Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

e

THE POSTGRES USER MANUAL

Edited by

the POSTGRES Group

Memorandum No. UCB/ERL M92-120
27 April 1994

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California
94720

[

(on

The POSTGRES User Manual

Edited by the POSTGRES Group
Computer Science Div., Dept. of EECS
University of California at Berkeley

POSTGRES is copyright © 1989, 1994 by the Regeats of the University of Califomnia. Pemmission to use, copy, modify, and dis-
Mmmdiuwmf«e&aﬁummwmmmWamdwhbmthWMpw

.videdthatthemwwwmrhme@ammmwmﬁgmmm&hpmﬂﬁmnﬁwmhlup-

poningdomenmion.andllmthemeoftboUnimﬁtyd‘Cdifomhnubemedindvaﬁshgwpdﬁdtypeﬁainingwdimﬂu-
tion of the software without specific, written prior pemmission. Pemmission to incorporate this software into commercial products can
be obtained from the Campus Software Office, 295 Evans Hall, University of Califomis, Berkeley, Ca., 94720. The University of Cal-
ifomia mekes no representations about the suitability of this software for any purpose. It is provided “as is” without express or im-
plied warranty.

1. INTRODUCTION

This document is the user manual for the POSTGRES database management system devel-
oped at the University of California at Berkeley. This project, led by Professor Michael
Stonebraker, has been sponsored by the Defense Advanced Research Projects Agency
(DARPA), the Army Research Office (ARO), the National Science Foundation (NSF),
and ESL, Inc.

The first part of this manual goes over some basic system concepts and procedures for
starting the POSTGRES system. We then tumn to a tutorial overview of the POSTQUEL
data model and query language, introducing a few of its advanced features. Next, we
explain the POSTGRES approach to extensibility and describe how users can extend
POSTGRES by adding user-defined types, operators, aggregates, and both query language
and programming language functions. After an extremely brief overview of the POST-
GRES rule system, the manual concludes with a detailed appendix that discusses some of
the more involved and operating system-specific procedures involved in extending the
system.

1L1. What is POSTGRES?

Traditional relational database management systems (DBMSs) support a data model con-
sisting of a collection of named relations, each attribute of which has a specific type. In
current commercial systems, possible types including floating point numbers, integers,
character strings, money, and dates. It is commonly recognized that this model is inade-
quate for future data processing applications.

The relational model succeeded in replacing previous models in part because of its sim-
plicity. However, as mentioned, the “Spartan simplicity” of the relational model often
makes the implementation of certain applications very difficult. The POSTGRES data
model offers substantial additional power by incorporating the following four additional
basic constructs:

classes

inheritance

types

functions
in such a way that users can easily extend the system. In addition, POSTGRES supports a
powerful production rule system.

1.2. A Short History of the POSTGRES Project

Implementation of the POSTGRES DBMS began in 1986. The initial concepts for the
system were presented in [STON86] and the definition of the initial data model appeared
in [ROWES7]. The design of the rule system at that time was described in [STONS87a).

2

o

The rationale and architecture of the storage manager were detailed in [STON87b].

POSTGRES has undergone several major releases since then. The first “demo-ware” sys-
tem became operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference.
We released Version 1, described in [STON90a], to a few external users in June 1989, In
response to a critique of the first rule system [STON89], the rule system was redesigned
[STON90b] and Version 2 was released in June 1990 with the new rule system. Version 3
appeared in 1991 and added support for multiple storage managers, an improved query
executor and a rewritten rewrite rule system. For the most part, releases since then have
focused on portability and reliability.

POSTGRES has been used to implement many different research and production applica-
tions. These include: a financial data analysis system, a jet engine performance monitor-
ing package, an asteroid tracking database, a medical informatics database and several
geographic information systems. POSTGRES has also been used as an educational tool at
several universities. Finally, at least two companies (Multimedia Information Systems
and Montage Software) have picked up the prototype code and commercialized it.

POSTGRES became the primary data manager for the Sequoia 2000 scientific computing
project in late 1992. Furthermore, the size of the external user community nearly doubled
during 1993. It became increasingly obvious that maintenance of the prototype code and
support was taking up large amounts of time that should have been devoted to database
research. In an effort to reduce this support burden, the project officially ended with Ver-
sion 4.2,

1.3. About This Release

Version 4.2, the current version of POSTGRES, is about 200,000 lines of code in the C
programming language. POSTGRES is available free of charge, and (as of this writing)
has been installed by approximately 600 sites around the world.

This manual describes Version 4.2 of POSTGRES. The POSTGRES group has compiled
and tested Version 4.2 on the following platforms:

operating system
DECstation 3000 OSF/11.3
DECstation 3100 and 5000 | MIPS ULTRIX 4.2,4.3A
Sun4 SPARC Sun0S 4.1.3

H-P 9000/700 and 800 PA-RISC HP-UX 9.00, 9.01
IBM RS/6000 POWER AIX3.25

Previous versions of POSTGRES ran on Sun Microsystems Sun3 and Sequent Symmetry
machines. POSTGRES no longer runs on these systems, nor does it currently run on Sun
Microsystems computers running the Solaris 2 (SunOS 5) operating system. Outside
users have ported previous releases of POSTGRES to many platforms, including

UNIX is a trademark of Unix Systems Laboratories. Sund, SPARC, SunOS and Solaris are trademarks of Sun Microsystems,
Inc. DEC, DECstation, Alpha AXP and ULTRIX are trademarks of Digital Equipment Corp. PA-RISC and HP-UX are trademarks of
Hewlett-Packard Co. RS/6000, POWER and AIX are trademarks of Intemational Business Machines Corp. OSF/1 is a trademark of
the Opea Systems Foundation. NeXTSTEP is a trademark of NeXT Computer, Inc. MIPS and IRIX arc trademarks of Silicon Graph-
ics, Inc,

NeXTSTEP, Solaris 2.2, IRIX, Intel System V Release 4, Linux and NetBSD.

Version 4.2 has been tuned modestly. On the Wisconsin benchmark, one should expect
performance about twice that of the public domain, University of California version of
INGRES, a relational prototype from the late 1970s.

K

13

2. WHAT YOU SHOULD READ

This manual is primarily intended to provide a broad overview of the system, as well as
to illustrate how C programmers can tie their own code into the POSTGRES database
server (commonly referred to as the backend server, or simply “backend”).

In addition to this manual, there is another document, the POSTGRES Reference Manual.
The Reference Manual gives full descriptions of the syntax and options for each com-
mand in a format not unlike UNIX “man pages.” (In fact, the contents of the Reference
Manual should be available on-line as actual man pages.) However, the Reference Man-
ual is designed as a complete reference for the experienced POSTGRES user and contains
few tutorial examples. This User Manual does not attempt to provide all of the informa-
tion that the Reference Manual provides. Instead, it describes the major concepts of the
system, gives examples of the use of the major constructs, and then provides pointers to
the appropriate place in the Reference Manual in which you can find more information if
you so desire.

If you are new to POSTGRES, you should probably read this manual first, followed by the
parts of the POSTGRES Reference Manual necessary to build your application. In partic-
ular, you should read the Reference Manual section on LIBPQ if you intend to build a
client application around POSTGRES, as that library is not discussed in this manual.

If you are not already familiar with relational databases, you should probably find a good
introductory text on the subject. This manual assumes that you already have some
knowledge of the relational model, and it doesn’t hurt to know a query language such as
QUEL or SQL.

3. POSTGRES ARCHITECTURE CONCEPTS

Before we continue, you should understand the basic POSTGRES system architecture.
Understanding how the parts of POSTGRES interact will make the next chapter somewhat
clearer.

In database jargon, POSTGRES uses a simple “process-per-user” client/server model. A
POSTGRES session consists of three cooperating UNIX processes (programs):

* A supervisory daemon process (the postmaster),

o the user’s frontend application (e.g., the monit or program), and

USER ;
[APPLICATION LIBPQ]'_

(a) frontend sends request to
postmaster via well-known
network socket

USER
APPLICATION

USER
[APPLICATION LIBPQ

(c) frontend connected
to backend server

Figure 1. How a connection is established.

(g

w

« the backend database server (the postgres process itself).

A single postmaster manages a given collection of databases on a single host. Such a
collection of databases is called an installation or site. Frontend applications that wish to
access a given database within an installation make calls to the LIBPQ library. The
library forwards the user requests over the network to the postmaster (Figure 1(a)),
which in tum starts a new backend server process (Figure 1(b)) and connects the frontend
process to its server (Figure 1(c)). From that point on, the frontend process and the back-
end server communicate without intervention by the postmaster. Hence, the post -
master is always running, waiting for requests, whereas the frontend and backend pro-
cesses come and go.

One implication of this architecture is that the postmaster and the backend always run
on the same machine (the database server), while the frontend application may or may
not be running on a separate machine (e.g., a client workstation). You should keep this in
mind, because this means that the files that you can access on your machine may not be
accessible (or may only be accessed using a different filename) on the database server
machine.

You should also be aware that the postmaster and the postgres server run with the
user-id of the POSTGRES “superuser.” Note that the POSTGRES superuser does not have
to be a special user (e.g., a user named “postgres™). Furthermore, the POSTGRES supe-
ruser should definitely not be the UNIX superuser, “root”! In any case, all files relating to
a database should belong to this POSTGRES superuser.

4. GETTING STARTED WITH POSTGRES

Before you can start leaming the POSTQUEL query language, you need to have a working
POSTGRES system. This section discusses how to start POSTGRES and set up your own
environment so that you can use frontend applications.

Some of the steps listed in this section will apply to all POSTGRES users, and some will
apply primarily to the site database administrator. This site administrator is the person
who installed the software, created the database directories and started the postmaster
process. This person does not have to be the UNIX superuser, “root,” or the computer
system administrator.

In this section, items for end users are labelled “User” and items intended for the site
administrator are labelled “Admin.”

Throughout this manual, any examples that begin with the character “%” are commands
that should be typed at the UNIX shell prompt. Examples that begin with the character
“* are commands in the POSTGRES query language, POSTQUEL.

4.1. Admin: Installing POSTGRES

Detailed installation instructions can be found in the POSTGRES source code distribution.
The troff source is located in the file src/doc/postgres-setup.me and a for-
matted version is located at the top of the distribution directory tree. Those instructions
vary from release to release and will not be duplicated here. However, if you are
installing POSTGRES now, you must read these instructions and carry them out before
going any further.

A reminder: don’t run the regression tests as the “postgres” user. Part of the test is a

check of the POSTGRES security mechanisms that turns off superuser permissions. If you
run the test as “postgres,” you may not be able to add users later.

4.2. Admin/User: Setting Up Your Environment

Figure 2 shows how the POSTGRES distribution is laid out when installed in the default
way. The system can be installed such that the various top-level directories can be scat-
tered around your disks, but for the sake of simplifying this manual we will assume that
this is not the case. In the examples that follow, we will assume that POSTGRES has been
installed in the directory /usr/local/postgres. Therefore, wherever you see the
directory /usr/local/postgres you should substitute the name of the directory
where POSTGRES is actually installed.

All POSTGRES commands are installed in the directory
/usr/local/postgres/bin. Therefore, you should add this directory to your shell
command path. If you use a variant of the Berkeley C shell, such as csh or tcsh, you
would put

"w

-

data bin .I includo ac doc
"’7\\ ’/7\
files baso pglog monitor postgres postmaster.... libpg.a libpgh ...
/ Iwm]
[biifiles] templatel me”“
1ass ... class
\cme classes} %vate classes]
DATA EXECUTABLE APPLICATION
PROGRAMS DEVELOPMENT

ENVIRONMENT

Figure 2. POSTGRES file layout.

$ set path = (/usr/local/postgres/bin $path)

in the . login file in your home directory. If you use a variant of the Boume shell, such
as sh, ksh or bash, then you would put

% PATH=/usr/local/postgres/bin:$PATH
$ export PATH

inthe .profile file in your home directory.

From now on, we will assume that you have put the POSTGRES bin directory in your
path. In addition, we will make frequent reference to “setting a shell variable” or “setting
an environment variable” throughout this document. If you did not fully understand the
last paragraph on modifying your search path, you should consult the UNIX manual pages
that describe your user shell before going any further.

4.3. Admin: Starting the Postmaster

It should be clear from the preceding discussion that nothing can happen to a database
unless the postmaster process is running. As the site administrator, there are a num-
ber of things you should remember before starting the postmaster. These are dis-
cussed in the section of this manual titled, “Administering POSTGRES.” However, if
POSTGRES has been installed by following the installation instructions exactly as written,
the following simple command is all you should need to start the postmastexr:

% postmaster &

If the postmaster does not start, but instead prints a series of cryptic error messages,

you should consult the Reference Manual under the heading postmaster. This manual
page contains troubleshooting tips.

The postmaster occasionally prints out messages to the shell that started it. This is
often helpful during troubleshooting. If you do not wish to see these messages, you can

type

£ postmaster -S

and the postmaster will be “S”ilent. Notice that there is no ampersand (“&”) at the
end of the last example.

4.4. Admin: Adding Users

The createuser command enables specific users to access POSTGRES. Please read
the descriptions of these commands in the Reference Manual for specific instructions on
their use.

4.5. User: Starting Applications

Assuming that your site administrator has properly started the postmaster process and
authorized you to use the database, you (as a user) may begin to start up applications. As
previously mentioned, you should add /usr/local/postgres/bin to your shell
search path. In most cases, this is all you should have to do in terms of preparation. !

If you get the following error message from a POSTGRES command (such as monitor
or createdb):

FATAL: StreamOpen: connect() failed: errno=61
FATAL: Failed to connect to postmaster (host=xxx, port=4321)
Is the postmaster running?

it is usually because (1) the postmaster is not running, or (2) you are attempting to
connect to the wrong server host.

If you get the following error message:

FATAL 1:Feb 17 23:19:55:process userid (2360) !=
database owner (268)

it means that the site administrator started the postmaster as the wrong user. Tell him
to restart it as the POSTGRES superuser.

! ¥ your site administrator has not set things up in the default way, you may have some more work o do. For example, if the
databese server machine is a remote machine, you will need to set the PGEOST environment variable to the name of the database serv-
er machine, The environment variable PGPORT may also have to be set. The bottom line is this: if you try to start an application pro-
gram 2nd it complains that it cannot connect to the postmaster, you should immediately consult your site administrator to make
sure that your eaviroament is properdy set up.

10

1

e

4.6. User: Managing a Database

Now that POSTGRES is up and running we can make some databases with which to
experiment. Here, we describe the basic commands for managing a database.

4.6.1. Creating a Database

Let’s say you want to create a database named £0o. You can do this with the following
command:

% createdb foo

POSTGRES allows you to create any number of databases at a given site and you automat-
ically become the database administrator of the database just created. Database names
must have an alphabetic first character and are limited to 16 characters in length.

Not every user has authorization to become a database administrator. If POSTGRES
refuses to create databases for you, then the site administrator needs to grant you permis-
sion to create databases. Consult your site administrator if this occurs.

4.6.2. Accessing a Database
Once you have constructed a database, there are three ways to access it:

* You can run the POSTGRES terminal monitor (the monitor program) which allows
you to interactively enter, edit, and execute commands in the POSTQUEL query lan-
guage.

* You can interact with POSTGRES from a C program by using the LIBPQ subroutine
library. This allows you to submit POSTQUEL commands from C and get answers and
status messages back to your program. This interface is discussed further in the
LIBPQ section of the Reference Manual.

* You can use the fast path facility, which allows you to execute functions within the
server program itself. This facility is (minimally) described in the Reference Manual
under *“Fast Path.”

This manual will only discuss access through the terminal monitor.

The terminal monitor can be activated for the £oo database by typing the command:
‘ $ monitor foo
You will be greeted with the following message:

Welcome to the POSTGRES terminal monitor

Go

»*

This prompt indicates that the terminal monitor is listening to you and that you can type
POSTQUEL queries into a workspace maintained by the terminal monitor.

The monitor program responds to escape codes that begin with the backslash character,
“N*. For example, you print the current contents of the workspace by typing:

11

*\p

Once you have finished entering your queries into the workspace, you can pass the con-
tents of the workspace to the POSTGRES server by typing:

*\g

This tells the server to go. If you make a typing mistake, you can invoke the vi text edi-
tor by typing:

*\e

The workspace will be passed to the editor, and once you exit vi, your edited query will
placed in the terminal monitor workspace. You can then submit the contents of the
workspace to POSTGRES by using the \g command as described above.

To get out of the monitor and return to UNIX, type
* \q

and moni tor will quit and return you to your command shell.

There are two other things that monitor understands that make it easier to write nice-
looking scripts. First, white space (i.e., spaces, tabs and newlines) may be used freely in
POSTQUEL queries. Second, comments that look like those used in the C programming
language, e.g., '

/* This is a comment. */

may also be used in your queries. Beware: you cannot comment out an escape code. In
other words, this doesn’t work as you might expect:

/* I don‘t want to send this!\g */
retrieve (message = "but I want to send this!") \g

For a complete description of the monitor commands and its options, see the Reference
Manual under the heading monitor.

4.6.3. Destroying a Database

If you are the database administrator for the database £0o0, you can destroy it using the
following UNIX command:

$ destroydb foo

This action physically removes all of the UNIX files associated with the database and can-
not be undone, so this should only be done with a great deal of forethought.

12

")

5. THE POSTQUEL QUERY LANGUAGE

POSTQUEL is the POSTGRES query language. POSTQUEL was derived from the QUEL
language developed by the University of California INGRES project, but the two lan-
guages are different in many ways. This section provides an overview of how to use the
more QUEL-like features of POSTQUEL to perform simple operations.

In the examples that follow, we assume that you have created the foo database as
described in the previous subsection and have started the terminal monitor.

Before you stat reading, take a look at the directory
/usr/local/postgres/src/examples. This directory contains all of the
POSTQUEL queries listed in this manual (the ones that aren’t examples of things that
don’t work, that is) broken down by chapter. Instead of typing the queries below into the
monitor program, you can just cut and paste out of the appropriate file or use the \i
command at the terminal monitor.

5.1. Concepts
The fundamental notion in POSTGRES is that of a class, which is a named collection of
object instances. Each instance has the same collection of named attributes, and each
attribute is of a specific fype. Furthermore, each instance has a permanent object identi-
Jfier (OID) that is unique throughout the installation.
As previously discussed, classes are grouped into databases, and a collection of databases
managed by a single postmaster process constitutes an installation or site.

S.2. Creating a New Class

You can create a new class by specifying the class name, along with all attribute names
and their types:

* create EMP (name = text, salary = int4,
age = int4, dept = charlé) \g

* create DEPT (dname = charlé, floor = int4,
manager = text) \g

The POSTQUEL base types used above are a variable-length array of printable characters
(text), a 4-byte signed integer (int4), and a fixed-length array of 16 characters
(charlé.)

So far, the POSTGRES create command looks exactly like the command used to create a
table in a traditional relational system. This exact syntax was used in QUEL, the original
INGRES query language. However, we will presently see that classes have properties that
are extensions of the relational model, so we use a different word to describe them.

13

§.3. Populating a Class with Instances
The append command is used to populate a class with instances:

* append EMP (name = “"Claire®, salary = 2000,
age = 40, dept = "shoe®*) \g

* append EMP (name = “Joe", salary = 1400,
age = 40, dept = "shoe®) \g

* append EMP (name = “Sam®, salary = 1200,
age = 29, dept = "toy") \g

* append EMP (name = "Bill®*, salary = 1600,
age = 36, dept = "candy"*) \g

* append DEPT (dname = "shoe®, floor = 5,
manager = “Claire") \g

* append DEPT (dname = "toy", floor = 3,
manager = "Sam") \g

* append DEPT (dname = "candy®*, floor = 4,
manager = " (None)") \g

This adds four instances to the EMP class, one for each append command.

You can also use the copy command to perform load large amounts of data from flat
(ASCI) files. See the Reference Manual under copy for details.

5.4. Querying a Class

The EMP class can be queried with normmal relational selection and projection queries.
The POSTQUEL equivalent of the SQL select statement is retrieve. As in SQL, the state-
ment is divided into a rarget list (the part that lists the attributes to be returned) and a
qualification (the part that specifies any restrictions). For example, to find the employees
under 35 years of age, type: '

* retrieve (EMP.name) where EMP.age < 35 \g

and the output should be:

name
Sam

Note that, unlike SQL, parentheses are required around the target list, EMP . name.

POSTQUEL allows you to return arbitrary computations in the target list as long as they
are given some kind of name:

* retrieve (result = EMP.salary / EMP.age)
where EMP.name = “Bill" \g

14

(o

result
44

In this case, we divided Bill’s salary by his age and called the result result. (Of
course, the answer is really 44 g, but division of two integers produces another integer so
the fraction is lost.).

Arbitrary Boolean operators and, or and not) are allowed in the qualification of any
query. For example,

* retrieve (EMP.all)
where EMP.age < 30
or not EMP.name = “"Joe® \g

name salary | age | dept
Claire | 2000 36 shoe
Sam 1200 29 toy

Bill 1600 36 candy

As a final note, you can specify that the results of a retrieve can be retumed in a sorted
order or with duplicate instances removed. See the Reference Manual under retrieve for
more information.

5.5. Redirecting Retrieve Queries
Any retrieve query can be redirected to a new class in the database:

* retrieve into temp (EMP.name)
where EMP.age < 35 and EMP.salary > 1000 \g

This executes an implicit create command, creating a new class t emp with the attribute
names and types specified in the target list of the retrieve into command. We can then,
of course, perform any operations on the resulting class that we can perform on other
classes.

* retrieve (temp.all) \g

name
Sam

5.6. Joins Between Classes

Thus far, our queries have only accessed one class at a time. Queries can access multiple
classes at once, or access the same class in such a way that multiple instances of the class
are being processed at the same time. A query that accesses multiple instances of the

15

same or different classes at one time is called a join query.

As an example, say we wish to find the names of employees which are the same age. In
effect, we need to compare the age attribute of each EMP instance to the age attribute of
all other EMP instances.? We can do this with the following query:

* retrieve (El.name, E2.name)
from E1 in EMP, E2 in EMP

where El.age = E2.age and El.name != E2.name \g
name name
Bill Claire

Claire | Bill

In this case, both E1 and E2 are surrogates for an instance of the class EMP, and both
range over all instances of the class. (In the terminology of most database systems, E1
and E2 are known as “range variables.”) A POSTQUEL query can contain an arbitrary
number of class names and surrogates.>

5.7. Updates
You can update existing instances using the replace command:

* replace EMP (salary = E.salary)
from E in EMP
where EMP.name = "Joe" and E.name = "Sam" \g

This command replaces the salary of Joe by that of Sam.

Notice that this example is actually another join query. Here, we are using the actual
class name (“EMP”) as one range variable and a surrogate name for EMP (“E”) as
another range variable.

5.8. Deletions
Deletions are performed using the delete command:

* delete EMP where EMP.salary > 0 \g

Since all employees have positive salaries, this command will leave the EMP class empty.

2 This is only a conceptual model. The actual join may be performed in a more efficient mannes, but this is invisible to the user.
3 The semantics of such a join arc that the qualification is a truth expression defined for the Cartesian product of the classes in-
dicated in the query. For those instances in the Cartesian product for which the qualification is true, POSTGRES computes and retums
the valoes specified in the target list.
POSTQUEL docs not assign any meaning to duplicate values in such expressions. This means that POSTGRES sometimes

recomputes
the sxme target list several times — this frequently happens when Boolean expressions are connected with an or. To remove such du-
plicates, you must use the retrieve unique statement. See the Reference Manual under retrieve for more details.

16

(o

o

One should be wary of queries of the form
delete classname

Without a qualification, the delete command will simply delete all instances of the given
class, leaving it empty. The system will not request confirmation before doing this.

Before going on, repopulate your EMP database using the append commands listed
above.

5.9. Using Functions

POSTQUEL queries can contain function calls as well as operators. If we wanted to
express our very first retrieve query as:

* retrieve (EMP.name) where intd4lt(EMP.age, 35) \g

name
Sam

we could do so. Obviously, if we need to compute some function of more than two argu-
ments, we must use the function syntax instead of the operator syntax,

5.10. Using Aggregate Functions

Like most other query languages, POSTGRES supports aggregate functions. However, the
current implementation of POSTGRES aggregate functions is very limited. Specifically,
while there are aggregates to compute such functions as the count, sum, average, maxi-
mum and minimum over a set of instances, aggregates can only appear in the target list of
a query and not in the qualification (where clause). As an example,

* retrieve (how_many = count{EMP.name)) \g

how_many
4

counts all employees, and

* retrieve (avg_salary =
int4ave (EMP.salary
where EMP.dept = "toy"}) \g

avg_salary
1200

computes the average salary of all employees in the toy department. However, the fol-
lowing query (to find out who makes more money than any of the toy department

17

employees) will not work:

* retrieve (EMP.name) where
EMP.salary > int4max{EMP.salary
where EMP.dept = "toy")} \g

WARN:Mar 3 00:40:54:parser: syntax error at or near "{"

because the aggregate is not in the target list. In addition, if the qualification of the aggre-
gate expression contains any join clauses (references to other classes), the aggregate may
or may not return the right result. (In other words, aggregates with join clauses are nei-
ther disallowed nor are they comrectly supported.) See the Reference Manual under
postquel for more details.

5.11. Help! What Are the Valid Types, Operators and Functions?

So far, we have been rather cavalier in our use of types (such as char16), operators
(such as <), and aggregate functions (such as count). A large number of pre-defined
types, operators and aggregates are available by default in POSTGRES, and these are
listed in the section of the Reference Manual labelled built-in. This would be a good
time to go ahead and take a peek at that section.

In a later section of this manual, we will describe how to query the system to find out the
current list of all valid types, operators, functions, etc. known to the system.

18

{e

ow

L

6. ADVANCED POSTQUEL FEATURES

Having covered the basics of using POSTQUEL to access your data, we will now discuss
those features of POSTGRES that distinguish it from conventional data managers. These
features include inheritance, time travel and non-atomic data values (array- and set-
valued attributes).

6.1. Inheritance

First, if you haven’t done so already, re-populate the EMP class by repeating the append
commands in section 5.3. Then, create a second class STUD_EMP, and populate it as fol-
lows:

* create STUD_EMP (location = point) inherits (EMP) \g

* append STUD_EMP (name = "Sunita", salary = 4000,
age = 23, dept = "electronics”,
location = "(3, 5)*) \g

In this case, an instance of STUD_EMP inherits all data fields (name, salary, age, and
dept) from its parent, EMP. Furthermore, student employees have an extra field, 1oca-
tion, that shows their address as a coordinate pair. In POSTGRES, a class can inherit
from zero or more other classes,* and a query can reference either all instances of a class
or all instances of a class plus all of its descendants. For example, the following query
finds the employees over 20:

* retrieve (E.name) from E in EMP where E.age > 20 \g

name
Claire
Joe
Sam
Bill

On the other hand, to find the names of all employees, including student employees, over
age 20, the query is:

* retrieve (E.name) from E in EMP* where E.age > 20 \g

4 Le., the inberitance bicrarchy is a directed acyclic graph.

19

which retums:

name
Claire
Joe
Sam
Bill
Sunita

Here the * after EMP indicates that the query should be run over EMP and all classes
below EMP in the inheritance hierarchy. Many of the commands that we have already
discussed — retrieve, replace and delete — support this * notation, as do others, such as
the rename and addattr commands. See the Reference Manual entries for these com-
mands for additional details.

Note that location in STUD_EMP is not a traditional relational data type. As we will
see later, POSTGRES can be customized with an arbitrary number of user-defined data

types.

6.2. Time Travel

POSTGRES supports the notion of fime travel. This feature allows a user to run historical
queries. For example, to find Sam’s current salary, one would query:

* retrieve (E.salary) from E in EMP["now"]
where E.name = “Sam* \g

salary
1200

POSTGRES will automatically find the version of Sam’s record valid at the correct time
and get the appropriate salary.

One can also give a time range. For example to see all the salaries that Sam has ever
earned, one would query:

* retrieve (E.salary)
from E in EMP[*epoch", °®now"]
where E.name = "Sam" \g

where “epoch” indicates the beginning of the system clock.’ If you have executed all of
the examples so far, then the above query returns:

3 On UNIX systems, this is always midnight, January 1, 1970 GMT.

20

‘A

(g4

salary
1200
1200

Notice that there are two salaries for Sam because he was deleted from and then re-
appended to the EMP class.

The default beginning of a time range is the earliest time representable by the system and
the default end is the current time; thus, the above time range can be abbreviated as
“[,1.” See Section 3 of the Reference Manual, Built-Ins, and the introduction to Sec-
tion 4, POSTQUEL, for a full description of the time types (absolute time, relative time
and time ranges). :

6.3. Non-Atomic Values

One of the tenets of the relational model is that the attributes of a relation are atomic.
POSTGRES does not have this restriction; attributes can themselves contain sub-values
that can be accessed from the query language. For example, you can create attributes that
are arrays of base types or sets of any type.

6.3.1. Arrays

POSTGRES allows attributes of an instance to be defined as fixed-length or variable-
length multi-dimensional arrays. Arrays of any base type or user-defined type can be cre-
ated. To illustrate their use, we first create a class with arrays of base types.

* create SAL_EMP (name = text,
pay_by_quarter = int4{]},
schedule = charl6[][]) \g

The above query will create a class named SAL_EMP with a text string (name), a one-
dimensional array of int4 (pay_by_quarter), which represents the employee’s
salary by quarter and a two-dimensional array of char16 (schedule), which repre-
sents the employee’s weekly schedule. Now we do some appends; note that when
appending to an array, we enclose the values within braces and separate them by commas.
If you know C, this is not unlike the syntax for initializing structures.

* append SAL_EMP (name

pay_by_quarter|4]
schedule[7][2]

*Bill®",
*{10000, 10000, 10000, 10000)",
*{{"meeting®, ®*lunch"}, {)}") \g

* append SAL_EMP (name

pay_by_quarter
schedule[5] [2]

*Carol",
*{20000, 25000, 25000, 25000}°,
{{"talk", "consult'}, ("meeting®}}) \g

By default, POSTGRES uses the “one-based” numbering convention for arrays — that is,
an array of n elements starts with array[1] and ends with array[n]. Note that the elements
of an array do not have to be completely specified. For example, you may have noticed
that we did not initialize all of the elements of the attribute schedule above. The value
of an uninitialized element is undefined, but it can be updated later using the replace

21

command,

Now, we can run some queries on SAL_EMP. First, we show how to access a single ele-
ment of an array at a time. This query retrieves the names of the employees whose pay
changed in the second quarter:

* retrieve (SAL_EMP.name) N
where SAL_EMP.pay_by_quarter[l] !=
SAL_EMP.pay_by_quarter([2] \g

name
Carol

This query retrieves the third quarter pay of all employees:

* retrieve (SAL_EMP.pay_by_quarter([3]) \g

pay_by_quarter
10000

25000

We can also access arbitrary slices of an array, or subarrays. This query retrieves the first
item on Bill’s schedule for the first three days of the week. il1l.

* retrieve (SAL_EMP.schedule[l1:3][1:1])
where SAL_EMP.name = "Bill" \g

schedule
{{“meeting®},{""},{""})

Similarly, the replace command can be used to update a single array element or an
arbitrary subarray. This query updates Carol’s schedule for the second and third day of
the week.

* replace SAL_EMP (schedule(2:3])[{1:2] = .
{{"debugging, "shopping®"}, {"meeting", "present"}}")
where SAL_EMP.name = ®"Carol® \g '

This query gives a $1000 raise in the first quarter to all members whose first item on)
schedule for the first working day is debugging:

* replace SAL_EMP (pay_by_quarter[l] =
SAL_EMP.pay_by_quarter[1] + 1000)
where SAL_EMP.schedule(1l][1] = "debugging® \g

22

6.3.2. Sets
Class attributes can also be sets that are defined in an intentional, or declarative, manner.

For example, let’s say that we want to create a new kind of department class. A depart-
ment consists of a department name as well as a query that lists all members of the

department.

* create NEW_DEPT (deptname = charls,
members = setof EMP) \g

* append NEW_DEPT (deptname = “shoe",
members = "retrieve (EMP.all)
where EMP.age >= 40") \g

* append NEW_DEPT (deptname = “toy",
members = "retrieve (EMP.all)
where EMP.name = \\"Sam\\"*") \g

* append NEW_DEPT (deptname = "candy"®,
members = "retrieve (EMP.all)
where EMP.name != \\"Sam\\"
and EMP.age < 40") \g

These amount to our business rules: all people over 40 work in the shoe department, Sam
works alone in the toy department, and everyone else works in the candy department.

We can retrieve (but not update) individual attributes of each member of a set-valued
attribute. We do with the nested-dot notation.

* retrieve (NEW_DEPT.deptname,
NEW_DEPT.members.name) \g

deptname | name
shoe Claire
shoe Joe
toy Sam
candy Bill

That is, we project attributes from our set-valued attribute, NEW_DEPT . members, by
adding the reference to the EMP attribute .name. There are two caveats: the shorthand
.all doesn’t work for set-valued attributes, and retrieval of more than one attribute from
a set-valued attribute may produce unexpected results.

The main advantage of representing sets in a declarative way (instead of storing the actual
values, or EMPs, in this example) is that the set declarations automatically maintain their
consistency. If we hire someone new, they will be assigned to the proper NEW_DEPT
whether we explicitly give them a department or not.

/* whoops, we forgot to put Ginger in a department... */

* append EMP (name
age = 34) \g

/* ...but it’s ok */
* retrieve (NEW_DEPT.deptname,
NEW_DEPT.members.name) \g

deptname | name
shoe Claire
shoe Joe
toy Sam
candy Bill
candy Ginger

Notice that POSTGRES returns several results for each of the departments that have more
than one employee. This is because POSTGRES “flattens” the result when a set attribute
contains multiple instances. In other words, an instance is retuned for each of the set
elements and the contents of the other attributes (in this case, deptname) is just dupli-

cated in each of those instances.

*Ginger®, salary = 2000,

24

2

7. EXTENDING POSTQUEL: AN OVERVIEW

In the sections that follow, we will discuss how you can extend the POSTQUEL query lan-
guage by adding:

« functions

. tyms

* operators

* aggregates
We will then give some integrated examples of their use.

7.1. How Extensibility Works

POSTGRES is extensible because its operation is catalog-driven. If you are familiar with
standard relational systems, you know that they store information about databases, tables,
columns, etc., in what are commonly known as system catalogs. (Some systems call this
the data dictionary). The catalogs appear to the user as tables, like any other, but the
DBMS stores its internal bookkeeping in them. One key difference between POSTGRES
and standard relational systems is that POSTGRES stores much more information in its
catalogs — not only information about tables and columns, but also information about its
types, functions, access methods, and so on. These tables can be modified by the user,
and since POSTGRES bases its intenal operation on these tables, this means that POST-
GRES can be extended by users. By comparison, conventional database systems can only
be extended by changing hard-coded procedures within the DBMS or by loading modules
specially-written by the DBMS vendor.

POSTGRES is also unlike most other data managers in that the server can incorporate
user-written code into itself through dynamic loading. That is, the user can specify an
object code file (e.g., a compiled . o file or shared library) that implements a new type or
function and POSTGRES will load it as required. Code written in the POSTQUEL query
language are even more trivial to add to the server.

This ability to modify its operation “on the fly” makes POSTGRES uniquely suited for
rapid prototyping of new applications and storage structures.

7.2. The POSTGRES Type System

The POSTGRES type system can be broken down in several ways.

Types are divided into base types and composite types. Base types are those, like int4,
that are implemented in a language such as C. They generally correspond to what are
often known as “abstract data types”; POSTGRES can only operate on such types through
methods provided by the user and only understands the behavior of such types to the
extent that the user describes them. Composite types are created whenever the user cre-
ates a class. EMP is an example of a composite type. POSTGRES stores these types in
only one way (within the file that stores all instances of the class) but the user can “look

25

inside” at the attributes of these types from the query language and optimize their
retrieval by (for example) defining indices on the attributes.

POSTGRES base types are further divided into built-in types and user-defined types.
Built-in types (like int4) are those that are compiled into the system. User-defined
types are those created by the user in the manner to be described below.

7.3. About the POSTGRES System Catalogs

Having introduced the basic extensibility concepts, we can now take a look at how the
catalogs are actually laid out. You can skip this section for now, but some later sections
will be incomprehensible without the information given here, so mark this page for later
reference.

All system catalogs have names that begin with pg_. The following classes contain
information that may be useful to the end user. (There are many other system catalogs,
but there should rarely be a reason to query them directly.)

catalog name I description

pg_database databases

pPg_class classes

pg_attribute | class attributes

pg_index secondary indices

pg_proc procedures (both C and POSTQUEL)
pg_type types (both base and complex)

pg_operator operators
pg_aggregate | aggregates and aggregate functions

pg_am access methods

pg_amop access method operators
pg_amproc access method support functions
pg_opclass access method operator classes

The Reference Manual gives a more detailed explanation of these catalogs and their
attributes. However, Figure 3 shows the major entities and their relationships in the sys-
tem catalogs. (Attributes that do not refer to other entities are not shown unless they are
part of a primary key.)

This diagram is more or less incomprehensible until you actually start looking at the con-
tents of the catalogs and see how they relate to each other. For now, the main things to
take away from this diagram are as follows:

(1) In several of the sections that follow, we will present various join queries on the
system catalogs that display information we need to extend the system. Looking
at this diagram should make some of these join queries (which are often three- or
four-way joins) more understandable, because you will be able to see that the
attributes used in the queries form foreign keys in other classes.

(2) Many different features (classes, attributes, functions, types, access methods, etc.)
are tightly integrated in this schema. A simple define command may modify

26

1Y)

13N

om‘pg_lnda I

pg clam]

ON

O:N;

oN|

indrelid
indkey(8)
ON ON
tndproc T3 lan,
o:!i-:dpd E ‘QH
E
01
1|patype I 1
oid T==yTTe=ees 7
~Ltypretid 01 1 pgproc | i
tym’ ‘\‘ oid
typoutput —! i | |proname
opreceive -1 o tprorenype
typsend ON "&'pma&omm 1

relam

| DEPENDENT

ON

INDEPENDENT

primary key

non-oid primary
key (if any)

noo-key

O indicates these key vahues are altemate primary keys
(ic, this class is generally identified by oid but may be
identified by the non-oid primary key in other contexts).

&

ON

Figure 3. The major POSTGRES system catalogs.

ON
Fp— amopelsid -
oid T GMProcRim
:pmamc § o P
ight :
OpITIg 4 ‘
oprresust :
oprcom -"i
oprmegate T4
oprsorop -4
oprrsortop T2
oprcode ON 0N
oprrest
oprjoin J--=-

many of these catalogs.

(3) Types and procedures® are central to the schema. Nearly every catalog contains
some reference to instances in one or both of these classes. For example,

¢ We use the words procedure and finction more or less interchangably.

27

@

POSTGRES frequently uses type signatures (e.g., of functions and operators) to
identify unique instances of other catalogs.

There are many attributes and relationships that have obvious meanings, but there
are many (particularly those that have to do with access methods) that do not.
The relationships between pg_am, pg_amop, pg_amproc, pg_operator
and pg_opclass are particularly hard to understand and will be described in
depth (in the section on interfacing types and operators to indices) after we have
discussed basic extensions.

28

8. EXTENDING POSTQUEL: FUNCTIONS

As it tumns out, part of defining a new type is the definition of functions that describe its
behavior. Consequently, while it is possible to define a new function without defining a
new type, the reverse is not true. We therefore describe how to add new functions to
POSTGRES before describing how to add new types.

POSTQUEL provides two types of functions: query language functions (functions written
in POSTQUEL) and programming language functions (functions written in a compiled
programming language such as C.) Either kind of function can take a base type, a com-
posite type or some combination as arguments (parameters). In addition, both kinds of
functions can return a base type or a composite type. It’s easier to define POSTQUEL
functions, so we’ll start with those.

29

8.1. Query Language (POSTQUEL) Functions

8.1.1. POSTQUEL Functions on Base Types

The simplest possible POSTQUEL function has no arguments and simply retums a base
type, such as int4:

* define function one

(language = "postquel®, returntype = int4)
as "retrieve (one = 1)* \g

* retrieve (answer = one()) \g

answer
1

Notice that we defined a target list for the function (with the name one), but the target
list of the query that invoked the function overrode the function’s target list. Hence, the
result is labelled answer instead of one.

It’s almost as easy to define POSTQUEL functions that take base types as arguments. In
the example below, notice how we refer to the arguments within the function as $1 and
$2 and specify their types using the arg is clause.

* define function add_pq
(language = "postquel®, returntype = intd4)
arg is (int4, int4)
as "retrieve (sum = $§1 + $2)" \g

* retrieve (answer = add_pg(l, 2)) \g

answer
3

8.1.2. POSTQUEL Functions on Composite Types

When specifying functions with arguments of composite types (such as EMP), we must
not only specify which argument we want (as we did above with $1 and $2) but we must
also specify the attributes of that argument. For example, take the function dou-
ble_salary that computes what your salary would be if it were doubled.

30

* define function double_salary
(language = "postquel®, returntype = int4)
arg is (EMP)
as "retrieve (salary = $l.salary * 2)" \g

* retrieve (EMP.name, dream = double_salary (EMP))
where EMP.dept = "toy" \g

name | dream
Sam 2400

This is pretty straightforward. Notice the use of the syntax $1.salary.

Before launching into the subject of functions that return composite types, we must first
introduce the function notation for projecting attributes. The simple way to explain this is
that we can usually use the notation attribute(class) and class.attribute
interchangably.

/*
* this is the same as:
* retrieve (youngster = EMP.name))
* where EMP.age < 30
*/
* retrieve (youngster = name(EMP))
where age(EMP) < 30 \g

youngster
Sam

As we shall see, however, this is not always the case.

This function notation is important when we want to use a function that retums a single
instance. We do this by assembling the entire instance within the function, attribute by
attribute. This is an example of a function that retumns a single EMP instance:

* define function new_emp
{language = "postquel®, returntype = EMP)
as °*retrieve (name = \\"None\\"::text,
salary = 1000,
age = 25,
dept = \\"none\\"::charlé)"

In this case we have specified each of the attributes with a constant value, but any compu-
tation or expression could have been substituted for these constants.

Defining a function like this can be tricky. Some of the more important caveats are as fol-
lows:

31

 The target list order must be exactly the same as that in which the fields appear in the
create statement (or when you execute a .all query).

» You must be careful to typecast the fields (using : :) very carefully or you will see the
following error:

WARN:Mar 3 03:06:18:function declared to return type EMP
does not retrieve (EMP.all)

See the Reference Manual under postquel for a discussion of typecasting.

« When calling a function that retums an instance, we cannot retrieve the entire
instance. We must either project an attribute out of the instance or pass the entire
instance into another function.

* retrieve (nobody = name(new_emp())) \g

nobody
None

« The reason why, in general, we must use the function syntax for projecting attributes
of function return values is that the parser just doesn’t understand the other (dot) syn-
tax for projection when combined with function calls.

* retrieve (nobody = new_emp() .name) \g
WARN:Mar 3 03:09:28:parser: syntax error at or near *."

Any collection of commands in the POSTQUEL query language can be packaged together
and defined as a function. The commands can include updates (i.e., append, replace and
delete) as well as retrieve queries. However, the final command must be a retrieve that
returns whatever is specified as the function’s returntype.

* define function clean_EMP (language = "postquel"”,
returntype = intd4)
as *delete EMP where EMP.salary <= 0
retrieve (ignore_this = 1)* \g

* retrieve (x = clean_EMP()) \g

]

8.1.3. POSTQUEL Functions on Sets

Unfortunately, POSTGRES does not really distinguish between functions that return single
instances and those that retum sets of instances. In all cases, instances are returned one-
by-one. Similarly, functions can only take single instances as their arguments and cannot

32

(1]

have sets as an argument. For example, the following function high_pay retumns the set
of all employees in class EMP whose salaries exceed 1500:

* define function high_pay
{language = "postquel®, returntype = setof EMP)
as "retrieve (EMP.all) where EMP.salary > 1500" \g

* retrieve (overpaid = name(high_pay())) \g

overpaid
Claire
Bill
Ginger

However, this function could be defined with
returntype = EMP

with exactly the same results.

33

8.2. Programming Language Functions

We now tum to the more difficult task of defining programming language functions. Be
wamed: this section of the manual will not make you a programmer. You must have a
good understanding of C (including the use of pointers and the malloc memory man-
ager) before trying to write C functions for use with POSTGRES.

While it may be possible to load functions written in languages other than C into POST-
GRES, this is often difficult (when it is possible at all) because other languages, such as
FORTRAN and Pascal often do not follow the same “calling convention” as C. That is,
other languages do not pass argument and retum values between functions in the same
way. For this reason, we will assume that your programming language functions are writ-
tenin C.

The basic rules for building C functions are as follows:

(1) Most of the header (include) files for POSTGRES should already be installed in
/usr/local/postgres/include (see Figure 2). You should always
include

-I/usr/local/postgres/include

on your cc command lines. Sometimes, you may find that you require header
files that are in the server source itself (i.e., you need a file we neglected to install
in include). In those cases you may need to add one or more of

~I/usr/local/postgres/src/backend
-I/usr/local/postgres/src/backend/port/<PORTNAME>
-I/usr/local/postgres/src/backend/obj

(where <PORTNAME> is the name of the port, e.g., alpha or sparc) .

(2) When allocating memory, use the POSTGRES routines palloc and pfree
instead of the corresponding C library routines malloc and free. The memory
allocated by palloc will be freed automatically at the end of each transaction,
preventing memory leaks.

(3) Always zero the bytes of your structures using memset or bzero. Several rou-
tines (such as the hash access method, hash join and the sort algorithm) compute
functions of the raw bits contained in your structure. Even if you initialize all
fields of your structure, there may be several bytes of alignment padding (holes in
the structure) that may contain garbage values.

@4 Most of the internal POSTGRES types are declared in tmp/c.h and
tmp/postgres. h, so it’s usually a good idea to include those files as well.

(5) Compiling and loading your object code so that it can be dynamically loaded into
POSTGRES always requires special flags. See Appendix A for a detailed explana-
tion of how to do it for your particular operating system.

34

.

8.2.1. Programming Language Functions on Base Types

Internally, POSTGRES regards a base type as a “blob of memory.” The user-defined func-
tions that you define over a type in tum define the way that POSTGRES can operate on it.
That is, POSTGRES will only store and retrieve the data from disk and use your user-
defined functions to input, process, and output the data.

Base types can have one of three internal formats:

* pass by value, fixed-length
* pass by reference, fixed-length
* pass by reference, variable-length

By-value types can only be 1, 2 or 4 bytes in length (even if your computer supports by-
value types of other sizes). POSTGRES itself only passes integer types by value. You
should be careful to define your types such that they will be the same size (in bytes) on all
architectures. For example, the long type is dangerous because it is 4 bytes on some
machines and 8 bytes on others, whereas int type is 4 bytes on most UNIX machines
(though not on most personal computers). A reasonable implementation of the int4
type on UNIX machines might be:

/* 4-byte integer, passed by value */
typedef int int4;

On the other hand, fixed-length types of any size may be passed by-reference. For exam-
ple, here is a sample implementation of the POSTGRES char16 type:

/* 16-byte structure, passed by reference */
typedef struct {

char data[l6];
} charlsé;

Only pointers to such types can be used when passing them in and out of POSTGRES
functions.

Finally, all variable-length types must also be passed by reference. All variable-length
types must begin with a length field of exactly 4 bytes, and all data to be stored within
that type must be located in the memory immediately following that length field. The
length field is the total length of the structure (i.e., it includes the size of the length field
itself). We can define the text type as follows:

typedef struct {
int4 length;
char data[l];
} text;

Obviously, the data field is not long enough to hold all possible strings — it’s impossi-
ble to declare such a structure in C. When manipulating variable-length types, we must
be careful to allocate the correct amount of memory and initialize the length field. For
example, if we wanted to store 40 bytes in a text structure, we might use a code frag-
ment like this:

#include "tmp/c.h"

35

#include "tmp/postgres.h®
#include *"utils/palloc.h"

void *buffer; /* our source data */
text *destination = (text *) palloc(sizeof(intd) + 40);

destination->length = sizeof (int4) + 40;
bcopy (buffer, destination->data, 40);

Now that we’ve gone over all of the possible structures for base types, we can show some
examples of real functions.

#include <string.h>

#include *tmp/c.h*
#include "tmp/postgres.h® /* for charlé, etc. */
#include *utils/palloc.h* /* for palloc */

int
add_one (arg)
int arg;
(
return(arg + 1):

)

charlé *
concatlé(argl, arg2)
charlé *argl, *arg2;

{
charlé *new_cl6 = (charlé *) palloc(sizeof (charlé));
memset ((void *) new_cl6, 0, sizeof(charlé));
(void) strncpy(new_clé, argl, 16);
return(strncat (new_clé6, arg2, 16));
)
text *
copytext (t)
text *t;
{
/*
* VARSIZE is the total size of the struct in bytes.
*/

text *new_t = (text *) palloc(VARSIZE(t)):

(e

o

bzero((char *) new_t, VARSIZE(t)):;

/*

* VARDATA is a pointer to the data region of the struct.
* VARLEN is the size of VARDATA in bytes (so it’s always
* VARSIZE - sizeof(int4d)).

*/
memcpy ((void *) VARDATA(new_t), /* destination */
(void *) VARDATA(t), /* source */
VARLEN(t)); /* how many bytes */
return(new_t);
}
On ULTRIX we would type:

* define function add_one
(language = "C", returntype = int4)
arg is (int4)
as "/usr/local/postgres/src/examples/chapter8.o" \g

* define function concatlé
(language = *C", returntype = charlé)
arg is (charlé, charlé)
as "/usr/local/postgres/src/examples/chapter8.o* \g

* define function copytext
(language = *C", returntype = text)
arg is (text)
as "/usr/local/postgres/src/examples/chapter8.o" \g

On other systems, we might have to make the filename end in .so or . sl (to indicate
that it’s a shared library).

8.2.2. Programming Language Functions on Composite Types

Composite types do not have a fixed layout like C structures. Instances of a composite
type may contain null fields. In addition, composite types that are part of an inheritance
hierarchy may have different fields than other members of the same inheritance hierarchy.
Therefore, POSTGRES provides a procedural interface for accessing fields of composite
types from C.

As POSTGRES processes a set of instances, each instance will be passed into your func-
tion as an opaque structure of type TUPLE.

Suppose we want to write a function to answer the query
* retrieve (EMP.all) where c_overpaid(EMP) \g
In the query above, we can define c_overpaid as:

#include <tmp/c.h>
#include <tmp/postgres.h>

37

bool

c_overpaid(t, limit)
TUPLE t; /* the current instance of EMP */
int4 limit;

extern char *GetAttributeByName();
int4 salary;

salary = (int4) GetAttributeByName(t, "salary®):

return((bool) (salary > limit));
}

GetAttributeByName is the POSTGRES system function that returns attributes out of
the current instance. It has two arguments: the argument of type TUPLE passed into the
function, and the name of the desired attribute. GetAttributeByName will align data
properly so you can cast its return value to the desired type. For example, if you have an
attribute name which is of the POSTQUEL type charlé, the Get At tribut eByName
call would look like:

char *str;

str = (char *) GetAttributeByName(t, "name")

The following query lets POSTGRES know about the c_overpaid function:
* define function c_overpaid
(language = "c", returntype = bool)

arg is (EMP, int4)
as "/usr/local/postgres/src/examples/overpaid.o® \g

While there are ways to construct new instances or modify existing instances from within
a C function, these are far too complex to discuss in this manual. See the document

/usr/local/postgres/src/doc/implementation/am.me

for details.

8.2.3. Programming Language Functions on Sets

No interface has been defined for passing a set of instances into a function as an argument
to a C function, nor is there such an interface for retuming a set of instances from a C
function.

L]

9. EXTENDING POSTQUEL: TYPES

As previously mentioned, there are two kinds of types in POSTGRES: base types (defined
in a programming language) and composite types (instances).

39

9.1. User-Defined Types

9.1.1. Functions Needed for a User-Defined Type

A user-defined type must always have input and output functions. These functions deter-
mine how the type appears in strings (for input by the user and output to the user) and
how the type is organized in memory. The input function takes a null-delimited character
string as its input and retumns the internal representation of the type. The output function
takes the internal representation of the type and retums a null-delimited character string.

These functions are usually not hard to write, especially the output function. However,
there are a number of points to remember.

)

@

When defining your extemal (string) representation, remember that you must
eventually write a complete and robust parser for that representation as your input
function! This is easy in some cases, or if we are lazy. For example, an input
function for int 4 can be as simple as:

int4
int4_input(s)
char *s;
{
return(atoi(s)):;

)

if we cheat and use the C library function atoi (and don't do any checks for
such errors as out-of-range integers). The output function can be almost as sim-
ple:

char *

intd_output (i)
int4 i;

{
/* the largest 32-bit number is 10 digits long */
char *buf = palloc(ll);

(void) sprintf(buf, =8d", i);
return (buf) ;

}

You should try to make the input and output functions inverses of each other. If
you do not, you will have severe problems when you need to dump your data into
a file and then read it back in (say, into someone else’s database on another com-
puter). This is a particularly common problem when floating-point numbers are
involved.

As discussed earlier, POSTGRES fully supports arrays of base types. Additionally, POST-
GRES supports arrays of user-defined types as well. When you define a type, POSTGRES

40

automatically provides support for arrays of that type. For historical reasons, the array
type has the same name as the user-defined type with the underscore character _
prepended.

Composite types do not need any function defined on them, since the system already
understands what they look like inside.

9.1.2. Large Objects
The types discussed to this point are all “small” objects — that is, they are smaller than
8KB’ in size. If you require a larger type for something like a document retrieval system
or for storing bitmaps, you will need to use the POSTGRES large object interface. The
interface to large objects is quite similar to the UNIX file system interface. The particu-
lars are detailed in Section 7 of the POSTGRES Reference Manual.

78 * 1024 == 8192 bytes. In fact, the type must be considerably smaller than 8192 bytes, since the POSTGRES tuple and page
overhead must also fit into this 8KB limitation. The actual valuc that fits depends on the machine aschitecture.

41

9.2, Composite Types

Instances of a composite type are just instances of a class. Here, we discuss how to create
attributes of one class that are composed of one or more instances of a composite type
(another class). We can do this using set-valued attributes or by using functions to create
virtual antributes.

We have already discussed how to define a set-valued attribute using the setof keyword
in the create command. This produces an attribute whose value is procedurally
defined using a query.

Since POSTQUEL functions retumn instances or sets of instances, they can also be used to
create “attributes” of composite types. For example, consider extending the EMP class
with a manager field. That is, for each instance of EMP, we want to associate another

instance of EMP corresponding to the manager of the first instance. Specifically, we will

define a POSTQUEL function manager:

* define function manager
(language = "postquel®, returntype = EMP)
arg is (EMP)
as "retrieve (E.all) from E in EMP
where E.name = DEPT.manager
and DEPT.dname = $l.dept® \g

When a function takes a single composite type argument, POSTQUEL allows us to use the
same nested-dot notation we used for sets to refer into an instance retumned by the func-
tion. Here, the function manager takes an EMP instance as its only argument, we can
write the query

* retrieve (EMP.name)
where name (lranagexr (EMP)) = ®"Claire® \g

* retrieve (EMP.name)
where EMP.manager.name = "Claire®" \g

In either case, we get

name
Claire
Joe

We have essentially added an attribute to the EMP class which is of type EMP, i.e.,ithas a
value which is an instance of the class EMP. The limitations discussed for set-valued

12

[t

attributes generally apply to virtual attributes as well. For example, one cannot do direct
updates to such columns. That is,

* append EMP (manager.name = *Smith") \g
WARN:Mar 10 22:48:42:manager: no such class

won’t work. Non-projected retrieves don’t work either. For example, queries that
attempt to retrieve the entire manager attribute, such as

* retrieve (EMP.manager) \g

don’t retum anything useful.

Note that manager is defined as returning a single instance of EMP. We can also write a
POSTQUEL function that retumns sets of instances. For example, consider the function

* define function same_dept
{(language = "postquel", returntype = setof EMP)
arg is (EMP)
as “"retrieve (E.all) from E in EMP
where $l.dept = E.dept" \g

The same_dept function is defined as retumning a set of instances, rather than a single
instance. Given the query:

* retrieve (EMP.name, EMP.same_dept.name) \g

name name
Claire | Claire
Claire | Joe

Joe Claire
Joe Joe
Sam Sam

Bill Bill
Ginger | (null)

the query in the body of the same_dept function returns many instances and the
retrieve query will return all of them in a “flattened” form.

43

10. EXTENDING POSTQUEL: OPERATORS

POSTQUEL supports left unary, right unary and binary operators. Operators can be over-
loaded, or re-used with different numbers and types of arguments. If there is an ambigu-
ous situation and the system cannot determine the correct operator to use, it will return an
error and you may have to typecast the left and/or right operands to help it understand
which operator you meant to use. (For a discussion of typecasting, see the Reference
Manual under postquel).

In this example, we will use some functions that are already built into POSTGRES to
define a set of operators that all have the same name, ##. First, we define left unary oper-
ators on both int4 and int2 that have very different meanings. To do this, we will use
some mathemetical functions that already happen to be built into POSTGRES. int4fac,
int2um/int4um and int4pl are functions that caiculate integer factorial, unary
minus and addition, respectively.

/* n! (factorial) for int4 */

* define operator ## (arg2 = int4,
associativity = right,
procedure = intdfac)

\g

/* -n (negation) for int2 */

* define operator ## (arg2 = int2,
associativity = right,
procedure = int2um)

\g

Next, we define a right unary operator:

/* -n (negation) for int4 */

* define operator ## (argl = int4,
associativity = left,
procedure = int4um)

\g

Finally, we define a binary operator:

/* a+b (addition) for int4d */
* define operator ## (argl = int4,
arg2 = intd4,
procedure = int4pl,
commutator = ##)
\g

(L}

If we give the system enough type information, it can automatically figure out which
operators to use. In this case, we can take advantage of the fact that plain “numbers”
default to the int4 type to get the following behavior:

* retrieve (four_factorial = ## 4,
minus_five = ## S5::int2,
minus_four = 4 ##,
four_plus_four = 4 ## 4)

\g

four_factorial | minus_five | minus_four | four_plus_four
24 -5 -4 8

45

11. EXTENDING POSTQUEL: AGGREGATES

Creation of user-defined aggregates is explained in the Reference Manual under define
aggregate. The key observation to be made, however, is that any aggregate can be
expressed in terms of state transition functions. That is, an aggregate can be defined in
terms of state that is modified whenever an instance is processed. Some state functions
look at a particular value in the instance when computing the new state (sfuncl in the
define aggregate syntax) while others only keep track of their own intemal state (sfunc2).

If we define an aggregate that uses only sfunc1, we define an aggregate that computes a
running function of the attribute values from each instance. “Sum” is an example of this
kind of aggregate. “‘Sum” starts at zero and always adds the current instance’s value to its
running total. We will use the int4p1 that is built into POSTGRES to perform this addi-
tion.

* define aggregate my_sum (sfuncl = intdpl, /* addition */
basetype = intd4,
stypel = int4,
initcondl = "0") \g

* retrieve (salary_sum = my_sum{EMP.salary}) \g

salary_sum
8200

If we define only sfunc2, we are specifying an aggregate that computes a running func-
tion that is independent of the attribute values from each instance. “Count” is the most
common example of this kind of aggregate. “Count” starts at zero and adds one to its
running total for each instance, ignoring the instance value. Here, we use the built-in
int4inc routine to do the work for us. This routine increments (adds one to) its argu-
ment.

* define aggregate my_count (sfunc2 = intdinc, /* add one */
stype2 = int4,
initcond2 = "0") \g

* retrieve (emp_count = my_count{EMP.oid}) \g

emp_count
5

“Average” is an example of an aggregate that requires both a function to compute the run-
ning sum and a function to compute the running count. When all of the instances have
been processed, the final answer for the aggregate is the running sum divided by the run-
ning count. We use the int4pl and int4inc routines we used before as well as the
POSTGRES integer division routine, int4div, to compute the division of the sum by the
count,

* define aggregate my_average {(sfuncl = intdpl, /* sum */
basetype = intd4,
stypel = int4,
sfunc2 = intdinc, /* count */
stype2 = int4,
finalfunc = intddiv, /* division */
initcondl = "0°*,
initcond2 = "0") \g

* retrieve (emp_average = my_average{EMP.salary)}) \g

emp_average
1640

47

12. EXTENDING POSTQUEL: AN EXAMPLE

In this discussion, we will be defining a circle type, using functions written in the C
programming language.

For additional examples of how to create new types, functions and operators, you should
look in the directories

/usr/local/postgres/src/regress/demo
/usr/local/postgres/src/regress/regress
/usr/local /postgres/src/regress/video

These directories contain several C and POSTQUEL files that should how to perform vari-
ous extensions to the system, and the routines we use in our regression tests should
always work.

12.1. C Data Structures

Before we do anything, we have to decide on what a circle looks like, both in string for-
mat and internally in memory. Circles have a center and a radius, so a reasonable string
representation of a circle would be an ordered triple:

(center_x, center_y, radius)
where each element is a real number with arbitrary units, e.g.:

(5.0, 10.3, 3)

This is what the input to the circle input function looks like, and what the output from the
circle output function looks like.

Now we have to come up with an internal representation for a circle in memory. The fol-
lowing declarations are legal and reasonable given the format we chose above:

typedef struct {
double x, y:
} POINT;

typedef struct {
POINT center;
double r;

} CIRCLE;

Memory containing values of type CIRCLE will be written to disk and read from disk, so
CIRCLE must be both complete and contiguous; that is, it cannot contain any pointers.

48

The type definition

typedef struct {
POINT *center /* NO! */
double r;

} CIRCLE;

will NOT work, because the virtual memory address stored in center would be written
to disk instead of the contents of the POINT structure to which center presumably
points. POSTGRES cannot detect this kind of coding error; you must guard against it
yourself.

12.2. Defining the Input and Output Functions

Suppose in defining our type “circle,” we have a C source file called circle.c, and a
corresponding object code file
/usr/local/postgres/src/examples/circle.o. (All functions related to
our circle type must be in the same object file.) For the purposes of this discussion,
suppose our platform is a MIPS DECstation, where sizeof (double) is 8 bytes. This
assumption will be important later.

We will create source file circle.c, containing C source code for the functions that
support our CIRCLE type. circle. c contains three functions:

* circle_in, which is the input function for circles. It takes a C string as an argu-
ment and retums a pointer to a CIRCLE.

* circle_out, which is the output function for circles. It is takes a pointer to a
CIRCLE as input and retumns a C string. The retumn value of circle_in must be a
legal argument to circle_out, and vice versa.

* eq_area_circle, which is the equality function for circles. For the purposes of
this discussion, circles are equal if their areas are equal.

The contents of circle.c are:

#include <math.h>
#include <stdio.h>
#include <«<string.h>

#include "tmp/c.h" /* (always) */
#iinclude *utils/geo-decls.h® /* for POINT declaration */
#include *"utils/palloc.h" /* for palloc() declaration */

typedef struct {
POINT center;
double radius;
} CIRCLE;

#define LDELIM ‘(’
#define RDELIM ‘) °
#define NARGS 3

CIRCLE *
circle_in(str)

49

char *str;
char *p, *coord[NARGS];
int i;

CIRCLE *result;

if (str == (char *) NULL)
return((CIRCLE *) NULL);

for (i = 0, p = str;

*p & i < NARGS && *p != RDELIM;

p++)

if (*p=="'," Il (*p =
coord[i++] = +1
}

if (i < NARGS - 1)
return((CIRCLE *) NULL);

result = (CIRCLE *) palloc(sizeof (CIRCLE));

result->center.x atof(coord(0]);
result->center.y = atof(coord([l}]);
result->radius = atof (coord(2]);

return(result);

}

char *
circle_out(circle)

CIRCLE *circle;
{

char *result;

if (circle == (CIRCLE *) NULL)
return((char *) NULL);

result = (char *) palloc(60);

sprintf (result, "(%g, %g, %g)°",

circle->center.x, circle->center.y,

circle->radius);

return(result);
}

int
eq_area_circle(circlel, circle2)
CIRCLE *circlel, *circle2;

{
if (circlel == (CIRCLE *) NULL)

50

= LDELIM && !i))
;

rl

-

return(circle2 == (CIRCLE *) NULL);

if (circle2 == (CIRCLE *) NULL)
return(0);
return(circlel->radius == circle2->radius);

Now that we have written these functions and compiled the source file, we have to let
POSTGRES know that they exist. First, we run the following queries to define the input
and output functions. These functions must be defined before we define the type. POST-
GRES will notify you that retumn type circle is not defined yet, but this is OK. Notice that
we use the keyword any to indicate that the input and/or output of the function is not a
POSTGRES type (e.g., a simple C string).

* define function circle_in
(language = "c*®, returntype = circle)
arg is (any)
as "/usr/local/postgres/src/examples/circle.o" \g

* define function circle_out
(language = "c*, returntype = any)
arg is (any)
as "/usr/local/postgres/src/examples/circle.o" \g

Note that the full pathname of the object code file must be specified, so you would
change /usr/local/postgres to whatever is appropriate for your installation.

Now we can define the circle type:

* define type circle
{internallength = 24,
input = circle_in, output = circle_out) \g

where internallength is the size of the CIRCLE structure in bytes. For circles, the
type members are three doubles, which on most platforms are 8 bytes each, with no
additional alignment constraints. However, when defining your own types, you should
not make assumptions about structure sizes, but instead write a test program that does
something like

printf(*size is %d\n", sizeof (MYTYPE)):;

on your type.
If internallength is defined incorrectly, you will encounter strange errors and may
crash the server. If this were to happen with our CIRCLE type, we would have to do a

* remove type circle \g

and then redefine the circle type correctly. Note that we would not have to redefine
our functions, since their behavior would not have changed.

51

12.2.1.1. Defining Operators

Now that we have finished defining the circle type, we can create classes with circles
in them, append records to them with circles defined, and retrieve the values of the
entire list of records. However, we can’t do anything terribly useful with them until we
have some operators and/or functions. To do this, we make use of the concept of opera-
tor overloading, and in this case we will set the POSTGRES equality operator “="" to
work for circles. First we have to tell POSTGRES that our circle equality function exists:

* define function eq_area_circle
(language = "c", returntype = bool)
arg is (circle, circle)
as "/usr/local/postgres/src/examples/circle.o" \g

We will now bind this function to the equality symbol with the following query:

* define operator =
(argl = circle, arg2 = circle,
procedure = eq _area_circle) \g

12.2.1.2. Using a New Type
Let’s create a class tutorial that contains a circle attribute, and run some queries
against it:

* create tutorial (a circle) \g

* append tutorial (a *(1.0, 1.0, 10.0)"::circle) \g

* append tutorial (a *(2.0, 2.0, 5.0)"*::circle) \g

* append tutorial (a *(0.0, 1.8, 10.0)"::circle) \g

* retrieve (tutorial.all)
where tutorial.a = "(0.0, 0.0, 10.0)"::circle \g

which retums:

a
(1.0, 1.0, 10.0)
(0.0, 1.8, 10.0)

Recall that we defined circles as being equal if their areas were equal.

Other operators (less than, greater than, etc.) can be defined in a similar way. Note that
the = symbol will still work for other types — it has merely had a new type added to the
list of types it works on.

52

13. INTERFACING EXTENSIONS TO INDICES

The procedures described thus far let you define a new type, new functions and new oper-
ators. However, we cannot yet define a secondary index (such as a B-tree, R-tree or hash
access method) over a new type or its operators.

Look back at Figure 3. The right half shows the catalogs that we must modify in order to
tell POSTGRES how to use a user-defined type and/or user-defined operators with an
index (i.e., pg_am, pg_amop, pg_amproc and pg_opclass). Unfortunately, there
is no simple command to do this. We will demonstrate how to modify these catalogs
through a running example: a new operator class for the B-tree access method that sorts
integers in ascending absolute value order.

The pg_am class contains one instance for every user-defined access method. Support
for the heap access method is built into POSTGRES, but every other access method is
described here. The schema is

amname name of the access method

amowner object id of the owner’s instance in pg_user

amkind not used at present, but set to "o’ as a place holder
amstrategies | number of strategies for this access method (see below)
amsupport number of support routines for this access method (see below)
amgettuple procedure identifiers for interface routines to the access
aminsert method. For example, regproc ids for opening, closing,
.o and getting instances from the access method appear here.

The object ID of the instance in pg_am is used as a foreign key in lots of other classes.
You don’t need to add a new instance to this class; all you’re interested in is the object ID
of the access method instance you want to extend:

* retrieve (pg_am.oid) where pg_am.amname = "btree® \g

oid
403

The amstrategies attribute exists to standardize comparisons across data types. For
example, B-trees impose a strict ordering on keys, lesser to greater. Since POSTGRES
allows the user to define operators, POSTGRES cannot look at the name of an operator
(eg, > or <) and tell what kind of comparison it is. In fact, some access methods don’t
impose any ordering at all. For example, R-trees express a rectangle-containment

53

relationship, whereas a hashed data structure expresses only bitwise similarity based on
the value of a hash function. POSTGRES needs some consistent way of taking a qualifica-
tion in your query, looking at the operator and then deciding if a usable index exists. This
implies that POSTGRES needs to know, for example, that the <= and > operators partition
a B-tree. POSTGRES uses strategies to express these relationships between operators and
the way they can be used to scan indices.

Defining a new set of strategies is beyond the scope of this discussion, but we’ll explain
how B-tree strategies work because you'’ll need to know that to add a new operator class.
In the pg_am class, the amstrategies attribute is the number of strategies defined for
this access method. For B-trees, this number is 5. These strategies correspond to

less than 1
less than or equal 2
equal 3
greater than or equal | 4
greater than 5

The idea is that you’ll need to add procedures corresponding to the comparisons above to
the pg_amop relation (see below). The access method code can use these strategy num-
bers, regardless of data type, to figure out how to partition the B-tree, compute selectivity,
and so on. Don’t worry about the details of adding procedures yet; just understand that
there must be a set of these procedures for int2, int4, oid, and every other data type

on which a B-tree can operate.

Sometimes, strategies aren’t enough information for the system to figure out how to use
an index. Some access methods require other support routines in order to work. For
example, the B-tree access method must be able to compare two keys and determine
whether one is greater than, equal to, or less than the other. Similarly, the R-tree access
method must be able to compute intersections, unions, and sizes of rectangles. These
operations do not correspond to user qualifications in POSTQUEL queries; they are
administrative routines used by the access methods, internally,

In order to manage diverse support routines consistently across all POSTGRES access
methods, pg_am includes a field called amsupport. This field records the number of
support routines used by an access method. For B-trees, this number is one — the routine
to take two keys and return -1, O, or +1, depending on whether the first key is less than,

equal to, or greater than the second.®

The amstrategies entry in pg_am is just the number of strategies defined for the
access method in question. The procedures for less than, less equal, and so on don’t
appear in pg_am. Similarly, amsupport is just the number of support routines
required by the access method. The actual routines are listed elsewhere.

The next class of interest is pg_opclass. This class exists only to associate a name
with an oid. In pg_amop, every B-tree operator class has a set of procedures, one
through five, above. Some existing opclasses are int2_ops, int4_ops, and

§ Strictly speaking, this routine can retum a negative namber (< 0), 0, or a non-zero positive number (> 0).

54

oid_ops. You need to add an instance with your opclass name (for example,
int4_abs_ops) to pg_opclass. The oid of this instance is a foreign key in other
classes.

* append pg_opclass (opcname = *intd_abs_ops®) \g

* retrieve (cl.oid, cl.opcname) from cl in pg_opclass
where cl.opcname = "intd4_abs_ops" \g

oid opcname
17314 | int4_abs_ops

Note that the oid for your pg_opclass instance will be different! You should substi-
tute your value for 17314 wherever it appears in this discussion.

So now we have an access method and an operator class. We still need a set of operators;
the procedure for defining operators was discussed earlier in this manual, For the
int4_abs_ops operator class on B-trees, the operators we require are:

absolute value less-than

absolute value less-than-or-equal
absolute value equal

absolute value greater-than-or-equal
absolute value greater-than

Suppose the code that implements the functions defined is stored in the file

/usr/local/postgres/src/examples/int4_abs.c

The code is
/*
* int4_abs.c -- absolute value comparison functions
* for int4 data
*/

#include *"tmp/c.h®
#define ABS(a) ((a < 0) ? -a : a)
/* routines to implement operators */

bool int4_abs_lt(a, b) int32 a, b;
{ return(ABs(a) < ABS(b));:)

bool intd_abs_le(a, b) int32 a, b;
{ return(ABS(a) <= ABS(b));)

bool intd_abs_eq(a, b) int32 a, b;

55

{ return(ABS(a) == ABS(b)); }

bool int4_abs_ge(a, b) int32 a, b;
{ return(aABS(a) >= ABS(b));)}

bool intd_abs_gt(a, b) int32 a, b;
{ return(ABS(a) > ABS(b));)

/* support (signed comparison) routine */

int int4_abs_cmp(a, b) int32 a, b;
{ return(aABS(a) - ABS(b));)

There are a couple of important things that are happening below.

First, note that operators for less-than, less-than-or-equal, equal, greater-than-or-equal,
and greater-than for int4 are being defined. All of these operators are already defined
for int4 under the names <, <=, =, >=, and >. The new operators behave differently, of
course. In order to guarantee that POSTGRES uses these new operators rather than the old
ones, they need to be named differently from the old ones. This is a key point: you can
overload operators in POSTGRES, but only if the operator isn't already defined for the
argument types. That is, if you have < defined for (int4, intd4), you can’t define it
again. POSTGRES does not check this when you define your operator, so be careful. To
avoid this problem, odd names will be used for the operators. If you get this wrong, the
access methods are likely to crash when you try to do scans.

The other important point is that all the operator functions retum Boolean values. The
access methods rely on this fact. (On the other hand, the support function returns what-
ever the particular access method expects — in this case, a signed integer.)

The final routine in the file is the “support routine” mentioned when we discussed the
amsupport attribute of the pg_am class. We will use this later on. For now, ignore it.

* define function intd4_abs_1t
(language = "c®, returntype = bool)
arg is (int4, int4)
as "/usr/local/postgres/src/examples/int4_abs.o* \g

* define function intd_abs_le
(language = "c", returntype = bool)
arg is (intd4, int4)
as "/usr/local/postgres/src/examples/intd_abs.o" \g

* define function int4_abs_eq
(language = "c", returntype = bool)
arg is (int4, int4)
as "/usr/local/postgres/src/examples/int4_abs.o" \g

* define function int4_abs_ge
(language = "c*", returntype = bool)
arg is (int4, int4)
as "/usr/local/postgres/src/examples/intd_abs.o" \g

56

[R5}

* define function int4_abs_gt
(language = "c", returntype = bool)
arg is (intd4, int4)
as "/usr/local/postgres/src/examples/int4_abs.o" \g

Now define the operators that use them. As noted, the operator names must be unique
among all operators that take two int4 operands. In order to see if the operator names
listed below are taken, we can do a query on pg_operator:

/*
* this query uses the regular expression operator (7)
* to find three-character operator names that end in
* the character &
*/
* retrieve (o0.all)

from o in pg_operator

where o.oprname ~ ""..&$"::text \g

to see if your name is taken for the types you want. The important things here are the
procedure (which are the C functions defined above) and the restriction and join selectiv-
ity functions. You should just use the ones used below—note that there are different such
functions for the less-than, equal, and greater-than cases. These must be supplied, or the
access method will crash when it tries to use the operator. You should copy the names for
restrict and join, but use the procedure names you defined in the last step.

* define operator <<&
{(argl = int4, arg2 = intd4, procedure=int4_abs_lt,
associativity = left, restrict = intltsel,
join = intltjoinsel) \g

* define operator <=&
(argl = int4, arg2 = int4, procedure = intd_abs_le,
associativity = left, restrict = intltsel,
join = intltjoinsel) \g

»*

define operator ==
(argl = int4d, arg2 = intd4, procedure = intd_abs_eq,
associativity = left, restrict = eqgsel,
join = eqjoinsel) \g

* define operator >=&
(argl = int4, arg2 = int4, procedure = intd_abs_ge,
associativity = left, restrict = intgtsel,
join = intgtjoinsel) \g

* define operator >>&
(argl = int4, arg2 = int4, procedure = int4_abs_gt,
associativity = left, restrict = intgtsel,
join = intgtjoinsel) \g

Notice that five operators corresponding to less, less equal, equal, greater, and greater

§7

equal are defined.

We’re just about finished. the last thing we need to do is to update the pg_amop relation.
To do this, we need the following attributes:

amopid the oid of the pg_am instance
for B-tree (= 403, see above)

amopclaid the oid of the pg_opclass
instance for int4_abs_ops
(== whatever you got instead of

17314, see above)

amopopr the oids of the operators for the
opclass (which we’ll get in just
aminute)

amopselect, | costfunctions.

amopnpages

The cost functions are used by the query optimizer to decide whether or not to use a given
index in a scan. Fortunately, these already exist. The two functions we'll use are
btreesel, which estimates the selectivity of the B-tree, and bt reenpage, which
estimates the number of pages a search will touch in the tree.

So we need the 0ids of the operators we just defined. We'll look up the names of all the
operators that take two int 4s, and pick ours out:

* retrieve (o0.o0id, o.oprname)
from o in pg_operator, t in pg_type
where o.oprleft = t.oid and o.oprright = t.oid
and t.typname = ®*intd4" \g

which retumns:

58

|-

oid oprname
96 =
97 <
514 *
518 I=
521 >
523 <=
525 >=
528 /
530 %
551 +
555 -
17321 | <<&
17322 | <=&
17323 | ==&
17324 | >=&
17325 | >>&

(Again, some of your 0id numbers will almost certainly be different.) The operators we
are interested in are those with oids 17321 through 17325. The values you get will
probably be different, and you should substitute them for the values below. We can look
at the operator names and pick out the ones we just added.

Now we’re ready to update pg_amop with our new operator class. The most important
thing in this entire discussion is that the operators are ordered, from less equal through
greater equal, in pg_amop. Recall that the B-tree instance’s oid is 403 and
int4_abs_ops is 0id 17314. Then we add the instances we need:

* append pg_amop

(amopid = "403*"::0id, /* btree oid
amopclaid = *17314"::0id, /* pg_opclass tuple
amopopr = "17321"::0id, /* <<& tup oid
amopstrategy = "1"::int2, /* 1 is <<&
amopselect = *btreesel®::regproc,

amopnpages = ®"btreenpage®::regproc) \g

* append pg_amop (amopid = "403"::0id,
amopclaid = *17314"::0id,
amopopr = "17322"::0iqd,
amopstrategy = "2*::int2,

amopselect
amopnpages

=

*btreesel"”: :regproc,
*btreenpage®: :regproc) \g

* append pg_amop (amopid = *"403"::0id,

amopclaid = *17314"::0id,

amopopr = "17323"::0id,
amopstrategy = *3%::int2,
amopselect = *btreesel®::regproc,

59

*/
*/
*/
*/

.

{SMO[[OJ SE 20URISUT MIU) PPe UL IM ‘pI¢L] ST sdo™sqe™ paut
JO 38t PUB €0 ST PTO S,30URISU] 3an-g AP ey SuyfIeoay (M0[oq SnJeA) J0J 398 nok
onfeA Sy AMASQNS pnoys noA pue JuAIPIP oq A|qeqoid [Jequnu PTO Mok ‘urdy)

quoTsqeTpUT | 8ZELT
aureuoxd pto

B\ ,duo"sqe"paur, = owreuoad-d sasym
ooxd 6d ur d woaz
(sureuoad d ’‘pro-d) OASTIIOX

B\ .0°sqe”paur/sordurexe/oas/seabysod/Tecor/Isn/, se
(p3ur ‘paur) sT Bae
(pautr = edAjuanjzex ’‘,o, = abenbuer)

dud™sqRTPaUT UOTIOUNI SUTIOP «

:(ssupnos Joyerado S pajuswadurr 9m YOIyM UT [) JO WOHR0q Y UT Jun
-no1 S syusmoduy e 9pod O AP Ind oM Je [1eoar) STIDLSOJ UT UONOUNY IR IS
-8a1 0) paoU oM “ISIL] “PTO SSBJO J03e1d0 T pue PTO POYPIW S50 AP Aq PILaY ‘ssepd
ooxdure™ 64 o ur parols st aunnar poddns smp Jo pto Ayl wre” 65d JO UOISSNISIP
Ino uy paquIsIp A[snoiaaud sumnos poddns,, s Jo uonensidar st (jAreuy) dois iser sqL,

*Surjoo]-patesndwod arow Ajqeropisuod st A1anb a1 Inq SPTO Aue UMOp UM
0} padu 3y} saeraqo urof ap Suog ‘2dA3~Hd pue xo03exado 6d ‘sserodo—Bd
‘doure™6d uxomisq wof Aem-moy o suuopad je TINOLSOd P MOUS M

g€ 1x93deyo /sotdurexe /oxs/saabysod/TeooT /asn/

3y oy Uy
"G S1 Ul 33188, pue *p st Jenbo
10 uey Jareals,, ‘¢ St Jenbo,, ‘T s1 . Jenbo 10 uew ssIY,, ‘1 ST e SSI,, :IIPIO AP ION

B\ (ooadbeax::,obedusaxyq, = sabedudoure
‘ooadbex: : , 1989913, = 3ooTosdoure
‘Zaut::,5. = AbBejeajsdoure
‘PTO::,.5Z€LT. = adodoure
‘PTO::.PTELTa = PTERTOdOUR

‘pTrot: g0V« = prdoure) doure™H6d puadde .

B\ (ooadbeax:: ,obfedussayq, = sebHedudoure
‘ooadbex: : ,Tos9913q, = j09Tosdoure
‘Zut::,.p. = AbBajeazsdoure
‘PTO::.¥ZELTs = Xdodoure
‘PTO: :.PTIELTe = prRTOdoUre

'PTO:: ,£0V. = prdouwre) dowre™6d puadde ,

6\ (ooadbaaxa:: ,obedusaxiq, = sabedudoure

* append pg_amproc
(amid = “403"::0iq, /* btree oid */
amopclaid = *17314"::0id, /* pg_opclass tuple */
amproc = *17328"::0id, /* new pg_proc oid */
amprocnum = *1"::int2) \g

Okay, now it’s time to test the new operator class. First we'll create and populate a

class”:
* create pairs (name = charl6é, number = int4) \g
* append pairs (name = ®"mike", number = -10000) \g
* append pairs (name = "greg", number = 3000) \g

* append pairs (name = "lay peng", number = 5000) \g
* append pairs (name = "jeff", number = -2000) \g

* append pairs (name = "mao", number = 7000) \g

* append pairs (name = "cimarron®, number = -3000) \g

* retrieve (pairs.all) \g

name number
mike -10000
greg 3000
lay peng | 5000
Jeff -2000
mao 7000
cimarron | -3000

Okay, looks pretty random. Define an index using the new opclass:

* define index pairsind on pairs
using btree (number intd4_abs_ops) \g

Now run a query that doesn’t use one of our new operators. What we're trying to do here
is to run a query that won’t use our index, so that we can tell the difference when we see a
query that does use the index. This query won’t use the index because the operator we
use in the qualification isn’t one that appears in the list of strategies for our index.

? In this example, we append ouly a few instances into the class. In fact, POSTGRES uses a “cost-based” query optimizer that
makes the decision whether or not to use an index based on how much data is touched. Since this cxample creates & very small
amount of data, the example will likely not work as advertised — one would have to insert & fair amount of dats before using an index
would sctually be cheaper than just scanning the undedlying heap data structure. “A fair amount” typically means on the order of sev-
eral kilobytes.

61

* retrieve (pairs.all) where pairs.number < 9000 \g

name number
mike -10000
greg 3000
lay peng | 5000
jeff -2000
mao 7000
cimarron | -3000

Yup, just as random; that didn’t use the index. Okay, let’s run a query that does use the
index:

* retrieve (pairs.all) where pairs.number <<& 9000 \g

name number
jeff -2000
cimarron | -3000
greg 3000
lay peng | 5000
mao 7000

Note that the number values are in order of increasing absolute value (as they should be,
since the index was used for this scan) and that we got the right answer — the instance
for mike doesn’t appear, because —10000 >=& 9000.

62

]

14. THE POSTGRES RULE SYSTEM

Production rule systems are conceptually simple, but there are many subtle points
involved in actually using them. Consequently, we will not attempt to explain the actual
syntax and operation of the POSTGRES rule system here. Instead, you should read
[STON90D] to understand some of these points and the theoretical foundations of the
POSTGRES rule system before trying to use rules. The discussion in this section is
intended to provide an overview of the POSTGRES rule system and point the user at help-
ful references and examples.

The main point you should understand is that POSTGRES actually has two rule systems,
the instance-level rule system and the query rewrite rule system, and that there are trade-
offs in the employment of each.

The instance-level rule system uses markers placed in each instance in a class to “trigger”
rules. Examples of the instance-level rule system are explained and illustrated in
/usr/local/postgres/src/regress/demo, which is included with the POST-
GRES distribution. Additional discussion of the instance-level rule system can be found
in the Reference Manual under define rule.

The “query rewrite” rule system modifies queries to take rules into consideration, and
then passes the modified query to the query optimizer for execution. It is very powerful,
and can be used for many things such as query language procedures, views, and versions.
Examples can be found in /usr/local/postgres/src/regress/video, and
further discussion is in the Reference Manual under define rule. The power of this rule
system is discussed in [ONG90] as well as [STON90b].

Since each rule system is implemented quite differently, they work best in different situa-
tions. The query rewrite system is best when rules affect most of the instances in a class,
while the instance-level system is best when a rule affects only a few instances.

15. ADMINISTERING POSTGRES

In this section, we will discuss aspects of POSTGRES that are of interest to those who

make extensive use of POSTGRES, or who are the site administrator for a group of POST-
GRES users.

64

15.1. Frequent Tasks

Here we will briefly discuss some procedures that you should be familiar with in manag-
ing any POSTGRES installation.

15.1.1. Starting the Postmaster

If you did not install POSTGRES exactly as described in the installation instructions, you
may have to perform some additional steps before starting the postmaster process.

» Even if you were not the person who installed POSTGRES, you should understand the
installation instructions. The installation instructions explain some important issues
with respect to where POSTGRES places some important files, proper settings for envi-
ronment variables, etc. that may vary from one version of POSTGRES to another.

« You should look at the Reference Manual under the heading postmaster if you wish
to use non-default options (e.g., increased security options, a non-standard installation
directory, etc.).

* You must start the postmaster process with the user-id that owns the installed
database files. In most cases, if you have followed the installation instructions, this
will be the user “postgres”. If you do not start the postmaster with the right user-
id, the backend servers that are started by the postmaster will not be able to read
the data.

» Make sure that /usr/local/postgres/bin is in your shell command path,
because the postmaster will use your PATH to locate POSTGRES commands,

* Remember to set the environment variable PGDATA to the directory where the POST-
GRES databases are installed. (This variable is more fully explained in the POSTGRES
installation instructions and the Reference Manual.)

« If you do start the postmaster using non-standard options, such as a different TCP
port number, remember to tell all users so that they can set their PGPORT environment
variable correctly.

15.1.2. Shutting Down the Postmaster

If you need to halt the postmaster process, you can use the UNIX kil1(1) command.
Some people habitually use the -9 or ~-KILL option; this should never be necessary and
we do not recommend that you do this, as the postmaster will be unable to free its
various shared resources, its child processes will be unable to exit gracefully, etc.

15.1.3. Adding and Removing Users

The createuser and destroyuser commands enable and disable access to POST-
GRES by specific users on the host system. Please read the descriptions of these com-
mands in the Reference Manual for specific instructions on their use.

15.1L4. Periodic Upkeep

The vacuum command should be run on each database periodically. This command pro-

cesses deleted instances!® and, more importantly, updates the system statistics concerning
the size of each class. If these statistics are permitted to become out-of-date and inaccu-
rate, the POSTGRES query optimizer may make extremely poor decisions with respect to
query evaluation strategies. Therefore, we recommend running vacuum every night or
so (perhaps in a script that is executed by the UNIX cron(1) or at (1) commands).

Do frequent backups. That is, you should either back up your database directories using
the POSTGRES copy command and/or the UNIX dump(l) or tar(l) commands. You
may think, “Why am I backing up my database? What about crash recovery?” One side
effect of the POSTGRES “no overwrite” storage manager is that it is also a “no log” stor-
age manager. That is, the database log stores only abort/commit data, and this is not
enough information to recover the database if the storage medium (disk) or the database
files are corrupted! In other words, if a disk block goes bad or POSTGRES happens to
corrupt a database file, you cannot recover that file. This can be disastrous if the file is
one of the shared catalogs, such as pg_database.

15.L5. Tuning
Once your users start to load a significant amount of data, you will typically run into per-
formance problems. POSTGRES is not the fastest DBMS in the world, but many of the
worst problems encountered by users are due to their lack of experience with any DBMS.
Some general tips include:
(1) Define indices over attributes that are commonly used for qualifications. For
example, if you often execute queries of the form

retrieve (EMP.all) where EMP.salary < 5000

then a B-tree index on the salary column will probably be useful. If scans
involving equality are more common, as in

retrieve (EMP.all) where EMP.salary = 5000

then you should consider defining a hash index on salary. You can define
both, though it will use more disk space and may slow down updates a bit. Scans
using indices are much faster than sequential scans of the entire class.

(2) Run the vacuum command a lot. This command updates the statistics that the
query optimizer uses to make intelligent decisions; if the statistics are inaccurate,
the system will make inordinately stupid decisions with respect to the way it joins
and scans classes.

(3) When specifying query qualfications (i.e., the where part of the query), try to
ensure that a clause involving a constant can be turned into one of the form

¥ This may mean different things depending on the archive mode with which each class has been created. See the Reference
Mangal under the heading create for more details. However, the current implemeantation of the vacuum command does no? psrform
any corspaction or clustering of data. Therefore, the UNIX files which store each POSTGRES class never shrink and the space “re-
claimed™ by vacuum is never actually reused.

@

o)

range_variable operator constant, e.g.,
EMP.salary = 5000

The POSTGRES query optimizer will only use an index with a constant qualifica-
tion of this form. It doesn’t hurt to write the clause as

5000 = EMP.salary

if the operator (in this case, =) has a commutator operator defined so that POST-
GRES can rewrite the query into the desired form. However, if such an operator
does not exist, POSTGRES will never consider the use of an index.

When joining several classes together in one query, try to write the join clauses in
a “chained” form, e.g.,

where A.a = B.b and B.b = C.c and ...

Notice that relatively few clauses refer to a given class and attribute; the clauses
form a linear sequence connecting the attributes, like links in a chain. This is
preferable to a query written in a “star” form, such as

where A.a = B.b and A.a = C.c and ...

Here, many clauses refer to the same class and attribute (in this case, A.a).
When presented with a query of this form, the POSTGRES query optimizer will
tend to consider far more choices than it should and may run out of memory.

If you are really desperate to see what query plans look like, you can run the
postmaster with the -d option and then run monitor with the -t option.
The format in which query plans will be printed is hard to read but you should be
able to tell whether any index scans are being performed. See the Reference
Manual under postgres and postmaster.

67

152. Infrequent Tasks

At some time or another, every POSTGRES site administrator has to perform all of the fol-
lowing actions.

15.2.1. Cleaning Up After Crashes

The postgres server and the postmaster run as two different processes. They may
crash separately or together. The housekeeping procedures required to fix one kind of
crash are different from those required to fix the other.

The message you will usually see when the backend server crashes is:
FATAL: no response from backend: detected in ...

This generally means one of two things: there is a bug in the POSTGRES server, or there
is a bug in some user code that has been dynamically loaded into POSTGRES. You should
be able to restart your application and resume processing, but there are some considera-
tions:
(1) POSTGRES usually dumps a core file (a snapshot of process memory used for
debugging) in the database directory

/usr/local/postgres/data/base/<databases>/core

on the server machine. If you don’t want to try to debug the problem or produce
a stack trace to report the bug to someone else, you can delete this file (which is
probably around 10MB).

(2) When one backend crashes in an uncontrolled way (i.e., without calling its built-
in cleanup routines), the postmaster will detect this situation, kill all running
servers and reinitialize the state shared among all backends (e.g., the shared
buffer pool and locks). If your server crashed, you will get the “no response”
message shown above. If your server was killed because someone else’s server
crashed, you will sce the following message:

I have been signalled by the postmaster.

Some backend process has died unexpectedly and possibly
corrupted shared memory. The current transaction was
aborted, and I am going to exit. Please resend the
last query. -- The postgres backend

[}

(3) Sometimes shared state is not completely cleaned up. Frontend applications may
see errors of the form:

WARN:Mar 11 14:41:29: cannot write block 34 of myclass [mydb] blind

In this case, you should kill the postmaster and restart it.

(4) When the system crashes while updating the system catalogs (e.g., when you are
creating a class, defining an index, retrieving into a table, etc.) the B-tree indices
defined on the catalogs are sometimes corrupted. The general (and non-unique)
symptom is that all queries stop working. If you have tried all of the above steps
and nothing else seems to work, try using the reindexdb command. If rein-
dexdb succeeds but things still don’t work, you have another problem; if it fails,
the system catalogs themselves were almost certainly corrupted and you will have
to go back to your backups. -

The postmaster does not usually crash (it doesn’t do very much except start servers)
but it does happen on occasion. In addition, there are a few cases where it encounters
problems during the reinitialization of shared resources. Specifically, there are race con-
ditions where the operating system lets the postmaster free shared resources but then
will not permit it to reallocate the same amount of shared resources (even when there is
no contention).

You will typically have to run the ipcclean command if system errors cause the
postmaster to crash. If this happens, you may find (using the UNIX ipcs(1) com-
mand) that the “postgres” user has shared memory and/or semaphores allocated even
though no postmaster process is running. In this case, you should un ipcclean as
the “postgres” user in order to deallocate these resources. Be wamed that all such
resources owned by the “postgres” user will be deallocated. If you have multiple post -
master processes running on the same machine, you should kill all of them before run-
ning ipcclean (otherwise, they will crash on their own when their shared resources are
suddenly deallocated).

15.2.2. Moving Database Directories

By default, all POSTGRES databases are stored in separate subdirectories under

/usr/local/postgres/data/base.!! At some point, you may find that you wish
to move one or more databases to another location (e.g., to a filesystem with more free

space).
If you wish to move all of your databases to the new location, you can simply:

« Kill the postmaster.,
« Copy the entire data directory to the new location (making sure that the new files are
owned by user “postgres”).

% cp -rp /usr/local/postgres/data /new/place/data

* Reset your PGDATA environment variable (as described earlier in this manual and in
the installation instructions).

using csh or tcsh...
% setenv PGDATA /new/place/data

" Data for cestain classes may stored elsewhere if a non-standard storage manager was specified when they were created. Use
of non-standard storage managers is an experimental feature that is not supported outside of Berkeley.

69

using sh, ksh or bash...
% PGDATA=/new/place/data; export PGDATA

¢ Restart the postmaster.
% postmaster &

* After you run some queries and are sure that the newly-moved database works, you
can remove the old data directory.

£ rm -rf /usr/local/postgres/data

To install a single database in an altemnate directory while leaving all other databases in
place, do the following:

* Create the database (if it doesn’t already exist) using the createdb command. In the
following steps we will assume the database is named foo.

« Kill the postmaster.

 Copy the directory /usr/local/postgres/data/base/£foo and its contents
to its ultimate destination. It should still be owned by the *“postgres” user.

% cp -rp /usr/local/postgres/data/base/foo /new/place/foo
* Remove the directory /usr/local/postgres/data/base/£00:
$ rm -rf /usr/local/postgres/data/base/foo

* Make a symbolic link from /usr/local/postgres/data/base to the new
directory:

% 1ln -s /new/place/foo /usr/local/postgres/data/base/foo
* Restart the postmaster.

15.2.3. Updating Databases

POSTGRES is a research system. In general, POSTGRES may not retain the same binary
format for the storage of databases from release to release. Therefore, when you update
your POSTGRES software, you will probably have to modify your databases as well. This
is a common occurrence with commercial database systems as well; unfortunately, unlike
commercial systems, POSTGRES does not come with user-friendly utilities to make your
life easier when these updates occur.

In general, you must do the following to update your databases to a new software release:

* Extensions (such as user-defined types, functions, aggregates, etc.) must be reloaded
by re-executing the POSTQUEL define commands. Notice that as of Version 4.2, the
method by which you generate object code for user-defined functions has changed, so
you may have to modify your old . o files. See Appendix A for more details.

* Data must be dumped from the old classes into ASCII files (using the POSTQUEL
copy command), the new classes created in the new database (using the POSTQUEL

70

[t}

\o

create command), and the data reloaded from the ASCII files.
* Rules and views must also be reloaded by re-executing the various POSTQUEL define
commands.

You should give any new release a “trial period”; in particular, do not delete the old
database until you are satisfied that there are no compatibility problems with the new
software. For example, you do not want to discover that a bug in a type’s “input” (con-
version from ASCII) and “output” (conversion to ASCII) routines prevents you from
reloading your data after you have destroyed your old databases! (This should be stan-
dard procedure when updating any software package, but some people try to economize
on disk space without applying enough foresight.)

71

15.3. Database Security

Most sites that use POSTGRES are educational or research institutions and do not pay
much attention to security in their POSTGRES installations. If desired, one can install
POSTGRES with additional security features. Naturally, such features come with addi-
tional administrative overhead that must be dealt with.

15.3.1. Kerberos

POSTGRES can be configured to use the MIT Kerberos network authentication system.
This prevents outside users from connecting to your databases over the network without
the correct authentication information. For more information on Kerberos, see the file
src/doc/kerberos . faq and the UNIX section of the Reference Manual.

15.3.2. Access Control

Access control lists (ACLs) can be defined on a per-class basis. These work rather like a
more flexible version of the UNIX chmod(1) command. See the Reference Manual under
the heading change acl for more details.

72

15.4. Querying the System Catalogs

As an administrator (or sometimes as a plain user), you want to find out what extensions
have been added to a given database. The queries listed below are “canned” queries that
you can run on any database to get simple answers. Before executing any of the queries
below, be sure to execute the POSTGRES vacuum command. (The queries will run much
more quickly that way.) Also, note that these queries are also listed in

/usr/local/postgres/src/examples/chapterl5

so use cut-and-paste (or the \ i command) instead of doing a lot of typing.

This query prints the names of all database adminstrators and the name of their
database(s).

* retrieve (user_name = u.usename,
database = d.datname)
from u in pg_user,
d in pg_database
where u.usesysid = int2in(intd4out(d.datdba))
sort by user_name, database
\g

This query lists all user-defined classes in the database.

* retrieve (class_name = c.relname)
from ¢ in pg_class
where c.relkind = ‘r’ /* no indices */
and c.relname !~ *“"pg_* /* no catalogs */
sort by class_name
\g

This query lists all simple indices (i.e., those that are not defined over a function of sev-
eral attributes).

* retrieve (class_name = bec.relname,
index_name = ic.relname,
attr_name = a.attname)

from bc in pg_class, /* base class */
ie¢ in pg_class, /* index class */
i in pg_index,
a in pg_attribute /* att in base */

where i.indrelid = bc.oid
and i.indexrelid = ic.oid
and i.indkey[0] = a.attnum
and a.attrelid = bc.oid
and i.indproc = "0"::0id /* no functional indices */

73

sort by class_name, index_name,
attr_name

This query prints a report of the user-defined attributes and their types for all user-defined
classes in the database.

* retrieve (class_name = c.relname,
attr_name = a.attname,
attr_type = t.typname)

from ¢ in pg_class,
a in pg_attribute,

t in pg_type

where c.relkind = ‘'r’ /* no indices */
and c.relname !~ *“pg_" /* no catalogs */
and a.attnum > 0 /* no system att’s */

and a.attrelid = c.oid
and a.atttypid = t.oid
sort by class_name, attr_name

\g
This query lists all user-defined base types (not including array types).

* retrieve (owner_name = u.usename,
type_name = t.typname)
from t in pg_type,
u in pg_user
where u.usesysid = int2in(intd4out (t.typowner))
and t.typrelid = "0"::0id /* no complex types */
and t.typelem = "0"::0id /* no arrays */
and u.usename != "postgres"
sort by owner_name, type_name
\g

This query lists all left-associative (post-fix) operators.

* retrieve (left_unary = o.oprname,
operand = right.typname,
return_type = result.typname)
from o in pg_operator,
right in pg_type,
result in pg_type
where o.oprkind = ’1’ /* left unary */
and o.oprright = right.oid
and o.oprresult = result.oid
sort by operand

\g
This query lists all right-associative (pre-fix) operators.

* retrieve (right_unary = o.oprname,
operand = left.typname,

74

e

&

return_type = result.typname)
from o in pg_operator,
left in pg_type,
result in pg_type
where o.oprkind = ‘'r’ /* right unary */
and o.oprleft = left.oid
and o.oprresult = result.oid
sort by operand
\g

This query lists all binary operators.

* retrieve (binary_op = o.oprname,
left_opr = left.typname,
right_opr = right.typname,
return_type = result.typname)

from o in pg_operator,
left in pg_type.
right in pg_type,
result in pg_type
where o.oprkind = 'b’ /* binary */
and o.oprleft = left.oid
and o.oprright = right.oid
and o.oprresult = result.oid
sort by left_opr, right_opr
\g

This query returns the name, number of arguments (parameters) and return type of all
user-defined C functions. The same query can be used to find all built-in C functions if
you change the “C” to “internal”, or all POSTQUEL functions if you change the “C"” to
“postquel”.

* retrieve (p.proname,
arguments = p.pronargs,
returntype = t.typname)
from p in pg_proc,
1 in pg_language,
t in pg_type
where p.prolang = l.oid
and p.prorettype = t.oid
and l.lanname = °*C*
sort by proname
\g

This query lists all of the aggregate functions that have been installed and the types to
which they can be applied. count is not included because it can take any type as its

argument.
* retrieve (aggregate_name = a.aggname,

type_name = t.typname)
from a in pg_aggregate,

75

t in pg_type
where a.aggbasetype = t.oid
sort by aggregate_name, type_name

\g

This query lists all of the operator classes that can be used with each access method as
well as the operators that can be used with the respective operator classes.

* retrieve (access_method = am.amname,
operator_class = opc.opcname,
operator_name = opr.oprname)

from am in pg_am,
amop in pg_amop,
opc in pg_opclass,
opr in pg_operator
where amop.amopid = am.oid
and amop.amopclaid = opc.oid
and amop.amopopr = opr.oid
sort by access_method, operator_class,
operator_name

\g

76

16. REFERENCES

[ONG90]

[ROWES7]

[STON86])

[STON87a)

[STON87b}
[STONS9]

[STON90a]

[STON90b]

Ong, L. and Goh, J., “A Unified Framework for Version Modeling Using
Production Rules in a Database System,” Electronics Research Laboratory,
University of Califoia, ERL Technical Memorandum M90/33, Berkeley,
CA, April 1990.

Rowe, L. and Stonebraker, M., “The POSTGRES Data Model,” Proc.
1987 VLDB Conference, Brighton, England, Sept. 1987.

Stonebraker, M. and Rowe, L., “The Design of POSTGRES,” Proc. 1986
ACM-SIGMOD Conference on Management of Data, Washington, DC,
May 1986.

Stonebraker, M., Hanson, E. and Hong, C.-H., “The Design of the POST-
GRES Rules System,” Proc. 1987 IEEE Conference on Data Engineering,
Los Angeles, CA, Feb. 1987.

Stonebraker, M., “The POSTGRES Storage System,” Proc. 1987 VLDB
Conference, Brighton, England, Sept. 1987.

Stonebraker, M., Hearst, M., and Potamianos, S., “A Commentary on the
POSTGRES Rules System,” SIGMOD Record 18(3), Sept. 1989.
Stonebraker, M., Rowe, L. A., and Hirohama, M., “The Implementation of
POSTGRES,” IEEE Transactions on Knowledge and Data Engineering
2(1), March 1990.

Stonebraker, M. et al., “On Rules, Procedures, Caching and Views in
Database Systems,” Proc. 1990 ACM-SIGMOD Conference on Manage-
ment of Data, Atlantic City, N.J., June 1990.

77

Appendix A: Linking Dynamically-Loaded Functions

After you have created and registered a user-defined function, your work is essentially
done. POSTGRES, however, must load the object code (e.g., a . o file, or a shared library)
that implements your function. As previously mentioned, POSTGRES loads your code at
run-time, as required. In order to allow your code to be dynamically loaded, you may
have to compile and link-edit it in a special way. This section briefly describes how to
perform the compilation and link-editing required before you can load your user-defined
functions into a running POSTGRES server. Note that this process has changed as of Ver-
sion 4.2.12 You should expect to read (and reread, and re-reread) the manual pages for the
C compiler, cc(1), and the link editor, 1d(1), if you have specific questions. In addition,
the regression test suites in the directory /usr/local/postgres/src/regress
contain several working examples of this process. If you copy what these tests do, you
should not have any problems.

The following terminology will be used below:

Dynamic loading
is what POSTGRES does to an object file. The object file is copied into the running
POSTGRES server and the functions and variables within the file are made available
to the functions within the POSTGRES process. POSTGRES does this using the
dynamic loading mechanism provided by the operating system.

Loading and link editing
is what you do to an object file in order to produce another kind of object file (e.g.,
an executable program or a shared library). You perform this using the link editing
program, 14(1).

The following general restrictions and notes also apply to the discussion below.

* Paths given to the define function command must be absolute paths (i.e., start with
/") that refer to directories visible on the machine on which the POSTGRES server is
running.!?

» The POSTGRES user must be able to traverse the path given to the define function
command and be able to read the object file. This is because the POSTGRES server
runs as the POSTGRES user, not as the user who starts up the frontend process.

“mwmmcmmmummmupmmamhfmﬁmm
alignment of executabls instructions within memory, etc. on the pant of the person writing the dynamic loader. Such loaders tended to
be slow and buggy. As of Version 4.2, the POSTGRES dynamic loading mechanism has been rewritten to use the dynamic loading
mechanism provided by the operating system. This approach is gencrally faster, more reliable and more portable than our previcus
dynamic loading mechanism. The reason for this is that nearly all modem versions of UNIX use a dynamic loading mechanism to im-
plement shared libraries and must therefore provide a fast and relisble mechanism. On the other hand, the object file must bo post-
processed a bit before it can be loaded into POSTGRES. We hope that the large increase in speed and relisbility will make up for the
slight decrease in convenience.

¥ Relative paths do in fact work, but are relative to the directory where the database resides (which is generally invisible to the
frontend spplication). Obvioualy, it makes no sense to make the path relative to the directory in which the user started the frontend ap-
plication, since the server could be running on a completely different machine!

78

N { ¥}

(Making the file or a higher-level directory unreadable and/or unexecutable by the
“postgres” user is an extremely common mistake.)

» Symbol names defined within object files must not conflict with each other or with
symbols defined in POSTGRES.

» The GNU C compiler usually does not provide the special options that are required to
use the operating system’s dynamic loader interface. In such cases, the C compiler
that comes with the operating system must be used.

ULTRIX

It is very easy to build dynamically-loaded object files under ULTRIX. ULTRIX does not
have any shared-library mechanism and hence does not place any restrictions on the
dynamic loader interface. On the other hand, we had to (re)write a non-portable dynamic
loader ourselves and could not use true shared libraries.

Under ULTRIX, the only restriction is that you must produce each object file with the
option -G 0. (Notice that that’s the numeral “0”* and not the letter “O”). For example,

simple ULTRIX example
% cc -G 0 -¢ foo.c

produces an object file called £00. o that can then be dynamically loaded into POST-
GRES. No additional loading or link-editing must be performed.

DEC OSF/1

Under DEC OSF/1, you can take any simple object file and produce a shared object file
by running the 1d command over it with the comrect options. The commands to do this
look like:

simple DEC OSF/l1l example
% cc -¢ foo.c
$ 1d -shared -expect_unresolved ’'*‘ -o foo.so foo.o

The resulting shared object file can then be loaded into POSTGRES. When specifying the
object file name to the define function command, one must give it the name of the shared

object file (ending in . so) rather than the simple object file.!*

SunOS 4 and HP-UX

Under both SunOS 4 and HP-UX, the simple object file must be created by compiling the
source file with special compiler flags and a shared library must be produced.

The necessary steps with HP-UX are as follows. The +z flag to the HP-UX C compiler
produces so-called “Position Independent Code” (PIC) and the +u flag removes some

¥ Actually, POSTGRES does not care what you name the file as long as it is a shared object file. If you prefer to name your
shared object files with the extension .o, this is fine with POSTGRES so long as you make sure that the correct file name is given to the
define function command. In other words, you must simply be consistent. However, from a pragmatic point of view, we discourage
this practice because you will undoubtedly confuse yourself with rogards to which files have boen made into shared object files and
which have not. For example, it’s very hard to write Makefiles to do the link-editing sutomatically if both the object file and the
shared object fils ead in .o}

79

alignment restrictions that the PA-RISC architecture normally enforces. The object file
must be turned into a shared library using the HP-UX link editor with the -b option.
This sounds complicated but is actually very simple, since the commands to do it are just:

simple HP-UX example
$ cc +z +u -c foo.c
% 1d -b -0 foo.sl foo.o

As with the . so files mentioned in the last subsection, the define function command
must be told which file is the correct file to load (i.e., you must give it the location of the
shared library, or . s1 file).

Under SunOS 4, the commands look like:

simple SunOS 4 example
% cc -PIC -c foo.c
% 1d -dc -dp -Bdynamic -o foo.so foo.o

When linking shared libraries, you may have to specify some additional shared libraries
(typically system libraries, such as the C and math libraries) on your 1d command line.

AIX, like SunOS, OSF/1 and HP-UX, requires users to build shared object files in order
to use its built-in dynamic loading mechanism. No special compiler options must be
given to build the simple object file. However, AIX provides a very general, flexible and
complicated interface for producing shared object files. As a result, it is (relatively) diffi-
cult to produce dynamically-loaded object files. Bear in mind that this only means that it
is difficult when compared to the mechanisms just discussed; it’s really not that hard to
do.

AIX allows the user to tell it which program symbols (e.g., function and global variable
names) should be visible to other pieces of code. This can be convenient in certain cases.
Unfortunately, AIX also requires the user to tell it which symbols should be visible (i.e.,
the default behavior is to disallow sharing). AIX controls this behavior by using export
Jiles and import files.

A symbol may be exported from the shared object file to the program into which the
shared object file is being loaded. In other words, the export file specifies which
symbols defined within the shared object file can be accessed by POSTGRES. We
usually want all symbols to be visible to POSTGRES.

A symbol may be imported by the shared object file from the program into which
the shared object file is being loaded. In other words, the import file specifies
which symbols defined with the POSTGRES server can be called by routines defined
within the shared object file. Again, we usually want all POSTGRES symbols to be
visible to the user code.

Hence, in order to load a shared object file, one must have an export file for the shared
object file as well as an import file for the POSTGRES backend server. This tums out to
be easy to do, since export and import files have the same basic format and may be pro-
duced from the simple object file(s) by running the mkldexport command that comes
with POSTGRES. The following three steps should work for most cases:

\o

¢« 0

simple AIX example, using Bourne shell

% cc -¢ foo.c

$ mkldexport foo.o ’pwd’ > foo.exp

$ 14 -H512 -T512 ~-o foo.so -e _nostart \
-bI:/usr/local/postgres/lib/postgres.exp \
~bE:foo.exp foo.o0 -lm -1lc 2>/dev/null

The values given for the -H, -T and -e flags to 14 should simply be taken as voodoo.
The file specified by the -bI: flag is produced when the POSTGRES server is compiled
and installed. (The library directory /usr/local/postgres/lib given in the
example may differ if you have installed POSTGRES in a different place, of course,) The
file specified by the -bE: flag must be produced by hand (using the mkldexport com-
mand, as shown) before the . so shared object file can be produced.'s You are probably
asking, “If it’s so easy, why not do it all for me?!” In fact, the magic command lines
given above do work in most cases and so could be embedded within POSTGRES and hid-
den from the user. However, there are circumstances in which it will fail. In these cases,
the user must be able to control the loader flags with which the shared object file is con-
structed. In addition, since the file system locations of the various object files are hard-
coded into the export/import files (and hence into the shared object file), this fact should
also be visible to the user. Finally, by putting the export/import files under user control,
the user can do as the designers of AIX intended and actually edit the files (i.e., control
link-editing) as desired.

If you want an actual understanding of how the AIX loader actually works, you should
take a look at the tutorials written by Gary Hook at the IBM AIX Systems Center. These
tutorials are located in

/usr/local/postgres/src/doc/useful/aix-1linking.ps
/usr/local/postgres/src/doc/useful/aix-advlink.ps

”Ifyouwi:hmcmteash:edobjeaﬂcformwithnn!mtedﬁmcﬁm(wetbeRsfemcabknmlundeﬂheheuﬁngdeﬂne
function, you must use the pg_ufp . exp exposts file instead of the postgres . exp exposts file.

81

	Copyright notice1992
	ERL-92-120 v2

