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Abstract

An analytic model is developed for the ion angular distribution in a collisional sheath. In

a previous study, the one-dimensional (normal to the sheath) ion velocity distribution was ob

tained under the assumption that charge-exchange is the dominant ion-neutral collision mecha

nism. In the present model, we assume Xtcat > AM, where X,Cat and Ae* are the mean free paths

for ion-neutral elastic scattering and charge-exchange collisions, respectively. With this assump

tion, the angular distribution mainly arises from ions that strike the electrode after undergoing

only one scattering collision'following the last charge-exchange collision. Comparison of the an

alytic model with results obtained from a particle-in-cell simulation gives excellent agreement.

Both the average angle of ions striking the electrode and the ratio of parallel to perpendicular

ion flux at the electrode are shown to scale with the ratio of scattering to charge-exchange

cross-sections, <xJCat/0"c*.

1 Introduction

With decreasing feature sizes in IC design, process tolerances are becoming increasingly more strin

gent. Plasma etching processes must minimize undercut in achieving an anisotropic etch, particularly

in trench structures. The proposed Plasma Immersion Ion Implantation (PHI) trench doping for

DRAMs requires a nearly uniform sidewall and trench-bottom profile. Control of the above process

necessitates an understanding of the directionality of ion transport in the sheath.

The effect of collisions on ion sheath dynamics has been studied for many years in an attempt

to accurately predict both the energy and angular distribution of ions bombarding a surface [1-14].
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These studies have made use of varying levels of modeling complexity and accuracy. The most

physically detailed modeling technique is the Monte Carlo method [1-4]. This method allows for

accurate treatment of collisions, and may be solved self-consistently with Poisson's equation [14] [15]

[16]. The disadvantage of this method is that it is computationally intensive.

Several self-consistent kinetic models have been developed for describing ion sheath dynamics[5-

9]. These models require solving coupled non-linear differential equations, and often necessitate

using a simple collision model to obtain a solution.

For the purpose of predicting the sensitivity and scaling of the anisotropy with controllable

process parameters, analytical models are very desirable. Such models also provide an improved

understanding of ion transport physics. While analytical models often contain several simplifying

assumptions, compared to Monte Carlo or kinetic approaches, they may be used with good accuracy

in some range of operating conditions. Furthermore, with the availability of Monte Carlo simulation

results (or experimental measurements) the accuracy of analytical models can be verified.

One of the earliest analytical models of sheath dynamics was that of Davis and Vanderslice

[10]. In their model, they considered only charge transfer collisions, hence only the one-dimensional

energy distribution function at the electrode could be obtained. Vahedi et al. [16], proposed a

similar analytical model and demonstrated good agreement with Monte Carlo simulation results for

the energy distribution function. In the present work, we extend the work of Vahedi et al. to include

the effect of elastic scattering in order to obtain the angular distribution of ions at the electrode.

Under theassumption that charge exchange isthedominant scattering mechanism, elastic scattering

is treated perturbatively by assuming that (1) ions strikethe electrode after undergoing at most one

scattering collision following the last charge exchange collision, and (2) the ion velocity distribution

prior to the scattering event is due only to charge exchange collisions. Comparisons with Monte

Carlo simulations are made and an application to trench profiles is considered.

2 Assumptions

The assumptions in the model are:

(1) The DC sheath voltage is much larger than the electron temperature in the bulk plasma,

(Vo > Te), as seen in Fig. 1, hence s > Xj)e where 8 is the sheath width and XDe is the

electron Debye length.

(2) The electron density in the sheath is assumed to be zero, ne = 0.



(3) The ion density in the sheath is uniform in space [16] as shown in Fig. 1 (linear electric field

approximation).

(4) The ion motion is collisional; thus s >> At, where At is the total ion-neutral mean free path.

(5) Ions undergo both charge-exchange and scattering collisions with neutral atoms with the as

sumption X,eat > ACx, where A,ea« and Acx are the scattering and charge-exchange mean free

paths.

(6) In a charge exchange collision, ions lose all their energy; hence the angular distribution is

determined by the ion motion following the last charge-exchange collision prior to striking the

target.

(7) Ions scatter only once following the last charge-exchange collision since Xtcat > Xcx-

(8) The charge-exchange andscattering collision cross-sections are independent of ion energy (cross

sections are typically flat over the energy range of interest 1-100 eV [17]). This assumption

makes the computations more convenient but is not critical.

3 Analysis

Using the preceding assumptions to solve for the DC sheath potential, <£, from Poisson's equation,

d?<fr/dz2 = —en,/eo with <f>(0) = —Vq and <f>(s) = 0, we obtain:

0(z) = -Vo(z-s)2/s2,

and define

V(*) = «z)-«0). (1)

In a previous study by Vahedi et al. [16], the ion velocity distribution normal to the surface was

obtained under the assumption that charge-exchange is the dominant ion-neutral collision mecha

nism. Here we use their result to obtain an expression for the velocity distribution of the incident

ion flux at z, just before the scattering, as shown in Fig. 2. In steady state, this flux is proportional

to the ion dose D (D = TT where T is the flux and T is the time). The ion dose energy distribution

at z after the last charge-exchange collision at zq (see Fig. 2) is:

.2n9su . s w*(«,,)»-£-„,(-—-,-) (2)

where At is the total ion-neutral mean free path (Ay1 = Xj*at + A^1), u is the ion velocity normal

to the surface, n, is the ion density in the sheath, and u^0 = 2V0/M. The expression in Eq. (2)



is the ion dose only a few mean free paths away from the wall and shows no z dependence. Hence

over the time period T, the differential incident flux at z prior to scattering is (see Fig. 3)

drine(u,z) = T0g(u)du, (3)

where To is the total incident ion flux at z, and

su s u2

Note that

Tine = / dr,„c(u, z) =To / g(u)du =To.
Ju «/t»

The differential scattered flux in the interval [z, z —dz], as shown in Fig. 3, is given by

dTscot = dT,nen0 atcaidz = T0g(u)dun0 <T,cat dz, (4)

where no is neutral density and <rtcat is the scattering cross section. In order to find the ion flux

scattered into (v, 9) we use:

(i) a transformation from u to (v, 0) such that

/ ^«(«-/(«.«» =L, (5)

(it) a differential cross section 1(9) which satisfies [17]

<rtcat = / I(0)2ir sin Bd9. (6)

The function / in Eq. (5) relates the scattered velocity v to the scattered angle Band the incident

normal velocity u, as seen in Fig. 2:

* = /(M). (7)

Inserting Eqs. (5) and (6) into Eq. (4), The differential scattered flux can now be written as

d£tCat = I vdv Jd0aTi(u, t>, $),
Jv J$

where

dr^u, v, 9) =Toff(u)du n0 dz I{9)2* sin /(* ~/K g)) ^ (8)
v

Before finding the total scattered flux at z, we make the assumption that the ion-neutral scat

terings are hard-sphere collisions. This allowsus to define the differential cross-section 1(9) and the

scattering function / in Eq. (7). Other types of scattering can be treated by defining the proper

1(9) and scattering function /. For hard-sphere collisions, the scattering function is [17]

t; = f(u,9) = UCOS0,



and the differential cross-section becomes [17]

•{
m) =! ^'catCOs9^v °<*<*/2, (9)

0 ir/2<9<rc.

Substituting the above expressions into Eq. (8), we get

«, / „» « / v, , ~ . /, .oYw —ucos0) ,,_v
dTi(«, v, 9) = r0ff(u)d« n0<rtCat dz 2sin9cos0-* . (10)

To find the total flux scattered in the interval [z, z - dz], we must integrate Eq.(10) over all u's, that

is:

TiM) = ydTi(«,M)
_ , 2sin0 , v x .,,.

= r0no<r,ea,dz ff( s). (11)
v cos 0

This is the velocity and angular distribution of the ion flux at z. In order to determine an expression

for the angular distribution of the ion flux at the target (z = 0), r'(0'), we make the following

transformations, as shown in Fig. 2:

(a) («,0) —• (vy,vx) where v2 = v2 + v2 and 0 = tsn~1(vy/vz) ;

(b) (t>„ v,) —• (v'y, t;',) where v'9 = t;y and v'\ =vj+2V(z)/M ;

(c) (t>'y,t/z) —• (v'j0') where v'v = u'sin0' and t/, = t/cos0' ;

where V(z) is defined in Eq. (1), and vy is the transverse velocity.

We require that the total flux is conserved through the transformations. The total scattered flux

arriving at the target (z = 0) can now be calculated to be:

r,=0 = fdze'no9TX fvdv fd9T1(v,9)
J1 Jv J9

= fd9' f v'dv' /dze-no<rr*r2(t/,0')
Je Jv' Jx

= / d0T'(0'),
Jo

where
fttmOCOS0' /"m««(»',0')

r'(0')=/ v'dv' dze-no*rzr2(t>',0'). (12)
Jo Jo

The exponential factor in Eq. (12) insures that ions undergoing scattering or charge-exchange

collisions between position z and the target, z = 0, do not contribute to the ion flux at the target.

The flux T2(v/,0/) is obtained from transformations (a)-(c) to be:

2sro<TJCO| v' sin 0'cos 0'

r2(v'*) XTu2m0 v'2cos29'-2V(z)/M
„m( (v'2-2V(z)/M)2 \
XeXP\ 2XTu2m0 v'2 cos* 0' - 2V(z)/M) ' K>



The expression obtained in Eq. (12) is the angular distribution of the ions which suffered only

one scattering collision after the last charge-exchange. These ions are the only ones contributing to

the angular distribution; ions with multiple scatterings are disregarded. The expression for T'(9') in

Eq. {12) is a complicated integral which must be integrated numerically. The limits of integration

for v' are trivial; however the upper limit in the z integration, zroox(v', 0'), is somewhat complicated,

thus the derivation of this quantity is considered in the appendix.

We can easily calculate the magnitude of the total scattered flux from Eq. (4) in terms of the

total incident flux to be:

Jo Ju

To , (Zmax > At) •

$eat = I e - / uxKa(

Vscat

This expression allows us to rewrite r'(0') in the form

<7"T

where T,pf(9t) is the normalized angular flux at the target.

We now define < 9\ > as:
/•t/2

<01 >= / d0'0'IV(0') (14)
Jo

the average angle of the ions striking the target after one scattering collision. If we assume <tt >

a,cau only a small fraction of the ions scatter and the rest arrive at the target with 0' = 0, forming

a delta function in the angular distribution at 0' = 0. The total average angle of the ions arriving

at the wall, < 0t >, is a weighted average of the scattered and unscattered ion fluxes:

<0T > = jr (jf 2d9'9'Tteat +£ 2d0'0Ton,ca, j
=^ (̂ £ir0 f'2 d9f9'TN(9') +̂ r0 r/2 d9'9'6(9')

,»/2

/ d0/0TiV(0')
./o

&$CQt

<*T Jo
<7»cat

< 01 > (15)

Table 1 shows a few calculated parameters for several cases. The ion .mass for all cases was

chosen to be that of a proton. The DC sheath voltage, Vfo, and the charge-exchange cross-section,

<rc* were held constant, while the gas pressure, p, and the ratio of charge-exchange to scattering

cross-sections were varied. The sheath width s can be obtained from the results of Vahedi et al.

[16]:
2e0V0

n, =
2 'es



where n, is the ion density in the sheath. The same ion density was considered for all the cases,

corresponding to a sheath width of 10 cm. The value of the sheath width was chosen to ensure that

the ratio Xt/s <C 1, consistent with assumption (4). Equation (12) was numerically integrated to

obtain the normalized angular distribution profile, IV(0'), and compared with simulation results

(See Sec. 4). Having calculated IV(0*), we can then evaluate Eqs. (14) and (15) to get the average

angle of the scattered and total ion fluxes. As shown in Table 1, the numerical integration results

show that the average angle < 9\ > of the scattered ions is typically 18-20 degrees and is essentially

independent ofboth the gas pressure and the ratio <T$eatl<Tcx> Hence Eq. (15) provides a particularly

simple scaling law. Although not shown in Table 1, the DC sheath voltage was also varied and no

significant change was observed in < 9\ >. Since only the ratio V0/M appears in the theory, this

shows that < 9\ > is also independent of M. The invariance of the average angle < 9\ > can be

explained by considering the average angle for hard-sphere scattering,

<'•«" >_ /0"/(9) sin MB - 8- Z2-5 '
where 1(9) is defined in Eq. (9). The average angle < 9\ > is slightly less than < 9teat > because

of the acceleration from the scattering position to the wall. Furthermore, using the transformations

(a)-(c) in Sec. 3, we obtain:

v'y = vy <x(V0/M)1/2,

v'x = y/v2 + 2V(z)/M oc (Vo/M)1'2,

thus the scattered angle at the wall, 0' = tan"1(u/y/v',), is independent of the ratio V0/M. This

result is valid for any scattering model in which Eq. (7) can be written in the form:

v = uf(9).

Hence < 9\ >« 20°, is a universal constant, for hard-sphere scattering and for At/5 <C 1 and

v»cat/<Tcx <i 1. For the cases where(7^ > <rtcat in Table 1, < 0t > is typically less than one degree.

4 Comparison with simulation

The code PDP1 [14] [15] is used to simulate a bounded one-dimensional planar electrostatic plasma

system. This code uses the particle-in-cell method, which is described in detail by Birdsall and

Langdon [18], to solve for the particle and field parameters self-consistently. A Monte Carlocollision

package has also been included to model charged particle-neutral interactions, such as ionization,

excitation, momentum transfer, charge-exchange, andscattering collisions. The Monte Carlo package

uses measured cross-sections to determine collision frequencies for various interactions.



In order to compare the analytic results obtained from numerical integration of Eq. (12) with

the simulations, we consider both ion charge-exchange and scattering collisions in the simulations.

The ion-neutral scatterings are assumed to be hard-sphere collisions in the simulation code. The

simulationfurther assumes the scatterings to be isotropic collisionsin the center-of-mass frame, which

results in forward scatterings in the laboratory frame for equal ion-neutral masses [17]. The ion and

neutral masses are chosen to be that of a proton, and the cross-sections are chosen to be constant

over all energies for the purpose of comparisonwith the analytic model. A low-temperature plasma

(Te = 1 eV) is injected and recycled at the left boundary to simulate a semi-infinite plasma (see

Fig. 1). The boundary condition on the right electrode is a large DC voltage (Vo = 500V "> Te).

A DC sheath is formed self-consistently, and the ions are found to be extracted according to a

collisional Child's law [16] [19]. If the sheath width s, the DC voltage V0, and the ion-neutral mean

free path Aj are set, one can determine the ion current density from the analytic model using the

results of Vahedi et al. [16]:

If the ion current density is known, the left boundary condition can be adjusted to simulate only

the DC ion sheath. To do this, the size of the system is set to be the sheath width, and ions only (no

electrons) are injected at the left boundary at the current density obtained from Eq. (16). The right

boundary condition is unchanged. This ion sheath simulation is identical to the usual ion-neutral

Monte Carlo simulations, with the advantage of having a self-consistent electric field profile in the

sheath.

The ion energy and angular profiles obtained from the semi-infinite plasma simulations were

identical to those obtained from using the ion sheath simulation. The advantage of the ion sheath

simulation is not having to resolve the electron motion, which plays no significant role in determining

the ion profile at the target in a DC sheath.

Figures 4 and 5 show comparisons of numerical integration of Eq. (12) with the simulations for

several cases listed in Table 1. The comparisons show excellent agreement in all cases even when

the ratio <rcx/<r,cat is on the order of unity. More importantly, the simulation also verifies that the

angular profile is a very weak function of neutral pressure and the cross-section ratio.

5 Application

We can use the results obtained from the analytic model to calculate the total ion flux parallel to

and perpendicular to the wall, as shown in Fig. 6. The ion flux perpendicular to the wall is due to



the unscattered ions as well as the scattered ones:

r, = / (cos0'r,col +run,cat)d0'
Jo

= r0— /' cos0TJV(0/)^ +To
*T Jo>0 aT

= ro^^i<cos0/>+ro^i,

where < cos0' > is the average value of cos0' over the angular profile. Unlike the perpendicular

flux, only the scattered ions contribute to the parallel flux reaching the wall:

.»/2

ry = / sin0/r,eatd0'
Jo

- r0— /' sin0TN(0/)d0'
<TT Jo

= ro^<sin0'>,

where < sin0' > is the average value of sh^ over the angular profile. The ratio of these two fluxes

is then:

£y = <sin^ > (1?)
T, < cos0'>+<Tc/(r,co<

The last column in Table 1 lists the calculated values for this flux ratio. In some cases this ratio

can be as high as 13 percent. This is in fact the ratio of the ion flux that strikes the sidewalls of the

trench to the flux that strikes the top and bottom of the trench. Note that for acx >• cr,cat,

•=r « <sin0 >,
r, <?cx

where < sin0' > depends only weakly on the cross-section ratio, which is demonstrated in Table 1.

6 Conclusions

An analytical model has been developed for the angular distribution of ion flux at a target in

a collisional sheath due to ion-neutral scattering collision, when charge-exchange is the dominant

collision mechanism. The shape of the angular distribution function is found to be insensitive to

variations in pressure and applied voltage and is in good agreement with PDPl particle-in-cell

simulations. The model predicts that the average angle of the ions arriving at a target after one

scattering is typically 18-20 degrees. The average angle for all the ions, however is proportional to

the ratio of charge-exchange to scattering cross-sections and is typically less than one degree when

<r»cat ^C creX'
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A Appendix

The expression for zmax(v',9') can be obtained by considering the transformation from (z, v,0), to

(z, v',0') in Eq. (12) and the equations directly preceeding it. To do this, we obtain the extremum

surface in (z, t>,0) and transform to (z, v',0'). The maximum value of fl(z,0) is obtained when

u = um(z) is a maximum, i.e.,

ijifuiM =*(*)-*(*).
or

um(z) = uro0(l - z/s). (Al)

Hence the extremum surface in (z, v, 0) is

« = um(z)cos0. (A2)

Using the transformations (a)-(c) in Sec. 3, we obtain:

v= (t/2 - 2V(z)/M)^2 , (A3)

and

. - t>'sin0'
tan0 =

(v'2cos29'-2V(z)/Myf2 '
which leads to

..... («'2cos^'-2V(z)/M)1/'
C°S"" (v'*-2V(z)/M)'/i • (A4)

Using Eqs. (A3) and (A4) to eliminate v and cos0 in Eq. (A2), we obtain:

In Eq. (A5), V(z) is eliminated by the relation

2V& - ..2 ..2
M

Finally Eqs. (Al) and (A5) are solved for z = zmaxon the extremum surface in (z, v',91), which

yields

Zmax(v\9t) = S \ l_-(«7«mo)S
{l-K/timo)2(2-COS2 0O}1/2
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case p [Torr] Vo{V] s [cm] <Tcx [cm2] <Tcx/<7$eat Xt/s < 91 > [D] <9T> [D] ry/r,

1 0.001 500 10.0 3 x 1015 1.5 0.626 18.7 7.47 0.1286

2 0.001 500 10.0 3 x 1015 6.0 0.894 18.5 2.64 0.0446

3 0.005 500 10.0 3 x 1015 1.5 0.125 20.0 7.99 0.1376

4 0.005 500 10.0 3 x 1015 6.0 0.179 19.7 0.32 0.0475

5 0.010 500 10.0 3 x 1015 6.0 0.089 20.1 2.87 0.0484

6 0.010 500 10.0 3 x 1015 60.0 0.103 20.0 0.33 0.0055

7 0.010 500 10.0 3 x 1015 600.0 0.104 20.0 0.03 0.0006

8 0.030 500 10.0 3 x 1015 6.0 0.030 20.0 2.86 0.0482

9 0.030 500 10.0 3 x 1015 60.0 0.034 20.0 0.33 0.0055

10 0.030 500 10.0 3 x 1015 600.0 0.035 20.0 0.03 0.0006

11 0.050 500 10.0 3 x 1015 6.0 0.018 20.0 2.85 0.0481

12 0.050 500 10.0 3 x 1015 60.0 0.021 20.0 0.33 0.0055

13 0.050 500 10.0 3 x 1015 600.0 0.021 20.0 0.03 0.0006

14 0.100 500 10.0 3 x 1015 6.0 0.009 19.9 2.85 0.0480

Table 1:
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