

Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE BCAM CONTROL AND MONITORING

ENVIRONMENT

by

Bart J. Bombay

Memorandum No. UCB/ERL M92/113

11 September 1992

THE BCAM CONTROL AND MONITORING

ENVIRONMENT

by

Bart J. Bombay

Memorandum No. UCB/ERL M92/113

11 September 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

THE BCAM CONTROL AND MONITORING

ENVIRONMENT

by

Bart J. Bombay

Memorandum No. UCB/ERL M92/113

11 September 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

The BCAM Control and

Monitoring Environment

Bart J. Bombay

September 11,1992

Abstract

Accurate control and monitoring of manufacturing equipment is essential to integrated

circuit production. Such a control scheme can take advantage of equipment models for the

various steps involved in the production process. Unfortunately, the equipment used in

integrated circuit manufacturing often changes with time and is always subject to various

disturbances which in turn introduce significant fluctuation in performance. This report

includes an adaptive regression model which evaluates itself and determines whether it

should be corrected to better reflect equipment behavior. The model is modified through

recursive estimation based on in-line wafer measurements. Decisions for model changes

are based on formal statistical tests which use the principles of the regression control chart

[1]. This strategy has been tested on the photolithography sequence in the Berkeley

Micro fabrication Laboratory [5] [21]. In addition, a control scheme has been implemented

which uses equipment models for feedback and feed-forward control of a manufacturing

workcell. Included in this implementation are editing and generation functions for

equipment setting recipes, a model editor, and interfaces to other Berkeley Computer-

Aided Manufacturing (BCAM) applications. This implementation, named the BCAM

Control and Monitoring Environment, is described in this thesis. Also included in this

report are an instruction manual for use of the environment and a programming manual for

further development of the code.

Table Of Contents ii

Table Of Contents

Acknowledgments v

Chapter 1 Introduction 1

Chapter 2 Theory of DiscreteProcess Control 3
2.1 An Introduction to Discrete Process Control 3

2.2 The Form of the Equipment Model 4
2.3 The Model Update Algorithm 5
2.4 Recipe Update Algorithm 11
2.5 Application of the Model Update and Recipe Update Algorithms 17

Chapter 3 BCAM Implementation 18

3.1 Introduction 18

3.2 The Ingres Database 19
3.3 The Role of X Windows in the BCAM Environment 20

3.4 Operations on Individual Machines 20
• The Recipe Editor

• The Model Editor

• Connections

3.5 Process Analysis Functions 21

3.5.1 Deduction of Process Order 21

3.5.2 Workcell Performance Prediction 22

3.5.3 Workcell Sensitivity Analyses 22

3.6 The Workcell Operations 22

• Basic Functions

• Workcell Controller

3.7 The Interface to Other BCAM Applications 23

• Alarm Generation

• Statistical Process Control

• Diagnosis

• Response Surface Plots

Chapter 4 BCAM Environment User's Manual 24

4.1 Introduction: Starting the BCAM System 24

4.2 The Equipment Window 25

4.2.1 General Description 25

iii Table Of Contents

4.2.2 The Equipment Recipe Menu 26
4.2.3 The Equipment Model Menu 26

4.2.4 The Equipment Window—Defining Equipment Connections 27

4.2.6 The Equipment Connections Menu 29

4.2.7 The Equipment Applications Menu 30

4.2.8 The Equipment Window—Editing Values 30

4.3 The Workcell Window 31

4.3.1 The Workcell Recipe Menu 32

4.3.2 The Workcell Wafer Menu 32

4.3.3 The Workcell Graph Menu 33

4.3.4 The Workcell Alarm Menu 33

4.3.5 The Workcell Options Menu 33

Chapter 5 BCAM Environment Programming Manual 34

5.1 Introduction: The Basic Program Structure 34

5.2 The Creation of the Main Windows 35

5.3 Naming Conventions 35

. 5.5 Structure Declarations 37

5.5.1 class machineClass 38

5.5.2 class modelClass 38

5.5.3 class processNode 39

5.5.4 class inputClass 40

5.5.5 class inputStepValueClass 40

5.5.6 class outputClass 41

5.5.7 class historyClass 42

Chapter 6 Conclusions & FutureWork 43

6.1 Conclusions 43

6.2 Database Storage ofWafer Measurements 43

6.3 Alternate Storage Formats 43

6.4 Installation in Integrated Circuit Fabrication Facilities 44

6.5 Process Capability (Cpk) Evaluation and Process Simulation 44

6.5.1 Comparison of Control methods 44

6.5.2 Alarm Generation through Cpk Prediction 45

Appendix A Acronyms 46

Appendix B Symbols 47

Table Of Contents iv

Appendix C Adjoint Derivations of the Recipe Update Equations 50

Appendix D Ingres Table Formats 52

Appendix E Alphabetical Library Function Listing 60

Appendix F Description of the Source Files 70

Appendix G Principal Library Functions Listed by Hierarchy 75

G. 1 The Beginning of the Program 75

G.2 Main BCAM Menu Actions 75

G.3 Activation of a Machine 76

G.4 Equipment Model Analyses 77

G.5 Workcell Operation 77

Appendix H Source Code Listings 80

Appendix I Known Bugs 81

Appendix J A G2 Formulation of Measurement Queuing Effects 82

J.l Introduction 82

J.2 Methodology 83

J.3 Results 85

J.4 Conclusions 88

J.5 Future Work 89

References 90

v Acknowledgments

Acknowledgments

I cannot begin to express the magnitude of my appreciation and gratitude to my

research advisor, Professor Costas J. Spanos. His constant support and guidance have been

invaluable to the success of my studies. I also thank Professor Seth Sanders for serving on

my dissertation committee. In addition, I thank Dean David A. Hodges for his profound

advice to me during both my undergraduate and graduate studies, and also for his support

and leadership of CIM research at Berkeley. I am also most grateful to Professor Eugene

Wong, Professor Martin Graham, Dr. Sheila Humphreys, Winsor Letton, Dr. Shahab

Shiekholeslam, and David Wagner for their sage counsel through my years at Berkeley.

For their generous assistance in the proofreading of this thesis, I thank Dr. Shahab

Shiekholeslam, Donald Zwakenberg, Sherry Lee, Eric Boskin, Sovarong Leang, and John

Thomson.

I am also most appreciative of the efforts of Professor Gary May for his development

of equipment model structures and his work on the BCAM LPCVD diagnostic system,

Hao-Cheng Liu for his development of an equipment recipe editor, the BCAM diagnostic

system and the database tables used by the BCAM Environment, Edward Wen for his

work on statistical process control and response surface plotting, Sovarong Leang for his

experimentation and development of photolithography equipment models and alarm

generation algorithms, Sherry Lee for her work on the BCAM diagnostic system, Eric

Braun for development of the BCAM response surface plotting application, Zhi-Min Ling

for his development of microprocessing equipment models, and Lauren Massa-Lochridge

for her plentiful assistance with the Ingres database software.

During my years at Berkeley, my participation on the 155 crew team had a profound

effect upon my studies. The training assisted ray development in all aspects of my life. At

the heart of my rowing experience was my coach Jeff Wilk. His inspiration and spiritual

Acknowledgments vi

guidance gave me strength which allowed my studies to flourish. I must also acknowledge

my teammates whose camaraderie and efforts contributed to my rowing experiences.

Also essential to the success of my research here at Berkeley have been the other

members of the CIM/CAM groups at Berkeley: Professor Lawrence Rowe, Raymond

Chen, Haifang Guo, Annika Rogers, Steven Smoot, Kwan Kim, Zeina Daoud, Mehdi

Hosseini, and Soheila Bana.

I give my special thanks to Carol Block, Christopher Hylands, Ken Nishimura, Katalin

Voros, Bob Hamilton, Genevieve Thiebaut, Heather Brown, Cheryl Craigwell, and the

staff of the Berkeley Electronics Laboratory for their continual assistance in a multitude of

matters during my stay at Berkeley.

Fortheir unfailing support and knowledgable advice throughout my life, I am eternally

grateful to my parents John and Barbara Bombay, my sister Helen Bombay, my

grandparents Hunter and Annie Flores, and my cousins Michael Minatrea, Jeannie and

Joseph Miller, John Minatrea, Richard Buford and Janine Minatrea, and the rest of my

family. It is the great devotion and generosity of my family whom I must credit for all of

my successes.

I thank the National Science Foundation for their support of my graduate studies at

Berkeley. I thank also the Regents of the University of California, the Alumni Association

of the University of California, Warren Dere, and Edward F. Kraft, and Cornell C. Meier

for their support of my undergraduate studies.

This research has been jointly sponsored by the Semiconductor Research Corporation,

the National Science Foundation, Texas Instruments, National Semiconductor, and the

California MICRO program.

Introduction Chapter 1

Chapter 1 Introduction

Until recently, IC fabrication facilities have relied mostly upon human experience to

develop equipment recipes through trialand error. But as today's designs push the borders

of existing technology, even the slightest maladjustment in equipment can drastically

undercut production. The industry has therefore experienced extremely long start-up times

when bringing a new product into regular production and costly cuts in production when

maintaining or replacing manufacturing equipment. This problem is further compounded

by frequent unanticipated changes in equipment performance. Today these changes are

identified through Statistical Process Control (SPC), and sometimes a human operator

attempts to re-adjust the process. Integrated circuit manufacturing technology can

therefore reap great benefit from the application of a more advanced control system.

A control system which can meet the stringent demands of IC fabrication must be

rather sophisticated. Simple feedback control applied to individual machines is unreliable

due to the low inherent capabilities (the ratio of specification limit ranges to noise standard

error) of the individual steps. A fabrication line control system must therefore have a solid

base in statistical analysis of equipment performance. A control system must also be able

to predict the equipment performance and adjust equipment settings whenever the

predicted performance deviates from specifications. In order to establish this capability, a

control system must use some sort of equipment models. Furthermore, in order to

compensate for equipment changes, the models must allow themselves to be updated

according to current manufacturing conditions. Statistically based models are desirable

because analysis of equipment performance through regression techniques will allow the

models to be updated efficiently.

Chapter 1 Introduction 2

The implementation of the control scheme includes regular checks of equipment

models and recalculation of appropriate machine settings whenever those models are

updated. This is the feedback portion of the controller. Whenever a process consists of

several interdependent steps, e.g. the photolithography workcell, feed-forward control

may be implemented to compensate early deviations in equipment performance by

adjusting the settings of subsequent processing steps.

So that this control scheme may be integrated into the factory environment, it interacts

with a database facility to store measurements and maintain a record of control recipes and

equipment models. In addition, the control environment includes interfaces to alarm

generation, diagnosis, and statistical process control applications.

The implementation of this control environment and the underlying analysis functions

have been realized using C++ and X windows. This realization is named the Berkeley

Computer Aided Manufacturing (BCAM) Control and Monitoring Environment and is

described in this thesis.

After this introduction, the thesis devotes a chapter to the mathematical theory behind

the controller's model update and recipe update algorithms. This is followed by a chapter

describing the implementation of the BCAM environment. The BCAM user's manual and

the BCAM programming manual constitute the next two chapters. Finally, the conclusions

of this thesis are presented, and the possibilities for future development are discussed.

3 Theory ofDiscrete Process Control Chapter 2

Chapter 2 Theory of Discrete Process Control

2.1 An Introduction to Discrete Process Control

The characterization of IC processes through equipment modeling has become a

necessity in semiconductor manufacturing. Equipment models may be physical,empirical,

or a combination thereof. Further, equipment-specific models are often updated to reflect

the changing status of the equipment [7]. The Berkeley Computer-Aided Manufacturing

(BCAM) group has developed several statistically based polynomial models that describe

the behavior of some important IC manufacturing equipment: the Tylan low-pressure

chemical vapor deposition (LPCVD) furnace, the Lam plasma etcher, and the

photolithography workcell [8][9][10].

The equipment models described in this work consist of mathematical expressions that

can predict the outcome of a manufacturing step (e.g. the thickness of the photoresist)

given the settings of that step (e.g. spin speed, spin time, etc.). Such models are based on

the statistical analysis of the results of designed experiments; manufacturing equipment is

subjected to a well structured sequence of experimental recipes, and the resulting data is

analyzed through stepwise linear regression. This leads to models which accurately reflect

the operation of the equipment. The development of these models is assisted by a

theoretical understanding of the physical behavior of the equipment [3].

The basic equipment model has been designed as a polynomial expression with a

flexible representation so that it may operate efficiently within a comprehensive control

system. Several input and output transformations (exponential, logarithm, roots, etc.) are

also supported.

Since equipment characteristics change with time, a complete model structure must

allow for updates of the model. This is accomplished by means of creating an adaptive

Chapter 2 Theory of Discrete Process Control 4

model which has two parts: an original model which represents the original state of the

equipment, and a correction model which describes the deviation from that original state.

These models are used for performance prediction, the generation of descriptive

response surfaces, and other control needs. Given its prediction capability, the model may

also be used by optimization algorithms to deduce the required machine settings to meet

target performance specifications. The optimization presented herein uses a

multidimensional Newton-Raphson algorithm subject to inequality constraints on the

machine controls.

2.2 The Form of the Equipment Model

Initially, an equipment model is derived using a designed experiment. This original

model represents the general structure of the equipment behavior, i.e. the form of the

polynomial terms used in the model equation; these terms represent the ways in which the

machine's settings influence its outputs. For example, such a model has been developed

for the photoresist spin-coat and bake equipment of the Berkeley Microfabrication

Laboratory [3]. The four settings of the machine are spin speed x{, spin time x2, bake

temperature *3, and bake timejc4. The output is photoresist thickness z. For this example,

a representative model is

z = cQ + cxx2 + C2XA + c3-= + c4—= + c5—. (1)
V*i *3V*i Xl

where the symbols cQ...cs represent the coefficients of the terms of the model. Although

the models are highly nonlinear with respect to the settings, they are linear with respect to

the coefficients. This property allows us to use linear regression techniques to determine

the coefficients which best fit the machine in question. All equipment models use this

general format, although the number of terms (and the form of those terms) varies from

machine to machine. Several transformations (such as the logarithm and the exponential)

5 Theory ofDiscrete Process Control Chapter 2

are also supported on the inputs and outputs. As described next, the adaptive model

always retains the basic structure defined by the terms of its original model, although the

coefficients may be updated according to need.

2.3 The Model Update Algorithm

When, over time, a model fails to accurately represent a machine, corrections may be

applied to the coefficients of the model. These corrections make up the correction model

and are calculated by means of an update algorithm. The correction model in combination

with the original model make up the complete adaptive model. The model update

algorithm is initiated by means of a statistical process control alarm which is generated

whenever the machine outputs differ significantly from those predicted by the model [5].

The model update algorithm is designed to modify the equipment model as necessary

during routine equipment operation. Using historical records from a machine's operation,

the update algorithm performs statistical regressions to determine the optimum correction

model. This algorithm performs well in either a single product or a multi-product

environment.

Because the adaptive model maintains a correction model while leaving the original

model unchanged, it will never lose the information gained in the original designed

experiment. For example, a correction model may evolve to compensate for a failing

machine part; when that defective part is replaced, the adaptive model can quickly

abandon the obsolete correction model and return to the original model.

Finally, each processing step has several outputs which can be controlled; hence,

several models must be used to describe each step. The spin-coat operation, for example,

is characterized by the thickness and the reflectance of the applied photoresist layer. Since

each output is represented by a separate model equation, the update algorithm considers

each of these outputs separately.

Chapter 2 Theory of Discrete Process Control

The model update algorithm is based on a weighted linear stepwise regression; it must

therefore transform the historical records into a form suitable for such an analysis. This

transformation procedure is as follows:

The values of the machine's past control settings are placed in the k x n matrix X,

each row of which contains the values of those settings corresponding to one run. Thus,

for it = 1...K and i = 1.. .n, jc^ , is the value ofthe Ith setting used for the k^ run. Since

performance records become obsolete with time, a forgetting factor is applied in the

weighting of the regression calculations in order to emphasize the most recent

observations. In addition, a strict limit is placed on the number of observations to include

in the model update calculations. This limit is called the window size, and is the maximum

number of rows in X. (When the number of data points available is less than the window

size, then the number of rows in X is equal to the number of data points.) The appropriate

choice of the window size depends on the rate at which machine performance is expected

to drift and also the inherent capability of the machine.

The matrix X is then transformed into a k x t matrix T that contains the respective

values of the t model terms, as defined by the basic model structure. T has the same

number of rows as X, although it may have a different number of columns. For example,

given the model described by equation (1), each row of T would have the form:

-J- , k=1...K, (2)tT - xk,2 Xk,4
1

4xk,\

l r
xk,\xk,3Nxk,l

where \xhl xk2 xkt3 xk2 is the corresponding row of Xwhich contains the values of

the machinesettings used during the it"1 run.

1. In this report bold-faced capital letters are used for matrices and bold faced lower case letters for column arrays. Row

arrays are obtained by applying the transpose operator (T) toacolumn array.

7 Theory of Discrete Process Control Chapter 2

The update algorithm applies the currentmodel (original model plus correction model)

to the machine setting corresponding to each run and predicts the respective output values.

It then takes the machine's corresponding historical output record z and subtracts from it

the vector containing the predicted output values, thus yielding the output discrepancy

vector Az. The elements of Az are defined by:

Az* = z*-(£-c + c0), *=1...K, (3)

where c0 is the current model's constant term coefficient, and c is the column vector of

the current model's remaining term coefficients. This discrepancy vector will be used in

order to determine the coefficients of the correction model.

The machine's performance records have been transformed into the term matrix T and

the discrepancy vector Az. These data, however, are not the result of a designed

experiment, but rather the result of routine equipment operation; this fact will limit the

number of correction coefficients which can be evaluated. If, for example, the machine has

run with the same temperature setting throughout its relevant history, the data will not

contain any information to determine if the effect of the temperature setting has changed.

Similarly, if all the machine's settings have been held constant, then the correction model

should only include a correction to the constant term coefficient.

In general, the data may support a correction to some, but not all, of the coefficients. In

order to determine which coefficients can be corrected and how to correct them, a

principal component transformation [6] is applied to the matrix T. This transformation has

the added benefit that the transformed data is also orthogonally distributed—a property

which greatly facilitates the subsequent stepwise regression.

However, before executing the principal component transformation, the terms matrix

T must be properly numerically conditioned. This is accomplished by a transformation

Chapter 2 Theory of Discrete Process Control 8

which divides each column of T by the range of the corresponding term (defined as the

difference of the maximum and the minimum values of the terms over the experimental

space used to derive the original model):

V = T D~\ (4)

where D is the t x t diagonal matrix whose nonzero elements are the ranges of the terms,

and V is the K x t normalized term array. This converts the terms into unitiess numbers

with comparable variances.

The principal component transformation starts with the evaluation of the weighted

variance-covariance matrix of the data in the normalized terms matrix:

yTc- w- vc
Sv = weightedcovariance (V) = —^= -, (5)

U'Wu

where Sv is the txt variance-covariance matrix, W is an kxk diagonal matrix

containing the weighting coefficients wkk*_ (off diagonal elements of W are zero), u is

a r-dimensional vector whose elements areall ones, and Vc is the centered V array whose

elements are given by:

vckj = Vjy-v.j, k = 1...K,; = 1...W, (6)

where v.;- is the weighted average of the elements in the7th column of V. This variance-

covariance matrix is then factored:

BABT = SV, (7)

9 Theory of Discrete Process Control Chapter 2

where A is the t x t diagonal matrix containing the t eigenvalues of SVl and B is the t x t

orthonormal matrix1 whose columns are the corresponding eigenvectors of Sv. The

matrix BT is thenused to transform V to its principal componentspace as follows:

Vpc = V-B, (8)

where VPC has the same dimensions, n x t, as V and T, and it contains the input terms

data transformed into the principal component space. The output discrepancies may now

be represented by rewriting (3) as:

Az* = zk-(tTk-D-l-B'BT.D-c + c0) k = 1...K, (9)

or equivalently:

Az* = zt- (vPCTk-y) -c0, k = 1...K, (10)

where vPCJ are the rows of VPC, and y = BT •D •c represents the vector of the term

coefficients of the original model, transformed into the principal component space.

Next, a weighted stepwise regression is performed, considering each principal

component separately in order to obtain a modelcorrection coefficient Ay, (/ = 1.. .0 for

that component. Only principal component directions showing significant varianceshould

be considered; therefore, the algorithm examines only the principal components whose

corresponding eigenvalues Xt of Sv satisfy the inequality

2 2

\>±^-, /=l...r, (11)
ti

where r is the magnitude of the range of possible values that the output may take, and a is

a unitiess empirical quantity taken to be 10" for the BCAM application. (The factors in

1. An orthonormal matrix has orthogonal columns (and rows), each of which has a magnitude of one. The inverse of an
orthonormal matrix is simply its transpose.

2. Because Sv is symmetric positive definite, this factorization is equivalent to the singular value decomposition of Sv.

Chapter2 Theory of Discrete Process Control 10

(11) are necessary to ensure that both sides of the inequality have compatible units.) For

each considered correction coefficient Ayz, ap-value1 is calculated. If this p-value is low

enough, the calculated value for that correction coefficient is accepted. Otherwise the

correction coefficient is set to zero. The regression analysis takes the form of the system

Ay= [VTPC.W-VPC]~l.VTPC.W-Az, (12)

where Ay is the column vector of model correction coefficients in the principal

component space. The significance of each correction coefficient is established by looking

at the variance of each estimator. This variance is related to the standard deviation, a, of

the machine output:

var(Ay) = [VTPC- W- VPC]~2[VTPC- W2- VPC] •u•a2. (13)

The standard deviation a is estimated from the residuals of the regression equation during

the creation of the original machine model. Additional estimates of a might be obtained

during replicated runs.

In order to ensure the stability of the algorithm, an additional test is applied to prevent

extreme corrections to the model. During an update procedure, no model coefficient may

change by more than 60% of its previous value.

Once all significant principal components have been examined, the terms array VPC is

multiplied by the new correction coefficients Ay/? and the resulting vector is subtracted

from the output discrepancy vector Az. The weighted average of the elements of the

resulting vector, if significant, is the constant term correction coefficient

1. The p-value is the probability of obtaining an estimate of the correction coefficient whose magnitude is greater than
the considered estimate, assuming that the true value of the correction coefficient is zero. Typically, if the p-value is less
than 0.0S, then the correction coefficient is accepted as significant

11 Theory of Discrete Process Control Chapter 2

K

^wkk[Azk- (vPCk-Ay)]
Ac0 = ^ -K , *=1...K, (14)

where the wkk are the diagonal elements of W. The correction coefficients are then put

through the inverse transforms which bring them back into the original terms space, where

they become the correction model's term coefficients

Ac = D-1 B Ay. (15)

Finally the updated model coefficients are c + Ac and c0+ Ac0, and the model update

procedure is complete.

2.4 Recipe Update Algorithm1

The implementation of a feedback control system to integrated circuit manufacturing

requires that the controller be able to update machine settings whenever equipment

models change. The implementation of feed-forward control similarly requires the

calculation of machine settings. For these purposes, a settings recipe update algorithm is

required.

The unconstrained recipe calculation problem reduces to the following:

Solve for x such that

/(*) =Z . (16)

where x€ XcSR", the n-dimensional input space, ze ZciSR"1, the m-dimensional

output space, and / : X —¥ Z. An iterative algorithm is presented which starts with an

1. Note that some symbols in this section do not correspond directly with those of the previous section.

Chapter 2 Theory of Discrete Process Control 12

initial x0 and generates a sequence x0,xl9x29... converging to the best compromise

solution x. Convergence properties of this method are discussed in [18].

Denote the ']*** component of /: as fj:X—> 9t. Then at each iteration A:, / can be

linearized1 about x* to get

flx)=f(xk)+Ak. (x-xk), (17)

where

Ak - fa(Xk) (18)

->mxn

This leads to the modified problem: find a compromise solution xk+{ such that

f(xk)+Ak- (xk+l-xk) =z, (19)

Ifn>mand A^l is invertible, then asolution2 to this modified problem is

xk+1 = ** +A** = xk - ATk [A^l] \f(xk) -z] (20)

Using a Euclidean norm, this solution is as close as possible to the previous solution xk. If

n<m and AkrAk is invertible, then the least square error solution to the modified problem

is

1. The models used in the BCAM recipe generation algorithm aresuch that the solution to the modified problem (19) is

at each iteration close enough to the best compromise solution i, so that the sequence of solutions xa,xuxz,... con

verges to £. In general, the convergence propertiesof this method requirebounds on the minimum and maximum singu-
dflar values of the derivative matrix ^- (•) over X.
ox

2. See Appendix C for a derivation of these equations.

13 Theory ofDiscrete Process Control Chapter 2

-l

xk+ j = xk +Axk = xk - [AJA J ' ATk \f(xk) -z]. (21)

Equation (21) is equivalent to the solution produced by a Local Newton optimization

method using the cost function Gk : X -»9t, where

m

w^ww-^2' <22>
;=1

z7 is the j1*1 component of z, and

'(*W^+|^'W•(*-> =/'(*) (23)

(i.e. the linearization of fj about **). Equation (20) similarly results from the problem

mm{\\x-xkf \Gk(x) =0,*e XcW} . (24)

Of course any practical implementation.of this algorithm must not only require

invertibility of the relevant matrices, but also put finite limits on the conditioning of those

matrices.

The cost function Gk is simply the sum of squares of the deviations from the target

values z\ j = l...m. Different scales of measure for the target values z7 and the recipe

values Vcan be accommodated by placing scaling factors into the cost function Gk to

obtain

m 2 m 2

djt(y) sS{hlgik(Ry) ~*u =S{p rgik(y)" rt} • (25)j7 w* 2^v
;=1 y=l

Chapter2 Theory of Discrete Process Control 14

where the s* (J = l...m) scale the target values1 and R is a diagonal nxn matrix

containing the scaling factors for the recipe values2 so that y =R~lx. Thus g(y) =g(Ry)

andA>)s/PW.

Let AkaS~l-Ak'R, (26)

where S is the mxm diagonal matrix containing j7', 7 = l...m. This leads to the

following modified equations3

Gk(y) =±\\Ak(y-yk)-S-lSzk(
2

=\\Ak (y -yk) If - <AT0S-lbzk,y -yk)+jl^fizj (27)

where Sz^ = /(y*)-z- (28)

Thus the new problem at iteration k is

min {Gk(y) \RyeX}. (29)

If n = m and A* is invertible, then the solution to (29) is

xk+l=xk+Axk = xk- RA~klS'1 \f(xk) - z] =xk - A,"1 [fo) - z]. (30)

If n > m and A^A* is invertible, then a solution to (29) is

xk+l =xk +Axk =xk-RATk[AkA[\ S"1 [/(**)-£], (31)

1. For the calculation of machine settings, ^ = 2•min(USL/- target, target - LSLJ)

2. For the calculation of machine settings, r is the range of valid settings for control 1, i.e. the maximum valid setting
value minus the minimum valid setting value.

3. The notation (•, • >represents the scalar product.

15 Theory of Discrete Process Control Chapter 2

~T~

and this solution as close as possible to the previous solution xk. If n < m and AkAk is

invertible, then the least square errorsolution to (29) is

xk+l=xk +Axk =xk-R[ATkAk] AW1 \f{xk)-z]. (32)

Because the above algorithm uses approximations to /(•), a more robust algorithm

uses the above equations to calculatea search direction hk (in equations (30) through (32)

substitute xk+l by hk), and then uses an Armijo step size algorithm [20] to determine the

actual Axk = \hk9 where

Xk = max {ft |FiR'1 [xk +fifhk]) -F(R'lxk) <atf(R-lhk, V F^-1**)), / e JV}, (33)

with VF(R~lxk) =Als'1 \f(xk)-z], a€ (0,1), p€ (0,1), and

^'"S^^^11 • (34)
y=l

so that JCjt+i = x^+Ajc^ = xk + Xkhk. (35)

Whenever there are problems with performing the matrix inversion in (30), (31), or (32), a

steepest descent method can be used to find the search direction .

hk = xk-RATkS-1 lf(xk)-z]. (36)

For most systems, the set of valid input recipes X is constrained. Consider a set of

constraints

1. A more sophisticated method of dealing with such inversion problems is to perform a singular value decomposition
and eliminate the dimensions corresponding to near zero singular values to obtain a transformation into a space with
fewer dimensions, so that the required matrix inversion can be accomplished. This analysis is beyond the scope of this
report.

Chapter 2 Theory of DiscreteProcess Control 16

where xndnti is the minimum valid value for setting i, and JcmaXf, is the maximum valid

value for setting i. Whenever a recipe is calculated, the algorithm must be able to remain

within the constraints given by (37). To handle these constraints, a feasible modification1

to the above algorithms freezes any constraint violating input value (at the minimum or

maximum according to the nature of the violation), and reduces the dimension of the input

space by* one. Thus the optimization can continue with the remaining inputs. For a more

robust system, a more general constrained optimization algorithm could be applied [20].

1. The reliability of this modification depends on the assumption that all of the modeled output values aremonotonically
either increasing or decreasing with respect to each individual setting value, an assumption which is satisfied by most
semiconductor processing equipment

17 Theory of Discrete Process Control Chapter 2

2.5 Application of the Model Update and Recipe Update Algorithms

The presented methods for checking and updating equipment models and for

calculating a new equipment setting recipe are built into the BCAM control applications.

The model update algorithm is used as part of the feedback system to maintain current

models for processing equipment. The recipe update algorithm is used for several

purposes; it is used for initial setting calculations, for recipe updates whenever current

equipment models change, and for feed-forward calculation of workcell controls.

Target Output Values

Wafers

Processing
Equipment

Processing
Equipment

Processing
Equipment

Recipe
Update

juiji

Figure 1 Application of Model and Recipe Update Algorithms

Chapter 3 BCAM Implementation 18

Chapter 3 BCAM Implementation

3.1 Introduction

Because the accurate control of manufacturing processes is critical to the production

of integrated circuits, a control scheme is needed so that deviations from product

specifications may be compensated by automatic adjustments to the process. This control

must exploit theinterdependence of thevarious steps involved in production. Software has

beendeveloped to utilizeequipment models for supervisory control. The softwareuses the

models for process simulation and recipe generation. This recipe generation is used to

accommodate product specifications and to implement feed-forward control; in order to

compensate for deviations in the middle of a process run, feed-forward controladjusts the

settings of subsequent process steps.

Feedback control is initiated by a model-based control and monitoring scheme.

Alarms using statistical analyses [5] are employed to detect consistent departures in

equipment performance from the performance predicted by theequipment models. Once

this departure has been established, the model is modified through a model update

algorithm [7] and the equipment control settings arc correspondingly adjusted. The

workcell controller has several process analysis functions which examine equipment

interconnection information to determine the order of processing steps, to predict

performance of an entire workcell, and to perform sensitivity analyses on the workcell.

Feed-forward control is initiated whenever the projected properties of a wafer lot fall

outside of specifications. It is implemented by adjusting the recipes (control settings) of

subsequent processing steps. If projections predict that feed forward control cannot bring

the lot back within the acceptance limits [13], the lot will be discarded or re-processed.

19 BCAM Implementation Chapter 3

This chapter gives an overview of the implementation of the BCAM Environment.

Low level implementations details are described in the BCAM Environment

Programming Manual presented in Chapter 5.

Processing

Equipment

r

Workcell

Controller

I
Monitoring

&

Modeling

Ingres Database

•^

Operator

Interface

(X Windows)

Response
Surface

Plotting

Statistical

Process

Control

Recipe Editor
&

Model Editor

Figure 2 The BCAM Environment

3.2 The Ingres Database

The BCAM environment must operate in a multiple user system with security

precautions and the ability to avoid conflicts when more than one user accesses the

database simultaneously. The environment therefore makes use of the Ingres database

program. This program allows multiple users to interact with a central database. Ingres

Chapter 3 BCAM Implementation 20

also allows different levels of permissions, such as those of an operator or an engineer.

Ownership and time stamps are maintained for all tables stored in the database, thereby

preserving security and preventing access conflicts. The BCAM Environment uses Ingres

library functions to store and retrieve equipment recipes and models in the database. In

order to enhance the portability of the BCAM Environment, the code has been developed

to allow easy modification for use with other database programs.

3.3 The Role of X Windows in the BCAM Environment

The X window system provides a means to implement an aesthetically pleasing, user

friendly interface to the BCAM environment. X windows were chosen because they are

available throughout the industry and are standardized to work on most workstations. A

commercially available graphical interface package was also investigated, but it was

determined to be inappropriate for the BCAM Environment. This study is described in

Appendix J.

3.4 Operations on Individual Machines

The most basic function of the BCAM environment is the selective activation of

individual machines. Once activated, the BCAM system can interact with each machine in

a variety of ways.

By accessing the system database, a recipe editor1 allows machine settings to be

retrieved, edited, and saved as desired. Ownership and time stamps are maintained on all

recipes. Recipes may also be calculated to meet specified targets.

Analytical models for the machine are also loaded from the database. The

implementation allows full interaction with these models, including editing, automatic

model updates, response surface viewing, and storage of all models in the database. As

1. The recipe editor has been developed by Hao-Cheng Liu of the Berkeley Computer-Aided Manufacturing group.

21 BCAM Implementation Chapter 3

models are updated, corrections are also stored in the database1. Ownership and time

stamps are maintained on all models. The operator may use these models for prediction

and recipe generation.

Several types of equipment connection information may also be addressed by the

operator. Inputs which must remain constant or are uncontrollable can be designated as

uncontrollable. Outputs which are considered important, or for which specifications are

given, can be designated as final outputs. Often the output of one machine affects the

performance of the following processing step. Therefore, the operator can connect the

output of any machine to the input of any other machine. The BCAM environment checks

for validity of such connections by comparing the units of the addressed input/output pair.

3.5 Process Analysis Functions

3.5.1 Deduction ofProcess Order

After the user has designated the equipment interconnections, the workcell controller

must deduce the order in which the machines will operate. The controller does this by

following connection paths to determine which machine depends on the greatest hierarchy

of other machines for its input values. This machine is placed at the end of the processing

line. The controller then checks for the machine with the next greatest dependence and

places it second to last. The method is continued until all connected machines have been

included. This method can handle any configuration of machines and will automatically

detect misconfigurations which lead to loops. Once the workcell configuration has been

determined, the controller may consider the whole workcell (or parts of it) as a single

operation.

1. Automatic storage of model corrections has not yet been implemented.

Chapter 3 BCAM Implementation 22

3.5.2 WorkcellPerformance Prediction

For several applications, the workcell controller must be able to predict the final

outputs of a workcell based on the individual controls applied to all machines in the

workcell. This is accomplished by first predicting the outputs of the first machine, feeding

these outputs to the inputs of the following machine, and continuing until the predictions

for the last machine have been calculated, thus yielding the desired result.

3.5.3 Workcell Sensitivity Analyses

In order to determine the sensitivity of any workcell final output to any workcell input,

the controller uses a recursive algorithm. This algorithm uses the workcell's

interconnection information to implement a multidimensional evaluation of differentiation

of composed functions. The level of hierarchy for the composition (and thus the level of

recursion) depends on the number of machines between the machine receiving the input

and the machine whose output is considered.

3.6 The Workcell Operations

In addition to providing control over a processing line, the controller must be able to

conduct simulations of the process. This will allow operators to perform preliminary tests

of new process configurations or control schemes without expensive and time consuming

wafer processing.

The run-by-run control system under development by the BCAM group uses models

for the individual machines in a process to build a model of the entire process. A process

specifications menu enables the user to set the product's desired characteristics, and then

the controller will automatically calculate the optimum equipment settings to meet that

product's specifications. These settings make up the process recipe. Once this has been

accomplished, the controller may begin processing wafers.

23 BCAM Implementation Chapter 3

As wafers are processed, the BCAM Environment makes a record of each machine's

performance. This record is used by the alarm generation module, the model update

algorithm, and the graph generation module.

3.7 The Interface to Other BCAM Applications

The Berkeley Computer-Aided Manufacturing research group has developed several

applications for manufacturing. Theseapplications can be invoked for use with a piece of

equipment through the BCAM environment.

Formal alarm generation algorithms have been developed by Sovarong Leang [22].

They will be integrated into the monitoring systems of the BCAM environment

Real time statistical process control (SPC) algorithms have been implemented by

Eddie Wen [22][23]. This implementation includes graphical displays. The SPC

application functions for measurements taken from the Berkeley Microfabrication

Laboratory's Lam Autoetch 490.

An application which performs diagnoses on equipment malfunctions has been

developed by Dr. Gary May, Hao-Cheng Liu, and Sherry Lee [16][17]. This diagnosis

module is available for the Berkeley Microfabrication Laboratory's Lam Autoetcher

through the BCAM environment.

An application to create two and three dimensional response surface plots of

equipment models has been developed by Eddie Wen and Eric Braun for use with the

BCAM environment1 [22].

1. This model plotting algorithm is currently in the process of integration into the BCAM environment.

Chapter 4 BCAM Environment User's Manual 24

Chapter 4 BCAM Environment User's Manual

4.1 Introduction: Starting the BCAM System1

To enter into the BCAM environment, first change directories to "~bcamdev/bin"

then enter the command "source -bcam/src/main/.bcam" and then enter the command

"./BCAM"

An introductory widow will appear. Click on "Ok" to continue. At this point the main

menu will appear. To activate some equipment, click on the "EQUIP" selection and a menu

of available equipment will appear. Clicking on an equipment name activates that

equipment, and a window for the equipment will appear. Several machines may be

activated at any given time.

The individual equipment windows allow a multitude of operations. Equipment setting

recipes may be edited, stored, and retrieved from the BCAM database. Similarly,

equipment performance models may be edited, stored, and retrieved. The equipment

window also facilitates the definition of equipment interconnections for use with the

BCAM workcell controller application. In addition to the workcell controller, the BCAM

environment supports Diagnosis and Statistical Process Control (SPC) applications; these

applications are also activated from the equipment window.

1. These instructions are for the current experimental implementation on U. C. Berkeley's radon Sun4 computer.

25 BCAM Environment User's Manual Chapter 4

4.2 The Equipment Window

Recipe .j Model]• CoiKMfct Application

BCAM

GCA PhotoresistExposure

Functional description: Photoresist exposure

Recipe Name: default

Recipe Owner: beam

Inputs for GCA Photoresist Exposure

Step 1 thickness (T) J 2437.7 Angstroms Connected to: eaton

Step 1 reflectance (R) 34.113 % Connected to: eaton

Step 1 dose (D) 1.04067 % Controllable

Outputs for GCA Photoresist Exposure

reflectance (R) 72.5432 % Connected to: mti1

Current model for GCA Photoresist Exposure

Model Name: default

Model Owner: bombay

R- (J42.182
+ 0.639872 * R

* D♦ 19.9031

+ -7.2748e-0fi . T^2

)

Standard Error. 1.91981

•

Forgetting factor 0.95

Prediction Error 0.67875 Window size: J 5

Figure 3 The GCA Stepper Equipment Window

4.2.1 General Description

Most operations of the equipment window are accessed through the menu bar at the

top of the window. This menu bar has four components: Recipe, Model, Connect, and

Application. In addition, values for inputs, outputs, and model coefficients may be directly

edited in the equipment window, and connection information may be designated by

clicking on the names of the inputs and outputs.

Chapter4 BCAM Environment User's Manual 26

4.2.2 The Equipment Recipe Menu

The Recipe Menu is used to access all functions associated with the currently stored

recipe of control and input values for a machine. The machine is also deactivated through

this window.

Load Recipe...—Select and load a recipe from the BCAM database.

Load Default Recipe—Load the user's default recipe from the BCAM database; if the
user has no default recipe, the BCAM system default is loaded.

Save Recipe—Save the current recipe into the BCAM database under the current name.

Save Recipe As...—Specify a name for the current recipe and save it into the BCAM
database.

Restore Recipe—Restore the recipe to the values it had at the last operation.

Delete Recipe—Delete a recipe from the database.

Output Targets—Set target values and tolerances for all final outputs of this machine.

Output Specifications—Set target values and specification limits for all final outputs of
this machine.

Calculate Recipe—Generate a recipe to produce the final output values specified by
targets.

Download Recipe—Download a recipe of controls to the physical equipment.

Deactivate this Machine—Eliminate this equipment window and deactivate the
corresponding machine.

4.2.3 The Equipment Model Menu

The Model Menu is used to access all functions which deal with equipment models.

Load Model...—Select and load a model from the BCAM database.

Load Default Model—Load the user's default model from the BCAM database; if the
user has no default model, the BCAM system default is used.

Save Model—Save the current model into the BCAM database under the current name.

Save Model As...—Select a name for the current model and save it into the BCAM

database.

Display Original Model—Display the model as it existed before any feedback
corrections.

Display Current Model—Display the current adaptive equipment model (original
model plus correction model).

Confirm Current Model—Confirm the currently edited and displayed model and take it
as the current adaptive model.

Predict—Predict the outputs generated by the current input recipe.

27 BCAM Environment User's Manual Chapter 4

Check Model—Using equipment performance data, execute statistical regressions to
check (and if needed, correct) the current adaptive model.

Response Surface Plots—Activate the response surface plotting facility for equipment
models.

Load Simulator Model...—Select and load a simulator model from the BCAM

database.

Load Default Simulator Model—Load the simulator with the user's default model from

the BCAM database; if the user has no default model, the BCAM system default is
used.

Display Simulator Model—Display the model currently being used by the BCAM
equipment simulator.

Confirm Simulator Model—Confirm the currently edited and displayed model and take
it as the current simulator model.

Note that there are two distinct models used in the BCAM environment. The first is a

the current (controller) model. This model is used for all prediction and control purposes,

including the feedback and feed-forward control algorithms. The original version of this

controller model is also maintained and may be viewed with the Display Original Model

command. The Check Model command is used to manually initiate a check and update of

this model. The other model is the simulator model; this model is used purely for

demonstration purposes. Unless the simulator is explicitly specified, all references to a

model are to the controller model.

4.2.4 The Equipment Window—Defining Equipment Connections

To connect the input (setting, control, or incoming measurement) of one machine to

the output (usually a post-processing measurement) of another machine, click

successively upon the appropriate input name and output name. The display will then

change to describe this connection. To remove the connection, click upon the name of the

input side of the connection (i.e. where that parameter shows up as an input).

For control purposes, not all outputs are critical to the final product of that workcell.

To designate an output value to be of final importance, double click upon the name of that

output. The window will then show that output to be a "final output." The operator is

Chapter4 BCAM Environment User's Manual 28

automatically prompted for specifications whenever a final output is designated. Another

two clicks upon the output name return the output to normal status. Multiple final outputs

may be designated.

In many cases, input parameters which affect machine performance may not be

controllable. Furthermore, it may sometimes be desirable to hold specific machine control

inputs constant In such cases, the relevant inputs may be designated as uncontrollable. To

declare an input uncontrollable, double click upon the name of the input. The display will

then reflect this designation. Another single click reverses the designation.

Because the workcell configuration depends on equipment interconnections,

connection information may not be changed while the BCAM Workcell Controller is

active.

4.2.5 Example: The Interconnection ofa Photolithography Workcell

The following figure shows a photolithography workcell using three pieces of

equipment. Two measurements are taken on the wafers exiting the photoresist spinner:

photoresist thickness (T) and reflectance (R). The photoresist reflectance is again

measured after exposure (the thickness is not affected by the exposure). Finally, the

critical dimension (CD) is measured after the development. Since the thickness and

reflectance measurements are considered inputs to the following processing steps (they

appear in model equations used by the BCAM controller), they are connected as depicted

29 BCAM Environment User's Manual

in the figure.

Eaton

Photoresist
Spinner

4-*-

R ^ R

GCA
Photoresist
Exposure R R

MTI

Photoresist
Developer

Chapter 4

CD (final output) t

Figure 4 Photolithography Workcell Interconnection

Once the three machines have been activated, the following sequence of mouse clicks

will set up the connections in the BCAM environment:

Double click on the developer's output CD to designate the final output.

Click on the developer's input thickness, and click on the spinner's output thickness to
connect.

Click on the exposure's input thickness, and click on the spinner's output thickness to
connect

Click on the developer's input reflectance, and click on the exposure's output
reflectance to connect.

Click on the exposure's input reflectance, and click on the spinner's output reflectance
to connect

The workcell connection information is thus completed. The workcell controller may

now be invoked through the Equipment Applications Menu described in 4.2.7.

4.2.6 The Equipment Connections Menu

• Connect Input—Change the status of an input or connect the input to the output of
another machine.

• Connect Output—Change the status of an output or connect the output to the input of
another machine.

Note that connection information may also be specified by clicking directly on input

and output names (4.2.4). This more direct method is generally preferred.

Chapter 4 BCAM Environment User's Manual 30

4.2.7 The Equipment Applications Menu

This menu is used to access other major BCAM applications.

• Workcell Controller—Activate the BCAM Workcell Controller using current
equipment interconnection information, (see below 'The Workcell Window')

• Statistical Process Control—Activate the BCAM Real-Time Statistical Process Control

monitoring system [22][23]. This application is not available for all machines.

• Diagnosis—Activate the BCAM Diagnosis module [16] [17]. This application is not
available for all machines.

• Response Surface Plots—Activate the response surface plotting facility for equipment
models [22].

4.2.8 The Equipment Window—Editing Values

The values shown for input values, output values, and model coefficient values are

editable. To edit these values, click the mouse pointer upon the value to be edited. The

value may then be changed using the usual editing keys. All commands from the

equipment window check these editing fields for new values before executing. The

workcell controller, however, does not automatically check model coefficient values, and

it is therefore desirable to manually confirm these values (from the Model pulldown menu)

after editing. This is necessary, for example, whenever the simulator model is changed.

31 BCAM Environment User's Manual

4.3 The Workcell Window

Recipe Wafer

Beginning of the process.

1. Eaton Photoresist Spinner

A. Critical controlled inputs:

Step 2.

a. spin speed

b. spin time

c. bake temperature

d. bake time

2. GCA Photoresist Exposure

A. Critical controlled inputs:

Stepl.

a. dose

3. MTI Photoresist Developer

A. Critical controlled inputs:

Stepl.

a. develop time

B. Final outputs:

a. CD1

End of the process.
If this process appears incorrect, check the connections in the equipment setup.

Figure 5 The Photolithography Workcell Window

Chapter 4

Graph Alarm Option'

Current wafer number: 1

Current wafer number: 1

Current wafer number: 1

The Workcell Window is used to manipulate a group of machines connected into a

processing workcell. This window is activated from the Equipment Window's

Applications Menu by choosing the Workcell Controller. Equipment interconnections must

be defined before invoking the workcell window, and they cannot be changed while the

workcell window is present. To disengage the workcell window, use the Exit Process

Workcell command from the Workcell Recipe Menu.

Chapter 4 BCAM Environment User's Manual 32

4.3.1 The Workcell Recipe Menu

This menu accesses functions for manipulating workcell recipes. The Workcell

Window is also disengaged through this menu. In addition, this menu can be used to

specify target values for the final outputs of the workcell. Upon receipt of the

specifications, the controller automatically attempts to calculate a recipe of controls which

will yield the desired results.

Edit—Edit the current workcell controls.

Load...—Load a new recipe for the workcell controls from the database.

Load Default—Load default controls for the workcell

Save—Save current controls into the database.

Save As...—Save current controls under a specified name.

Final Output Targets—Specify final output targets and tolerances.

Final Output Specifications—Specify final output targets and both upper and lower
specification limits.

Calculate Recipe—Calculate a recipe to meet output specifications.

Exit Processing Workcell—Exit the workcell mode andWorkcell Window.

4.3.2 The Workcell Wafer Menu

This menu is used to initiate actions upon or about wafers, including actual operation

of the workcell.

Run Wafer Through Workcell—Send a wafer to the workcell for processing.

Simulate a Wafer Run—Simulate the workcelFs operation on a single wafer (used for
demonstration).

Simulate N Wafer Runs...—Simulate a series of wafers through the workcell (used for
demonstration).

Predict Final Outputs—Predict the final outputs of the workcell using the current
recipe.

Sensitivities—Display the sensitivities of the final outputs to the workcelFs controls.

Evaluate Cpk Capability—Evaluate the Cpk capability of the workcell.

1. Databaseoperations for the workcell have not yet been implemented. These operations are, however, available from
the individual equipment windows.

2. Sensitivity displays have not yet been implemented.

3. Cpk evaluation has not yet been implemented.

33 BCAM Environment User's Manual Chapter 4

4.3.3 The Workcell Graph Menu

This menu accesses the graphical utilities associated with workcell operation.

Outputs—Graph the recorded output measurements of all workcell machines.

Final Outputs—Graph the final output measurements of the workcell.

Prediction Errors—Create regression control chart on prediction errors.

Autocorrelation—Graph the autocorrelations of prediction errors.

CUSUM—Show a CUSUM graph of final output measurements.

Inputs—Graph the controls used versus wafer numbers.

Normalized Inputs—Graph all inputs normalized to fit on a single graph.

Adaptive Models—Graph the coefficients of the adaptive models.

4.3.4 The Workcell Alarm Menu

This menu is used to access BCAM alarm utilities. Manual alarms can be issued using

this menu .

• Invalidate History—Specify that all previously recorded measurements should be
ignored by the model update algorithms.

• Discard History—Purge all recorded measurements from memory.

4.3.5 The Workcell Options Menu

The workcell controller allows the user to specify several optional parameters for

dealing with the workcell. These parameters are accessed through the Workcell Options

Menu.

• Turn On/Off Feed-Forward Control

• Turn On/Off Feedback Control

• Turn On/Off EVOP2

1. This menu will be expanded in the future [22].

2. Evolutionary operation has not yet been implemented.

Chapter5 BCAM Environment Programming Manual 34

Chapter 5 BCAM Environment Programming Manual

5.1 Introduction: The Basic Program Structure

To aid in the ongoing quest to improve integrated circuit manufacturing techniques,

the BCAM group has developed an object-oriented software library describing the

fabrication equipment. The library provides a set of functions for interacting with

equipment and databases and for manipulating various models of machine performance.

Once the BCAM software has loaded equipment information into memory, it can perform

predictions, sensitivity studies, simulations, recipe generation and statistical process

control. Also included in the software are procedures for updating machine performance

models, alarm generation, and diagnostic analyses. The BCAM software is organized as a

library which can be accessed by all modules in the BCAM architecture (e.g. workcell

controller, recipe editor, malfunction diagnosis, and statistical process control). The entire

library is written in C++, an object-oriented superset of the C programming language. C++

extends the normal capabilities of C by adding features such as data abstraction, message-

passing, polymorphism, inheritance, and class hierarchy [11].

The BCAM environment is built around a C++ class called machineClass. This data

structure includes all the information necessary to interact with the physical machine.

Member functions of this class or its member classes are used for BCAM actions related

to the individual machine. For every equipment activated, a separate instance of a

machineClass structure is created. When the BCAM Environment is active, each

machineClass structure manifests itself on the screen in an Equipment Window.

Although the greatest care has been taken to keep this information current, herein may

be discrepancies with the current code. For the most recent information, please refer to the

source code.

35 BCAM Environment Programming Manual Chapter 5

5.2 The Creation of the Main Windows

The program first creates an entrance window which introduces the operator to the

system. When the operator is ready to begin, a mouse click will bring up the main menu

for the environment. This main menu is created using the function Widget

MakeMainMenuf). Callbacks are set up from this menu to access the highest level

operations, most importantly the activation of equipment. The functions which handle

these actions are located primarily in the files 'controllerEntrance.ee\ 'equipSetup.cc',

and 'mainMenu.ee'.

Whenever a machine is activated, an instance of machineClass is created and

information from the database is loaded into this structure. Then a call to Widget

machineClass::MakeEquipWindow() creates the actual equipment window. Integral in the

creation of the equipment window is the creation of the bar of pulldown menus from

which most operations are accessed. This is accomplished through use of the functions

Widget MakePulldownBarQ and Widget MakePulldownMenu(). The functions which

handle these actions are located primarily in the files 'equipWindow.ee' and

'mainMenu.cc'.

The workcell controller window is created in a similar fashion to the equipment

window. The functions which handle these actions are located primarily in the files

'process.ee' and 'mainMenu.cc'.

5.3 Naming Conventions

Except in cases of imported code, the following naming conventions have been

adhered to:

• Macro names are all capital letters (e.g. MACRO).

• Function names are lower case with all individual words beginning with capital letters
for ease of reading (e.g. FunctionName).

Chapter 5 BCAM Environment Programming Manual 36

• Variable names (except for those of Widget type) are lower case with imbedded words
beginning with capital letters for ease of reading (e.g. variableName).

• Variable names of type Widget are lower case with imbedded words separated by the
underscore character (e.g. widget_variable_name).

• Type and class names follow the same conventions as variable names.

5.4 Source Code File Hierarchy

The source code file hierarchy (from top down) is approximately organized in the

following order:

BCAM.cc controllerEntrance.ee

mainMenu.cc

equipSetup.cc

machineRW.cc

modelRW.cc

modelIngres.scc recipelngres.scc

equipWindow.ee functions.ee messageWidget.cc makeWarning.ee

connections2.ee connections.ee modelChoice.ee

process.ee interfaces.ee

generateRecipe.ee

modelUpdate.ee

graphsBCAM.cc graphRM.cc

diagnosis.ee

modelEval.cc

steps.ee

modelSpecFn.cc

mymath.ee

37 BCAM Environment Programming Manual Chapter 5

5.5 Structure Declarations

Descriptions of most data classes and their member functions are contained in the

declarations file imachineTypes.h\ The principal classes have the following hierarchy .

processNode

I
machineClass

I
historyClass historyClass

modelCIass

i
inputCIass inputClass

I
inputstepValueCIass inputStepValueClass

I
connectionClass

outputCIass outputClass

Figure 6 BCAM C++Data Structures

The principal members of some of the important structures are as follows:

1. Arrows indicate pointers (horizontal arrows form linked lists); vertical bars indicate membership; and horizontal bars
indicate consecutive members of an array.

Chapter 5 BCAM Environment Programming Manual 38

5.5.1 class machineClass

The core of the BCAM environment is the class machineClass. It has many member

data structures and functions, only the most important of which are described here. Some

of these members are themselves classes, and these classes are also described in this

document.

Widget window

modelClass* model

• historyClass* history

• int waferNum

void simulate()

int ModelUpdate()

• machineClass* next

5.5.2 class modelClass

The equipment window displayed on the screen.

The current models for machine performance. Included
are the models both for control purposes and for
simulation.

A linked list of historical equipment performance data.

The identification number of the wafer currently being
processed by this machine.

int Getlnputlndex(char* inputName)
Return the array index (into model.inputs) of the input
named inputName.

int GetOutputIndex(char* outputName)
Return the array index (into modeLoutputs) of the output
named outputName.

double predictint outputNum)
Evaluate and return the value predicted for output number
outputNum using the controller machine performance
model and the current recipe for inputs.

Simulate all outputs of this machine including Gaussian
noise. Simulated output values are stored in the
modeLoutputs array.

Look at the historical performance data of this machine
and determine if an update to the machine's controller
model is statistically justified. If a correction is justified, it
is made, and the function returns a positive value.
Otherwise the function returns zero. A negative return
value indicates an error.

A pointer to the next machine in the linked list of
machines.

This class contains most of the information necessary for modeling or simulating a

machine's performance.

39 BCAM Environment Programming Manual Chapter5

• char* equipName The abbreviated name of the machine.

• char* formalName The formal name of the machine

• char* user The login name of the current BCAM user.

• double** expjnat A matrix containing the exponents for the inputs in all the
terms used in the equipment model. Each row corresponds
to one term. Column indices correspond to input numbers.
This member is private.

• int** specjn A matrix containing special function codes for the inputs
in all the terms used in the equipment model. Each row
corresponds.to one term. Column indices correspond to
input numbers. The code zero indicates that no special
function is to be used. Special functions are applied to
inputs before exponents. This member is private.

• inputClass inputs[MAXJNPUTSJ
The array of input descriptors of the machine. The current
recipe is located within.

• int input_cnt The number of inputs for the machine.

• outputClass outputs[MAX_OUTPUTSJ
The array of output descriptors of the machine.

• int output_cnt The number of outputs for the machine.

• double simulate(int outputNum)
Simulate and return the value for output number
outputNum using the simulator performance model and
the current recipe for inputs.

• double predict(int outputNum)
Predict and return the value of output number outputNum
using the controller's current adaptive model and the
current recipe for inputs.

5.5.3 class processNode

Another important class is the class processNode. This class is used to describe a

workcell containing several machines. This class is used extensively by the BCAM

Workcell Controller. When the workcell controller is invoked, the machine

interconnections are analyzed and a linked list ofprocessNodes are created to describe the

order in which the machines operate, i.e. describe the process. Each process node has the

following members:

Chapter 5 BCAM Environment Programming Manual 40

• machineClass* machine

• processNode* preceding

• processNode *following
A pointer to the following process node in the workcell.

• processNode* start A pointer to the first process node in the workcell.

• processNode* end A pointer to the last process node in the workcell.
• void CalcControls() Calculate the values for the controllable inputs for this

machine and all following machines in order to reach
target output values. Calculated values are automatically
stored in the inputs member.

5.5.4 class inputClass

The class inputClass contains all the information about an input for a machine and

functions for manipulating that input. Descriptions of some members follow:

• char* name The name of the input.

• char* abbr An abbreviation of the name of the input

• char* units The unit of measure associated with values of this input

• double min The minimum recommended value for this input.

• double max The maximum recommended value for this input.

• inputStepValueClass*valueList
A list of values that this input takes at each step in the
operation of this machine. This is a private member.

• double Value(int step) Return the value of this input at step step.

• double SetValue(int step, doublenewValue)
Assign a new value for this input at step step. Also return
this, new value.

• boolean Connected() Return TRUE if this input is connected to another
machine. Otherwise return FALSE.

5.5.5 class inputStepValueClass

This class is used to form a list which stores the current recipe values of an input at all

relevant steps in the equipment operation. Connection information is also stored here.

• double value The value of an input at this step. This is a private
member.

• int step The step number for this step.

A pointer to the machineClass structure corresponding to
the machine at this node in the process workcell.

A pointer to the preceding process node in the workcell.

41 BCAM Environment Programming Manual Chapter 5

• boolean critical True if this is a critical step for a machine's operation.
False otherwise. Only one step should be critical for any
input This information is used by the model evaluation
routines.

• connectionClass connection

Connection information for this input

• inputStepValueClass* next
The next step in this linked list.

5.5.6 class outputClass

The class outputClass contains all the information about an output for a machine and

functions for manipulating the outputs. Descriptions of some members follow:

• char* name The name of this output.

• char* abbr An abbreviation of the name of this output.

• char* units The unit of measure for the values of this output.

• double value The current value of this output. This is a private member.

• double min The minimum feasible value for this output.

• doublemax The maximum feasible value for this output.

• double upperSpecLimit The upper specification limit for this output in a particular
manufacturing application.

• double lowerSpecLimit The lower specification limit for this output in a particular
manufacturing application.

• coeffsType coeffs The original controller model coefficients for this output.
This is a private member.

• coeffsType corr_coeffs The controller model correction coefficients for this
output. This is a private member.

• coeffsType simul_coeffs The simulator model coefficients for this output This is a
private member.

• double Value() Return the current value of this output.

• double SetValue(double newValue)
Assign a new value to this output. Also return this new
value.

• boolean Connected() Return TRUE if this output is connected to another
machine. Otherwise return FALSE.

Chapter 5 BCAM Environment Programming Manual 42

5.5.7 class historyClass

An instance of this class stores information about the processing of a particular wafer

on a machine. Each machineClass structure includes a linked list of these history

structures.

• int waferNum The wafer identification number

• double* recipe The controls used to process this wafer on this machine

• double** modelCoeffs The coefficients that the adaptive model used when this
wafer was processed

• double* outputValues The output values measured for this wafer

• double* upperSpecLimits
The upper specification limits on the output measurements
of this water

• double* desiredOutputValues
The targeted values for the output measurements of this
wafer

• double* lowerSpecLimits
The lower specification limits on the output measurements
of this wafer

• double* predictedOutputValues
The output values which were predicted by the adaptive
model at the time this wafer was processed

• double* trueOutputValues
In the case where a simulator was used, the true state of
the simulator is reflected here by recording noiseless
output values of the simulator.

• historyClass* next A pointer to the next oldest wafer record

43 Conclusions & Future Work Chapter 6

Chapter 6 Conclusions & Future Work

6.1 Conclusions

An implementation of an integrated circuit manufacturing control and monitoring

environment has been realized using C++ and X windows. This environment is named the

Berkeley Computer Aided Manufacturing Environment. The environment provides

interfaces to a variety of manufacturing applications, including statistical process control,

malfunction diagnosis, and response surface visualization of equipment models. The

environment also provides a complete control system for processing workcells. The

environment interfaces with an Ingres database for maintenance of machine operation

recipes and equipment model records. In order to provide automated equipment control,

the controller uses an optimization algorithm for recipe updates and a statistically based

algorithm for model updates.

6.2 Database Storage ofWafer Measurements

Currently, the BCAM environment maintains wafer measurement records only in

memory while running. These measurement records, along with the machine controls used

to process the wafers, must also be stored in the database so that they may be accessed

whenever the BCAM environment is re-started after a shutdown.

6.3 Alternate Storage Formats

Development will be performed to allow the BCAM Environment to store information

in text files or other databases than Ingres.

Chapter6 Conclusions &Future Woik 44

6.4 Installation in Integrated Circuit Fabrication Facilities

The connections to the physical equipment must be implemented. The Berkeley

Process-Flow Language[14] (BPFL) and the SECS II protocol will be instrumental in this

development.

The BCAM Environment will be installed at the DEC manufacturing facility in

Boston, Massachusetts.

6.5 Process Capability (Cpk) Evaluation and Process Simulation

When the process prediction capability of the controller is combined with an analysis

of the measured standard errors of the equipment (as stored in the equipment models), the

controller will be able to determine the total process expected standard error (including

any errors which propagate along the process and for which feed-forward control cannot

compensate), and thus the controller will be able to determine the expected yield of the

process. Hence, whenever a new product is proposed, automated yield prediction for the

proposed product may determine whether it is technologically or financially feasible.

6.5.1 Comparison ofControl methods

Cpk prediction and process simulation can also be used to evaluate the control system

itself. By simulating various process problems such as equipment drift or maintenance

disturbances, the response of the control system can be examined, and this information

can be used to adjust various settings of the controller or even to change the configuration

of the process line itself. For example, an engineer may wish to use process simulation to

compare the controller responses with feed-forward control to the responses without feed

forward control, and thereby evaluate the benefit of the added control. This simulation

may also be used to set forgetting factors for the model update algorithms.

45 Conclusions & FutureWork Chapter6

6.5.2 Alarm Generation through Cpk Prediction

Cpk prediction, when used during production, may also provide a method of alarm

generation. When a predicted Cpk becomes too low, it can be a signal that new recipes

should be created for the equipment, or that some equipment needs servicing.

Appendix A

A.l Acronyms

BCAM

BPFL

CEvI

CL

CUSUM

DEC

EECS

EVOP

ERL

ISMSS

LCL

LPCVD

LSL

SECS

SPC

SRC

UCB

UCL

USL

WIP

Acronyms

Appendix A Acronyms

Berkeley Computer Aided Manufacturing

Berkeley Process Flow Language

Computer Integrated Manufacturing

Center Line

Cumulative SUMmation

Digital Equipment Corporation

Electrical Engineering & Computer Sciences

Evolutionary OPeration

(Berkeley) Electronics Research Laboratory

International Semiconductor Manufacturing Science Symposium

Lower Control Limit

Low Pressure Chemical Vapor Deposition

Lower Specification Limit

SEMI Equipment Communications Standard

Statistical Process Control

Semiconductor Research Corporation

University of California at Berkeley

Upper Control Limit

Upper Specification Limit

Work In Progress

46

47 Symbols AppendixB

Appendix B Symbols

In this report bold-faced capital letters are used for matrices and bold faced lower case

letters for column arrays. Row arrays are obtained by applying the transpose operator (T)

to a column array.

0 The set containing only the zero vector.

a A unitiess empirical quantity used in the model update algorithm.

A A derivative matrix of a function / evaluated at a specific point in an
input space.

a An empirical constant used in an Armijo step size calculation.

B A matrix of normalized eigenvectors.

(3 An empirical constant used in an Armijo step size calculation.

c A term coefficient value in a model equation.

Ac A correction to a term coefficient value in a model equation.

c A vector of term coefficient values in a model equation (not including
the constant term).

Ac A correction to a vector of term coefficient values in a model equation
(not including the constant term).

D A diagonal matrix used to numerically condition vectors of term values
used in a model update algorithm.

/ A function mapping an input space into SR.

/ A function mapping an input space into an output space.

F A cost function used in an recipe update algorithm.

g A linearapproximation to a function mapping an input space into SR.

g A linear approximation to a function mapping an input space into an
output space.

G An approximation to a cost function used in a recipe update algorithm.

h A search direction used in a recipe update algorithm.

y A vector of transformed term coefficient values.

Ay A correction to a vector of transformed term coefficient values.

i An index of an equipment input setting as in xt.

j An index for an output value.

k An index into a set of data used for regression, OR an iteration index
for an optimization algorithm.

k The number of data points in a data set used for regression.

/ An index for a term coefficient value, OR an index for an Armijo step
size calculation.

AppendixB Symbols 48

L A linear operator.

X An eigenvalue of a variance-covariance matrix.

A A diagonal matrix of eigenvalues.

m The dimension of an output space.

n The dimension of an input space.

N The set of nonnegative integers.

9i A null space of a linear operator.

r The magnitude of the range of values that an output may take.

R A diagonal matrix used to transform recipes of input settings.

R The range space of a linear operator.

9t The set of real numbers.

s A scaling coefficient used to transform an output value.

S A variance-covariance matrix used in the model update algorithm, or a
diagonal matrix used to transform vectors of output values in the recipe
update algorithm.

a The standard deviation of a random variable.

t The number of terms (not including the constant term) in a model
equation.

t A vector of term values for a model equation.

T A matrix, each row of which is a vector of term values for a model
equation.

9 The zero vector.

u A vector, each element of which is 1.0.

v A numerically conditioned vector of term values for a model equation.

V A matrix, each row of which is a numerically conditioned vector of
term values for a model equation.

w A weighting coefficient for a regression algorithm.

W A diagonal matrix containing the weighting coefficients for a
regression algorithm.

x An equipment input setting.

x A vector (recipe) of equipment settings.

Ax A correction to a recipe of equipment settings in a recipe update
algorithm.

X An input space (the set of valid recipes for a machine or a workcell).

X A matrix, each row of which corresponds to a set of input settings.
% A vectorin a linear space.
y A transformed recipe of input settings.

z An output value.

z A vector of output values.

49 Symbols Appendix B

8z A difference of a predicted set of output values and a set of desired
output values.

Az A discrepancy between a measured output value and a predicted output
value.

Az A vector of output discrepancy values.

Z An output space (the set of possible output value vectors).

Appendix C Adjoint Derivations of theRecipe Update Equations 50

Appendix C

Adjoint Derivations of the Recipe Update Equations

>mxnConsider the linear operator L : X->Z, where L(x) 2Ax, A e 9t . Then the

adjoint operator I? : Z-» X is given by L* (z) s Arz, Ar e SR" xm. These operators satisfy

<z, L(x)> = (L'fc), *>, Vx e X, Vz 6 Z.

Denote thenull spaces and range spaces of L and L* by

5Vi= {x |L(x) =0}c9T (38)

^ = {Z \z = L(x),x€ 9T} c9T (39)

5A4* = {z |L*(z) =0}c9T (40)

^ = {x |x = L*(z),Z€ 9T} c<R" (41)

From the properties of the adjoint [15],

fA&l^^e*,. =9T, (42)

^ ±%*4* 0^ =9T, (43)

and both L : !^* —> ^ and L* : ^ —> ^* are one-to-one onto mappings. Thus any

vector x e SR" can be expressed as

x = x'+xM, (44)

where x' € f^* and x" 6 fA^,, and any vector z € 9f' can be expressed as

z=z'+z\ (45)

51 Adjoint Derivations of the Recipe Updateliquations Appendix C

where z' e ^ and z" e 9^m.

Now examining an optimization problem, given is a z e 9tm and it is desired to find

2

the x e SRn such that || L (x) -r z|| is minimized.

Consider the case when m > n. Then the system is overdetermined. It is assumed that

!A^ = 0, which implies that [A A] is invertible. From (45), the optimum solution x

satisfies Ax = z\ and ll(z) =Arz = Arz' +ATz" = Arz\ Thus,

ArAx = ATz' = ATtand (46)

x = (ArA)_1Arz. (47)

If m< nf the system is underdetermined. It is assumed that fA^* = 0, which implies

Tthat [AA] is invertible and that there is a set of solutions of dimension n-m. Suppose

thata solution x is required which minimizes ||x|| . From (44),

L(x) = Ax = Ax'+Ax" = Ax' = z, (48)

so that using (42), the optimum solution x satisfies i" = 6 (the zero vector), i.e. x € R^ .

Therefore it must be of the form x = A £, for some £ € 3im. Plugging into (48),

7* T

AA £ = z so that £ = (AA) z, which yields

x =AT(AAT)~lz. (49)

Now by translating and scaling the coordinate systems, the equations (47) and (49)

lead to equations (32) and (31), respectively.

Appendix D Ingres Tabic Formats 52

Appendix D Ingres Table Formats

D.l Tables describing the Ingres tables used by the BCAM environment

This appendix describes the structure and contents of the tables used by the BCAM

environment. The table structures are first described by listing their column names and the

types of data stored in those columns. These table structure descriptions are identical to

those provided by the Ingres database manager. The meanings of those columns are then

briefly described, and an example table is provided.

The data type abbreviations used in the table structure descriptions translate as

follows:

i4

f8

varchar(n)

date

Four byte integer.

Eight byte floating point number.

A variable length character siring of maximum length n.

A date and time.

D.2 The Equipment Index Table

The 'equipment_index' table basically lists the equipment which is available to the

operator. This table is used to create the BCAM environment Equipment Activation

Window.

Table 1: Ingres table information for 'cquipment_index'

Column Name Data Type Key# Nulls Defaults

name varchar(20) yes n/a

formal_name varchar(50) yes n/a

process_description varchar(lOO) yes n/a

The column 'name' contains abbreviated names of all available equipment. Each

abbreviated name is also used as an affix to the table names of the other Ingres tables

which apply to that particularpiece of equipment (e.g. the MTI Photoresist Developer's

53 Ingres Table Formats Appendix D

abbreviated name is 'mtil,' and the name of the table describing it's recipes is

'mtil_recipe.' The column 'formaLnamc' contains the full names of the equipment, and

the column 'process_description' contains descriptions of the functionality of the

equipment.

Table 2: Contents of 'equipment_index' database table

name formal_name process__description

tylanl6 iyianl6 Wafer Furnace LPCVD of undoped polysilicon

laml Lam Autoetch Plasma etching of polysilicon

eaton Eaton Photoresist Spinner Photoresist spinning

mtil NOTPhotoresist Developer Photoresist develop

gca GCA Photoresist Exposure Photoresist exposure

D.3 The Equipment Input/Output Table

The 'equipment_io* table describes the inputs (settings, controls, or incoming

measurements) and outputs (post-processing measurements) of a machine.

Table 3: Ingres table information for 'equipment_io'

Column Name Data Type Key# Nulls Defaults

parameter varchar(20) yes n/a

abbreviation varchar(lO) yes n/a

units varchar(lO) yes n/a

io varchar(lO) yes n/a

minimum f8 yes n/a

maximum f8 yes n/a

parameter

abbreviation

units

io

The name of an input or output.

The abbreviation of the name of an input or output.

The unit of measure for an input or output.

The string 'input' or 'output' to distinguish the two.

Appendix D Ingres Table Formats 54

minimum

maximum

The minimum valid value for an input or the minimum
expected value for an output.

The maximum valid value for an input or the maximum
expected value for an output.

Table 4: Example of 'mtil.io' table

parameter abbreviation units io minimum maximum

thickness T Angstroms input 11000 15000

reflectance R % input 60 90

develop time DEVT1 seconds input 50 225

CD1 CD1 microns output 0.65 1.05

D.4 The Equipment Recipe Table

A 'equipment_recipe' table contains recipes for the operation of a particular machine.

Table 5: Ingres information on <equipment_recipe'

Column Name Data Type Key# Nulls Defaults

step i4 yes n/a

critical i4 yes n/a

parameter varchar(20) yes n/a

value f8 yes n/a

recipe_name varchar(50) yes n/a

recipe_owner varchar(20) yes n/a

date date yes n/a

step

critical

• parameter

•value

• recipe_name

• recipe__owner

The operation step (for multistep operation).

A boolean value; one symbolizes true, and zero
symbolizes false. True if this input at this step is critical to
values of the machine's outputs. Each input can only be
critical at a single step.

The name of this input.

The value of this input at this step.

The name of this recipe.

The owner of this recipe.

55

date

Ingres Table Formats Appendix D

The date and time at which this recipe was last modified.

Table 6: Example of (mtil_recipe' table

step critical parameter value recipc_name recipe_owner datea

1 1 thickness 13000 default beam 19-mar-1992

1 1 reflectance 75 default beam 19-mar-1992

1 1 develop time 90 default beam 19-mar-1992

a. Although not shown here, the 'date' column also includes a time of day.

D.5 The Equipment Model Structure Table

The 'equipmentjKiod&ljstruciurc1 table describes the terms which are used in the

output models for this machine, i.e. the ways that the inputs can affect the outputs. If there

are any transformations on the outputs, they are also described in this table.

Table 7: Ingres information on 'equipment_model_structure'

Column Name Data Type Kcy# Nulls Defaults

term i4 yes n/a

parameter varchar(20) yes n/a

exp_matrix f8 yes n/a

special_function varchar(lO) yes n/a

term

parameter

• exp_matrix

• special_function

The term name (all term names are required to be positive
integers). A negative term name indicates that this row
describes an output transformation.

The name of an input which shall appear in this term or
the name of an output which is being transformed.

An exponent to which this parameter will be raised.

A special transformation function for this parameter.
These special functions are applied to a parameter before
taking it to the power of its exponent.

Appendix D Ingres Table Formats 56

Terms which include more than

the table.

Table 8: Example of 'tylanl6_model_structure' table

one input parameter arc described by multiple lines in

term parameter exp_matrix speciaLfunction

-1 thickness 1.0 cxp Th = ex

1 temperature 1.0 none T

2 time 1.0 none t

3 silaneflow -1.0 none 1

Q

4 temperature 1.0 none

4 silane flow -1.0 none T

Q

5 pressure 1.0 none

5 silane flow -1.0 none P

Q

6 pressure 1.0 none

6 temperature 1.0 none

6 silane flow -1.0 none p.T

Q

7 silane flow -1.0 none

7 time 1.0 none t

Q

8 pressure 1.0 none

8 silane flow -1.0 none

8 time 1.0 none P>t

Q

9 silane flow -2.0 none l

Q2
10 temperature 1.0 none

10 silane flow -2.0 none T

Q2

57 Ingres Table Formats Appendix D

Table 8: Example of 'tylanl6_model_structure' table

term parameter exp_matrix speciaLfunction

11 temperature 2.0 none

11 silane flow -2.0 none f

Q2
12 time 2.0 none t2

13 pressure 1.0 log logP

14 temperature -1.0 none 1

T

15 time 1.0 log log*

D.6 The Equipment Models Table

The 'equipmenLmodels' table contains for each machine output the coefficients for

terms described in the 4equipment_modeLstructure' to make up the model for that output

Table 9: Ingres information on 'equipment_models'

Column Name Data Type Kcy# Nulls Defaults

output varchar(20) yes n/a

term varchar(10) yes n/a

coefficient f8 yes n/a

model_name varchar(50) yes n/a

model_owner varchar(20) yes n/a

date date yes n/a

output

term

The output parameter name.

The term name.

The term name *()' (zero) is reserved for the constant term
of the model.

The term name *std err' refers to the estimated gaussian
standard error of the machine for this output
The term name 4pred err' refers to the estimated
prediction error of the output model.
The term name 'forget fct' refers to the forgetting factor
used by this model lor model updates.

Appendix D Ingres Table Formats 58

• coefficient

• model_name

• model_owner

•date

The term name 'window siz' refers to the maximum
window size used by this modelfor the model updates.
The coefficient value for this term.

The name of this model.

The owner of this model.

The most recent modification date of this coefficient.

Table 10: Example <of 'tylanl6_models' table

Output Term Coefficient
Model

Name

Model

Owner
Datea

thickness window siz 15 default beam 07-apr-1992

thickness forget fct 0.95 default beam 07-apr-1992

thickness pred err 0.026 default beam 07-apr-1992

thickness stderr 0.058 default beam 07-apr-1992

thickness 0 20.65 default beam 07-apr-1992

thickness 3 -47.97 default beam 07-apr-1992

thickness 13 0.29 default beam 07-apr-1992

thickness 14 -15189.2 default beam 07-apr-1992

thickness 15 1.0 default beam 07-apr-1992

stress window siz 15 default beam 07-apr-1992

stress forget fct 0.95 default beam 07-apr-1992

stress pred err 0.579 default beam 07-apr-1992

stress stderr 1.261 default beam 07-apr-1992

stress 0 126.71 default beam 07-apr-1992

stress 1 -0.172 default beam 07-apr-1992

stress 2 0.532 default beam 07-apr-1992

stress 3 -42108 default beam 07-apr-1992

stress 4 44.8 default beam 07-apr-1992

stress 5 105.27 default beam 07-apr-1992

stress 6 -0.112 default beam 07-apr-1992

stress 7 15.644 default beam 07-apr-1992

stress 8 -0.039 default beam 07-apr-1992

59 Ingres Table Formats Appendix D

Table 10: Example of 4tylan16_models' table

Output Term Coefficient
Model

Name

Model

Owner
Datea

stress 9 2725650 default beam 07-apr-1992

stress 10 -6070.5 default beam 07-apr-1992

stress 11 3.38 default beam 07-apr-1992

stress 12 -0.003 default beam 07-apr-1992

a. Although not shown here, this column also contains the time of day.

The equations represented by the above tables <tylanl6_modeLstructure, and

'tylan^.jnodels* are:

47 97 15189 2Th = exp (20.65 - -^ +0.29logP - \2 + logr) (50)

S = 126.71 -0.1727+0.532,-^ +*^+ m21P

0.112PT 15.644;

Q + Q

Q

0.039P, 2725650

Q

6070.57

Q2

O -50 7^ _+£I£Oi___00()3/2 (51)

Appendix E Alphabetical Library Function Listing 60

Appendix E Alphabetical Library Function Listing

The following is an alphabetical list of the C++ functions used in the BCAM

environment After each function is listed its source file name. All source files are located

in the directory "-bcamdev/BCAM/bombay-code", except the files "diagnosis.cc" and

"recipelngres.scc" which are located in the directory "bcamdev/BCAM/hcliu-code".

* choiceList choiceClass::AddChoice(char* texlPtr) "modelChoice.cc"

* choiceList choiceClass::AddChoiceAlpha(char* texlPtr) "modelChoice.cc"

* choiceList choiceClass::AddChoiceToEnd(char* textPtr) "modelChoice.cc"

* void AddEquipment(Widget w, equipNameClass* equipNumcPtr, caddrj. call_data) "equipSetup.cc"

* Widget AddIoWidget(Widget io_box, int ioNum, char* texU machincAndlntPtrsType* ioTargetPtr)
"connections.ee"

* machineListmachineClass::AddMachine(char*cquipNamc) "machineRW.cc"

* void inputClass::AddStep(int step, double value, booleancritical) "steps.ee"

* Widget AddTextWidget(Widget parent, Widget last_widget, char* interrogative, char* information, char*units)
"connections.ee"

* voidmachineClass::AddToHistory() "machineRW.cc"

* boolean macbineClass::AreThereConnection.s() "machineRW.cc"

* wdouble ArmijoStepSize(double alpha,double beta, int peggedlnpulPtr, double initialCost, double
initialDirectionallDerivauvc, double* searchDirection, double* inputs,
connectionClass* processlnputs, int inputCount, connectionClass*
processOutputs, int outputCouiil, processNode* processPtr,double*
desiredOutputs, double* spccKungcK) "generateRecipe.cc"

void AskForFinalSpecs(Widget parent, processList process,caddrj cull_dala) "process.ee"

void AskForFinalTargets(Widget parent, processList process, caddr_t call.data) "process.ee"

void AskForOutputs(processNode* processPtr, Widget parent) "interfaces.ee"

void AskForRecipe(Widget parent, processList process, caddr.t call_datu) "process.ee"

void AskForSimulationRepCnt(Widget parent, processList process, caddr_l calljdata) "process.ee"

void processNode::AssignControls(int waferNum, char* intcrfacciype) "interfaces.ee"

double Average(double dataQ, int dataCnt) "mymath.ee"

void BCAMentrance(int argc, char** argv) "controllerEntrance.ee"

void BCAMhelp(Widget w, caddr.t clientjdata, caddr.t calljdata) "controllerEntrance.ee"

void BCAMinfo(Widget w, caddr.t clientjdata, caddr.t calljdatu) "controllerEntrance.ee"

void BcamQuit(Widget w, caddr.t clientjdata, caddrjt calljdata) "controllerEntrance.cc"

void BCAMXtInitialize(int argc, char** argv) "controllerEntrance.cc"

void bsubs(double matrix[][MAXDIM], double columnf], int dim, short* good) "mymath.ee"

void processNode::CalcControls() "generateRecipe.cc"

void CallConnect(Widget w, connectionlnfoTypc* connectionlnfoPtr, caddr_t call_data) "connections.ee"

void CallDisconnect(Widget w, connectionlnfoTypc* connectionlnfoPtr, caddr_t calljdata) "connections.ee"

void CaUGetOutputs(Widget w, processNode* processPtr,caddr.t calljdata) "interfaces.ee"

void CallOldConnectfWidget w, machineClass* machincPtr. caddrj call_data) "equipWindow.ee"

void CallPropagate(Widget w, processNode* processPtr, caddr_t cull_duta) "interfaces.ee"

void CallRemoveAsGoal(Widget w, connectionlnfo'iypc* connectionlnl'oPlr, caddr_t call_data) "connections.ee"

61 Alphabetical Library Function Listing

* void CallSetAsGoal(Widget w, conneclionlnfo'iype*connectionlnfoPtr, caddrjt calljdata)

* char* capitalize(char* string)

* void Center(doubledataflfMAXDIMl, int dim, int dalaCnt, double center[][MAXDIM])

* double cerfjprm(double y)

* double chebyshev(double a, double b, int n. int i)

* void CheckModel(Widget w, machineClass* machincPtr. caddrj calljdata)

* int choiceClass: :ChoiceListLength()

* void machineClass: :ClearHistory()

* void processNode: :ClearHistory()

* void ClearProcessHistory(Widget parent, processList process, euddf_t calljdata)

* void ClearProcessHistoryWaming(Widget parent, processList process, caddrj calljdata)

* double outputClass::Coe£f(int coeffNum)

* boolean CompatibleUnits(char* units 1, char* units2)

* wvoid ConOrmModelCoeffs(Widget w, machineClass* machincPtr, caddr.t calljdata)

* void ConfirmRecipe(Widget w, machineClass* machincPtr, caddrj calljdata)

* void ConfirmSimulCoefTs(Widgct w, machineClass* machincPtr. caddrj calljdata)

* boolean inputClass::Connected()

* boolean outputClass::Connected()

* void ConnectIngres(char* databascName)

* void ConnectMachines(machineClass* inputMachincPtr. int inputNum,machineClass* outputMachinePtr, int
outputNum) "machineRW.cc"

* void ConnectMachines(machineClass* inputMachincPtr, int inputNum, int step, machineClass*
outputMachinePtr, int outputNum) "machineRW.cc"

* void machineClass::ConnectMachincsByNarne(chur* inputMuchineName, int inputNum, int step, char*
outpulMachineName, int outputNum) "machineRW.cc"

* void machineClass: :CopyOutputsToInputs() "machineRW.cc"

* void processNode::CopyOutputsToInputs() "machineRW.cc"

* double*CopyVector(double* target, double*source, int dimension) "mymath.ee"

* void CopyWidgetLabel(Widget w, Widget target, caddrj calljdata) "modelChoice.cc"

* double outputClass::ConCoeff(int coeffNum) "modelEval.ee"

* double cosine(double x) "mymath.ee"

* intinputClass::CountSteps() "steps.ee"

* int modelClass::CountTotalInputs() "steps.ee"

* void CovMatrix(double data[][MAXDIM|, int dim, int dutuCnt. double rcsult[][MAXDIM], double weights!])
"mymath.ee"

* wdouble inputClass::CriticalValuc()

* void CreateMainBCAMmenu()

* inputStepValueClass* inputClass::CrilicalStcp()

* intinputClass::CriticalStepNum()

* processList DeduceProcessFromConneclions(machineList machines)

* void choiceClass::DeleteChoiceList()

* void choiceClass::DeleteChoiceListAndText()

* void modelNameClass::DeleteModelNamcList()

* machineList machineClass::DeleteMachine(machineClass*doomcdMachinePtr)

* processNode* processNode: :DeletcProcess()

* void recipeNameClass::DeleteRecipcNamcList()

* void inputClass::DeleteValueList()

Appendix E

"connections.ee"

"machineRW.cc"

"mymath.ee"

"mymath.ee"

"mymath.ee"

"equipWindow.ee"

"modelChoice.cc"

"machineRW.cc"

"process.ee"

"process.ee"

"process.ee"

"modelEval.ee"

"machineRW.cc"

"equipWindow.ee"

"equipWindow.ee"

"equipWindow.ee"

"machineRW.cc"

"machineRW.cc"

"modellngres.scc"

"steps.ee"

"controllerEntrance.cc"

"steps.ee"

"steps.ee"

"process.ee"

"modelChoice.cc"

"modelChoice.cc"

"modelRW.ee"

"machineRW.cc"

"process.ee"

"recipelngres.scc"

"steps.ee"

Appendix E Alphabetical Library Function Listing 62

* void DeleteWidgetList(widgetList widgets) "connections.ee"

* int DependenceLength(machineClass* machincPtr, int recursion Ixvcl) "process.ee"
* void Desensitize(Widget w, Widget numb, caddrj calljdata) "functions.ee"

* void DestroyParentOfParent(Widget w, caddrj clientjdata, caddrj call_data) "functions.ee"

* void DestroyParentOfPofPofPofP(Widget w, caddrj clientjdata. caddrj call_data) "funcUons.cc"

* void DestroyWidget(Widget w, Widget doomed, caddrj calljdata) "functions.ee"

* double determinant(doubleMQfMAXDIM], int dim) "mymath.ee"

* void Diagnosis(Widgetw, machineClass*machinePtr, caddrj calljdata) "diagnosis.cc"

* void DiagQuit(Widget w, mahcneClass* machinePtr, caddrj calljdata) "diagnosis.cc"

* Widget DialogBelowRight(Widget parent, Widget above, WidgCt left, char* title.char* information, int vertDist)
"functions.ee"

* void DictateControls(processNode* processPtr, Widget parent) "interfaces.ee"

* void DisconnectIngres() "modellngres.scc"

* void machineClass::DisconnectInput(int inputNum, int step) "machineRW.cc"

* void DisconnectMachines(machineClass* inputMachincPtr, int inputNum, machineClass* outputMachinePtr, int
outputNum) "machineRW.cc"

* void DisconnectMachines(machineClass* inputMachincPtr, int inputNum, int step, machineClass*
outputMachinePtr, int outputNum) "machineRW.cc"

* void machineClass::DisconnectOutput(intoutputNum) "machineRW.cc"

* Widget DisplayInputs(machineClass* machine.Widget equipJorm. Widget last_widgct) "equipWindow.ee"

* Widget DisplayOutputs(machineClass* machine.Widget equipJorm. Widget last.widget) "equipWindow.ee"

* Widget DisplayTerm(machineClass* machine. Widget equipJorm, Widget lust.widget, Widget left,
int termNum, int vertDist) "equipWindow.cc"

* Widget DisplayModel(machineClass* machine.Widget equipJorm, Widget last_widget) "equipWindow.cc"

* void DisplayOrigCoeffs(Widget w, machineClass* machincPtr, caddrj call_data) "equipWindow.cc"

* void DoCalcControls(Widget w, processList process, caddrj calljdata) "process.ee"

* wdouble DotProduct(double* vectorl, double* vector2, int dimension) "mymath.ee"

* void dumpInputs(modelClass*modelPtr) "generateRecipe.cc"

* void eigen(double matrix[][MAXDIM], double eigenvalues!!, double cigcnvectors[][MAXDIM], int dim)
"mymath.ee"

* void EquipPredict(Widget w, machineClass* machinePtr, caddr_lcull_data) "equipWindow.cc"

* double erf_pnn(double x) "mymath.ee"

* double modelClass::eval(int outputNum, boolean uscSimulCoclTs) "modelEval.ee"

* void ExitProcess(Widget parent, processList* proccssListPtr, caddrjt calljdata) "process.ee"

* double expjdiv_10000(doublejnput) "modelSpecFn.ee"

* double expjiiv_10000_inv(double input) "modelSpecFn.ee"

* double expjdiv_10000jderiv(double input) "modelSpecFn.cc"

* double expjdiv_10000jderiv2(double input) "modelSpecFn.cc"

* int factor(int k) "mymath.ee"

* void fsubs(double matrix[][MAXDIM], double column[|, int dint) "mymath.ee"

* double Gauss() "modelEval.ee"

* double GetDiscrepancies(double* discrepancies, connectionClass* proccssOutputs, int outputCount,
processNode* processPtr, double dcsiredOutputs, double* specRanges)

"generateRecipe.cc"

* int GetFinalOutputs(connectionClass finalOutputsf], machincList machines) "process.ee"

* int machineClass::GetInputIndex(char* name) "modelEval.ee"

* int machineClass: :GetModelIO() "modellngres.scc"

* int machineClass::GetModelStructure() "modellngres.scc"

63 Alphabetical Library Function Listing

int machineClass: :GetModelCoeffs(char* modclSelector)

void GetNewModelName(Widget w, machineClass* machincPtr, caddrj calljdata)

void GetNewRecipeName(Widgct w, machineClass* machincPtr, caddrj calldjdata)

int machineClass::GetOutputIndex(char* name)

void processNode: :GetOutputs()

int processNode::GetRemainingControls(connectionClasK* processlnputs)

int processNode::GetRemainingFinalOulputs(conneclion(MuNH* proccssOutputs)

int GetSpecialFunctionIndex(char* name)

intmodelClass::GetTermIndex(char* name)

int modelClass::GetTermIndex(char* name)

double* modelClass::Gradient(double* gradient, int outputNum)

Appendix E

"modellngres.scc"

"modelRW.cc"

"recipelngres.scc"

"modelEval.ee"

"interfaces.ee"

"process.ee"

"process.ee"

"modelSpecFn.ee"

"modelEval.cc"

"modelEval.cc"

"generateRecipe.cc"

double* processNode::Gradient(doublc* gradient, connectionClass* processlnputs,intinputCnt, connectionClass
proccssOulput)

void machineClass: :Graph(char* graphTypc)

void machineClass::Graph(char* graphTypc, int index)

void processNode::Graph(char* graphTypc)

voidGraphAutocorrelation(machineClass* machincPtr, PILIJ* tempFile, int outputNum)

void GraphCUSUM(machineClass* machincPtr. FILM* IcmpPilc, int outputNum)

void GraphFinalOutputs(Widget parent, processList process, cucldrj calljdata)

void GraphInput(machineClass* machincPtr, MLB* tempFile, int inputNum)

void GraphMachineNormalizedInputs(machineCIass* machinePtr, FILE* tempFile)

void machineClass::GraphN(char* graphlype, int indcxCount)

void GraphOutput(machineClass* machincPtr, FILE* tempFile, int outputNum)

void GraphOutputs(Widget parent, processList process, caddrj calljdata)

void GraphNormalizedInputs(Widgel parent. processList process, caddrjt calljdata)

voidGraphPredictionErrors(machincCIuss* muchinePtr, FILIi* tempFile, int outputNum)

void GraphUnconnectedTnputs(Widget parent, processList process, caddrj calljdata)

void HandleConnectAsFinalOutpul(Widgct w, muchincCluss* machinePtr, caddrj calljdata) "connections2.ee"

void HandleConnectAsUncontrollablc(Widgel w, muchineCliiss* machinePtr, caddrjt calljdata)
" connections2.ee"

void HandleInputClick(Widget w, machineClass* machincPtr. caddrj calljdata) "connections2.ee"

void HandleIOClick(machineClass* clickedMachinePtr, int clickedloNum, int clickedStep, boolean
clickedIslnput, hooicun oneSidcdConnectStoredIO) "connections2.ee"

void HandleOutputClick(Widget w, machineClass* muchinePtr, caddrj calljdata) "connections2.ee"

boolean HasAFinalOutput(machincClass* machinePtr) "process.ee"

void HighlightOConn(Widget w, Widget io_mcnu, caddrj cull_data) "connections.ee"

void HighlightWidget(Widget w, Widget command, caddrj calljdata) "functions.ee"

historyClass::historyClass() "machineRW.cc"

historyClass::~historyClass() "machineRW.cc"

int machineClass::HistoryLength() "machineRW.cc"

void Inline(Widget w, Widget diagnosis, caddrj calljdata) "diagnosis.cc"

Widget IOBelowRight(Widget parent, Widget abpve. Widget left, char* title, char* message, boolean islnput, int
vertDist, machineClass* muchinePtr) "equipWindow.cc"

inputClass::inputClass() "modelEval.cc"

inputClass::inputClass(inputClass& input) "modelEval.cc"

inputClass::-inputClass() "modelEval.cc"

double machineClass::inputRange(int inputNum) "modelEval.cc"

"generateRecipe.cc"

"graphsBCAM.ee"

"graphsBCAM.ee"

"process.ee"

"graphsBCAM.ee"

"graphsBCAM.ee"

"process.ee"

"graphsBCAM.ee"

"graphsBCAM.ee"

"graphsBCAM.cc"

"graphsBCAM.ee"

"process.ee"

"process.ee"

"graphsBCAM.cc"

"process.ee"

Appendix E Alphabetical Library Function Listing

double machineClass::inputRange(ioNameType inputName)

inputStepValueClass: :inputStepValueClass()

int modelClass::InsertInputs(double* inputVector)

void InvalidateHistory(Widget parent, processList process, caddrj calljdata)

boolean IsAMember(char** unitlist, char* unit)

Widget LabelBelowRight(Widget parent, Widget above, Widget left, char* title, char* message, int vertDist)
"functions.ee

boolean LegalInputs(connecuonClass* processlnputs, int inputCount)

short linear(double matrixfJfMAXDIM], double column[], short done, short pivt, int dim)

void linerror(short* good)

int machineClass::LoadAllNewRecipe(char* newRecipeName, char* newRecipeOwner)

void LoadCntrlModelWindow(Widget w, machineClass* machinePtr, cuddrj calljdata)

void LoadDefaultModelCoeffs(machineClass* machincPtr, char* modelSelector)

void LoadDefaultModelToCntrl(Widget w, machineClass* machinePtr, caddrjt calljdata)

void LoadDefaultModelToSimul(Widget w, muchincCluss* muchinePtr. cuddrj calljdata)

void LoadModelWindow(Widget w, char* modelSelector, muchincCluss* muchinePtr)

int machineClass::LoadNewRecipeValues(char* newRccipcName, chur* newRecipeOwner)

void LoadRecipeWindow(Widget w, machineClass* machincPtr. cuddrj calldjdata)

void LoadSimulModelWindow(Widget w, machineClass* machincPtr. cuddrj calljdata)

double log_deriv(double input)

double log_deriv2(double input)

equipNameList equipNameClass::LookupEquipName(equipNameType cquipName)

int choiceClass::LookupChoiceIndex(char* selection)

choiceClass* choiceClass: :LookupChoicePtr(int selectNum)

char* choiceClass::LookupChoiceText(int selectNum)

machineClass* machineClass::LookupMachinc(char* cquipName)

processNode* processNode: :LookupMachinc(machincClass* muchine)

modelNameList modelNameClass::LookupModelNumc(modelNamcTypc modelName, userNameType
modelOwner) "modelRW.cc

modelNameList modelNameClass::LookupModelName(cquipNameTypc cquipName, modelNameType
modelName, userNameType modelOwner)

void ludec(double matrix[][MAXDIM], double column[], int dim, short* good, short pivt)

machineClass::machineClass(char* equipNamc)

int MachineCount(machineList machinePtr)

boolean processNode::MachineInProcess(machincCluss* muchinePtr)

main(int argc, char* argv[])

void Maint(Widget w, Widget diagnosis, caddrj calljdata)

void MaintRank(Widget w, Widget diagnosis, caddrj calljdatu)

Widget MakeAddEquipMenu(Widget parent, equipNameList choices)

Widget machineClass::MakeEquipWindow(Widgct parent)

WidgetMakeIOMenuWidget(Widgetconnections_mcnu, Arg* argList, inturgNum,char*io_menu_title, boolean
inNotOut, Widget ioJille.eqPtr, muchineAndlntPtrsType* ioTargetPtr)

"connections.ee"

choiceList modelClass::MakeIOChoices(boolcan inNotOut) "modelChoice.cc"

choiceList machineClass::MakeMachineChoices() "modelChoice.cc"

Widget MakeMainMenu(Widget parent, char* menuTilic, mcnuCommundType* menuCommands, int
commandCnt) "mainMenu.cc"

64

"modelEval.cc"

"steps.ee"

"modelEval.cc"

process.ee

"machineRW.cc"

"generateRecipe.cc"

"mymath.ee"

"mymath.ee"

"recipelngres.scc"

"modelRW.cc"

"modelRW.cc"

"equipWindow.cc"

"equipWindow.cc"

"modelRW.cc"

"recipelngres.scc"

"recipelngres.scc"

"modelRW.cc"

"modelSpecFn.cc"

"modelSpecFn.cc"

"modelRW.cc"

"modelChoice.cc"

"modelChoice.cc"

"modelChoice.cc"

"machineRW.cc"

"process.ee"

"modelRW.cc"

"mymath.ee"

"machineRW.cc"

"process.ee"

"process.ee"

"BCAM.cc"

"diagnosis.cc"

"diagnosis.cc"

"equipSetup.ee"

"equipWindow.cc"

65 Alphabetical Library Function Listing Appendix E

void MakeOIdConnectionsMenu(Widgct purent, machincCluNH* machines, machineClass* firstMachinePtr)
"connections.ee"

Widget MakeProcessPulldownBar(Widget parent, processList process) "process.ee"

Widget MakePulldownBar(Widget parent, char* menuTillc, pulldownConunandType* menuCommands, int
commandCnl, int barCommandWidth) "mainMenu.cc"

Widget MakePulldownMenu(Widgctparent, char* mcnuTille. menuCommandType* menuCommands, int
commandCnt) "mainMenu.cc"

Widget Make3DCommandButton(Widgct parent,char* title, char* label, Widget above, Widget left)
"functions.ee"

void MakeWarning(Widget parent,char* warningString, voidPunctionPtrType callbackFn, void* dataPtr)
"makeWarning.ee"

void MapWidget(Widget w, Widget shell, caddrj call_data) "functions.ee"

void matinvert(double matrixQ[MAXDIM], int dim) "mymath.ee"

void matmultip(double left[][MAXDIM], double right| HMAXDIM], double result[][MAXDIM], int m, int n,
intl)

double maximum(double numl, double num2)

int maximum(int numl, int num2)

void MessageWidget(char* messagcString)

double minimum(double numl, double mim2)

int minimum(int numl, int num2)

modelClass::modelClass()

char* modelClass::ModelName()

char* modelClass::ModelOwner()

int machineClass: :ModelUpdate()

int machineClass::ModelUpdate(int outputNum)

boolean modelClass: :NoiseState()

int modelClass::NonzeroTermCoeffsCnt(inl outputNum)

double* NormalizeVector(double* vector, int dimension)

void OfferToGenerateRecipe(Widgct parent, processList process)

void Online(Widget w, Widget diagnosis, caddrj calljUulu)

void OpenCntrlModel(Widget w, modelNaincClass* modelNumcPtr, caddrj calljdata)

void OpenRecipe(Widget w, recipeNamcClass* rccipcNumePtr, caddrj calldjdata)

void OpenSimulModel(Widget w, modelNamcClass* modelNamcPtr, caddr_t calljdata)

void processNode::operate(char* interfacciype)

void processNode::operateNtimes(char* inicrfuceiype, int wufcrCnt)

void OperateProcess(Widget parent, processList process, caddrj calljdata)

void inputClass::operator=(inpulClass& input)

double outputClass::OrigCoeff(int coeffNum)

outputClass: :outputClass()

outputClass: :~outputClass()

boolean machineClass::OutputIsConnected(inl outputNum)

double machineClass::outputRange(inl outputNum)

double machineClass::outputRangc(ioNumcTypc outputNume)

void pivot(int i, double matrix[][MAXDIM |, double column! I. int dim, short* good)

void Plot(Widget w, int num, caddrj calljdata)

void PlotBelieffWidget w, Widget diagnosis, caddrj culljdulu)

void PopdownParentOfParent(Widgct w, cuddr_l clienljdutu. cuddrj calljdata)

"mymath.ee"

"mymath.ee"

"mymath.ee"

'messageWidgetcc"

"mymath.ee"

"mymath.ee"

"modelEval.cc"

"modelEval.cc"

"modelEval.cc"

"modelUpdate.cc"

"modelUpdate.ee"

"modelEval.cc"

"modelEval.cc"

"mymath.ee"

"process.ee"

"diagnosis.cc"

"modelRW.cc"

"recipelngres.scc"

"modelRW.cc"

"process.ee"

"process.ee"

"process.ee"

"modelEval.cc"

MmodelEval.cc"

"modelEval.cc"

"modelEval.cc"

"machineRW.cc"

"modelEval.cc"

"modelEval.cc"

"mymath.ee"

"diagnosis.cc"

"diagnosis.cc"

"functions.ee"

Appendix E Alphabetical Library Function Listing 66

* void Popdownshell(Widget w, Widget downshell, caddrj calljdata) "functions.cc"

* void PopupLocationShell(Widget shell. Position x, Position y) "functions.cc"

* void PopupLocationShell(Widget w, Widget shell. Position x, Position y, caddrj calljdata) "functions.cc"

* void PopupMessageShell(char* messageText, Widget parent) "functions.cc"

* void PopupShell(Widget parent, Widget child, caddrj calljduta) "functions.cc"

* void PopupShell (Widget parent,Widget child, caddrj calljdata, XtGruhKind grabjcind) "functions.cc"

* void PopupShellGrabNone(Widget parent,Widget child, caddrj calljduta) "functions.cc"

* double power(double x, int n) "mymath.cc"

* double modelClass::predict(int outputNum) "modelEval.cc"

* double machineClass::predict(int outputNum) "modelEval.cc"

* void processNode::predict()

* double processNode::predict(connectionClass output)

* void PredictProcess(Widget parent, processList process, caddrj calljduta)

* void PrepareToAddEquip(Widget parent,void* garbage, caddrj calljdata)

* Widget PrintBoldInfonnation(Widget parent,Widget last.widgct, char* message)

* void choiceClass::PrintChoices()

* void PrintEquipNames(equipNameList equipNamcs)

* Widget PrintInformation(Widget parent,Widget Iasl_widgel, char* message)

* Widget PrintInformation(Widget parent.Widget last_widgel, char*message.char* title)

* void PrintMatrix(FILE* outputFile, double matrix|]|MAXDIM], int rowCnl, intcolCnt)

* Widget PrintPermaInformation(Widget parent. Widget lastjwidgct, char* message)

* void PrintVector(FILE* outputFile, double vectorj J, int dun)

* void ProcessAlarms(Widget parent, processList process, caddrj culljduta)

* void ProcessAutocorrelation(Widget parent, processI.ist pmccNH. cuddr. I call_data)

* void ProcessCUSUM(Widget parent, processList process, cuddrj culljduta)

* void ProcessNoiseHistory(Widget parent, processList process, caddrj calljdata)

* processOptionsClass::processOptionsClass()

* void ProcessSetup(Widget parent, void* garbage,cuddrj calljdata)

* void processNode::propagate()

* double PvalueFromTstatistic(double t, int df)

* void Quit(Widget w, caddrjt clientjdata, caddrj calljdata)

* void QuitWarningfWidget w, caddrj clientjdata, caddrj calljdata)

* equipNameList ReadEquipNames()

* void ReadMatrix(char* fileName, double matrix[]|MAXDIMl, int rowCnl, int colCnt)

* modelNameList ReadModelNames(char* equipName)

* recipeNameList ReadRecipeNames(char* equipName)

* void ReadTextIntoDouble(Widget w, double* target, caddrj calljduta)

* void ReadTextIntoInputValue(Widget w, inputStcpValucClass* target caddrj cjd)

* void ReadTextIntoOutputValue(Widget w, outputClass* target, cuddrj calljdata)

* void ReadTolerance(Widget w, outputClass* target, caddrj calljduta)

* void ReadVector(char* fileName, double* vector, int dim)

* void Regress(double* x, double* y, double* weights, int dim, double* slopePtr, double* pValueSlopePtr, double*
interceptPtr, double* pVuluelnlPtr. double* sigmaSqHatPtr) "mymath.cc"

* void Realize(Widget w, Widget shell, caddrj calljduta) "functions.cc"

* void RememberRepCnt(Widget w, int* repCnlPlr. cuddr_l calljdulu) "process.ee"

* char* modelClass::RecipeName() "modelEval.cc"

process.ee

"modelEval.cc"

"process.ee"

"equipSetup.cc"

"functions.cc"

"modelChoice.cc"

"modelRW.cc"

"functions.cc"

"functions.cc"

"mymath.cc"

"functions.cc"

"mymath.ee"

"prooess.ee"

"process.ee"

"process.ee"

"process.ee"

"process.ee"

"process.ee"

"interfaces.ee"

"mymath.cc"

"functions.cc"

"controllerEntrance.cc"

"modellngres.scc"

"mymath.ee"

"modellngres.scc"

"recipelngres.scc"

"modelChoice.cc"

"modelChoice.cc"

"modelChoice.cc"

"modelChoice.cc"

"mymath.ee"

67 Alphabetical Library Function Listing Appendix E

char*modelClass::RecipeOwner() "modelEval.cc"

void RedoIoMenu(Widget io_box, machineAndlnlPlrsTypc* ioTargelPtr, boolean inNotOutMenu)
"connections.ee"

void RedoIoMenus(Widget equiop, connectionlnfoTypc* connectionlnfoPtr, caddrj calljdata) "connections.ee"

void machineClass::RefreshOurputConnectionMenu(int outputNum) "machineRW.cc"

void RefreshWidget(Widget w, Widget shell, caddrj calljdata) "functions.cc"

void machineClass: :RemoveAsGoal(int outputNum) "machineRW.cc"

void machineClass::RemoveAsUncontrollablc(int inputNum, int step) "machineRW.cc"

void RemoveEquipmentWarning(Widget w, machineClass* doomedMachine, caddrjt calljdata) "equipSetup.ee"

void RemoveMachine(Widget w, machineClass* doomedMachine, caddrjt calljdata)

void Resensitize(Widget w, Widget numb, caddrj calljduta)

void RestoreRecipe(Widget w, machineClass* machincPtr. cuddrj calljdata)

double root(double x, int n)

int modelClass::SaveCoeffs()

int modelClass::SaveModel()

void SaveModelfWidget w, machineClass* machinePtr, caddrjt calljdata)

void SaveModelAs(Widget w, machineClass* machincPtr, caddrj calljdata)

void SaveModelWarning(Widget w, machineClass* machincPtr, caddrj calljdata)

void SaveRecipe(Widget w, machineClass* machinePtr, caddrj calldjdata)

void SaveRecipeAs(Widget w, machineClass* machincPtr, cuddrj calldjdata)

double modelClass::sens(int outputNum, int inputNum)

double processNode::sens(connectionCIass output, connectionClass input)

void machineClass: :SetAsGoal(int outputNum)

void machineClass: :SetAsUncontrollablc(int inputNum, int step)

void SetChoiceQYidget w, returnChoiccType* rclurnChoicePlr, caddrj Calljdata)

double outputClass::SetCoeff(int coeffNum, double newValue)

double outpuOass::SetCorrCoeff(int coeffNum, double newValue)

double inputClass::SetCriticalValuc(doublc newValue)

void SetEquip2(Widget w, connectionlnfoTypc* connectionlnfoPtr, caddrj calljdata)

void machineClass::SetHistoryToInvulid()

void processNode::SetHistoryToInvalid()

void SetIoNum(Widget w, machincAndlnlPtrsiype* lurgct, cuddrj calljdata)

void SetIoNumToZero(Widget w, int* ioNumPtr. caddrjt call_data)

char* modelClass::SetModelName(char* newName)

char* modelClass::SetModelOwner(char* newName)

char* modelClass::SetRecipeName(char* newName)

char* modelClass::SetRecipeOwncr(char* newName)

double outputClass::SetSimulCoeff(int coeffNum, double newValue)

char* modelClass::SetSimulModclNamc(char* newName)

char* modelClass::SetSimulModclOwncr(char* ncwNumc)

void SetTextWidgetString(Widget w, char* siring)

void SetToFalse(Widget w, int* targetlntPtr. caddrj calljdata)

void SetToTrue(Widget w, int* targetlnlPtr, caddrj calljdata)

double inputClass::SetValue(int step, double newValue)

double inputStepValueClass::SetValue(doublc newValue)

double outputClass::SetValue(doublc newValue)

"equipSetup.ee"

"functions.cc"

"equipWindow.cc"

"mymath.ee"

"modellngres.scc"

"modelRW.cc"

"equipWindow.cc"

"modelRW.cc"

"equipWindow.cc"

"recipelngres.scc"

"recipelngres.scc"

"modelEval.cc"

"modelEval.cc"

"machineRW.cc"

"machineRW.ee"

"modelChoice.cc"

"modelEval.cc"

"modelEval.cc"

"steps.ee"

"connections.ee"

"machineRW.cc"

"process.ee"

"connections.ee"

"connections.ee"

"modelEval.cc"

"modelEval.cc"

"modelEval.cc"

"modelEval.cc"

"modelEval.cc"

"modelEval.cc"

"modelEval.cc"

"functions.cc"

"modelChoice.cc"

"modelChoice.cc"

"steps.ee"

"steps.ee"

"modelEval.cc"

Appendix E Alphabetical Library Function Listing 68

void SetWidgetLabel(Widget w, char* label) "functions.cc"

void ShowConnections(Widget parent, connectionlnfoTypc* connectionlnfoPtr. caddrjt calljdata)
"connections.ee"

void processNode::ShowProcessOrder(Widget parent. Widget commandJiar) "process.ee"

void processNode::ShowPredictedFinalOutputs(Widget parent) "process.ee"

double machineClass::simulate() "modelEval.cc"

double modelClass::simulate(int outputNum) "modelEval.cc"

void SimulateProcess(Widget parent, processList process, caddrj calljdata) "process.ee"

void SimulateProcessNtimes(Widget parent, processList process, cuddrj calljdata) "process.ee"

void SimulateProcessNtimes(Widget parent, processList process, caddrj calljdata) "process.ee"

double ouqputClass::SimulCoeff(int coeffNum) "modelEval.cc"

char* modelQass::SimulModelName() "modelEval.cc"

char* modelClass::SimulModelOwner() "modelEval.cc"

Widget SizedDialogBelowRight(Widget parent, Widget above, Widget left, char* title.char* information, int size,
int vertDist) "functions.cc"

Widget SizedLabelBelowRight(Widget parent. Widget above. Widget left, char* title.char* message, int size, int
vertDist) "functions.cc"

specialFunctionType spec_fns[SPEC_FNjCNT| "modelSpecFn.cc"

void StartBCAM(Widget w, Widget beam, caddrjt cull.dala) "controllerEntrance.cc"

inputStepValueClass* inputClass::Step(int step) "steps.ee"

boolean inputClass::StepExists(int step) "steps.ee"

char* strip(char* string) "modellngres.scc"

double Sum(double dataQ, int dataCnt) "mymath.cc"

double SumOfSquares(double datafj, int dataCnt) "mymath.ee"

void svd(double matrix[][MAXDIM], double Icft[||MAXDIM|, double siugularValucs[], double
right(][MAXDIM|, int rowCnt, int colCnt)

double modelClass: :term(int termNum)

double modelClass::termDeriv(int termNum, int inputNum)

double modelClass: :termMax(int termNum)

double modelClass: :termMin(int termNum)

void modelClass::termMinMax(int termNum, int position, double* minPtr, double* maxPtr)

double modelClass::termRange(int termNum)

void TimeSeed()

double Tintegral(double t, int df)

double Tintegral(double t, double ai, double n)

void ToggleFeedback(Widget w, processList process,cuddrj calljdata)

void ToggleFeedForward(Widget w, processList process,cuddrj cnlL<lata)

double Transform(double plain, transformType xfonn)

void TransformInputs(double* inputVector, double* inpulKanges. int dimension)

void Transpose(double matrixQ[MAXDIM|. int rows, int columns, double target[][MAXDIM])

int trunc(double x)

void machineClass::TiirnOffFeedback()

void processNode::TumOffFeedback()

void modelClass::TumOffNoise()

void processNode::TurnOffNoise()

void machineClass::TurnOnFeedback()

void processNode::TurnOnFeedback()

"mymath.ee"

"modelEval.cc"

"modelEval.cc"

"modelEval.cc"

"modelEval.cc"

"modelEval.cc"

"modelEval.cc"

"modelEval.cc"

"mymath.cc"

"mymath.ee"

"process.ee"

"process.ee"

"modelEval.cc"

generateRecipe.cc"

'mymath.ee"

'mymath.ee"

"machineRW.cc"

"process.ee"

"modelEval.cc"

"process.ee"

"machineRW.cc"

"process.ee"

69 Alphabetical Library Function Listing Appendix E

void modelClass::TurnOnNoise() "modelEval.cc"

void processNode::TurnOnNoise() "process.cc"

void UnhighlightWidget(Widgetw, Widget command,cuddrj calljdata) "functions.cc"

void UnmapWidget(Widget w, Widget shell, caddrjt calljdutu) "functions.cc"

void Unrealize(Widgetw, Widget shell, caddr_t calljlatii) "functions.cc"

double Untransform(double fancy, transformType xform) "modelEval.cc"

void UntransformInputs(double* inputVector, double inputRunges, int dimension) "generateRecipe.cc"

booleanValidConnection(machineClass* inputMachincPtr, int inputNum, machineClass* outputMachinePtr,int
outputNum) "machineRW.cc"

int machineClass::ValidHistoryLenglh() "machineRW.cc"

doubleinputClass::Value(int step) "steps.cc"

double inputStepValueClass::Value() "steps.cc"

doubleoutputClass::Value() "modelEval.cc"

inputStepValueClass* inputClass::ValueList() "steps.cc"

doubleVectorLength(double* vector, int dimension) "mymath.cc"

doubleWeightedAverage(double datafJ, double wcights||. int dataCnt) "mymath.cc"

void modelClass::ZeroCoeffs() "modelEval.cc"

void modelClass::ZeroCoeffs(int outputNum) "modelEval.cc"

void ZeroMatrix(matrixType matrix, int rowCnl. int colCnt) "mymath.cc"

void ZeroVector(vectorType vector, int dim) "mymath.cc"

Appendix F Description of the Source Files 70

Appendix F Description of the Source Files

All source files are located in the directory "-bcamdev/BCAM/bombay-code",

except the files "diagnosis.cc" and "recipelngres.scc" which are located in the directory

"bcamdev/BCAM/hdiu-code". The source files are accessed through the UNIX revision

control system res. To check out a file, an authorized user must issue the command

co -I filename

which will give that user write permission to the file. Once changes have been made to the

file, the user must check the file back in using the command

ci -u filename

To put a new source file under res control, the owner must issue the command

ci newfllename

To add authorization to access a source file for a particular user, the following command

must be issued

res -ausername

Note that the user name immediately follows the -a switch. For further details on res,

reference the UNIX manual pages.

F.I BCAM.cc The is the location of the main function. All the main

function does is call the BCAMentrancc function. The purpose of this separate main

function is to allow that BCAMentrancc can in the future be called from higher level

software.

• main(int argc, char* argv[])
{

71 Description of the Source Files AppendixF

extern void BCAMentrance(int,char**);
BCAMentrance(argc,argv);

}

F.2 cpnnections.ee This file contains the code for the old style connections

window which is accessed through the Equipment Window's Connections Menu. The

code in this file is somewhat outdated; newer code for menu-guided connections should be

written in the future.

F.3 connections2.ee This file contains the code for interpreting clicks upon

input and output names in the Equipment Window. These clicks are used to infer machine

interconnection information.

F.4 controllerEntrance.cc This file contains the functions used to start up the

BCAM environment, including the initialization of the X Windows, and the creation of the

entrance window and the main BCAM menu. This file also contains the declarations of the

global variables of the BCAM environment.

F.5 diagnosis.ee This file contains the functions for accessing the BCAM

diagnosis application [16][17]. This source code is written and maintained by Hao-Cheng

Liu.

F.6 equipSetup.ee This file contains the higher level functions used to

activate and deactivate equipment. With activation (deactivation), an instance of

machineClass is created (deleted).

F.7 equipWindow.cc This file contains all the code for creating an Equipment

Window, and most of the code for the Equipment Window's callback functions.

Appendix F Description of the Source Files 72

F.8 functions.cc General functions (mostly callback) to deal with X

windows.

F.9 generateRecipe.cc This file contains the code for calculating equipment

setting recipes. Most of this code is mathematical in nature.

F.10 graphsBCAM.cc This file contains code to present graphs for the BCAM

environment These graphs concern themselves with the analysis of measurement records.

The functions in this file make use of the unix command 'xgraph'. This file does not

contain the source code for response surface plotting of equipment models.

F.ll interifaces.cc This file contains code for using different interfaces to

run or simulate wafer processing. This is where code should be inserted for automatic

communication to processing equipment and measurcmenl equipment.

F.12 machineRW.cc This file contains a variety of functions dealing with

machineClass instances.

F.13 mainMenu.cc This file contains the functions used to build the main

BCAM menu and the bars of pulldown menus at the tops of the equipment window and

the workcell window.

F.14 makeWarning.ee This file contains the function which creates a BCAM

warning window.

F.15 messageWidgetcc This file contains the function to create a BCAM

message window.

73 Description of the Source Files Appendix F

F.16 modelChoice.cc This file contains functions for creating lists of choices

in a widget format. The functions in this file arc referenced primarily from those in the

'connections.ee' file. This code is provided primarily for use with the old style

connections window.

F.17 modelEval.cc This file contains low level functions for evaluating

models, accessing private members of the modelClass, and other basic mathematical

operations on machines and models. This tile also contains constructor and destructor

functions for several classes.

F.18 modellngres.scc This file contains the code for accessing the Ingres table

'equipment__index' as well as the Ingres tables for equipment input/output information and

equipment models. This code requires an Ingres pre-processor (esqlc).

F.19 modelRW.cc This file contains functions dealing with the reading and

writing of models (i.e. loading them and saving them), as well as functions dealing with

the reading of the available equipment list. These functions are one level up from the

functions which actually handle the database operations.

F.20 modelSpecFn.cc This file contains the code for implementing several

special functions. The needed functions arc defined here, as well as an array of pointers to

those functions. Another function is used to find indices into this array.

F.21 modelUpdate.cc This file contains the code used for updating equipment

models. The model update algorithm uses several mathematical functions defined in

"mymath.ee".

Appendix F Description of Hie Source Files 74

F.22 mymath.cc This file contains mathematical functions. Most of the

functions in this file were written by Professor Costas Spanos. The statistical analysis

functions were added by the author.

F.23 process.cc This file contains most of the functions which handle a

processing workcell, including the functions which define the Workcell Window.

F.24 recipelngres.scc This file contains code for the BCAM Recipe Editor's

interface to the Ingres database. This code was written by Hao-Cheng Liu and Bart

Bombay and is now maintained by Hao-Cheng Liu. This code requires an Ingres pre

processor (esqlc).

F.25 steps.cc This file contains functions for accessing the recipe

values at individual steps in the operation of a machine.

F.26 xgraphRM.cc This file contains a function which creates an xgraph,

and then when the xgraph exits, automatically removes the file which was used for that

xgraph. This file is self contained (except for the libraries <stdio.h> and <stdlib.h>) and

compiles to its own executable.

• main(int argc, char* argv[])

{
if(argc<2){
fprintf(stderr,"xgraphRM error: no file name specified!\n");
exit(0);

}
char systemString[250];
sprintf(systemString,"xgraph -bg white -bw 10-tk -bb %s",argv[l]);
system(systemString);
sprintf(systemString,"rm %s",argv[l]);
system(systemString);
}

75 Principal Library Functions Listedby Hierarchy AppendixG

Appendix G Principal Library Functions Listed by Hierarchy

This appendix describes the basic program flow of several important sections of the

BCAM program. Function nesting is indicated by the number of bullets preceding a

function name; each bullet represents a level of nesting. Only the most important function

calls are listed in this description; minor functions calls can be referenced in the source

code.

G.l The Beginning of the Program

• BCAMentrance Create BCAM entrance window with 'Continue', 'Quit'.

• • BCAMXtlnitialize Initialize X windows for BCAM.

• • XtMainLoop Loop for events (mouse clicks, keyboard strikes).

G.l.l Click on Entrance Window: 'Continue'

• StartBcam Bring up the main BCAM menu.

• • Connectlngres Connect to the Ingres database.

• • XtUnrealizeWidget Bring down the BCAM entrance window.

• • CreateMainBCAMMenu

Define and create the main BCAM menu window and

realize it to the screen.

• • • MakeMainMenu Create the main menu command buttons and set up the
callbacks for these buttons.

G.l2 Click on Entrance Window: 'Quit*

• BcamQuit Shut down the BCAM Environment.

G.2 Main BCAM Menu Actions

G.2.1 Click on'EQUIP'

• PrepareToAddEquip Bring up window with equipment activation menu.

• • ReadEquipNames Read the list of available equipment from the database and
store in memory (global linked list availableEquipment).

• • MakeAddEquipmentMenu
Define and create the window for equipment activation.

• • XtPopup Pop up the equipment activation window to the screen.

Appendix G Principal Library Functions Listed by Hierarchy 76

G.2.2 Click on 'HELP'

• BCAMhelp

G.2.3 Click on'INFO'

•BCAMinfo

G.2.4 Click on 'EXIT'

• QuitWarning

• • BcamQuit

Pop up the main BCAM help window.

Pop up the BCAM information window.

Ask the user for verification before quitting.

Shut down the BCAM Environment.

G.3 Activation of a Machine

• AddEquipment

• • AddMachine

• • MakeEquipWindow

G.3J Function AddMachine

• machineClass

• LookupEquipName

• GetMachine

• • GetModellO

• • GetModelStructure

XtCreatePopupShell

MakePulldownBar

Displaylnputs

DisplayOutputs

Add a machine to the current setup and bring up the
corresponding equipment window.

Create a new machineClass instance and load the machine

data from the database.

Define, create, and pop up the equipment window for this
machine.

Constructor for machineClass. Load machine information

from the database.

Look up machine in list of available equipment.
Load up machine information from the database.

Get the machine's input and output information.

Load the machine's model structure from the database.

GetDefaultModelCoeffs
Load the machine's model coefficients from the database.

• • LoadAllNewRecipe Load the machine's default recipe from the database.

G.3.2 Function MakeEquipWindow

Create the window shell for the equipment window.

Make the bar of pulldown menus along the top of the
equipment window.

MakePuUdownMenu Make a pulldown menu within the pulldown bar.

Put all the input information in window.

Put all the output information in window.

1. The BCAM environment help facility has not yet been dcvclnjHid.

77 Principal Library Functions Lislcd by IIicrarchy Appendix G

• DisplayModel Put all the model information in window.

• PopupshellGrabNone Pop up the equipment window.

• DisplayModelCoeffs Set the equipment window to show the controller's
current adaptive model.

G.4 Equipment Model Analyses

G.4.1 Controller's Current Adaptive Model Evaluation

• processNode::predict Predict the outputs of all machines in the workcell. Start
with this machine, and use current input values.

• • machineClass::predict Predict an output of this machine.

• • • modelClass::predict Evaluate the controller's current model for an output.

• • • • modelClass::eval Evaluate the equipment model.

• • • • • modelClass::term Evaluate a term in the equipment model.

G.4.2 Simulator Model Evaluation

• machineClass:simulate Simulate all machine outputs using the simulator model.

• • modelClass: simulate Evaluate the equipment simulator model for an output.

• • • modelClass::eval Evaluate the equipment model.

• • • • modelClass::term Evaluate a term in the equipment model.

G.4.3 Controller's Current Adaptive Model Sensitivity Calculation

processNode::sens Calculate the sensitivity of one machine's output to
another machine's input.

• modelClass::sens Calculate the sensitivity of an output to an input.
(Evaluate the derivative of the equipment model.)

• • modelClass: :termDeriv

Evaluate the derivative of a term in the equipment model.

modelClass::eval Evaluate the equipment model.

• • modelClass::term Evaluate a term in the equipment model.

G.5 Workcell Operation

G.5.1 Simulating the Operationofthe Workcell (for demonstration and debugging
purposes)

• SimulateProcess Workcell window menu command button callback.

• • processNode::operate("simulator")
Operate workcell in simulator mode.

• •

Appendix G Principal Library Functions Listed by Hierarchy 78

• • • processNode::AssignControls
Assign the current controls to a simulated machine.

• • • • machineClass::simulate

Simulate the operation of a machine.

• • • • processNode::GetOutputs
Fetch the results of the simulation.

processNode::propagate
Deal with the results of the simulation.

• ••••• machineClass::CopyOutputsToInputs
Send the results on to other machine inputs as specified by
connections.

• ••••• machineClass::AddToHistory
Store the results in the machine's historical record.

•••••• machineClass::ModelUpdale
Check the machine's model and update if necessary.

• ••••• processNode::CalcControls
Handle feed forward control calculations.

• ••••• processNode::AssignControls
If not done, start simulation of the next processing station
in the workcell.

• processNode::CalcControls
If done with the last machine in the workcell and any
models have been updated and feedback control is on,
then calculate a new workcell recipe if necessary.

G.5.2 Wafer Processing in the Workcell

• OperateProcess Workcell window menu command button callback.

processNode::operate("screen interface")
Operate workcell in screen interface mode.

processNode::AssignControls
Assign the current controls to a machine.

processNode::DictateControls
Pop up a window dictating the current controls for a
machine.

• CallGetOutputs DictateControls callback function to call
processNode::GetOutputs.

• • processNode::GetOutpuls
Fetch the results of the simulation.

• • • AskForOutputs Pop up a window asking the operator for the results
(measurements) after the machine is finished.

••••CallPropagate AskForOutputs callback function to call
processNode: :propagate.

• •

• •

• • •

79 Principal Library Functions Listed by Hierarchy Appendix G

• processNode::propagate
Deal with the results typed in by the operator.

• ••••••••• machineClass::CopyOutputsToInputs
Send the results on to other machine inputs as specified by
connections.

• ••••••••• machineClass::AddToHistory
Store the results in the machine's historical record.

• ••••••••• machineClass::ModelUpdate
Check the machine's model and update if necessary.

• ••••••••• processNode: :CalcControls
Handle feed forward control calculations.

• ••••••••• processNode::AssignControls
If not done, start operation of the next processing station
in the workcell.

• processNode::CalcControls
If done with the last machine in the workcell and any
models have been updated and feedback control is on,
then calculate a new workcell recipe if necessary.

Appendix H Source Code Listings 80

Appendix H Source Code Listings

Source code for the BCAM Environment is available upon request by electronic mail

to bcam@radon.berkeley.edu.

81 Known Bugs Appendix I

Appendix I Known Bugs

Unit compatibility is checked when connections are made (e.g. micrometers are
compatible with Angstroms). The BCAM Workcell Controller, however, does not
support unit conversions along connections. 5/92

Appendix J A G2 Formulation of Measurement Queuing Effects 82

Appendix J

A G2 Formulation of Measurement Queuing Effects

J.l Introduction

Recent developments in integrated circuit design call for the improvement of the

performance of photolithography workcells. In order to accomplish this improvement,

computer aided manufacturing techniques are being applied to the process, and these

techniques require regular measurements of equipment performance. With these

measurements, however, are the associated costs of additional hardware, time, and labor.

Hence the industry is faced with the problem of implementing these measurements in a

manner which will minimize the cost per unit product produced yet improve product

quality. The most obvious goals arc to increase product yield (decrease the fraction

nonconforming) and improve product performance. Because measurements will slow

down the manufacturing process, the desired implementation will attempt to minimize the

impact of taking these measurements upon the product throughput, and thus attempt to

maintain a satisfactory production level.

There are several issues which must be addressed in any formulation of this scheme.

Specifications must be determined on how many wafers to measure, which wafers to

measure, and how often to measure them. The types of measurements must be decided

upon. The effects on work in progress inventory must be examined. And finally the

production costs must be studied to determine the magnitude of any improvement in

marginal cost versus marginal revenue.

The Berkeley Computer Aided Manufacturing (BCAM) group was recently presented

with the opportunity to study a new software product from Gensym Corporation. The

product, G2, is a flexible tool which uses an object oriented environment to simulate and

83 A G2 Formulation of Measurement Queuing Effects Appendix J

control various types of systems. Of particular interest are this product's extended

graphical capabilities which assist an operator in using the system.

For this study, the G2 software was used to simulate a photolithography workcell and

to study the effects of introducing a measurement strategy into the workcell. The

feasibility of using G2 as an interface to a control and monitoring system is also

addressed.

J.2 Methodology

The G2 software possesses several appealing features. Among these are its graphics

capabilities, its object oriented environment, its simulation ability, and its general

flexibility. In order to introduce customers to the software, Gensym provides a two day

course on the G2 system. This course proved effective in familiarizing new users with the

general use of G2.

Although G2 is very flexible, considerable effort must be expended to program

algorithms into G2. The one second clock cycle for G2 is also rather restrictive. These

limitations prevent the use of G2 to implement the generalized BCAM control and

monitoring system. However, one interesting feature of the software is its ability to

interface with C programs. This feature leads to the possibility of a more limited use of G2

as a graphical interface to the BCAM software, which is written primarily in C++. While

such an implementation is attractive, the high cost of G2 precludes such a limited use. For

this study a more limited application is chosen, namely the queuing problems associated

with introducing regular measurements into a photolithography workcell.

The design for this study focuses on the construction of a relatively simple model of

the photolithography workcell timing (see figure below). Wafers are processed by a

machine and then placed into a storage area. From this area, wafers are either taken to an

analytical station for measurement and then transferred to the following storage area, or

Appendix J A G2 Formulation of Measurement Queuing Effects 84

they are transferred directly to the next storage area. The next processing station then takes

its wafers from that storage area. The decisions about whether or not to measure any

particular wafer are dependent upon production flow and control criteria.

GCA
Photoresist
Exposure

MTT
Photoresist
Developer < Wafer

Storage

Figure 7 Flow Diagram for the Photolithography Workcell

85 A G2 Formulationof MeasurementQueuing Effects AppendixJ

Initial work to design a knowledge base with G2 includes the definition of several

object types and icons, and preliminary connections among instances of these icons.

Gensym also provides a customer support visit which is effective in assisting users new to

the G2 system. With such assistance, a basic design can be implemented. This basic

design may then be further refined with the introduction of an enhanced set of rules, more

informative readouts, and more precise timing specifications.

J.3 Results

This study compares two distinct algorithms for the scheduling of wafer

measurements. These two methods are henceforth referenced as algorithm A and

algorithm B and are described below.

J.3.1 Wafer Scheduling Algorithm A

The first method, algorithm A, uses inventory based rules to decide the number of

wafers from which measurements would be taken. Each storage area immediately

preceding a processing station has a specific low level. If the wafer count in the storage

area falls below this low level, the deficit is immediately taken from the preceding storage

area, and the wafers so taken do not get measured. As long as the count of the storage

areas remains above or at the low level, each wafer will be subjected to measurement as it

passes between storage areas.

Algorithm A proves to be successful in maintaining production levels since it foregoes

measurements whenever the relevant intermediate wafer inventories fall below designated

low levels. Because wafers require queuing before measurement, this formulation does,

however, increase the work in progress inventory. Another drawback to this method is the

variability of the frequency of measurement; during some time periods, many wafers are

measured, while during other time periods few or no wafers are measured.

Appendix J A G2 Formulation of Measurement Queuing Effects 86

J.3.2 Wafer Scheduling Algorithm B

The second algorithm for wafer measurement, algorithm B, sets specific goals for the

number of wafers to be measured at each step in the process. One out of every four wafers

is subjected to measurement as it passes between storage areas. This algorithm is

indifferent to the supply levels in the storage areas.

Algorithm B is successful at providing a steady stream of data, but results in a

somewhat reduced production level. This method also results in a lower work in progress

inventory than the first method, although still higher than a process without

measurements.

J.3.3 Results of the Simulations

It should be noted that the simulations fail to give a good quality of information. This

deficiency is attributed to two factors. The first limitation of the system is that it discretizes

time into one second intervals. Thus if the time were scaled to simulate five minutes of

production every second, then the resolution of the process simulation would be limited to

five minutes. The time scale chosen for the simulation is one minute per second. This time

scale yields sufficient resolution for the simulation, while providing results after a

reasonable period of time. (At this scale, the simulation of a 24 hour workday requires 24

minutes.) The second limitation of the system results from the unmanageability of the G2

rule system. Creating complex rule patterns with G2, although undoubtedly possible, is

time consuming, particularly with respect to making structural changes in the flow

decision rules. Hence time requirements for the implementation of the desired simulations

exceed the resources allotted to the project. The project is therefore somewhat scaled

back.

Several topics of interest are ignored in these simulations. An analysis of the

profitability of the different algorithms is not performed. The simulation of the workcell is

87 A G2 Formulation of Measurement Queuing Effects Appendix J

idealized. In an actual fabrication facility, the processing times of the various equipment

change with varying conditions, including change of operators, and random noise. The

equipment in an actual workcell also experiences periodic downtime due to failures and

general maintenance. The relative time requirements of the processing steps may also

change with different product lines. In addition, the changing operating conditions in a

fabrication facility may require a dynamically changing measurement scheduling

algorithm which can emphasize data collection for issues of interest, while reducing the

emphasis on lesser issues. This report does not address these problems.

The results of the simulations are strongly dependent on the specific time requirements

of the particular elements in the workcell, especially the time required to take

measurements. Since these time requirements vary significantly for different technologies,

the results of this project should only be interpreted in a relative manner.

In particular, many of the relevant measurements can now be implemented 'in situ' on

the wafer track so that they have no impact on the wafer processing time. In such a case,

measurements can easily be made on all wafers, providing valuable information to an

appropriate process control and SPC system. Thus the only increase in cost comes from

the purchase and maintenance of the new measurement equipment

In the case that measurements arc taken off the wafer track, the time for measurement

is an important consideration. Some measurements require more time than others. (For

instance in the Berkeley Microfabrication Laboratory, a manual critical dimension

measurement may require tenfold the time required for a photoresist thickness

measurement.) When faced with such circumstances, a successful scheduling scheme may

reduce the frequency of measurement for those measurements which are time intensive.

For model based control schemes a measurement scheduling algorithm must ensure

the maximization of the number of wafers which are measured at all stations. Thus wafers

Appendix J A G2Formulation of Measurement Queuing Effects 88

which were previously measured receive priority for future measurements in order to

facilitate model building. For feed-forward control, every wafer (or at least samples from

every lot) must be measured. For statistical quality control, an increase in the number of

measurements taken will almost always be beneficial. Maximizing the frequency of

measurements in the processing line will expedite the detection and diagnosis of

equipment problems.

J.4 Conclusions

The results of this project are highly dependent upon the configuration of the

photolithography workcell. In general, any increase in measurement frequency is

beneficial as long as it does not cause loo great an increase in cost. 'In situ' measurements

on wafers along the wafer track are extremely desirable, as they do not cause delays in the

processing line.

Drawbacks of in-process measurements:

• Cost of the measurement equipment and its maintenance

• If a system is dependent on measurements, measurement equipment failure could cause
interruptions in production.

• The time requirements of measurements can slow down production.

• Queuing requirements of measurement scheduling can increase the work in progress
inventory.

Advantages of in-process measurements:

• Additional information for problem detection and diagnostic efforts

• Quantitative records of machine performance

• In-process measurements allow the implementation of a feed-forward control scheme
to eliminate the propagation of disturbances and increase yield.

• Measurement data assists in the development of equipment models for various control
and design purposes.

89 A G2 Formulation of Measurement Queuing Effects Appendix J

J.5 Future Work

A comprehensive study requires more detailed models of photolithography equipment

performance. The G2 representation of the photolithography cell might be expanded to

include interfaces to fabrication and measurement equipment, as well as interfaces to C

code to handle computationally intensive control and modeling computations. The system

would then be able to handle many applications, including scheduling, model-based

control, statistical quality control, diagnosis, recipe design for equipment operation, and

database operations. In such a case, G2 would serve primarily as a graphical interface to a

computer aided manufacturing system, and C code would provide the remainder of the

functionality. This G2 formulation of a computer aided manufacturing system would,

however, be limited to operations which require time discretation at a level no lower than

one second intervals, as this is the maximum clock speed of the G2 system. The G2

representation could also be expanded to include multiple workcells and thereby simulate

and control an entire production process. Such an implementation would interact well with

G2's object oriented structure.

Unfortunately, this project yielded little positive information on G2's applicability to

integrated circuit manufacturing. Specifically, the following design limitations prevent G2

from becoming a valid tool in computer aided manufacturing for the semiconductor

industry:

• The current version of G2 lacks the computational power required for advanced control
and modeling purposes (although connections to C routines are possible).

• In its current implementation, the G2 system clock is too slow and inflexible.

• G2 is unwieldy for developers; the user-interface of G2 is in need of revision. Many of
the most common tasks require convoluted menu selections. The language used in G2
rule systems is sometimes imprecise and time consuming to apply. The rule and
procedure definition methods lend themselves to an unorganized project
implementation.

• The implementation of the object oriented framework needs improvement. There are
some limitations when updating structures. Specifically, instances must sometimes be
deleted and recreated whenever base structures change.

References 90

References

I] Mandel, "The Regression Control Chart," Journal of Quality Technology, Vol. 1, No.
1, pp. 1-9, January 1969.

2] Emanuel Sachs, "The Run by Run Controller," 1991 SRC Workshop on Real Time
Equipment Controllers, Vancouver, February 18-19,1991.

3] Zhi-min Ling, Sovarong Leang and Costas J. Spanos, "A Lithography Workcell
Monitoring and Modeling Scheme," ME'90, Belgium, Sept., 1990.

4] Zhi-min Ling, Sovarong Leang and Costas J. Spanos, "In-Line Supervisory Control
in a PhotolithographicWorkcell,'* SPIE vol. 921, p. 258, 1988.

5] Sovarong Leang and Costas J. Spanos, "Statistically Based Feedback Control of
Photoresist Application," ASMC/SEMI1991 Conference Proceedings, Boston, MA,
October, 1991.

6] Richard Harris, A Primer ofMultivariate Statistics, Academic Press, New York, NY,
1975.

7] Bart J. Bombay and Costas J. Spanos, "Application of Adaptive Equipment Models
to a Photolithographic Process," SPIE Technical Symposium on Microelectronic
Processing Integration 1991, September 1991.

8] G. S. May, J. Huang, and C. J. Spanos, "Experimental Modeling of the Etch
Characteristics of Polysilicon in CCI4/HC/O2 Plasmas," Proc. IEEE Int. Electronics
Manufacturing Technology Symp., October 1990.

9] K. -K. Lin, J. Huang, and C. J. Spanos, "Statistical Equipment Modeling for VLSI
manufacturing," Symp. Automated Semiconductor Manufacturing, 176-
Electrochemical Soc. Mtg., August 1990.

10] Z. M. Ling and C. J. Spanos, "In-line Supervisory Control in a Photolithographic
Workcell," Proc. SRC/DARPA CIMIC Workshop, August 1990.

II] K. Wieskamp and B. Flaming, The Complete C++ Primer, Academic Press, San
Diego, CA, 1989.

12] D.E. Seborg, T.F. Edgar, and D.A. Mellichamp, Process Dynamics and Control,
John Wiley & sons, 1989.

13] D. Montgomery, Statistical Quality Control, John Wiley & Sons, 1985.

14] Christopher J. Hegarty, Lawrence A. Rowe, and Christopher B. Williams, "The
Berkeley Process-Flow Language WIP System," University of California Electronics
Research Laboratory Memorandum No. UCB/ERL M90/77, September 1990.

15] C. A. Desoer, EECS 221A Linear Systems Theory Course Notes, U. C. Berkeley,
Berkeley, CA, Fall 1990.

16] May, Gary S., "Automated Malfunction Diagnosis of Integrated Circuit
Manufacturing Equipment", ERL, University of California, 1991.

17] May, Gary S. and Spanos, Costas J., "Automated Malfunction Diagnosis of a Plasma
Etcher", ISMSS '91,1991.

18] Gene H. Golub, Charles F. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins
University Press, Baltimore, 1989.

19] Richard Harris, A Primer ofMultivariate Statistics, Academic Press, New York, NY,
1975.

91 References

[20] E. Polak, Notes on Fundamentals ofOptimizationfor Engineers: A Reader for EECS
227A, U. C. Berkeley, Berkeley, CA, Spring 1992.

[21] Sovarong Leang and Costas Spanos, "Application of Feed-forward Control to a
Lithography Stepper", ISMSS *92, San Francisco, June 1992.

[22] EECS/ERL Industrial Liasion Program, EECS/ERL 1992 Research Summary, U.C.
Berkeley, Berkeley, CA, 1992,

[23] Costas J. Spanos, "Real-Time Statistical Process Control; A Proposal for Technology
Transfer during the Summer and Fall of 1992," 1992-93 Proposal to SRC, U.C.
Berkeley, Berkeley, CA, April 5,1992.

	Copyright notice1992
	ERL-92-113 (part 1 of 2)
	ERL-92-113 (part 2 of 2)

