUEL Functions on Composite Types

When specifying functions with aiguments of composite types (such as EMP), we must
not only specify which aigument we want (as we did above with $1 and $2) Ixit we must
also specify the attributes of that aigument For example, take the function dou-
ble.salary that computes what your salaiy would be if it were doubled.

30

* define function double_salary
(language = "postquel", returntype = int4)
arg is (EMP)
as "retrieve (salary = $1.salary * 2)" \g

* retrieve (EMP.neune, dream = double__sala]:y (EMP)}
where EMP.dept = "toy" \g

name dream

Sam 2400

This is pietty straightforward. Notice the use of the syntax $1. salary.

Before launching into the subject of functions that return composite types, we must first
introduce tb&Junction notation for projecting attributes. The simple way to explain this is
that we can usually use the notation attribute (class) and class .attribute
interchangably.

/*

* this is the same as:

* retrieve (youngster = EMP.name))
* where EMP.age <30

*/

* retrieve (youngster = name(EMP))
where age(EMP) < 30 \g

youngster

Sam

As we ^all see, however,this is not always the case.

This function notation is important whenwe wantto use a function that returns a single
instance. We do fiiis by assembling the entire instance within the function, attribute by
attribute. This is an exampleofa function that returns a single EMP instance:

* define function new__emp
(language = "postquel", returntype = EMP)
as "retrieve (name = \\"None\\":rtext,

salary = 1000,
age = 25,

dept = \\"none\\"::charl6)•

In fiiis case we havespecified eachof the attributes with a constantvalue,but any compu-
tatirni or expression could have been substituted for these constants.

Defining a functionlike this can be tricky. Some ofthe more importantcaveats are as fol
lows:

31

The taiget list order must be exactly the same as that in which the fields appear in the
create statement (or when you execute a . all queiy).
Youmust be careful to typecast the fields (using ::) veiy carefully or you will see the
following erron

WARN:Mar 3 03:06:18:function declared to return type EMP
does not retrieve (EMP.all)

See die Reference Manual under postquel for a discussion oftypecasting.

When calling a function that returns an instance, we cannot retrieve the entire
instance. We must either project an attribute out of the instance or pass the entire
instance into another function.

* retrieve (nobody = naine(new_einp())) \g

nobody

None

• The reason why, in general, we must use the function syntax for projecting attributes
of function return values is that the parser just doesn't understand the other (dot) syn
tax for projection when combined with function calls.

* retrieve (nobody = new_einp() .name) \g
WARN:Mar 3 03:09:28:parser: syntax error at or near

Any collection of commands in the POSTQUELquety language can be packaged together
and defined as a function. The commands can include updates (i.e., append, replace and
delete) as well as retrieve queries. However, the final command must be a retrieve that
returns whatever is specified as the function's retumtype.

* define function clean_EMP (language = "postquel",
retumtype = int4)

as "delete EMP where EMP.salary <= 0
retrieve (ignore_this = 1)" \g

* retrieve (x = clean_EMP()) \g

8.L3. POSTQUEL Functions on Sets

Unfortunately,POSTGRES does not really distinguish between functions that return single
instances and those that return sets of instances. In all cases, instances are returned one-
by-one. Similarly, functions can only take single instances as their arguments and cannot

32

have sets as an aigument For example, the following function high_pay returns the set
of all employees In class EMP whose salaries exceed 1500:

* define function high_pay
(language = "postguel", returntype s setof EMP)
as "retrieve (EMP.all) where EMP.salary > 1500" \g

* retrieve (overpaid = name (high__pay ())) \g

overpaid

Claire

Bill

Ginger

However, this functiCHi could be defined with

returntype = EMP

with exactly the same results.

33

8^. Programmmg Language Functions

We now turn to the more difficult task of defining programming language functions. Be
warned: this section of die manual will not make you a programmer. You must have a
good understanding of C (including the use of pointers and the malloc memory man
ager) before trying to write C fimctionsfor use with POSTGRES.

While it may be possible to load functions written in languages other than C into POST
GRES, this is often difficult (when it is possible at all) because ofiier languages, such as
FORTRAN and Pascal often do not follow the same "calling convention** as C. That is,
other languages do not pass argument and retum values between functions in the same
way. For this reason, we will assume that your programming language functions are writ
ten in C.

The basic rules for building C functions are as follows:

(1) Most of the header (include) files for POSTGRES should already be installed in
/usr/local/postgres/include (see Figure 2). You should always
include

-I/usr/local/postgres/include

on your cc command lines. Sometimes, you may find that you require header
files that are in the server source itself (i.e., you need a file we neglected to install
in include). In those cases you may need to add one or more of

-I/usr/local/postgres/src/backend
-I/usr/local/postgres/src/backend/port/<PORTNAME>
-I/usr/local/postgres/src/backend/obj

(where <PORTNAME> is the name of the port, e.g., alpha or spare).

(2) When allocating memory, use the POSTGRES routines palloc and pfree
instead of the corresponding C library routines malloc and free. The memory
allocated by palloc will be freed automatically at the end of each transaction,
preventing memory leaks.

(3) Always zero the bytes of your structures using memset or bzero. Several rou
tines (such as the hash access method, hash join and the sort algorithm) compute
functions of the taw bits contained in your structure. Even if you initialize all
fields of your stracture, there may be several bytes ofalignment padding (holes in
the structure) that may contain garbage values.

(4) Most of the internal POSTGRES types are declared in tngp/c.h and
trip/postgres. h, so it*susually a good idea to include those files as well.

(5) Compiling and loading yoiu:object code so fiiat it can be dynamically loaded into
POSTGRES always requires special flags. See Appendix A for a detailed explana
tion ofhow to do it for your particular (perating system.

34

8.2.1. Programming Language Functions on Base l^pes

Internally, POSTGRES regards a base type as a **blob ofmemory.*' The user-defined func
tions that you define over a type in tum define the way that POSTGRES can operate on it
That is, POSTGRES will only store and retrieve the data from disk and use your user-
defined functions to input process, and output the data.

Base types can have one of three internal formats:

• pass by value, fixed-length
• pass by reference, fixed-length
• pass by reference, variable-lengfii

By-value types can only be 1,2 or 4 bytes in length (even if your computer supports by-
value types of ofiier sizes). POSTGRES itself only passes integer types by value. You
should be careful to define your types such that they will be the same size (in bytes) on all
architectures. For example, the long type is dangerous because it is 4 bytes on some
machines and 8 bytes on others, whereas int type is 4 bytes on most UNIX machines
(though not on most personal computers). A reasonable implementation of the int4
type on UNIXmachines might be:

/* 4-byte integer, passed by value */
typedef int int4;

On the other hand, fixed-length types of any size may be passed by-reference. For exam
ple, here is a sample implementation of the POSTGRES char16 type:

/* le-lyte structure, passed reference */
typedef struct {

char data[16];
} charlS;

Only pointers to such types can be used when passing them in and out of POSTGRES
functions.

Finally, all variable-length types must also be passed by reference. All variable-length
types must begin with a length field of exactly 4 bytes, and all data to be stored within
that type must be located in the memory immediately following that lengdi field. The
length field is the total lengthof the structure (i.e., it includes the size of the length field
itself). Wecan define the text type as follows:

typedef struct (
int4 length;
char data[1];

) text;

Obviously, the data field is not longenoughto hold all possible strings— it's impossi
ble to declare such a structure in C. When manipulating variable-length types, we must
be careful to allocate the correct amount of memory and initialize the length field. For
example, if we wanted to store 40 bytes in a text structure, we mightuse a code firag-
ment like this:

#include "tmp/c.h"

35

#include "tmp/postgres.h"
#include "utils/palloc.h"

void *buffer; /* our source data */

text ^destination = (text *) palloc(sizeo£(int4) + 40);
destination->length = sizeo£(int4) -f 40;
bcopy(bu££er, destination->data, 40);

Nowthat we've gone over all of the possiblestiuctuies for base types, we can showsome
examples of real functions.

#include <string.h>

#include "tmp/c.h"
#include 'tmp/postgres.h" /* £or charlS, etc. */
#include "utils/palloc.h" /* £or palloc */

int

add_one(arg)
int arg;

{
return(arg + 1);

)

char16 *

concatl6(argl, arg2)
charl6 *argl, *arg2;

{

)

charl6 *new_cl6 = (charl6 *) palloc(sizeo£(char16));

memset((void *) new_cl6, 0, sizeo£(charl6));
(void) strncpy(new_cl6, argl, 16);
return(strncat(new_cl6, arg2, 16));

text *

copytext(t)
text *t;

{
/*

* VARSIZE is the total size o£ the struct in bytes.

*/

text *new_t = (text *) palloc(VARSIZE(t));

36

bzero{(char *) new_t, VARSIZE(t));

/*

* VARDATA is a pointer to the data region of the struct.
* VARLEN is the size of VARDATA in bytes (so it's always
* VARSIZE - sizeof(int4)).

*/

memcpy((void *) VARDATA(new_t), /* destination */
(void *) VARDATA(t), /* source */

VARLEN(t)); /* how many b^tes */
return(new_t);

}

On ULTRDC we would type:

* define function add_one

(lemguage = "C", retumtype = int4)
arg is (int4)
as "/usr/local/postgres/src/examples/chapterS.o" \g

* define function concatlS

(language = "C", returntype = charl6)
arg is (charl6, charl6)
as "/usr/local/postgres/src/exainples/chapterS.o" \g

* define function copytext
(language = "C", returntype = text)
arg is (text)
as "/usr/local/postgres/src/examples/chapter8.o" \g

On other systems* we might have to make the filename end in . so or . si (to indicate
that it*sa shared library).

8.2.2. Programming Language Functions on Composite Types

Composite types do not have a fixed layout like C structures. Instances of a composite
type may contain null fields. In additicm* composite types that are pait of an inheritance
hierarchymay havedifferentfields than other membersof the same inheritancehierarchy.
Therefore* POSTGRES provides a procedural interface for accessing fields of composite
types ffomC.

As POSTGRES processesa set of instances, each instance will be passed into your func
tion as an opaque stnicture oftype TUPLE.

Suppose we want to write a function to answer the queiy

* retrieve (EMP.all) where c_overpaid(EMP) \g

hi the queiy above*we can define c_overpaid as:

#include <tn®>/c.h>
#include <tiiip/postgres.h>

37

bool

c_overpaid(t, 1imit)
TUPLE t; /* the current instance of EMP */
int4 limit;

{

)

extern char *GetAttributeByName();
int4 salary;

salary = (int4) GetAttributeByName(t, "salary");

return((bool) (salary > limit));

GetAttributeByName is the POSTGRES system function hiat returns attributes out of
the current instance. It has two aiguments: the aigument of type TUPLE passed into the
function, and the name of the desired attribute. GetAttributeByName will align data
properly so you can cast its return value to the desired type. For example, if you have an
attribute name which is of the POSTQUEL type charl6, flie GetAttributeByName
call would look like:

char *str;

str = (char *) GetAttributeByName(t, "name")

The following query lets POSTGRES know about the c_overpaid function:

* define function c__overpaid
(language = "c", returntype = bool)
arg is (EMP, int4)
as "/usr/local/postgres/src/exeunples/overpaid.o" \g

While there are ways to construct new instances or modify existing instances from widiin
a C function, these are far too complex to discuss in this manual. See the document

/usr/local/postgres/src/doc/implementation/am.me

for details.

923, Programming Language Functions on Sets

No interface has been defined for passing a set of instances into a function as an aigument
to a C function, nor is there such an interface for returning a set of instances from a C
function.

38

9. EXTENDING POSTQUEL: TYPES

As previously mentioned, there are two kinds of types in POSTGRES: base types (defined
in a programming language) and compositetypes (instances).

39

9.1. User-Defined lypes

9.L1. Functions Needed for a User-Defined T^pe
A user-defined must always have inputand outputfunctions. Thesefunctions deter
mine how the ^(pe sqypeais in strings (for iiqnit by the user and ou^nit to the user) and
how the is oiganizedin memoiy. The input fimction takes a null-delimited character
string as its inputandletums the internal representation of die type. Theou^t function
takes the internal representation of thetypeandreturns a null-delimited character string.
These functions are usually not hard to write, especially the output function. However,
there are a number ofpoints to remember.

(1) When defining your external (string) representation, remember that you must
eventually writea complete and robust parserfor that representation as yourinput
function! This is easy in some cases, or if we ate lazy. For example, an input
function for int4 can be as simple as:

int4

int4_input(s)
char *s;

{

return(atoi{s));

}

if we cheat and use die C library function atoi (and don't do any checks for
such errors as out-of-range integers). The output function can be almost as sim
ple:

char *

int4_output(i)
int4 i;

{

}

/* the largest 32-bit number is 10 digits long */
char *buf = palloc(ll);

(void) sprintf(buf, •%d", i);
return(buf);

(2) You should try to make the input and output functions inverses of each other. If
you do not, you wiU have severeproblemswhen youneed to dump your data into
a file and tiioi read it bade in (say, into someone else's database on aimther com
puter). This is a particularly common problem when floating-point numbers are
involved.

As discussedearlier,POSTGRES fully supports arrays of base types. Additionally, POST-
GRES supports arrays ofuser-defined types as well. When you define a type, POSTGRES

40

automatically provides support for arrays of that type. For historical reasons, the array
type has the same name as the user-defined type with the undenscore character _
prepended.

Composite types do not need any function defined on them, since the system already
understands what they look like inside.

9.1.2. Large Objects

The types discussed to this point are all '*small"objects — that is, they are smaller than
8KB^ insize. If you require a laiger type forsomething like a document retrieval system
or for storing bitmaps, you will need to use the POSTGRES large object interface. The
interface to large objects is quite similar to the UNIX file system interface. The particu
lars are detailed in Section 7 offire POSTGRES Reference Manual.

^8* 1024 s=3 8192 bytes. In fisct, die type most beooasidenbty smaller than 8192 Itytes. sinoe die POSTQSES tople and page
ovedieadimist also fit intod^ 8KB limttatioo. Hie actnalvilne that fits depeadaoo the madnneaidiitectme.

41

9J2, Composite T^pes

Instances ofa composite type arc just instances of a class. Here, we discuss how to create
attributes of one class that are composed of one or more instances of a composite type
(anotherclass). Wecan do this usingset-valuedattributesor by using functions to create
virtual attributes.

Wehave alreadydiscussedhow to definea set-valued attribute using the setof k^woid
in the create command. This produces an attribute whose value is procedurally
defined using a query.

Since POSTQUEL functions return instances or sets of instances, fiiey can also be used to
create ''attributes** of composite types. For example, consider extending the EMP class
with a manager field. That is, for each instance of EMP, we want to associate anofiier
instanceof EMP corresponding to the managerof the first instance. Specifically, we will
define a POSTQUELfunction manager:

* define function manager
(language = "postquel", returntype = EMP)
arg is (EMP)
as "retrieve (E.all) from E in EMP

where E.name = DEPT.manager
and DEPT.dname = $l.dept" \g

When a function takes a single composite type argument, POSTQUEL allows us to use the
same nested-dot notation we used for sets to refer into an instance retumed by the func
tion. Here, the function manager takes an EMP instance as its only argument, we can
write the query

* retrieve (EMP.name)

where name(manager(EMP)) = "Claire" \g

as

* retrieve (EMP.name)

where EMP.manager.name = "Claire" \g

In either case, we get

name

Claire

Joe

We have essentially added an attribute to the EMP class which is of type emp, i.e., it has a
value which is an instance of the class EMP. The limitations discussed for set-valued

42

attributes generally ai^ly to virtual attributes as well. For example, one cannot do direct
updates to such columns. That is,

* append EMP (manager.name = "Smith") \g
WARN:Mar 10 22:48:42:manager: no such class

won't woik. Non-projected retrieves don*t woik eittier. For example, queries that
attempt to retrieve the entire manager attribute, such as

* retrieve (EMP.manager) \g

don*tretum anything useful.

Note that manager is defined as returning a single instance of EMP. We can also write a
POSTQUEL function that retums sets of instances. For example, consider ttie function

* define function seune__dept
(language = "postquel", returntype = setof BMP)
arg is (EMP)
as "retrieve (E.all) from E in EMP

where $l.dept = E.dept" \g

The same_dept function is definedas returninga set of instances, rather than a single
instance. Given the query:

* retrieve (EMP.name, EMP.seune_dept.name) \g

name name

Claire Claire

Claire Joe

Joe Claire

Joe Joe

Sam Sam

Bill Bill

Ginger (null)

the query in the body of the same_dept function returns many instances and the
retrieve query will retum all offiiemin a ''flattened** form.

43

10. EXTENDING POSTQUEL: OPERATORS

POSTQUEL supports left unary, right unary and binary operators. Operators can be over-
loaded^ or re-usedwith differentnumbersand types of aiguments. If there is an ambigu
ous situation and die system cannot determine the correct operator to use, it will retum an
error and you may have to typecast the left and/or right operands to help it understand
which operator you meant to use. (For a discussion of typecasting, see the Reference
Manual under postquel).

In this example, we will use some functions that are already built into POSTGRES to
define a set of operators that all have the same name, ##. First, we define left unary oper
ators on both int4 and int2 that have very different meanings. To do this, we will use
some mathemedcal functions that already happen to be built into POSTGRES. int4f ac,
int2Liin/int4um and int4pl are functions that calculate integer factorial, unary
minus and addition, respectively.

/* n! (factorial) for int4 */

* define operator ## (arg2 = int4,
associativity = right,
procedure = int4fac)

\g

/* -n (negation) for int2 */
* define operator ## (arg2 = int2,

associativity = right,
procedure = int2um)

\g

Next, we define a right unary operator

/* -n (negation) for int4 */
* define operator ## (argl = int4,

associativity = left,
procedure = int4iun)

\g

Hnally, we define a binary operator

/* a+b (addition) for int4 */

* define operator ## (argl = int4,
arg2 = int4,
procedure = int4pl,
commutator = ##)

\g

44

If we give the system enough type infonnation, it can automatically figure out which
operators to use. In this case, we can take advantage of the fact fiiat plain ''numbers*'
default to the int4 type to get the following behavior

* retrieve (four_factorial = ## 4,
ininus_five = ## 5::int2,

ininus_four = 4 ##,

four_plus_four = 4 ## 4)

\g

four_factorial minus_five minus_four four_plus_four

24 -5 -4 8

45

11. EXTENDING POSTQUEL; AGGREGATES

Creation of user-defined aggregates is explained in the Reference Manual under define
aggregate. The key observation to be made, however, is that any ^gregate can be
expressed in tenns of state transitionfunctions. That is, an aggregate can be defined in
terms of state that is modified whenever an instance is processed. Some state limctions
look at a particular value in the instance when computing flie new state i^ncl in the
defineaggregatesyntax) while others onlykeeptrackof tiieir owninternal state{^imc2).

If wedefine an aggregate tiiatuses only sfuncl, wedefine an aggregate thatcomputes a
running function of the attribute values Dom eachinstance. "Sum** is an example of this
kind of aggregate. **Sum** starts at zero and always adds the current instance's value to its
runningtotal. We will use tiie int4pl that is built into POSTGRES to peifoim this addi
tion.

* define aggregate ray_suxn (sfuncl = int4pl, /* addition */
basetype = int4,
stypel = int4,
initcondl = "0") \g

* retrieve (salary_suin = iny_suin{BMP.salary)) \g

salary_suin

8200

If we define only sfunc2, we are specifying an aggregate that computes a runningfunc
tion that is indq)endent of the attribute values from each instance. **Count" is the most
common example of this kind of aggregate. **Count*' starts at zero and adds one to its
running total for each instance, ignoring the instance value. Here, we use the built-in
int4inc routine to do tiie woik for us. This routine increments (adds one to) its argu
ment.

* define aggregate niy_count (sfunc2 = int4inc, /* add one */
stype2 = int4,

initcond2 = "0") \g

* retrieve (einp_count = iny__count{EMP.oid)) \g

46

einp_count

"Average** is an exampleof an aggregatethat lequiies both a function to compute the run
ning sum and a function to compute the running count When all of the instances have
been processed, the final answer for the aggregate is die running sum divided by the run
ning count We use the intdpl and intdinc routines we used before as well as the
POSTGRES integer division routine, int4div, to compute the division of the sum by the
count

* define aggregate ray_average (sfuncl = int4pl, /* sum */
basetype = int4,
stypel = int4,
sfunc2 = int4inc, /* count */

stype2 = int4,
finalfunc = int4div, /* division */

initcondl = "O",
initcond2 = "0") \g

* retrieve (emp_average = iny_averageCBMP.salary)) \g

einp_average

1640

47

12. EXTENDING POSTQUEL: AN EXAMPLE

In this discussion, we will be defining a circle type, using functions written in the C
programming language.

For additional examples of how to create new types, functions and operators, you should
look in the directories

/usr/local/postgres/src/regress/demo
/usr/local/postgres/src/regress/regress
/usr/local/postgres/src/regress/video

These directories contain several C and POSTQUEL files that should how to perform vari
ous extensions to the system, and the routines we use in our regression tests should
always work.

12.1. C Data Structures

Before we do anything, we have to decide on what a circle looks like, both in string for
mat and internally in memory. Grcles have a center and a radius, so a reasonable string
representation of a circle would be an ordered triple:

(center_x, center_y, radius)

where each element is a real number with arbitrary units, e.g.:

(5.0, 10.3, 3)

This is what the input to die circle input function looks like, and what the output from the
circle ou^ut function looks like.

Now we have to come up with an internal representation for a circle in memory. The fol
lowing declarations are legal and reasonable given the format we chose above:

typedef struct {
double X, y;

} POINT;

typedef struct (
POINT center;

double r;
} CIRCLE;

Memory containing values of type CIRCLE will be written to disk and read from disk, so
CIRCLE must be both complete and contiguous; that is, it cannot contain any pointers.

48

The type definition

typedef struct {

POINT *center /* NO! */

double r;

} CIRCLE;

will NOT woik, because the virtual memory address stored in center would be written
to disk instead of the contents of the POINT structure to which center presumably
points. POSTGRES carmot detect this kind of coding error; you must guard against it
yourself.

12J2, Defining the Input and Output Functions

Suppose in defining our type **circle " we have a C source file called circle. c, and a
conesptmding object code file
/usr/local/postgres/src/exainples/circle.o. (All functions related to
our circle type must be in the same object file.) For the purposes of this discussion,
supposeour platform is a MIPS DECstation, where sizeofi (double) is 8 bytes. This
assumption will be important later.

We will create source file circle.c, containing C source code for the functions that
support our CIRCLE type, circle. c contains three functions:

• circle_iii, which is the input function for circles. It takes a C string as an argu
ment and returns a pointer to a CIRCLE.

• circle.out, which is the output function for circles. It is takes a pointer to a
CIRCLE as input and returns a C string. The return value of circle.in must be a
legal argument to circle_out, and vice versa.

• ec[_area__circle, which is the equality function for circles. Fbr the purposes of
this discussion, circles are equal if their areasare equal.

The contents ofcircle. c are:

#include <inath.h>

#include <stdio.h>

#include <string.h>

iinclude •tmp/c.h" /* (always) */
#include "utils/geo-decls.h" /* for POINT declaration */
#include "utils/palloc.h" /* for pallocO declaration */

typedef struct {
POINT center;

double radius;

} CIRCLE;

«define LDELIM '('
#define RDELIM ')'
#define NARGS 3

CIRCLE ♦

circle_in(str)

49

}

char *str;

char *p, *coord[NARGS];
int i;

CIRCLE *result;

if (str == (char *) NULL)

return((CIRCLE *) NULL);

for (i =: 0, p = str;
*p && i < NARGS && *p != RDELIM;

P++)

{
if (*p II (*p == LDELIM && !i))

coord[i++] = p + 1;

}

if (i < NARGS - 1)
return((CIRCLE *) NULL);

result = (CIRCLE *) palloc(sizeof(CIRCLE));

result->center.X = atof(coord[0));
result->center.y = atof(coord[1]);
result->radius = atof(coord(2));

return(result);

char *

circle_out(circle)
CIRCLE *circle;

{
char *result;

if (circle == (CIRCLE *) NULL)
return((char *) NULL);

result = (char *) palloc(60);

sprintf(result, "(%g, %g, %g)",
circle->center.X, circle->center.y,
circle->radius);

return(result);

)

int

eq_area_circle(circlel, circle2)
CIRCLE *circlel, *circle2;

{
if (circlel == (CIRCLE *) NULL)

50

return(circle2 == (CIRCLE *) NULL);
if (circle2 == (CIRCLE *) NULL)

return(0);

return (circlel->radius =ss circle2->radius);

)

Now tbat we have written these functions and compiled the source file, we have to let
POSTGRES know that they exist Fiist we nm the following queries to define the iiqnit
and ouqmt functions. These functions must be defined we define the type. POST
GRES will notify you that retum type circle is not defined yet but this is OK. Notice that
we use the keyword any to indicate that the input and/or output of the function is not a
POSTGRES type (e.g., a simple C string).

* define function circle_in

(language = •c", returntype = circle)
arg is (any)
as •/usr/local/postgres/src/examples/circle.o* \g

* define function circle_out

(language = "c", returntype = any)
arg is (any)
as "/usr/local/postgres/src/examples/circle.o" \g

Note that the fiill pathname of the object code file must be specified, so you would
change /usr/ local /postgres to whatever is appropriate for your install^on.
Now we can define the circle type:

* define type circle
(internallength = 24,
input s circle_in, output = circle_out) \g

where intemallength is the size of the CIRCLE structure in bytes. For circles, the
type members are three doubles, which on most platforms are 8 bytes each, with no
additional alignment constraints. However, when defining your own types, you should
not make assumptions about structure sizes, but instead write a test program fiiat does
something like

printf(*size is %d\n", sizeof(MYTYPE));

on your type.

If intemallength is defined incorrectly, you will encounterstrangeerrors and may
crash the server. If this were to happen with our CIRCLE type, we would have to do a

* reiQove type circle \g

and then redefine the circle type correctly. Note that we would not have to redefine
our functions, since their behavior would not have changed.

51

12^.1.1. Defining Operators

Now that we have finished definingthe circle type, we can create classes with circles
in them, append records to them with circles defined, and retrieve the values of the
entire list of records. However, we can't do anything terribly useful with them until we
have some operators and/or functions, lb do this, we make use of the concept of opera
tor overloading, and in this case we will set the POSTGRES equality operator *'=" to
work for circles. First we have to tell POSTGRES that our circle equality function exists:

* define function eq_area_circle
(language = "c", returntype = bool)
arg is (circle, circle)
as "/usr/local/postgres/src/examples/circle.o" \g

Wewill now bind this function to the equality symbol with the followingquery:

* define operator =
(argl = circle, arg2 = circle,
procedure = eq_area__circle) \g

12^.U. Using a New lype

Let's create a class tutorial diat containsa circle attribute, and run some queries
against it:

* create tutorial (a = circle) \g

* append tutorial (a = "(1.0, 1.0, 10.0)"::circle) \g

* append tutorial (a = "(2.0, 2.0, 5.0)"::circle) \g

* append tutorial (a = "(0.0, 1.8, 10.0)•::circle) \g

* retrieve (tutorial.all)

where tutorial.a = "(0.0, 0.0, 10.0)":rcircle \g

which returns:

a

(1.0, 1.0, 10.0)

(0.0, 1.8, 10.0)

Recall that we defined circlesas beingequal if their areas wereequal.

Other operators Qess than, greater than, etc.) can be defined in a similar way. Note that
the = symbol will still work for other types — it has merely had a new type added to the
list of types it works on.

52

13. INTERFACING EXTENSIONS TO INDICES

The pioceduies described thus far let you definea new type, new functions and new oper
ators. However, we cannot yet define a secondary index (such as aB-tree, R-tree or^h
access medK)d) over a new type or its curators.

Look back at Figure 3. The right half showsthe catalogs that we must modify in order to
tell POSTGRES how to use a user-defined type and/or user-defined operators with an
index (i.e., pg_ain, pg_amop, pg_ainproc and pg_opclass). Unfortunately, there
is no simple command to do this. We will demonstrate how to modify these catalogs
through a running example: a new operator class for the B-tree access method that sorts
integers in ascending absolute value order.

The pg__am class contains one instance for every user-defined access method. Support
for the he^ access method is built into POSTGRES, but every other access method is
described here. The schema is

amname name ofthe access method

amowner object id ofthe owner's instance in pgjuser
amkind not used at present, but set to 'o' as a place holder
amstrategies number of strategies for this access method (see below)

amsupport number of support routines for this access method (see below)

amgettuple
aminsert

• • •

procedure identifiers for interface routines to the access
method. Fbr examine, regproc ids for opening, closing,
and getting instances from the access mediod aqqiear here.

The object ID of the instance in pg.am is used as a foreign key in lots of other classes.
You don*t need to add a new instanceto this class; all you're interestedin is the object ID
of the access method instance you want to extend:

* retrieve (pg_eun.oid) where pg^axD.amname = "btree" \g

old

403

The amstrategies attribute exists to standardize comparisons across data types. For
example, B-trees impose a strict ordering on keys, lesser to greater. Since POSTGRES
allowsdie user to define operators, POSTGRES caimot look at the name of an operator
(eg, > or <) and tell what kind of comparison it is. In fact, some access methods don't
impose any ordering at all. For example, R-trees express a rectangle-containment

53

relationship, whereas a hashed data structure expresses only bitwise similarity based on
the value ofa hash function. POSTGRES needs some consistent way of taking a qualifica
tion in your queiy, looking at the operator and then deciding if a usable index exists. This
implies that POSTGRES needs to know, for example, that the <= and > operators partition
a B-tree. POSTGRES uses strategies to express these relationriiips between operators and
the way they can be used to scan indices.

Defining a new set of strategies is beyond the scope of this discussion, but we*llexplain
how B-tree strategies work because you'll need to know that to add a new operator class.
In the pg_am class, the amstrategies attribute is the number of strategies defined for
this access method. For B-tiees, this number is 5. These strategies correspond to

less than 1

less than or equal 2

equal 3

greater than or equal 4

greater than 5

The idea is that you'll need to add procedures corresponding to the comparisons above to
the pg.amop relation (see below). The access method code can use these strategy num
bers, regardless of data type, to figure out how to partition the B-tree, compute selectivity,
and so on. Don't worry about the details of adding procedures yet; just understand that
there must be a set of these procedures for lnt2, int4, oid, and every other data type
on which a B-ttee can operate.

Sometimes, strategies aren't enough information for the system to figure out how to use
an index. Some access methods require other support routines in order to work. For
example, fiie B-ttee access method must be able to compare two keys and determine
whether one is greater than, equal to, or less than the other. Similariy, the R-tree access
method must be able to compute intersections, unions, and sizes of rectangles. These
operations do not correspond to user qualifications in POSTQUEL queries; they are
administrative routinesused by the accessmethods, internally.

In order to manage diverse support routines consistently across all POSTGRES access
methods, pg_am includes a field called amsupport. lliis field records the number of
support routines used by an access method. For B-trees, this number is one — fiie routine
to take two keys and return -1,0, or +1, depending on whether fiie first key is less fiian,
equal to,orgreater than thesecond.^
The amstrategies entry in pg_am is just the number of strategies defined for the
access method in question. The procedures for less than, less equal, and so on don't
q^ar in pg^am. Similariy, amsupport is just fiie number of siq^rt routines
required by the access method. The actual routines are listed elsewhere.

The next class of interest is pg_opclass. This class exists only to associate a name
with an old. In pg^amop, every B-tree operator class has a set of procedures, one
through five, above. Some existing opclasses are int2_ops, int4_ops, and

*Stiictljr qpeakmg, thitnatine cut return • negttive ODmbor (<ox0,ora non-zero positive nmnber (>0).

54

oid_ops. You need to add an instance with your opclass name (for example,
int4_abs_ops) to pg_ppclass. The oid of this instance is a foreign key in otiher
classes.

* append pg_opclass (opcname = "int4_abs_ops") \g

* retrieve (cl.oid, cl.opcname) from cl in pg_opclass
where cl.opcname = "int4__abs_ops" \g

oid opcname

17314 int4__abs__ops

Note that the oid for your pg_opclass instance will be different! You should substi
tute your value for 17314 wherever it appears in this discussioa

So now we have an access method and an operator class. We still need a set of operators;
the procedure for defining operators was discussed earlier in this manual. For the
int4_abs_ops operator class on B-trees, the operators we require are:

absolute value less-than

absolute value less-than-or-equal
absolute value equal
absolute value greater-than-or-equal
absolute value greater-than

Suppose the code that implements the functions defined is stored in the file

/usr/local/postgres/src/examples/int4_abs.c

The code is

I*

* int4_abs.c — absolute value conqparison functions
* for int4 data

*/

#include "tn5>/c.h"

#define ABS(a) ((a < 0) ? -a : a)

/* routines to implement operators */

bool int4_abs_lt(a, b) int32 a, b;
{ return(T^S(a) < ABS(b)); }

bool int4_abs_le(a, b) int32 a, b;
{ return(ABS(a) <= ABS(b)); }

bool int4_abs_eq(a, b) int32 a, b;

55

{ return(ABS(a) == ABS(b)); }

bool int4 abs qe(a, b) int32 a, b;
{ return(ABS(a) >= ABS(b));)

bool int4 abs at(a. b) int32 a, b;
{ return(ABS(a) > ABS(b));)

/* support (signed comparison) routine */

int int4_abs_cmp(a, b) int32 a, b;
{ return(ABS(a) - ABS(b)); }

Ttere are a couple of impoitant tbings that are happening below.

Hist, note that operators for less-than, less-than-or-equal, equal, greater-than-or-equal,
and greater-than for int4 are being defined. All of these operators are already defined
for int4 underthe names <, <=, =, >=, and >. The new operators behavedififerendy, of
course. In order to guarantee that POSTGRES uses these new operators rather than the old
ones, they need to be named differently fiom the old ones. This is a key point: you can
overload operators in POSTGRES, but only if the operator isn*t already defined for the
argument types. That is, if you have < defined for (int4, int4), you can*t define it
again. POSTGRES does not check this when you define your operator, so be careful, lb
avoidthis problem, odd names will be used for the operators. If you get this wrong, the
access mefiiods are likely to crash when you try to do scans.

The other important point is that all the operator functions return Boolean values. The
access methods rely on fiiis fact (On the other hand, the support function returns what
ever file particularaccessmethodexpects— in this case, a signed integer.)

The final routine in the file is the "support routine** mentioned when we discussed the
amsupport attributeof the pg_am class. Wewill use fiiis later on. Fbr now,ignore it

* define function int4_abs_lt
(language = "c", returntype = bool)
arg is (int4, int4)
as •/usr/local/postgres/src/examples/int4_abs.o" \g

* define function int4_abs_le
(language = "c", returntype = bool)
arg is (int4, int4)
as "/usr/local/postgres/src/examples/int4_abs.o" \g

* define function int4_abs__eq
(language = "c", returntype = bool)
arg is (int4, int4)
as •/usr/local/postgres/src/exeuiiples/int4_abs.o" \g

* define function int4_abs_ae

(language = "c", returntype = bool)
arg is (int4, int4)
as •/usr/local/postgres/src/examples/int4_abs.o" \g

56

* define function int4_abs_gt
(language = "c", returntype = bool)
arg is (int4, int4)
as "/usr/local/postgres/src/examples/int4_abs.o" \g

Now define the operators that use them. As noted, the operator names must be unique
among all operators that take two int4 operands, hi order to see if the operator names
listed below are taken, we can do a query on pg_operator:

/*

* this query uses the regular expression operator (")
* to find three-character operator names that end in
* the character &

*/

* retrieve (o.all)

from o in pg_operator
where o.oprname " text \g

to see if your name is taken for the types you want The important things here are the
procedure (which are the C functions defined above) and the restriction and join selectiv
ity functions. You should just use the ones used below-^te that ttiere are different such
hmctions for the less-than, equal, and greater-than cases. These must be supplied, or the
access mefiiod will crash when it tries to use the operator. You should copy the names for
restrict and j oin, but use die procedure names you defined in the last step.

* define operator «&
(argl = int4, arg2 = int4, procedure=int4_abs_lt,
associativity = left, restrict = intltsel,
join =s intltjoinsel) \g

* define operator <=&
(argl = int4, arg2 s int4, procedure s int4_abs_le,
associativity = left, restrict = intltsel,
join s= intltjoinsel) \g

* define operator ==&
(argl s int4, arg2 = int4, procedure s int4_abs_eg,
associativity = left, restrict = eqsel,
join = eqjoinsel) \g

* define operator >=&
(argl = int4, arg2 = int4, procedure = int4_abs_ge,
associativity = left, restrict = intgtsel,
join = intgtjoinsel) \g

* define operator »&
(argl = int4, arg2 = int4, procedure = int4_abs_gt,
associativity = left, restrict = intgtsel,
join = intgtjoinsel) \g

Notice that five operatois conesponding to less, less equal, equal, gieater, and greater

57

equal are defined.

We*ie just about finished, the last thing we need to do is to update the pg_amop relation,
lb do this, we need the following attributes:

amopid the oid of the pg_ain instance
for B-tree (= 403, see above)

amopclaid die oid of the pg_opclass
instance for int4_abs_ops
(= whatever you got instead of
17314, see above)

amopopr the oids of the operators for the
opclass (which we'll get in just
a minute)

amopselect,

amopnpages

cost functions.

The cost fiinctionsare used by the query optimizer to decide whether or not to use a given
index in a scan. Fortunately, these already exist The two functions we'll use are
btreesel, which estimates the selectivity of the B-tree, and btreenpage, which
estimates the number ofpages a search will touch in the tree.

So we need the olds of the operators we just defined. We'll look up the names of all the
operators fiiat take two int4s, and pick ours out:

* retrieve (o.oid, o.oprname)
from o in pg_operator, t in pg_type
where o.oprleft = t.oid and o.oprright = t.oid

and t.typname = "int4' \g

which returns:

58

oid oprname

96 \=

97 <

514 *

518

521 >

523 <=

525 >=

528 /

530 %

551 +

555 -

17321 «&

17322

II

V

17323 ==&

17324 >=&

17325 »&

(Again, some of your old numbers will almost certainly be different) The operators we
are interested in are those with oids 17321 through 17325. The values you get will
probably be different and you should substitute them for the values below. We can look
at the operator names and pick out the ones we just added.

Now we*re ready to update pg_ainop with our new operator class. The most important
thing In this entire discussion is that die operators are ordered, fiom less equal through
greater equal, in pg_amop. Recall diat the B-tree instance's oid is 403
int4_abs_ops is oid 17314. Then we add the instances we need:

* append pg_ainop
(amopid = "403"::old,
ainopclaid = "17314" : :oid,
amopopr = "17321"::oid,
£unopstrategy = •l"::int2,
amopselect = "btreesel"::regproc,
amopnpages = "btreenpage"::regproc) \g

!*

!*

/*

/*

btree oid */

pg_opclass tuple */
«{e tup oid */
1 is «te */

* append pg_ainop (amopid = "403"::oid,
amopclaid = "17314"::oid,
amopopr = "17322"::oid,
amopstrategy = "2"::int2,
amopselect = "btreesel"::regproc,
amopnpages = "btreenpage"::regproc) \g

* append pg_amop (amopid = "403"::oid,
amopclaid = "17314"::oid,
amopopr = "17323"::oid,
amopstrategy = "3"::int2,
amopselect = "btreesel"::regproc.

59

amopnpages="btreenpage"::regproc)\g

*appendpg_ainop(amopid=•403"::oid,
ainopclaid="17314"::oid,
ainopopr="17324"::oid,

amopstrategy="4"::int2,
amopselect="btreesel"::regproc,
eunopnpages="btreenpage"::regproc)\g

*appendpg^amop(amopid="403"::oid,
eunopclaid="17314"::oid,
amopopr="17325"::oid,

amopstrategy="5"::int2/

amopselect="btreesel"::regproc,
amopnpages="btreenpage"::regproc)\g

NotetheonJen"lessthan"is1,"lessthanorequal"is2,"equal"is3,"greaterthanor
equal"is4,and"greaterthan"is5.

Inthefile

/usr/local/postgres/src/examples/chapterl3

weshowthePOSTQUELthatpeifonnsthefour-wayjoinbetweenpg_amop,
pg—opclass,pg_operatorandpg__type.Doingthejoinobviatestheneedto
writedownanyoldsbutthequeiyisconsiderablymorecomplicated-looking.

Ihelaststep(finally!)isregistrationofthe"supportroutine"previouslydescribedinour
discussionofpg_am.Theoldofthissupportroutineisstoredinthepg_an^roc
class,keyedbytheaccessmethodoldandtheoperatorclassold.First,weneedtoreg
isterdiefunctioninPOSTGRES(recallfiiatweputtheCcodethatimplemoitsthisrou
tineinthebottomofthefileinwhichweimplementedtheoperatorroutines):

*definefunctionint4_2d3s_cmp
(language="c",returntype=int4)
argis(int4,int4)
as"/usr/local/postgres/src/examples/int4_abs.o"\g

*retrieve(p.oid,p.proname)
frompinpg_proc
wherep.proname="int4_abs_cmp"\g

oidproneune

17328int4_abs_cmp

(Again,youroidnumberwillprobablybedifferentandyoushouldsubstitutethevalue
youseeforthevaluebelow.)RecallingthatdieB-treeinstance'soidis403andthatof
int4_cdDS_opsis17314,wecanaddthenewinstanceasfollows:

60

* append pg_aitiproc

(amid = "403":ioid, /* btree oid */
amopclaid = "17314"::oid, /* pg_opclass tuple */
amproc = "17328"i:oid, /* new pg_proc oid */
amprocnum = "l"::int2) \g

Okay, now it*s time to test the new operator class. First we*ll create and populate a
class^:

* create pairs (name = charl6, number = int4) \g

* append pairs (name = "mike", nvimber = -10000) \g

* append pairs (name = "greg", number = 3000) \g

* append pairs (name = "lay peng", number ==5000) \g

* append pairs (name = "jeff", nuit^r = -2000) \g

* append pairs (name = "mac", niomber = 7000) \g

* append pairs (neune = "cimarron", number = -3000) \g

* retrieve (pairs.all) \g

name number

mike -10000

greg 3000

lay peng 5000

jeff -2000

mao 7000

cimarron -3000

Okay, looksprettyrandom. Define an indexusingthe new opclass:

* define index pairsind on pairs
using btree (number int4_abs_ops) \g

Nowrun a queiy that doesn't use oneof our newoperators. Whatwe're tryingto do here
is to run a query that won't use our index, so that we can tell the difference when we see a
query that does use the index. This query won't use the ind&c because fiie operatorwe
use in thequalification isn't onediatappears in the listof strategies for ourindex.

' lathii extmple, we qipmd oofy afew inatanoet ioto the dass. bi&ct. POSTGRES uses a "oost-basefT qaeiy rftrnnrtr timt
makes the dedsioa whedjcr ornot to use an index based onhow much data is Since this creates a veiy mnU
amoontof data,die examplewin likelynot workas adveitised—one wouldhaveto insert a fair amountof data before an index
would actually becfaei^ier thanjustscanning themdedying hei^data structure. "Afairamooat" typicany means ontheocdca ofsev
eral kilobytes.

61

* retrieve (pairs.all) where pairs.number < 9000 \g

name number

mike -10000

greg 3000

lay peng 5000

jeff -2000

mao 7000

cimarron -3000

Yup, just as random; that didn't use die index. Okay, let's run a query that does use the
index:

* retrieve (pairs.all) where pairs.number «& 9000 \g

name number

jeff -2000

cimarron -3000

greg 3000

lay peng 5000

mao 7000

Note that the number valuesare in oider of incieasingabsolutevalue (as diey shouldbe,
since the index was used for diis scan) and that we got the right answer — die instance
for mike doesn't appear, because -lOOCX) >=&9(X)0.

62

14. THE POSTGRES RULE SYSTEM

Production nile systems are conceptually simple, but there are many subtle points
involved in actually using them. Consequently, we will not attempt to explain the actual
syntax and operation of die POSTGRES rule system here. Instead, you should read
[STON90b] to understand some of these points and the theoretical foundations of the
POSTGRES rule system before trying to use rules. The discussion in this section is
intended to provide an overview of the POSTGRES rule system and point the user at help
ful references and examples.

The main point you should understand is that POSTGRES actually has two rule systems,
the instance-level rule system and the query rewrite rule system, and that there are trade
offs in the employment of each.

The instance-level rule system uses markers placed in each instance in a class to 'trigger**
rules. Examples of the instance-level rule system are explained and illustrated in
/usr/local/postgres/src/regress/demo, which is included widi the POST
GRES distribution. Additional discussion of the instance-level rule system can be found
in the Reference Manual under define rule.

The "query rewrite** rule system modifies queries to take rules into consideration, and
then passes the modifiedquery to the query optimizer for execution. It is very powerful,
and can be used for many filings such as query language procedures, views, aridversions.
Examples can be found in /usr/local/postgres/src/regress/video, and
further discussion is in the Reference Manual under define rule. The power of this rule
system is discussed in [ONG90] as well as [STON90b].

Since each rule system is implementedquite differently, they work best in different situa
tions. The query rewrite system is best when rules affect most of the instances in a class,
while the instance-levelsystem is best when a rule affects only afew instances.

63

15. ADMINISTERING POSTGRES

In this section, we will discuss aspects of POSTGRES that are of interest to those who
make extensive use of POSTGRES, or who are the site administrator for a group of POST
GRES users.

64

15.1. FrequeDt Tasks

Here we will briefly discuss some procedures fliat you should be familiar with in manag
ing any P05TGRES installation.

15.1.1. Starting the Postmaster

If you did not install FOSTGRES exactly as described in the installation instructions, you
may have to peifonn some additional steps before starting the postmaster process.

• Even if you were not the person who installed FOSTGRES, you should understand the
installation instructions. The installation instructions explain some important issues
with respect to where FOSTGRES places some important files,proper settings for envi
ronment variables, etc. that may vary firom one version of FOSTGRES to anoflier.

• You should look at the Reference Manual under the heading postmaster if you wish
to use non-default options (e.g., increased security options, a non-standard installation
directory, etc.).

• You must start the postmaster process with die user-id that owns die installed
database files. In most cases, if you have followed the installadon irtstructions, this
will be die user **postgres*\ If you do not start the postmaster with die right user-
id, die backend servers that are started by the postmaster will not be able to read
the data.

• Make sure that /usr/local/postgres/bin is in your shell command path,
because the postmaster will use your PATH to locate FOSTGRES coimnands.

• Remember to set the environmentvariable pgdata to the directory where the FOST
GRES databases are installed. (This variable is more iiilly explained in the POSTGRES
installadon instructions and the Reference Manual.)

• If you do start the postmaster using non-standardoptions, such as a difierent TCP
pott number, remember to tell all users so that they can set their PGPORT environment
variable correctly.

15.1.2. Shutting Down the Postmaster

If you need to halt the postmaster [Hocess, you can use the UNIX kill(l) command.
Scone pec^le habitually usethe -9 or -KILL option; this should never be necessary and
we do not recommend that you do diis, as the postmaster will be unable to free its
various shared resources, its childprocesses willbe unable to exitgracefully, etc.

15.13. Adding and Removing Users
The createuser and destroyuser commands enable and disable access to FOST
GRES by specific users on the host syst^. Please read the descriptions of tiiese com
mands in the Reference Manual for specific instmctions on their use.

65

15X4. Periodic Upkeep

The vacuiom command shouldbe run on eachdatabase periodically. This command pro
cesses deleted instances'̂ and. more importantly, updates die system statistics concerning
the size of each class. If these statistics are permitted to become out-of-date and inaccu
rate. the POSTGRES queryoptimizermay make extremely poor decisions with respectto
query evaluation strategies. Therefore, we recommend running vacuum every night or
so (perhtqisin a script that is executed by the UNIX cron(l) or at(l) commands).

Do frequent backups. That is. youshould eitherbackup yourdatabase directories using
the POSTGRES copy command and/or the UNIX dump(l) or tar(l) cmnmands. You
may think. **Why am I backingup my database? What about crash recovery?** One side
effectof the POSTGRES **no overwrite** storage manager is that it is also a **no log** stor
age manager. That is. the database log stores only abort/oimmit data, and this is not
enough informationto recover the database if the storagemedium (disk) or die database
files are comqitedl In other words, if a disk block goes bad or POSTGRES happens to
corrupt a database file, you cannot recover that file. This can bedisastrous if ^ file is
one ofthe shared catalogs, such as pg_database.

15.L5. 'Dining

Onceyourusersstart to load a significant amount of data,you will^ically run intoper-
fi^rmance problems. POSTGRES is not the fastest DBMS in the world, but many of the
worst problemsencounteredby users are due to their lack of experiencewith any DBMS.
Some general tips include:

(1) Define indices over attributes that are commonly used for qualifications. For
example, if you often execute queries of the form

retrieve (EMP.all) where EMP.salary < 5000

then a B-tree index on the salary column will probably be useful. If scans
involving equality are more common, as in

retrieve (EMP.all) where EMP.salary s 5000

then you should consider defining a hash index on salary. You can define
both, though it will use more disk space and may slowdown updates a bit Scans
using indices are much faster than sequential scans ofthe entire class.

(2) Run the vacuum command a lot This command updates the statistics that the
query optimizer uses to make intelligent decisions; if die statistics are inaccurate,
the system willmakeinordinately stupid decisions with respect to the wayit joins
and scans classes.

(3) When specifying query qualfications (i.e.. the where part of the query), try to
ensure fiiat a clause involving a constant can be turned into one of the form

^ TUs may mean different tbingt depending onthe arddve mode widi vriiich each dau has been created. SeedteR^ereoce
Mmnd noder thebeading create fmmore details. Howevei; the cnnent in^Iementalion ci dievacuum does jiol perfoim
anycompactioo or dniteringof data. Therefore, the UNIX files which storeeachPOSTGRES dass nevershrink and the ipaoe"re-
daime^hy vacuum is neveractnaifyreused.

66

rangejfariable operator constant^e.g.,

EMP.salary = 5000

The POSTGRES query optimizerwill only use an index with a constantqualifica
tion of fills form. It doesn*t hurt to write the clause as

5000 = EMP.salary

if the operator (in fiiis case, =) has a commutatoroperator defined so that POST
GRES can rewrite the query into the desired form. However, if such an operator
does not exist, POSTGRES will never consider the use ofan index.

(4) Whenjoining several classestogether in one query,try to write the join clauses in
a "chained" form, e.g.,

where A.a = B.b and B.b = C.c and ...

Notice that relatively few clauses refer to a given class and attribute; the clauses
form a linear sequence connecting the attributes, like links in a chain. This is
preferable to a query written in a "star^* form, such as

where A.a = B.b and A.a = C.c and ...

Here, many clauses refer to the same class and attribute (in this case, A. a).
When presented with a query of this form, the POSTGRES query optimizer will
tmid to consider far more choices than it should and may run out ofmemory.

(5) If you are really desperate to see what query plans look like, you can run the
postmaster with the -d option and then run monitor with the -t option.
The format in which query plans will be printed is hard to read but you should be
able to tell whether any index scans are being performed. See the Reference
Manual under postgres and postmaster.

67

15^. Infrequent Tasks

At some time or another, eveiy POSTGRES site administrator has to perfonn all ofthe fol
lowing actions.

15,2.1. Cleaning Up After Crashes

The postgres server and the postmaster run as two dififeient processes. They may
crash separately or together. The housekeeping procedures required to fix one kind of
crash are different from those required to fix the o&er.

The message you will usually see when the backend server crashes is:

FATM<: no response from backend: detected in ...

This generallymeans one of two things: there is a bug in the POSTGRES server,or there
is a bug in some user code that has been dynamically loadedinto POSTGRES. You should
be able to restart your ai^lication and resume processing, but there are some considera
tions:

(1) POSTGRES usually dumps a core file (a snapshot of process memory used for
debugging) in the database directory

/usr/local/postgres/data/base/<databa3e>/core

on the server machine. If you don*t want to try to debug the problem or produce
a stack trace to report fiie bug to someone else, you can delete this file (whidi is
probably around 10MB).

(2) When onebackend crashes in an uncontrolled way (i.e., without calling its built-
in cleanup routines), the postmaster willdetect this situation, kill all running
servers and reinitialize the state shared among all backends (e.g., die shared
buffer pool and locks). If your server crashed, you will get die ''no response**
message ^wn above. If your server was killed because someone else*s server
crashed,you will see the following message:

I have been signalled by the postmaster.
Some backend process has died unexpectedly and possibly
corrupted shared memory. The current transaction was .
aborted, and I am going to exit. Please resend the
last query. — The postgres backend

(3) Sometimes shared stateis not completely cleaned up. Frontend applications may
see errors of the fi:>rm:

WARN:Mar 11 14:41:29: cannot write block 34 of myclass [n^db] blind

68

In this case, you should kill the postmaster and lestait it

(4) When the system crashes while updating the system catalogs (e.g., when you are
creating a class, defining an index, retrieving into a table, etc.) the B-tree indices
defined on the catalogs are sometimes corrupted. The general (and non-unique)
symptom is that all queries stop working. If you have tried all of the above steps
and nothing else seems to work, try using the relndexdb command. If rein-
dexdb succeeds but things still don*t work, you have another problem; if it fails,
the system catalogs themselves were almost certainly coinipted and you will have
to go back to your backups.

The postmaster does not usually crash (it doesn*t do very much except start servers)
but it does happen on occasioit In addition, there are a few cases where it encounters
problems during die reinitialization of shared resources. Specifically, there are race con
ditions where the operating system lets the postmaster fiee shar^ resources but then
will not permit it to reallocate the same amount of shared resources (even when there is
no contention).

You will typically have to run the ipcclean command if system errors cause the
postmaster to crash. If this happens, you may find (using the UNIX ipcs(l) com
mand) that the *'postgres'* user has shared memory and/or semaphores allocated even
though no postmaster process is running. In this case, you should nm ipcclean as
the "postgres** user in order to deallocate these resources. Be warned that all such
resources owned by the "postgres** user will be deallocated. If you have multiple post-
master processes running on the same machine, you should Idll all of them before run
ning ipcclean (otherwise, they will crash on their own when their shared resources are
suddenly deallocated).

15.2.2. Moving Database Directories

By default, all POSTGRES databases are stored in separate subdirectories under

/usr/local/postgres/data/base." At some point, you may find that you wish
to move one or more databases to another location (e.g., to a filesystem with more riee
space).

If you wish to move all of your databases to the new location, you can simply:

• Kill the postmaster.
• Copy fire entire data directory to the new location (making sure that the new filesare

owned by user '̂postgres*').

% cp -rp /usr/local/postgres/data /new/place/data

• Reset your PGDATA environment variable (as described earlier in this manual and in
the installation instructions).

using csh or tosh...
% setenv PGDATA /new/place/data

" Data for oertamdassetinqr itaraldiemiiere ifanan-cUndard itonge manager wMipecified^iriieatfi^ were oeated. Uae
of noo-staodaid itoiagemanagenit an eaiperixneotal featmethati<not sopixnted outsideof Bedcd^.

69

using sh, ksh or bash...
% PGDATA=/new/place/data; export PGDATA

• Restart the postmaster.

% postmster &

• After you run some queries and aie suie that the newly-moved database woiks, you
can remove the old data directory.

% rm -rf /usr/local/postgres/data

lb install a single database in an alternatediiectoiy while leaving all other databases in
place»do the following:

• Create the database (if it doesn*t already exist) using the createdb command, hi the
following steps we will assume the database is named £00.

• Kill the postmaster.
• Copy the directoiy /usr/local/postgres/data/base/foo and its contents

to its ultimatedestination. It shouldstill be ownedby the **postgres** user.

% cp -rp /usr/local/postgres/data/base/foo /new/place/f00

• Remove the directory /usr/local/postgres/data/base/foo:

% rm -rf /usr/local/postgres/data/base/foo

• Make a symbolic link from /usr/local/postgres/data/base to the new
directory:

% In -s /new/place/f00 /usr/local/postgres/data/base/foo

• Restart the postmaster.

15.2 Updating Databases

POSTGRES is a research system. In general, POSTGRES may not retain the same binary
format for the storage of databases from release to release. Therefore, when you update
your POSTGRES software, you will probably have to modify your databases as well. This
is a commonoccurrence with commercial database systems as well;unfortunately, unlike
commercial systons, POSTGRES does not come widi user-finendly utilitiesto make your
life easierwh^foese updates occur.
hi general, you must do the following to update your databases to a new software release:

• Extensions (such as user-defined types, functions, aggregates, etc.) must be reloaded
by re-executing the POSTQUEL define commands. Notice that as of Version 4.2, the
method by which you generateobject code for user-defined functions has changed, so
you may have to modify your old .ofiles. See Appendix A for more details.

• Data must be dumped tom the old classes into ASCII files (using the POSTQUEL
copy coimnand), the new classes created in the new database (using the POSTQUEL

70

create command), and the data reloaded from the ASCII files.
• Rules and viewsmust also be reloaded by re-executing the various POSTQUEL define

commands.

You should give any new release a *1rial period*'; in particular, do not delete the old
database until you are satisfied that there are no compatibility problems with the new
software. For example, you do not want to discover that a bug in a type's *input" (con
version from ASCII) and **output" (conversion to ASCII) routines prevents you from
reloading your data after you h^e destroyed your old databases! (This should be stan
dard procedure when updating any software package, but some people try to economize
on disk space without tq>plying enough foresight)

71

15 Database Security

Most sites that use POSTGRES are educational or research institutions and do not pay
much attention to security in dieir POSTGRES installations. If desired, one can install
POSTGRES with addition^ security features. Naturally, such features come with addi
tional administrative oveihead that must be dealt with.

15J.1. Kerberos

POSTGRES can be configured to use the MTT Kerberos network authentication system.
This preventsoutside users firom coimecting to your databases over the network without
the correct authentication informatiotL For more information on Kerberos, see die file
src/doc/kerberos. fag and the UNIX section ofthe Reference Manual.

153.2. Access Control

Access control lists (ACLs) can be defined on a per-class basis. These work rather like a
more flexible version of the UNIX cliinod(l) command. See the Reference Manual under
the heading change ad for more details.

72

15.4. Querying the System Catalogs

As an administrator (or sometimes as a plain user), you want to find out what extensions
have been added to a given database. The queries listed below are "canned** queries that
you can run on any database to get simple answers. Before executing any of the queries
below, be sure to execute the POSTGRES vacuum command. CHie queries will run much
more quicldy fiiat way.) Also, note that these queries are also listed in

/usr/local/postgres/src/examples/chapterlS

SO use cut-and-paste (or the \ i command) instead ofdoing a lot of typing.

This queiy prints the names of all database adminstrators and the name of their
database(s).

* retrieve (user_naine = u.usenaine,

dateibase = d.datn«une)

from u in pg_user,
d in pg_database

where u.usesysid = int2in(int4out(d.datdba))
sort by user^name, database

\g

This queiy lists all user-defined classes in the database.

* retrieve (class_naine = c.relname)
from c in pg_class
where c.relkind = 'r' /* no indices */

and c.relneune !"* "''pg_" /* no catalogs */
sort by class_name

\g

This queiy lists all simple indices (i.e., those that are not defined over a function of sev
eral attributes).

* retrieve (class_name = bc.relname,

indexL-uame = ic.relname,

attr.neune = a.attname)

from be in pg_class, /* base class */
ic in pg_class, /* index class */
i in pg_index,
a in pg_attribute /* att in base */

where i.indrelid = bc.oid

2md i.indexrelid s ic.oid

and i.indkey[0] = a.attnum
2md a.attrelid = bc.oid

and i.indproc = "O'ltoid /* no functional indices */

73

sort by class_naine, inde^^name,
attr_name

This queiy prints a report of the user-defined attributes and their types for all user-defined
classes in the database.

* retrieve (class_name = c.relnaine,
attr_name = a.attnaine,

attr_type = t.typname)
from c in pg_class,

a in pg_attribute,
t in pg_type

where c.relkind = 'r' /* no indices */

and c.relname !" •'*pg_" /* no catalogs */
and a.attnum >0 /* no system att's */
and a.attrelid = c.oid

and a.atttypid = t.oid
sort by class_name, attr__name

\g

This query lists all user-definedbase types (not including array types).

* retrieve (owner_n2ime = u.usename,
type_name = t.typname)

from t in pg_type,
u in pg_user

where u.usesysid = int2in(int4out(t.typowner))
and t.typrelid = "O"::oid /* no complex types */
and t.typelem = "O'troid /* no arrays */
and u.usename 1= "postgres"

sort owner_name, type_name

\g

This query lists all left-associative (post-fix) operators.

* retrieve (left_unary = o.oprneune,
operand = right.typname,
return^type = result.typname)

from o in pg_operator,
right in pg_type,
result in pg_type

where o.oprkind = '1' /* left unary */
and o.oprright = right.oid
and o.oprresult = result.oid

sort by operand

\g

This query lists all right-associative (pre-fix) operators.

* retrieve (right_unary = o.oprnaroe,
operand = left.typname.

74

return^type = result .typnaioe)
from o in pg_operator,

left in pg_type,
result in pg_type

where o.oprkind = 'r' /* right unary */
and o.oprleft s left.oid
and o.oprresult = result.oid

sort by operand

\g

This queiy lists all binary operators.

* retrieve (binary_op = o.oprname,
left_opr = left .typneime,
right_opr = right .typname,
return_type = result.typname)

from o in pg_operator#
left in pg__type,
right in pg_type,
result in pg_type

where o.oprkind = 'b' /* binary */
and o.oprleft = left.oid
and o.oprright = right.oid
and o.oprresult = result.oid

sort by left_opr, right_opr

\g

This query returns the name, number of arguments (parameters) and return type of all
user-defined C functions. The same query can be used to find all built-in C fiinctioiis if
you change the **C* to **intemal**, or all POSTQUEL functions if you change the *'C'* to
**postquel".

* retrieve (p.proname,
arguments = p.pronargs,

returntype = t.typname)

from p in pg_proc,
1 in pg_language,
t in pg_type

where p.prolemg = l.oid
emd p.prorettype = t.oid
£uid l.lanneune = "C"

sort by proname

\g

This query lists all of the aggregate functions that have been installed and the types to
which they can be ^lied. count is not included because it can take any type as its
argument

* retrieve (aggregate^ame = a.aggname,
type_name = t.typname)

from a in pg_aggregate.

75

t in pg_type
where a.aggbasetype = t.oid
sort by aggregate_naine, type_naine

\g

This query lists all of the operator classes that can be used widi each access method as
well as the operators that can be used with the respectiveoperatorclasses.

* retrieve (access_;nethod = am.amname,
operator_class = opc.opcname,
operator_naine = opr.oprname)

from am in pg.am,
amop in pg_amop,
opc in pg_opclass,
opr in pg_operator

where eunop.amopid = am.oid
and amop.amopclaid = opc.oid
and amop.amopopr = opr.oid

sort by access_jnethod, operator_class,
operator_name

\g

76

16. REFERENCES

[ONG90] Ong, L. and Goh, J., "A UnifiedFramewoikfor Version Modeling Using
Production Rules in a Database System," Electronics Research Laboratory,
University of California, ERL Technical Memorandum M90/33, Berkeley,
CA, April 1990.

IROWE87] Rowe, L. and Stonebraker, M., "The POSTGRES Data Model," Proc.
1987VLDBOmfeience, Brighton, England,Sept 1987.

[STON86] Stonebraker, M and Rowe, L., "The Design of POSTGRES," Proc. 1986
ACM-SIGMOD Conference on Management of Data, Washington, DC,
May 1986.

[STON87a] Stonebraker, M., Hanson, E. and Hong, C.-H., "The Design of the POST
GRES Rules System," Proc. 1987 IEEE Conference on Data Engineering,
Los Angeles, CA, Feb. 1987.

[STON87b] Stonebraker, M., "The POSTGRES Storage System," Proc. 1987 VLDB
Conference, Brighton, England, Sept 1987.

[STON89] Stonebraker, M., Hearst M., and Potamianos, S., "A Commentaiy on the
POSTGRES Rules System," SIGMOD Record 75(3), Sept 1989.

[STON90a] Stonebraker, M., RoWe, L. A., and Hirohama, M., "The Implementation of
POSTGRES," IEEE Transactions on Knowledge and Data Engineering
2(1), March 1990.

[STON90b] Stonebraker, M. et al., "On Rules, Procedures, Caching arui Views in
Database Systems," Proc. 1990 ACM-SIGMOD Conference on Manage
ment ofData, Atlantic City, N.J., June 1990.

77

Appendix A: Linking Dynamically-Loaded Functions

After you have created and registered a user-defined function, your woik is essentially
done. POSTGRES, however,must load the object code (e.g., a . o file, or a shared library)
that implements your function. As previouslymentioned,POSTGRES loads your code at
run-time, as required. In order to allow your code to be dynamically load^, you may
have to compile and link-edit it in a special way. This section briefly describes how to
perform the compilationand link-editing requiredbefore you can load your user-defined
functionsinto a runningPOSTGRES server. Note that thisprocess has changedas of Ver
sion 42}^ You should expect to read (and reread, and re-reread) the manual pages for the
C compiler, cc(l), and the link editor, ld(l), if you have specificquestions. In addition,
the regression test suites in the directory /usr/local/postgres/src/regress
contain several woiking examples of this process. If you copy what these tests do, you
should not have any problems.

The following tenninology will be used below:

Dynamic loading
is whatPOSTGRES does to an object file. The object file is copiedinto the running
POSTGRES server and the functions and variables within the file are made available

to the functions within the POSTGRES process. POSTGRES does this using the
dynamic loading mechanism provided by the operating system.

Loading and link editing
is whatyou do to an object file in order to produceanotherkind of object file (e.g.,
an executableim)gramor a shared library). Youperform this using the link editing
program, ld(l).

The followinggeneral restrictionsand notes also apply to fiiediscussionbelow.

• Paths given to the define function commandmust be absolute paths (i.e., start with
**/") that refer to directories visible on the machine on which the POSTGRES server is

running.
• The POSTGRES user must be able to traverse the pafii given to the define ftinction

command and be able to read the object file. This is because the POSTGRES server
runs as the POSTGRES user, not as the user who starts the fiontend process.

" The old POSTGRES dynamic loadiiig mechanism leqnired in-dqxh knowledge intenns of fcmnat, ud
aKgnmcot ofexecotaUc instnictioiis within memoiy, etc. onthepart ofthe person writing the dynamic loadec Sncfa loeiden tended to
be alow and Inggy. Asof Version 4.2,thePOSTGRES dynamic loading mechanism has been rewritten to nsedtedynamic loading
mechanism provided bytheoperating sjfstein. Hus appioacfa is generally faster, more reliable andmore portable than ocr{nevioos
d^mamic loading mechanism. Thereason for thisis thatnea^ allmodem versions cf UNIX nsea (fynamic loading mechanism to im-
{dement shared libraries and most therefore provide a fast and reliable mechanism. Ontheother hand, theobject file bepost-
processed a bitbefore it canbeloaded intoPOSTGRES. We hope thatthehugeincrease in speed andreliabifity willmake ip for the
sHghtdecrease in convenienoe.

" Relative fiatfas doinUctwoik, batare relative todiedirectoiy oftere die database resides (vriiidi isgeneral^ invisible tothe
frontend qiplicaiion). Obvioaaly, it makes nosense tomake the{nthrelative to theduectoy inwhidithenserstarted thefirontendqi-
pKcatinn, itnew dto «nnM hftiimnmg nn»nnnipW«»ly tWflKHwait mitrliiii*.!

78

(Making the file or a higher-level diiectoiy unreadable and/or unexecutable by the
'̂postgres** user is an extremelycommon mistake.)

Symbol names defined within object files must not conflict with each other or with
symbols defined in POSTGRES.
The GNU C ctnnpilerusually does not providethe specialoptions that are requiredto
use the operating system's dynamic loader interface. In such cases, the C compiler
that comes with the operating system must be used.

ULTRIX

It is veiy easy to build dynamically-loaded object files under ULTRIX. ULTRIX does not
have any shared-libraiy mechanism and hence does not place any restrictions on the
dynamic loader inlerfia^. On the other hand, we had to (re)write anon-poit^le dynamic
loader ourselves and could not use true shared libraries.

Under ULTRIX, fire only restriction is fiiat you must produce each object file with the
option -G 0. (Notice that that's the numeral "0" and not the letter "O"). For example,

simple ULTRIX example
% cc -G 0 -c foo.c

produces an object file called foo.o that can then be dynamically loaded into POST
GRES. No additional loading or link-editing must be performed.

DEC OSF/1

Under DEC OSF/1, you can take any simple object file and produce a shared object file
by running the Id command over it with the correct options. The commands to do this
look like:

simple DEC OSF/1 example
% cc -c foo.c

% Id -shared -expect_unresolved -o foo.so foo.o

The resulting shared object filecan then be loaded into POSTGRES. When specifying the
object file name to fire define function command,one must give it the name of fire shared
object file (ending in . so) rather than thesimple object file.^^

SunOS 4 and HP-UX

Under both SunOS 4 and HP-UX, the simple object file must be created by compiling the
source file with special compiler flags and ashared library must be product
The necessary steps with HP-UX are as follows. The +z flag to fire HP-UX C compiler
produces so-called Tosition Independent Code" (PIC) and the -i-u flag imnoves some

" ActnaOy, POSTGRES does notcue wlist yoo name thefile as long as it is a shared object file. If yon prefer to name your
shared object fileswidithe ejctension . o. thisis finewithPOSTGRES solong asyonmakesorethattheoonectfilenameis giveo to the
define fimctlon command. In etherwords, yonmostsimply be oonsistem. Howeveivfiomapiagmaticpcnntcf view.wedisoooiige
this practice because you will undoubtedly confuse youis^ with regards to which files have been made into shared object files and
which hanve not. Forexample, it's veiyhardto write Makefiles to dodielink-editing satomatkaUy if both dieotgect filesndthe
shared object file end in .oi

79

AIX

alignment restrictions that the PA-RISC architecture normally enforces. Hie object file
must be turned into a shared library using the HP-UX link editor with the -b option.
Hiis sounds complicated but is actually very simple, since the commands to do it are just*

simple HP-UX example
% cc +z +u -c foo.c

% Id -b -o foo.sl £00.0

As with the . so files mentioned in the last subsection, the define function command
must be told which file is the correct file to load (i.e., you must give it the location of the
shared library, or . si file).

Under SunOS 4, the commands look like:

simple SunOS 4 example
% cc -PIC -c foo.c

% Id -de -dp -Bdynamic -o foo.so foo.o

When linking shared libraries, you may have to specify some additional shared libraries
(typically system libraries, such as the C and math libraries) on your Id conunand line.

AIX, like SunOS, OSF/1 and HP-UX, requites users to build shared object files in order
to use its built-in dynamic loading mechanism. No special compiler options must be
given to build the simple object file. However, AIX provides a very general, flexible and
complicated interface for producing shared object files. As a result, it is (relatively)diffi
cult to produce dynamically-loadedobject files. Bear in mind that this only means that it
is difficult when compared to the mechanisms just discus^; it*s really not that hard to
do.

AIX allows the user to tell it which program symbols (e.g., function and global variable
names) should be visible to other pieces of code. This can be convenient in certain cases.
Unfortunately, AIX also requires the user to tell it which symbols should be visible (i.e.,
the de&ult behavior is to disallow sharing). AIX controls this behavior by using eiqfort
files and importfiles.

A symbol may be exported from the shared object file to the program into which the
shared object file is being loaded. In other words, the export file specifies which
symbols defined within fiie shared object file can be accessed by POSTURES. We
usually want all symbols to be visible to POSTGRES.

A symbol may be imported by the shared object file fiom the program into which
the shared object file is being loaded. In other words, fiie import file specifies
whichsymbolsdefined with the POSTGRES servercan be called by routinesdefined
within the shared object file. Again, we usually want all POSTGRES symbols to be
visible to the user code.

Hence, in order to load a shared object file, one must have an export file for the shared
object file as well as an import file for the POSTGRES backertd server. This turns out to
be easy to do, since export and import files have ttie same basic format and may be pro
duced from the simple object file(s) by running the mkldesqport command that comes
with POSTGRES. The following three steps should work for most cases:

80

simple AIX example, using Bourne shell
% cc -c foo.c

% mkldexport foo.o 'pwd' > foo.exp
% Id -H512 -T512 -o £00.so -e _nostart \

-bl:/usr/local/postgres/lib/postgres.exp \
-bE:foo.exp foo.o -Im ~lc 2>/dev/null

The values given for the -H, -T and -e flags to Id should simply be taken as voodoo.
Hffi file specified by the -bl: flag is produced when the POSTGRES server is compiled
and installed. (The library directory /usr/local/postgres/lib given in the
example may differ if you have installed POSTGRES in a different place, of course.) The
file specifiedby the -bE: flag must be produced by hand (using the mkldexport com
mand, as iflmwn) before the . so shared object file can beproduced.^^ You are probably
asking, **If ifs so easy, why not do it all for me?I** In fact, the magic command lines
given above do work in most cases and so could be embedded within POSTGRESand hid
den finem the user. However, there are circumstances in which it will fail, in these cases,
the user must be able to control the loader flags with which the shared object file is con
structed. hi addition, since the file system locations of the various object files are hard-
coded into the expoit/import files (and hence into the shared object file), this fact should
also be visible to the user. Finally, by putting the export/import files under user control,
the user can do as the designers of AIX intended and actually edit the files (i.e., control
link-editing) as desired.

If you want an actual understanding of how the AIX loader actually works, you should
take a look at the tutorials written by Gary Hook at the IBM AIX Systems Center. These
tutorials are located in

/usr/local/postgres/src/doc/useful/aix-1inking.ps
/usr/local/postgres/src/doc/useful/aix-advlink.ps

" Ifyoa with toaeatea shared object file fornse with nntrasted fiinctiont (see the Reference Manual under the heading define
ftindfoo, youmist usethe pg_ufp. e}^ exports fileinsteadof thepostgres. exp expoitsfile.

81

	Copyright notice1992
	ERL-92-120 v2

