

Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

COMBINATIONAL TEST GENERATION

USING SATISFIABILITY

by

Paul R. Stephan, Robert K. Brayton, and
Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M92/112

2 October 1992

COMBINATIONAL TEST GENERATION

USING SATISFIABILITY

by

Paul R. Stephan, Robert K. Brayton, and
Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M92/112

2 October 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Combinational Test Generation using Satisfiability

Paul R. Stephan, Robert K. Brayton, and Alberto L. Sangiovaniii-Vincentelli

Department of Electrical Engineeringand Computer Sciences
University of Californiaat Berkeley

Abstract

Wepresenta new algorithmforcombinationaltestgenerationwhichimproveson Larrabee's resultsby usingmore
robust and simpler heuristics. In TEGUS, test generation using satisfiability, the characteristic function of all tests
for a fault is constructedin conjunctivenormal form (CNF).The CNF formula is solved by an algorithmfor Boolean
satisfiability (SAT) using simple but powerful new heuristics. With our implementation we have algorithmicalry
generated a test for every fault in the ISCAS test generationbenchmark networks without using random tests or fault
simulation, demonstrating the robustnessof the method. We demonstrate the efficiencyof TEGUS by comparing
it with results for 16 recently published structural algorithms. TEGUS combines the advantages of the elegant
organization of Larrabee's formulation with the efficiency of structural algorithms such as the D-algorithm and
PODEM.

1 Introduction

In 1966,Roth presented the D-algorithm [37] for combinational test generation which he proved complete, meaning
that if a test for a fault exists, the D-algorithm will find it if allowed to run to completion. Every deterministic
test generationalgorithm developed since has the same worst case complexity. The difference between algorithms
guaranteed to findall tests is only in the set of heuristicsused to optimize the averagecase performance.

Structural search algorithmssuch as the D-algorithm [37] and PODEM [18] are currentlyacceptedas being the most
efficient, and consequently the most practical. Larrabee recently proposed a new algorithm[24] which generates an
algebraic formula to describe the network, the fault, as well as search heuristics. A test is generatedby solving the
formula usinganalgorithmforBooleansatisfiability. Usingthis framework, Larrabee addedseveralpopularstructural
search heuristics to the formulaand comparedthem foreffectiveness.

When a test generationproblem is expressed as an algebraic formula in conjunctive normal form (CNF), information
about the network structureis lost. Forexample it is difficult to determine the number of network inputs or outputs by
looking at the formula. However the informationwhich is lostdoes not affect the overall complexity of test generation.

On the other hand, Larrabee [24] has shown that the algebraic formulation has several advantages over structural
search techniques. The algorithm to generatea test is very simple because the CNF formula uniformly represents
the entire test generation problem. Even structural test generation algorithms based on a single primitive such as
NAND gates use at least five valued algebras, and distinguishbetween forward implications, backward implications,
line justification, etc. In an algorithm for satisfiability, the single operationof assigning a Boolean value true or false
subsumes all of this. However, the best results in [24] are still at least an orderof magnitude slower than comparable
structure-based test generation algorithms.

Many other NP-hardproblems have been solved efficiently by applying suitable heuristicse.g. tautology,bin packing
and unate covering. Thus instead ofapplying structural search heuristics by adding extra clauses to the formula as in
[24], we have focused on finding SAT heuristics which solve the basic formula as efficiently as possible. Different
heuristicsrepresent tradeoffs between robustness,simplicity,and efficiency. For example, exhaustive searchis 100%

robust and quite simple, but not very efficient. In this report we describe the basic heuristics of TEGUS, TEst
GenerationUsing Satisfiability,which represents a particularly good balanceamong these three factors:

Robustness: Without fault simulation or random tests, TEGUS can algorithmicallygeneratea test for every fault in
the ISCAS '85 [6] and ISCAS '89 [5] test generationbenchmarks.

Efficiency: TEGUS performance is comparable to the best publishedresults for structural test generation algorithms;
we compareTEGUS with severalrecently publishedresults,using the ISCAS benchmark networks.

Simplicity: The uniformity of the CNF formula resultsin a naturally straightforward algorithmto generate a test No
testability measures or complicated backtracingheuristicsare needed.

We have implemented TEGUS as two separate components: a generic package for solving SAT problems, and the
package specific to its application in test generation. The heuristics developed for TEGUS can be applied to other
problems which are easily formulated as satisfiabilityquestions. For example, test generation for other fault models
such as bridging faults or delay faults can be implemented by generating a suitableCNF formula and then applying
the same SAT packageto solve it. The resultsin this reportshow that this approach to test generation is practical as
well as conceptually elegant

We assume the reader is familiar with basic test generation concepts such as justification, implication, and D-
frontier[30]. The remainder of the report is organizedas follows. Section 2 gives an overview ofTEGUS and some
base results used to evaluate the new heuristics presented. Section 3 gives the problem formulationas derived from
the method of Boolean differences. Section 4 describes the heuristicsused by TEGUS to solve the resulting Boolean
satisfiability problem. Section 5 summarizes the experimental results.

2 Overview

Algorithms for test generation are broadly categorized as either structuralor algebraic. Structural algorithms analyze
the gate network for information to guide the decisions made duringtest generation. For example, PODEM[18] only
assigns values at the network primary inputs, which greatly improves the average case performance for networks with
a lot of reconvergence. FAN[13] assigns values to signals in the network which have fanout greaterthan one, as well
as at specially identified head lines, and computes unique sensitizationvalues during the search. Heuristics such as
these are based on analyzing the structure of the gate network.

To select and assign a value to an input or head line, additional heuristics using controllability and observability
measures are used. For example, if an OR gate must have the value one, it is sufficient to set any one of its inputs to
one. One way to choose an input is to estimate how easy it is to set each input to one, a controllability measure. Many
different controllability and observability measures have been used [1,11,19,20,21,33]. All these arebased on the
structure of the network.

In contrast an algebraic algorithm translates the entire test generation problem into an algebraic formula. Then
algebraic operations, such as factoring and elimination,areappliedheuristicallyto simplify the formula; finallya test
is generated by solving the formula. Early algebraic techniques [40] were not methodicalenough to be automated.
Arbitrary formulascan be simplified methodically using binarydecision diagrams[7] but they are ineffective on some
networks because the intermediate formulas grow too large, whereas the same networks are processed easily by
structuralalgorithms. In general algebraicalgorithms are not considered practical for combinational test generation.

A few techniques do not fit either of these categories. Results using logic programming, neural networks or other
general problem solving systems are too inefficient to be practical, although this has been improving[41]. Recently,
Larrabeeproposed a new algorithm based on translatinga test generationproblem into a formula in conjunctivenormal
form, or product of sums[24,25, 26]. Consider an AND gate with two inputs A and B, and output C. The logical
relationshipbetween these three values is describedby the following characteristic equation.

read gate network

convert to INV-AND gates

model faults

do

generate 64 random patterns

fault simulate

while (number_caught •= 0)

for each uncaught fault f
extract CNF formula for f

try to satisfy formula

if (satisfied) then

fault simulate

else if (unsatisfiable) then

mark redundant

end if

end for

Figure 1: Overall algorithm for TEGUS

(C + A + B)(C+ A)(C + B) (1)

Likewisethe following characteristic equation expresses thecondition thattwo values A andB mustdiffer (e.g. the
good and faulty value ofa primary output).

(A + B)(A + B) (2)

As described later in section 3, a singleCNF equation describing the test generation problem for one fault can be
constructed by combining the characteristic equations for the gates with thosedescribing theconditions fordetecting
the fault Then any assignment to the variables whichmakes theCNFequation trueis a test for the fault.

In Larrabee's algorithm[24], no algebraic manipulations are usedto simplifythe formula beforesolvingit, andsome
structural information is neededto solvetheCNFformula efficiently. Thus it is not strictlyanalgebraic methodfortest
generation. On the otherhand,it is not a structural methodbecause the search algorithm is executedovera formula
instead of a gate network, andthe formula describes more than just the logical function of the gate network. The
heuristics described in [24,25] analyze the formula to decide which variable to assign, and what value. Although
the results are much better than for algebraic techniques, theperformance is stillover 10 times worse than existing
structural algorithms.

We present new heuristics to solve the CNF formula whichgreatly improves the efficiencyof Larrabee's formulation.
The four most important differences are 1) to use the PODEM strategy of assigning values to primary inputs (but
applied to the formula, notthegate network), 2)using adynamic variable ordering instead of static ordering, 3) using
a fast, greedy heuristic forchoosing whichvariables to assign, and 4) iterating thecomputation of global implications
forhard to detectorredundant faults. As in [24] we tryseveral different variableorderings in succession, each derived
using different heuristics.

It is rarely possible to provethatone heuristic is moreefficient than another. Plausibility arguments arevaluable for
developing intuitionbutbecausetheyare necessarilybasedonsmall fragments ofnetworks,theyhaveacorrespondingly
small chance ofbeing correct. Decisions basedon localinformation,no matterhow reasonable,can lead to conflicts. In
general, theonly reliable means forcomparing theefficiencyofdifferentheuristics is throughthe performance ofactual
implementations on a suitable set of examples. However, in running an experiment to compare different heuristics

Tested Faults Untested Faults Patterns Mem Time (sec)
Network RND SAT Red. Ab. RND SAT (Mb) RND CNF SAT SIM Total

c432 359 14 40 0 69 12 0.2 0.1 0.3 0.2 0.0 05

c499 790 52 8 0 70 36 0.2 0.1 0.3 0.1 0.0 0.4
c880 667 36 0 0 92 17 0.4 0.1 0.1 0.1 0.0 0.3

cl355 977 73 8 0 70 36 0.5 0.1 0.4 0.1 0.0 0.7

C1908 938 155 9 0 93 73 0.5 0.2 0.6 0.2 0.0 1.1

c2670 1325 246 107 0 96 89 0.6 0.2 1.7 2.3 0.0 4.4

c3540 1986 70 121 0 197 45 0.9 0.6 3.1 0.3 0.0 4.1

c5315 3 694 46 58 0 180 29 0.9 0.4 0.7 0.1 0.0 1.5

c6288 4 801 0 34 0 43 0 1.8 2.8 2.7 0.0 0.0 5.8

c7552 4416 354 131 0 197 127 1.4 0.7 3.0 35 0.0 7.6

sl494 1093 115 12 0 145 52 0.4 0.1 0.1 0.0 0.0 0.3

s5378 2528 286 36 0 211 182 0.7 0.3 0.6 0.1 0.0 1.2

s9234 3151 1197 327 0 238 362 12 1.0 4.8 2.6 0.2 9.1
S13207 5000 1955 131 0 231 580 1.8 0.7 9.5 1.3 0.4 13.

S15850 7 208 795 337 0 334 362 2.4 1.7 11. 1.2 02 15.

S35932 25150 0 3 072 0 83 0 2.1 2.0 7.9 0.1 0.0 12.

S38417 17955 3004 154 0 543 1069 2.9 5.7 12. 3.6 1.6 25.

S38584 23 355 1337 1316 0 718 497 3.6 4.6 7.1 0.6 0.7 16.

TOTAL 105393 9735 5 901 0 3 610 3 568 3.6 21.2 66.1 16.1 3.4 119.

Table 1: TEGUS results for ISCAS benchmarks, using random patterns followed by deterministic test generation.
Full scan is assumed forthe eight sequential networks. About55%of the time is spentextracting the CNF formulas.
Memory usage and CPU times are for an IBM RS/6000 320.

there are manypitfalls, such asusinganinappropriate setof examples, overoptimizing for onesetof examples, ornot
properly accounting fordifferences in computer performance. Inaddition, if someprograms arenotpubliclyavailable,
reimplementation of another person's algorithm often lacks sufficient motivation to make the code as efficient as
possible. Inability to reproducesome publishedresultsmay be becauseof this or inaccuracies elsewhere.

To evaluate ourheuristics, we compare an implementation ofTEGUS against otherpublished results usingthe ISCAS
benchmark networks. The ISCAS '85 benchmarks are small, combinational networks which have been shown to be
difficult forexistingtest generation algorithms[6]. The larger ISCAS '89 sequential networks[5] aretestedassuming
full scan of all latches. Only the eight largest ISCAS '89 benchmarks are reported sincethe smaller examples take
negligible time andarenotdifficult forcombinational test generation (as indicated by theresults fornetworksl494).

The overall description ofTEGUSis shownin Fig. 1. It is similar toexistingsystems,sincemostofourimprovements
are in thealgorithm tosolvetheCNFformulas. Thegate network is first converted intoonlyANDgates witharbitrarily
inverted inputs, similar to [42] which used only NAND gates. This simplifies the rest of the implementation such
as the fault simulator,and the code to generatethe CNF formulas. Note that this also increases the number of faults
modeled fornetworks with XOR gates suchas c432. The fault simulator uses a parallel pattern algorithm[44], with
the fault effect propagation improved usingradix sorting for events[34]. Pseudo random test patterns are optionally
simulated to reduce the set ofundetected faults, since this is more efficient for most networks. Then deterministic test
generation is done on the remaining faults.

Most of the computation time is divided between fault simulation, extracting the CNF formulas, and satisfying the
formulas. Table 1 summarizes the results of running TEGUS on the ISCAS benchmark networks. No attemptwas
madeto minimize the test set,although the totalnumberofpatterns canbe reduced from7178 patterns to4978 patterns
using reverse fault simulation[39], which takes an additional 16 CPU seconds.

The first four columns showsthe numberof faults detected by random tests, detected by deterministic tests, proved
redundant, and aborted. The next two columns show the numberof test patterns generated duringthe random and
deterministic phases respectively. Column Mem shows the memoryusage in Mbytes. The last fivecolumns show the

CPU times on an IBM RS/6000 320 with 32 Mbytes of memory. Column RND is the total time for the random test
generation phase(primarily fault simulationtime). ColumnsCNF and SAT show the times for extractingand solving
the CNF characteristic formulas respectively. Column SIM is the time to fault simulate the test patterns generated
deterministically.

The final column, Total, is the time for the entire run including reading the network, initializing the data structures,
etc. For the 18 benchmark networks the total time is 122 seconds, and the maximum memory used is 3.6 Mbytes.
About 55% ofthe time is spent extracting the CNF formulas,20%in fault simulation, and 15% satisfying the formulas.
In [24] about 75% ofthe time was used for satisfying the formulaandonly 9% in extracting the formulas. The improved
heuristics in TEGUS have changed the balance so that extracting the formula is now the most time consuming step. As
shown in section 5, the performanceofTEGUS is comparable to the best published results for structural algorithms.

3 Problem Formulation

This sectionreviews Larrabee's formulation of test generation as a Boolean satisfiability problem. The formulation
is based on expressing the characteristic equation of the method of Boolean differences [40] in CNF. Deriving the
SAT formula usingthe methodof Boolean differences as discussed below guarantees that the final algorithm using
SAT is complete. The CNF formula canbe constructed directly from the gate network,andis linear in the size of the
network. The testgeneration problem thenbecomes the problem knownassatisfiability[l4]: is thereanassignment to
the variables which makes the formula true?

3.1 Boolean Differences

LetF(xi,..., x„) bea singleoutputlogic function, and Ff (xi,..., xn) bethecorresponding function when a fault f is
present Then (3) is the characteristic function for all tests for fault f.

Tf = Ff©F (3)

Inotherwords, foranygeneral fault f, Tf is trueforanycombination ofinputs whichwill cause theoutputof the faulty
networkto differ fromthe valueof the good network. Thus test generation for fault f consistsof gettingTf to evaluate
to true.

Forthe stuck-at fault model, let i be a networkelementI/Owith modeledstuck faults i/0 and i/1. Express i in terms
of thenetwork primary inputs, i = G(xi,..., x„), and then express FasF(xi,..., xn,G). Using (3) for fault i/0 and
applying the definitionof a stuck-at zero faultgives the followingequation.

Ti/o = Fi/0(xi,...,xn,Gi/o)© F(xi,...,xn,G) (4)
= F(xi,...,xn,0) © F(xi,...,x„,G) (5)
= (F(xi,...,xn,0) © F(x,,...,xn,l)).G(xi,...,x„) (6)

Tocheck thislast step, notethatwhenG = 0,Ti/0 = O.andwhenG = 1thenTi/0 = F(xi,... ,xn,0)©F(xi,.. .,xn, 1).
Ti/ois the characteristic function forall testsof fault i/0. Likewise(7) characterizes all tests for fault i/1.

Ti/i = (F(xi,...lxn,l)®F(xi,...,xn,0))-G(xi,...,xn) (7)

These two functions have in common the expression: (8) calledtheBoolean difference ofF with respectto G.

dFqq = F(xi,...,xn,0)©F(x1,...,xml) (8)

As outlinedin [40], Tf canbe manipulated algebraically to find a test for fault f. Using the Booleandifference for test
generation in this manner is called the method of Boolean differences [40].

3.2 Formulating the Test Problem in CNF

In the standardmethodofBooleandifferences, thecharacteristicfunctionTf is derived in a factored form with the same
structure as the network being tested. To find a test,Tf is simplified usingalgebraic operations as muchas possible,
and then finally some elementof the on-setof Tf is found. As notedby Larrabee [24], this procedure is tedious at
best and far less efficientthan existing structuralsearchmethods. However, LarrabeeproposedexpressingTf direcdy
in a form more suitable for analysis - conjunctivenormal form. GeneratingTf directly in CNF avoids the algebraic
manipulations which make the methodof Booleandifferences impractical.

To derive Tf in CNF, we again use characteristic functions. First the characteristic function of each primitive is
expressed in CNF. For example, an AND gate E = B C has the characteristic function (9).

(B+ C + E)(B+ E)(C+ E). (9)

The characteristicfunction of a network is the conjunctionof the characteristicfunctions of each primitive. A straight
forward way to formulateTf in CNF is to considerthe network representation of (3) and generate the corresponding
characteristic equation. Recall that generatinga test meansfinding an assignment for whichTf = 1. Wecan state this
explicidyby addingthe clause (Tf) to the formulawhichcanonlybe satisfied whenTf is true. Nowthe test generation
problem has become "Is there an assignmentto the variables for which the formula evaluates to true?" But this is
precisely the problem known as satisfiability[14],or SAT.

SATISFIABILITY

Instance: A set U ofvariables and a collection C of clauses over U.

Question: Is there a satisfying truth assignment for C?
Coots Theorem: SATISFIABILITY is NP-complete.

SATis extremely important in algorithm complexityanalysis. To prove that some new problem X in NP is as hard
as SAT, a reduction is found which converts any SATproblem into a correspondingX problem. This is the technique
used to prove that test generation is NP-complete. Larrabee's problemformulationuses an inverse reduction to reduce
a testing problem to a corresponding SAT problem.

3.3 Active Clauses

It is inefficientto satisfy (6) or (7) direcdy because the good and faulty network are only related at network inputs and
outputs. The close correspondencebetween the two networks is only implicit in the SATformula since the good and
faulty network values are separate Boolean variables. Larrabee [24] showed how the SATalgorithm is speeded up
significantly by makingthis informationexplicitwithadditional clauses. Wepresenta modified derivationwhichuses
fewer clauses than in [24].

For each signal S in the transitivefanout of the fault site, define a new variableS« called an activevariable [24]. If
Fg is thevalue ofF in thegood network, andFf is thevalue ofF in thefaulty network, then thedefinition ofF, using
clauses is given by (10).

(F.+Fg+Ff)(Fa+Fg + Ff) (10)

In other words, if the fault effect is propagated through F, then Fg and Ff must have differentvalues. With these
definitions added to the formula, the following constraints can be added. State that the fault site F is active with the
1-clause (Fa). Then for each signal G in the transitivefanoutof the fault site, add the clause definedby (11) to state
that ifG is active then some fanout H of G must be active.

fanout n of G

(G,+ £ H.) (11)
H=fanout 1 of G

^^>' '•5^=*rO

to
4> M>»

N
to

OH>"

(a) (b)

Figure 2: Example network for extracting a CNF formula for one fault (a) Original gate network, (b) Converted to
INV-AND format Each gate is referred to by the name of its output net.

Forexample, if gateF fansout to gatesH and I, thentheclause(Fa + H, +1.) wouldbe addedto the formula. These
additional clauses prune the searchspacebyexplicitlyrepresenting thecloserelationship between the goodand faulty
networks. Thus the SAT solveris not required to drivevalues all the wayto network outputs beforerecognizing a
contradiction. This representation of the active paths usesfewerclauses than in [24]since only one active variableis
definedper gate, and gives a small savings in memory and CPU time.

Adding the clauses in (11)captures the heuristic thatat all times theremuststill be somepathto propagate the fault
effect toanoutput. If a partialassignment blocksallpathsfromthefaultsiteto anoutput,a conflictwilloccurfor some
clause from (11)possibly evenbeforeany logicvalues havebeenpropagated to a network output Thusan important
heuristic in structural searchmethods is translated intoclauses which implicitiy guidethe solutionof the CNFformula.

3.4 Example

Thenetworkin Fig. 2(a) willbe used to showan exampleCNFformulafor combinational testgenerationof one fault
When the network is read in, it is converted into INV-AND format and all one-inputgates are eliminatedexceptat
primaryoutputs,as illustrated in Fig. 2(b). Complexgates suchas XORgates are also decomposed direcdy into two
levels of INV-AND gates.

Nowconsiderthe stuck-at-onefault markedin Fig. 2(b). First the networkis tracedusinga forwarddepth-firstsearch
(DFS) to see which outputs can be reached by the faulteffect In thisexample, the faulteffectcan reachoutputs K
andM,butnotoutputN. Thena backward DFSis donefrom these outputs togenerate clauses describing all thegates
which are partof the testgeneration problem for thefault In thissmall example the DFSreaches all gatesexceptfor
N. Nowforeachn-inputgate, its characteristic equation is extracted in theformof n 2-clauses (clauses with2 literals)
and one (n+l)-clause.

• Good Network, 42literals:_ _
(Bg + Fg)(Cg + Fi)(Fg + BA+ Cg_)
(Cg + Gg)(Dg + Gg)(Gg + Cg + Dg)
(Ag + Hg)(Bg + Hg](Fg + Hg)(Hg + Ag + Bg + Fg)
(Ag + Ig)(Fi+ IgKGg + Ig)(Ig + Ag + Fg + Gg)
(Kg + Hg)(Kg + Hg)(Mg + Ig)(Mg + Ig)

Next clausesare generatedto describethe gates in the transitivefanoutof thefault site, since the valuesof these gates
maydifferbetweenthe good and faulty networks. Since the fault is on the inputof gate F, the transitivefanout of the
faultsiteconsists of gatesF, H, I, K and M. Thedescription of a gatein the faultynetworkusesthe goodvariables for
signals which cannot beaffected by thefault Forexample, thedescription ofgateH uses Ag, Bg, FfandHf.

• Faulty Network,_35 literals: _
(Bf + Ff)(Cg +FI)(Ff + Bf_+ Cg)
(Ag + Hf)(Bg + HfKFf + Hf)(Hf + Ag + Bg + Ff)
(Ag + If)(Ff_+ IfKGg + If)(If + Ag + Ff + Gg)
(Kf+ Hf)(Kf + Hf)(Mf+ If)(Mf + If)

Active variables aredefined foreach gate in the transitive fanout of the fault site. If the gate is active, then its good
and faulty values mustdiffer. The first tenclauses define theactive variables. Then foreach gate, if the gateis active,
oneof its fanoutgatesmust be active. In this example, this results in the last threeclauses.

• Active Clauses, 37 literals:_ _ _ _ _
(F, +Fg +Ff)(F. +Fg +Ff)(H, + Hg +Hf)(H.J- HgJ- Hf)
& +Ig +If)(I. +jg +IfXK. +Kg +Kf)(K, +Kg +Kf)
(M, + Mg + Mf)(Ma + Mg + Mf)
(F. + H,+I,)(H, + K.XI. + M.)

Since the fault is a stuck-at-one, clauses areadded to say that the fault site must have value zero in the good network
and one in the faulty network, and that the gate with the fault is active. Finally,the objective is added that at least one
of the reachable outputs must be active. This results in the following clauses.

• Fault Site and objective, 5 literals:
(Bg)(Bf)(F.)(Ka+M.)

To describe this one fault from a six gate network takes SO clauses containing 119 literals. This CNF formula is
satisfiable by any assignment with A = 0, B = 0, C = 1, which detects the fault at output K. Using satisfiability,the
entireCNF formula is extracted before a searchis made fora test (this is a severe limitation to applying this technique
direcdy to sequential test generation).

The overheadof generatinga new formula for each fault does decrease the efficiency of TEGUS. Even for relatively
small networks, the CNF formula can be many thousands of literals. Several of the CNF formulas for network c6288
have over SO 000 literals. As shown in Table 1, about half the total time is spent extracting the formulas.

Some of the time lost in extracting the formula is regainedbecausethe uniform CNF formula canbe solved by a much
simplerbranchand bound algorithm. Another interestingbenefitof extractingthe formula is that gates which are not
relevant to detecting a fault are not represented in the formula. In the previous example, gate N was not added to
the formula because it cannot be used either to activate or propagate the fault on gate F. However, a structuraltest
generation algorithm would propagatevalues to gate N when gateG changes. This benefit was canceled out in [24] by
the inefficient heuristics used to solve the formula. Later, a structural algorithm used the same DFS tracing to create
a reduced gate network for test generation[29], but with much less benefit since it does not simplify the branch and
bound algorithm as it does in TEGUS.

4 Checking Satisfiability

After a CNF formula has been extracted for a fault, the next step is to find a satisfying assignment If such a
satisfyingassignment exists, the set of values it assignsto the network primaryinputs is a test for the fault Findingan
assignment is an NP-complete problem[14]. If no satisfying assignmentexists, the fault is redundant. Proving this is
a co-NP-complete problem[14].

This section describes the basic branch and bound algorithm used to search for a satisfying assignment or prove that
none exists. The heuristics used to guide the branching are called a search strategy. Several greedy search strategies

are proposed and compared for effectiveness and efficiency. As in structural algorithms [1,11,21,31,33], the best
results are achieved by trying several strategies in succession.

For redundantfaults, switchingstrategies is not effective. To identifyhard redundant faults, we use two types ofglobal
implicationsfirst introduced for structural test generationin [38]. Weshow how more of these global implications can
be generatedby iterating the basic procedure, and how in TEGUS they subsumemany of theother important heuristics
used in structural test generation such as the X-path check in PODEM, and unique sensitization in FAN.

Based on the experiments described in this section, we identify four greedy strategies which form the core of the
TEGUS heuristics. These are tried in succession with low backtrack limits to detect nearly all testable faults and the
easy redundant faults. For the few remaining faults, the formula is analyzed for global implications and the same
greedy strategies are retried with a higher backtrack limit to prove the difficult redundant faults are indeed redundant

4.1 Branch and Bound

Branch and bound is a standard technique for the exact solution of NP-complete problems. In SAT,branching consists
of selecting an unassigned variable, setting it either true or false, and reversing the assignment (backtracking) if the
first choice does not lead to any solution.

The search is bounded in three ways. First, if an unsatisfied clause has no unassigned literals, then the current partial
assignment is contradictory and the search can be bounded. Second, ifan unsatisfiedclause has only one unassigned
literal, that literal can be immediately asserted. This avoids branching on the corresponding variable. Third, if the
previous step tries to assert A but A has already been asserted, the assignment is contradictory and the search can be
bounded. Pseudo code for the bound procedure is shown in Fig. 3.

In spite of bounding the search in this way, we still may not realize immediately that a partial assignment cannot
be extended to satisfy the formula. This is what leads to the worst case performance. For example, given a partial
assignment which uniformly requires4additionalassignments todetectacontradiction,a total of24 partial assignments
will be generated where ideally none would be required. Each of the heuristics described in this section can be seen
as an to attempt minimize this explosion of the search space.

Like other test generation algorithms, TEGUS attempts to minimize the number of backtracks needed to generate
a test On the other hand, since the real objective is to minimize computation time, it is misleading to focus only
on minimizing the number of backtracks. Using the previous example, a heuristic is not effective if it reduces the
additionalassignments from 4 to 0 but requires twice as much computation time as just doing the 16 backtracks.

4.2 Search Strategies

A set of heuristics used to guide the branch and bound search is called a search strategy. The heuristics for branch and
bound can be categorized by three parameters (this is true for structural algorithms as well):

• Variable order for branching.

• What processing to do at each branch point (dynamic processing).

• How long to search before giving up (e.g. backtrack limit).

Variable order can be classified as static or dynamic. A static ordering fixes a single global order for all the variables
and uses this for the entire search. The problem with a static ordering is that it generally does many unnecessary
variable assignments. As explained previously, this exacerbates the worst case behavior of the search. For example
setting one input of an AND gate to zero fixes the output to zero but does not force any value for the other inputs.

.Since these other inputs are unassigned, a fixed variable ordering may assign values to the other inputs, while the

branch (strategy) // recursive binary branch and bound
v = find_next_variable (strategy)
If (none) return true

sp •» save_stacks ()
If (bound(v,false) and branch(strategy)) return true

if (++num_backtrack > backtrack__limit)
gave_up = true
return true

end if

undo_assign (sp)

return (bound(-v,false) and branch(strategy))
end

bound (lit,addjn11) // assign lit and bound the search on a contradiction
if (opp(lit) =• true) return false

for each lit2 implied by lit

if (bound(lit2radd_nli) -=» false) return false
end for

for each clause c containing lit

mark c satisfied

end for

for each unsatisfied clause c containing -lit
if c has no free literals return false

if c has 1 free literal lit2

if (bound(lit2,add_nli) ~ false) return false;
if (add_nli) add implication (-lit2 »> -lit)

end if

end for

return true

end

find_next_var (strategy) // select next variable for branching
if (strategy = Gl)

return first free literal in first unsatisfied clause of subformula

if (strategy = G2)

return last free literal in first unsatisfied clause of subformula

if (strategy == G3)

return most frequent free literal in unsatisfied clauses of subformula

if (strategy = G4)

return first free literal in last unsatisfied clause of subformula

if (strategy «•»=* G5)

return last free literal in last unsatisfied clause of subformula

end

Figure 3: Algorithm for branch and boundonCNF formula.

10

Network LSAT Gl G2 G3 G4 G5 Comb NLI ABC G1R G2R G3R

c432 82 5 3 3 184 25 3 2 1 126 103 3

c499 4 0 16 473 7 42 0 0 0 529 70 435

c880 3 8 0 0 28 14 0 0 0 27 33 0

cl355 3 0 40 0 0 73 0 0 0 630 41 115

cl908 342 8 2 26 21 27 2 0 0 605 372 84

c2670 19 29 23 93 111 81 23 5 7 1095 702 81

c3540 168 36 26 116 450 1200 5 0 1 1292 1348 180

c5315 400 43 28 277 626 318 0 0 0 805 344 452

C6288 4962 9 81 2078 1388 1236 0 0 0 4698 4509 2904

c7552 842 233 70 418 312 472 28 0 0 1409 1563 621

sl494 0 0 0 12 0 0 0 0 0 8 1 0

s5378 0 0 0 43 26 13 0 0 0 119 25 6

s9234 134 101 83 371 223 417 59 18 7 695 233 319

S13207 5 2 26 131 328 559 0 0 0 177 37 0

S15850 6 1 6 13 647 224 0 0 0 905 173 1

S35932 51 0 0 0 293 4 0 0 0 1 6 4

$38417 35 116 120 28 2560 1521 4 0 0 2907 1931 60

S38584 0 7 0 43 523 546 0 0 0 991 108 87

Total 7 056 598 524 3 982 7 727 6 772 124 25 16 17 019 11599 9786

Time 4.2h 0.4h 0.4h 3.0h 0.5h 05h OJh 14.5h 14.1h 0.5h 0.4h 2.7h

Table 2: Aborted faults for 12 different strategies,backtrack limit 50, no fault simulation. For comparison, there are
121029 total faults. The last line shows the total time for each strategy in CPU hours.

actual conflict maybebecause the gate has anoutput value of zero. If thegate has four inputs, then at least 23 partial
assignments are wasted effort.

The results in [24] use static variableordering. Three strategiesareused which sort the variablesbased on the number
ofimplications they have. These strategies aredescribed furtherin [26]. Column LSAT ofTable 2 shows our results of
using these static variable ordering strategies without fault simulation. This static ordering is not effective or efficient,
and is more complicated than the orderings presented below. Other algorithms using a static variable ordering give
equally poor results [9].

A dynamic orderingchooses which variable to branch on at each branch point of the search. Generally, the strategies
used in structural test generation algorithms use dynamic variable ordering. With this flexibility, the problems of a
static ordering can be avoided, but it can be equally inefficient to use a complex strategy for choosing each variable.
To try to improve the performance of satisfying the CNF formula,we experimented with several greedy strategies.

4.3 Greedy Variable Selection

One possible greedy strategy is to pick any remaining unsatisfied clause in the formula and satisfy it by assigning one
of its literals to be true. This is a dynamic variableorderingwhich is fast to compute, but its effectiveness depends on
the order that the clauses are searched. The intuition for a good clause ordering is found by considering the variable
orderings used in effective structural algorithms. Note that the clause ordering is a heuristic to improve the average
performance, and is not necessary to make the algorithm complete.

The most important improvement of PODEM over the D-algorithm was to do the implicit search by only assigning
primaryinputs. All other gate values arethen defined by implications. PODEM is generally faster than the D-algorithm
because this avoids a large number ofunnecessary conflicts, especially in networks with a lot ofreconvergence. Thus
it would be best to order the clauses so that those with literals related to primary inputs were searched first In the
example from section 3.4, consider the following clauses from the good network.

11

• Subformula,_25 literals^ _ _
(Fg + Bg + Cg)(Gg + Cg + Dg)(Hg + Ag + Bg + Fg)(Ig + A8 + Fg + O,)
(Ff + Bf + Cg)(Hf + Ag + Bg + Ff)(If+ Ag + Ff + Gg)

These are all the (n+l)-clauses (see section 3.4) which contain at least one literal from a primary input. If these
clausesaresearchedfirstusing a greedy strategy,values areassignedto primaryinputs ratherthan to arbitrary network
variables. For example, to satisfy the first clause, a greedy strategy could assign Fg to true. Because of clauses
(Bg + Fg)(Cg + Fg) inthe formula, thiswould direcdy force inputs B and C toone. Ontheother hand, it could choose
to satisfy the formula by assigning Bg to true,which means inputB is assigned to zero. When the CNF formula fora
fault is extracted, these clauses containinga literal for a primaryinput arespeciallydesignatedas a subformula, since
there is no direct way to identify these special clauses by looking only at the final formula.

This raises a second problem which is how to order the clauses of the subformula, i.e. how to order the primary inputs.
From the analysis at the beginning of the section, if a variableassignment is going to lead to a conflict we want to
detect this as soon as possible. In Fig. 2, after input A is assigned, a conflict is more likely to be detected by assigning B
next instead ofE since inputs A and B converge immediately while A and E do not converge at all. In a large network,
this effect can lead to many wasted backtracks and it is one of the reasons the backtrack limits in [24]needed to be so
high. Thus we order the clauses of the subformula using a depth-first search from the reachable primary outputs. In a
structuralalgorithm, this heuristic is embedded in the backtracing heuristics used to select a primary input, and in the
ordering of objectives.

The ordering derived from the DFS depends on how the fanins of each gate are ordered. We experimented with
several different orderings based on traditional testability measures but did not find an ordering which was consistently
superior. Thus we simply use the gate fanin ordering given in the input file, and the DFS searches the fanins for each
gate in first to last order. Starting with output K, then M in Fig. 2, the DFS ordering of the inputs is A, B, C, D.

In addition to avoiding conflicts while searching for a test these clause orderings have a second important advantage.
The SAT solver continues the branch and bound search until every clause is satisfied, even if the current partial
assignment happens to be a test This is the only way the SAT solver can guaranteethat the formula has indeed been
satisfied. If primary inputs are not assigned first, the search could encounter conflicts and have to backtrack. This
can cause the SAT solver to abort even though a test has been found. For example, in Fig. 2 assume that input D is
actually driven by some complicated logic, and that variables Ag,Bg and^g have already been assigned false, false
and true respectively. This partial assignment is a test, butclause (Gg + Cg + Dg) has notbeen satisfied yet. If the
next decision is to set Gg to true (the AND gate to a one), the solver may have to backtrackin orderto justify a value
of true forvariableDg. This is anotherreasonwhy such high backtrack limits areneededin [24]. On the other hand,
if assignments are only made to primary inputs by first satisfying the subformula, all these needless backtracks are
avoided.

Although a generic SAT solver cannot know a test has been generateduntil the entire formula has been solved, it is
possible to modify the SAT solver to monitor the active variables to determine when a test has been generated and
terminate the branch and bound early. This could be important for dynamic test compaction, but would probably
decrease the performance of the SAT solver.

4.4 Comparison of Strategies

This section presents experimental results comparing the heuristics proposed in [24], several variations on the greedy
strategy just described, and three strategies which the previous analysis predictswill not work well. In orderto compare
only the heuristics for deterministic test generation, no fault simulation is used for the results in Table 2.

The algorithm in [24] uses three static variable orderings tried in succession. These heuristics are described in more
detail in [26]. Column LSAT ofTable 2 shows the results ofapplying all three static orderings, each with a backtrack
limit of 50 (the results in [24] use a backtrack limit equal to the number of variables in the formula). After 42 hours
of CPU time, the algorithm still aborted on over 7 000 faults. By increasingthe backtrack limits, and by simulating
random patternsto detect most of the faults, it is possible to get good coverageon the benchmark networks using the

12

staticvariableorderings. However, as shown in [24], it is much less efficient than existing structural algorithms.

Next we consider several greedy strategies. Strategy Gl (greedy 1), searches the subformula in order for the first
unsatisfied clause, and then selects the firstunassignedliteralin this clause. It branches on the correspondingvariable
by first trying the assignment which satisfies the clause. Column Gl of Table 2 shows the number of aborted faults
using this strategy with a backtrack limit of50 and no fault simulation. It abortson many fewer faults and is nearly an
order ofmagnitude faster than the static variableorderingLSAT. Greedy strategy G2 selects the last unassigned literal
in the firstunsatisfiedclauseof the subformula. As shown in column G2 ofTable 2, this does approximately as well
asGl.

At each branching point, strategy G3 selects the literal which satisfies the most clauses which are still unsatisfied in
the entire formula (not just the subformula). Ties arebroken by picking the first such literal using the given clause
ordering. Column G3 shows this strategy does much worse than Gl and G2, as well as being slower. Satisfying as
many clauses as possible at each step tends to favor the variables associated with high fanout or high fanin gates.
Branchingearlyon these values does not seem to be effective, probably for the same reasonsa static variableordering
is not

StrategiesG4 andG5 aresimilar to G1 andG2 respectively, except they searchthe subclauses in reverse order. Overall
they do worse thanGl andG2. Since clausesin the subformulaareorderedby DFS as previously described, the inputs
at the end of the subformula usually do not all belong to the same cones of logic. Rather, they are whatever inputs
were left over after the earlier cones were searched. Thus the inputs at the end of the subformula in general do not
converge as direcdy if at all, and many backtracks are wasted changing assignments which are not the real cause of
the contradiction.

To emphasize the importanceof assigninginput variables early,we ran three experiments which reversed the clause
ordering, i.e. put clauses for network outputs first and clauses for inputs at the end, and then applied the greedy
strategies to all the clauses in the formula. Columns GlR, G2R and G3R show the results of applying Gl, G2 and G3
respectively to the reversed formula. In all three cases, this ordering makes the strategies much less effective. Even
G3 is affected since it uses the clause orderingto break ties. For a structural algorithm, such a strategy corresponds
to starting by assigning values to the network outputs. These experiments and others not shown in the table indicate
that dynamic variableorderingswhich assignvalues to inputs in topologicalorder areboth more effective and efficient
than static orderings or strategies which branch on internal network variables.

4.5 Orthogonal Strategies

Although the results in Table 2 for Gl and G2 are not bad (they abort on less than 0.5% of the faults without fault
simulationin very reasonable time), currentdemandsoftest generation are foressentially no abortedfaults. Increasing
the backtrack limit for any of these strategies increases the coverage only very slowly and for enormous increase in
computation time. But we can exploit the fact that each strategy may succeed on different faults by trying several
strategies in succession.

One of the first suggestions to combine several different strategies is in [3]. Similar approaches are described in
[11, 31, 33], and almost all algorithms have at least two or three different "phases" which use different search
strategies. Of these, the work in [31] is particularly interestingsince it develops an analyticalexpression to estimate
when two strategies will be more efficient than one.

Min and Rogers defined the orthogonality of two search strategies [31] to measure how well two strategies can
complement each other by detecting different sets of faults. Let S be the total set of faults in the networks used for the
estimate. Let Sa be the set of faults detected by strategy A (using some fixed number of backtracks) and likewise Sb
for strategy B. Then the orthogonalityof A with respect to B is given by (12).

0A3(S) =J5^p! (12)

13

A

ttD-^
D —^ C E

D -<s— C E

(a) (b)

Figure4: Use of implication graph, (a) Example network, (b) Corresponding implication graph.

Orthogonalityas low as 0.026can be enough to maketwo searchstrategies morecost effectivethanone[31]. Unfor
tunately thevalueof Oa,b(S)decreases rapidly when thenumber of easyfaults in thenetwork increases regardless of
howeffective the strategiesare on hard faults. This makesit difficult to comparedifferentcombinations of strategies
usingorthogonality. However, the conceptcan be usedto explainthe improvedresultsfromcombiningseveralgreedy
strategies.

SinceGl and G2 both give excellentresults, a firstcombination is to try Gl followed by G2, each with a backtrack
limitof 50. This reducesthe numberof abortedfaults to 253, withnegligibleincreasein CPU time. Since the other
three greedy strategies each aborted on many thousand faults, it might seem that they would be of very little use.
However, trying G4 or G5 after Gl and G2 further reduces the numberof aborted faults. Even though they are not
effective by themselves, G4 and G5 are useful because they are somewhatorthogonal to Gl and G2. On the other
hand, G3 did not reduce the number of aborted faults significandy. Column Combof Table 2 shows the number of
aborted faults when strategies Gl, G2, G4 and G5 are tried in succession. The number of aborted faults is reduced
with a small decrease in performance.

The relativelyhighorthogonalityofGl and G2can be explainedby lookingat howtheclausesare formedand ordered.
Consider theeffect ofGl and_G2 ontheclauses foranAND gate in (9). If the3-clause (B+ C + E) isnotsatisfied,
strategyG1 will try to assign B which sets the outputof the ANDgate to zero. On the other hand, strategyG2 will try
to assignE whichsets the output of the gate to one. The orthogonalityof G4 and G5 with respect to G1 and G2 is high
because they start by assigning values to differentprimary inputs.

4.6 Solving Hard Formulas: Global Implications

A combinationofgreedy strategies still does not solve every CNF formula in the benchmarknetworks;strategy Comb
still aborts on 124 faults. Almostall of them are redundant faults, so switchingto yet anotherstrategyor increasing
the backtrack limit is not cost effective. For these remaininghard faults, additional information is needed to solve the
CNF formula. Additionaldata used to improvethe effectiveness of many test generationalgorithmsare called global
implications because they are derived by analyzing the overall network structure (or formula structure in our case).
The FAN algorithm introduced the use of dominators[13] to identify unique sensitizationvalues as one type of global
implication. Several additional global implications were introduced in [38]. This section describes the two global
implicationswe have foundmost effectivein TEGUS: nonlocalimplications, and assignments by contradiction.

Implication Graph

Each 2-clause in the CNF formula is equivalent to two implications.

(AVB)^(A-»B)A(B-» A) (13)

An implication graph is formed by associating a vertex with each literal in the formula, and letting the implications
from 2-clausesdefinethe edges. For example,thecharacteristic equationfor the networkin Fig.4(a) has six 2-clauses.

14

(C + A + B)(C + A)(C + B)(E + A + B)(E + A)(E + B)(C + D)(C + D) (14)

The corresponding implication graph is shown in Fig. 4(b). It is possible to analyze this graph to extract additional
information about the formula. Strongly connected components (SCCs) of the graph indicate equivalent variables[24].
In Fig. 4(b), the two SCCs show that D = C. This corresponds to recognizing buffers and inverters in the original
network. This analysis cannot detect more interesting cases, such as determining that the outputs of the two AND
gates are equivalent Thus there is no real benefit from performing this check.

Another use of the implication graph is to find a literal X such that there is a path from X to X in the graph [8,24], i.e.
X => X. In this case, X can be assigned true immediately without branching. Unfortunately, this condition does not
usually occur until after several variables have been branched on^dynamically creating some additional 2-clauses. In
the previousexample,if A is assignedtrue, then the clause(C + A + B) is reducedto (C + B), and the corresponding
impucations C =* B and B =$• C can be added to the graph. In a more complicated example, adding such additional
implications can create a path from X to X for some literal X. The major drawback is that at each branching point of
thesearch, theimplicationgraph must betemporarily updated using anynew reduced clauses, andan0(n2) processing
step must be used to detect contradictions in the graph. Any assignments found by analyzing the implication graph
are dependent on the previous assignments, so if the search backtracks, the temporary implications must be removed
from the graph, and any information derived from the graph must be discarded. This leads to the poor performance
reported in [8].

We tried analyzing the implication graph for the moregeneral condition (X —• A) A (X -*• A) =» X, and tried to
reduce the overhead using heuristics such as only analyzingthe implicationgraph on every other branching point This
did not appreciably improve the effectiveness or the performance. Although other nonstructural algorithms [8,24]
place great emphasis on information derived from the implicationgraph, we found no benefits from using this costly
procedure.

Nonlocal Implications

The two implications derived from each 2-clause can be considered local implications since in the original network
they relate the input and output values of a single primitive, or the stem and branch values of a fanout point. While
this locality makes it easy to construct the formula, more global information is needed to solve difficult CNF formulas,
particularly for proving there are no solutions (i.e. a redundant fault). One form ofglobal information is derived using
(15). This rule was applied to only the good network values for structural test generation in [38], and applied to the
entire CNF formula in [24]. For each literal A in the formula, assert A and check for condition (15).

(A ->B) =*(B — A) (15)

Chains of local implications satisfy (15), but because they were derived from 2-clauses originally, the consequent
implication is already represented in the implication graph. However if assigning A reduces some (3+)-clause to a
1-clause (F), i.e. (A => F), thenthe implication (F => A) is likely to be newinformation. For example, in (16),the
chain of implications from asserting A is listed in (17).

(A + B)(B + X)(B+ Y)(X + Y + F) (16)

A=>B, B=>X, X=>(Y+F), B=>Y, Y =» (F) (17)

Inthis example, literal Ahas 4 implication: A =*> B,A => X,A => Y,andA =^F. Thefirst three implications resulted
from chains of locaUmplications and are ignored. However the conclusion F of the last implication came from the
3-clause(X + Y + F), and so F => A is added to the formula.

15

branch_and__bound () // top level

for 1 from 1 to 2

if i » 2 then

if (find_global_impl() = false) return false
endif

foreach strategy s In {G1,G2,G4,G5}

gave_up = false
result = branch(s)

if (gave_up ™ false) return result
end for

end for

return gave_up // all strategies gave up
end

find_global_impl () // Find nonlocal impl, and assignments by contradiction
foreach literal lit

sp = 8ave_stacks ()
if (bound(lit,true) = false)

if (bound(-lit,false) == false) return false
else

undo_assign (sp)
end if

end for

end

Figure 5: Trying several strategies in succession on the same formula.

ColumnNLI in Table2 shows the results whennonlocalimplications are computedfor each formulabefore tryingthe
strategies Gl, G2, G4 and GS in succession. The number of aborted faults is reduced by a factor of five, but the CPU
time is increased 30 times. Since this is so time consuming, we first try the four greedy strategies without nonlocal
implications. If all these strategies abort, then nonlocal implications are computed for all variables and the greedy
strategies are retried, as shown in Fig. 5. With this approach, the total time is only slightly longer than that for strategy
Comb. The backtrack limits used in [24] were much higher (up to 10000) so nonlocal implications were not as useful
as they are in TEGUS.

Nonlocalimplicationsare more difficultto findin a structuralalgorithmbecause thereare several typesofimplications:
forward and backward implications,good and faulty network implications,and implicationsincluding the different
fault effect paths (captured in TEGUS by the active variables). To make nonlocal implications as powerful as in
TEGUS, a structural algorithm would have to handle all of these different cases. Thus the uniformity of the CNF
representation is a tremendous advantage in the simplicity of the algorithm and the power of the heuristics.

Assignments by Contradiction

Another type of global information is unique variable assignments found by contradiction. For each literal A in the
formula, assert A and check for the implicationof (18).

16

(A -> false) => A (18)

To detect such an implicationfor literal A, assert A and apply the bounding steps describedearlier. If this leads to a
contradiction, thenA is implied. Unlikethe contradictions foundusingthe implication graph, thisalso makes useof
clauses with more than 2 literals, and consequently will find more assignments.

Column ABC of Table 2 shows the number of aborted faults when assignments by contradiction are applied in the
same manner as described for nonlocal implications. Socrates applied (18) to structural test generation[38] but, as
with nonlocal implications,it is more powerful when applied to the CNF formula since it is automaticallyapplied to
all literals in the formula.

Iterating the Global Implications Computation

In Socrates[38], global implications are searched for in two different phases. Initially the network is preprocessed
to compute nonlocal implications for the good network. These implications are used in search phase DYN1. After
thisphase,any remainingfaults are retried by phase DYN2whichcomputes global implications dynamically at each
branching point of the search. Phase DYN2 is only needed for a few very difficult faults in the ISCAS networks.
Similar results are reported in [29].

We have improved the global implicationprocedure in [38] after observing that the results of the implication search
can dependon what order the variablesare processed. As an example, consider the network in Fig. 2, for the fault
stuck-at1 on the first input of gateF (recall that in TEGUS,global implicationsfor a formulaare specificto one fault).
Assume inputC is processed first Assigning Cg to eithertrueor falseresults in neithera conflict nor any nonlocal
implications. Later input A is processed. When Ag is_true, variables Ig, If,Hg and Hf areall forced to false which
forces H, and F. both to false. Then to satisfyclause(F. + H. +1.), it mustbe that F. is false,whichcontradicts the
objective clause (Fa). Thus,by contradiction, Ag mustbe assigned the valuefalse. But now it is possibleto finda
nonlocal implication for C, namely thatsetting Cg false forces Ig to true,so the nonlocal implication Ig => Cgcan be
deduced. Tofind this nonlocalimplication in one pass, the variableAg mustbe processedbeforeCg.

More complex ordering dependencies can be demonstrated, including interdependencies such that no ordering will
find all the global implicationson a single pass. Thus we iterate the processing until some pass results in no new
implications. For the ISCAS benchmark networks, this usually terminatesafter 3 or 4 iterations with a contradiction,
proving the fault is redundant

It is likely that the benefitsof dynamic processingshown in [38] were actually a result of this ordering dependence.
Continuingthe same example,assume that in the static phase C was processedbefore A, and that the basic strategies
abortedon the fault Whenthedynamicprocessing phaseis invoked,if somevariablebesidesC is selectedas the first
variable to branch on, then the dynamicprocessingat this first branchpoint will now detect the nonlocal implication
I => C. Althoughthe implicationwas not detectedas soon as possible,with luck it may still be soon enough to avoid
some backtracking. There may be some exampleswheredynamicprocessingis helpful, but so far we have not found
any cases which are not handled by iterating the static processing.

4.7 Comparison with Unique Sensitization

In this section we compare the various unique sensitization conditionsused in structural test generationalgorithms
with the global implications computed by TEGUS. When both nonlocal implications and assignments are iterated
to completion on a formula containing the active variables, the resulting global implications subsume the unique
sensitization conditions used by structural algorithms.

PODEMuseda very simpleconditioncalled an X-check: it makessure there is at least one path froman active gate to
a primaryoutput, such that all the gates on this path have not been assigneda value yet. If there is no such path, this
implies the fault effect cannot possibly be propagated to an output and the search can backtrack.

17

f=E>-i [7E>^~j=E>^

L^=E>ifli>^iB^
c —

Figure 6: Example of configurationsthat different structural algorithmssearch for to determine unique sensitization
values. TEGUS finds all of these using assignmentsby contradiction combined with active clauses.

FAN[13] andTOPS[23] analyze the network topology to identify dominator gates foreach fault Given gatesGl and
G2, G2 is a dominatorofGl if all paths from Gl to a primary output pass throughG2. In Fig. 6, for the input fault
on gate 1 there are two dominator gates: 1 and 4. Because the fault effect must pass through these two gates, any
inputs which cannotbe reached from the fault site must havea noncontrolling value. Thus the FAN algorithmwould
immediately assign signals A and B to the value 1. Duringtest generation, whenever the fault effect is only being
propagated by a single gate, the dominatorsof that gatearechecked for possibleunique value assignments.

Socrates[39] finds additionaluniqueassignments by checkingifa dominator gate fans out to multiple gateswhich are
in turn controlledby anothersingle gate. In Fig.6, dominator gate4 fans out to gates6 and 7, a path dominatorset,
which areboth controlledby gate 5, thepath controller. If the pathcontroller cannotbe reached from the fault site,
then it also must be set to a noncontrollingvalue. In this example,Socrates would immediately set signalC to 1. FAN
would not identify this since neither 6 nor 7 are dominators.

A further improvement made in [22] is to identify additional path dominator sets which are not direct fanouts of a
dominator. Gates 9 and 10 form such a set, and consequently signalD must also be set to 1. Socrates would not find
this because gates 9 and 10 do not have a common fanin which is on a faultpath.

Yet a further extension is describedin [29], where the pathcontrollergate itself may fan out before reachingthe fault
paths. Gate 11 is a path dominator which fans out throughgates 12and 13 before reaching 14 and IS which together
dominate all paths from the fault site. If gates 12 and 13 are just inverters or buffers, the algorithm in [29] would
determine that signalE must be set to 1. If these gates have otherinputs, the unique assignmentis not detected. The
algorithmin [22] would not identify gates 14 and IS as a pathcontrollerset because they have no common faningate.

In TEGUJs the assignments by contradiction described previously will determine every single literal X such that
assigning X causes a contradiction. When active clauses are added to the CNF formula as described in section 3, these
global implications subsume all possible dominator and path controllerassignments, including the PODEM X-path
check. To see this, consider the result of assigning Eg false (since the global implications processing is applied to
every literal in the CNF formula). This forces 12g, 12fto true, and 13g, 13f,14g, 14f,15g and15fto false. The active
variable for gate 14 is defined as follows (see section 3.3).

(14. + 14g + 14f)(l4. + 14g + 14f)) (19)

Since both 14g and 14f are false, the only way the first clause can be satisfied is for 14. to be false, i.e. the fault
effect does not propagate through gate 14, and likewise for gate IS. Now consider the following active path clauses
generated by (11).

(4.+6.+78)(6.+9.)(9. + 14.) (20)

18

Since 14, is false, the third clause forces 9a to false,and then the secondclause forces 6. to false. Similarly 10a and7a
will be forced to falsebecause 15. is false. Now by the firstclause,4, is forcedto false,and by similararguments, 2a,
3a and then 1, areall forced to false. But this is a contradiction since one of the goal clauses states that the faulty gate
mustbe active, i.e. (la). A similar contradiction occurs if a partial assignment wouldeliminate the D-frontier, thus
giving the same results as the PODEM X-path check.

This entire chain of implications is carriedout by procedure bound of Fig. 3, and since a contradiction is a result,
Eg can be immediately assigned true. It is straightforward to show that this will also find the unique assignments
for Ag, Bg, Cg and Dg. In TEGUS, these are all determined using the simple procedure f incLglobal-impl of
Fig. S, without any topologicalanalysisof the network. Some of the dominatorand pathcontrollerinformation may
be derived more than once as different faults are processed,but since these global implications are only needed for a
few faults, the overall performanceis hardly affected.

4.8 Combined Heuristics

Pseudocode for the branchand bound algorithmto solve aCNF formulais listed in Fig. 3. At each level ofrecursion,
some unassigned variable is selected and branched on. Function bound assigns a literal to be true and then bounds
the search by following up with all direct implications ofthis assignment If any contradictionis found, the branching
is stopped and the most recent decision is reversed.

Fig. S describes how four basic greedy strategiesare tried in succession. Given the CNF formula, the clauses of the
subformulaareput in DFS orderand the four basic greedy strategiesaretried in succession, each with a backtrack limit
of IS. If all fourstrategies abort globalimplicationsarecomputed forall literals in the formulaandthe fourstrategies
are retriedwith a higher backtrack limit of 500. This is preferred to computing the global implications immediately
for all formulasbecause, as shown in Table 2, most formulas can be solved without this very expensive procedure. In
a practical test generationalgorithm, a good balancebetween robustnessand efficiency is crucial.

Since the four basic strategies might each be applied up to two times, TEGUS can be considered to have in effect
8 different search strategies. Because of the uniformity of the CNF formula, it is very straightforward to implement
so many different strategies. One weakness of the current heuristics is that the backtrack limits are not adjusted for
changesin problemsize. Furtherexperiments areneeded to determinea good heuristic for scalingthe backtrack limits.
A constant limit works well for the ISCAS benchmark networks becausethe largernetworks primarily get wider (more
cones of logic) but not much deeper (more levels of logic). Forexample, the averageCNF formula size for c2670 is
3 700 literals,while for s35932 it is only 630 literals,even though the latterhas 16 times more gates. This is the basis
for the misleading observation that "ATPG CPU time increases linearly with gate count'' [43]. A more appropriate
measure would be time versus the size of the subnetwork formed by the cones of logic containing the fault which is
what is measured by the CNF formula size.

5 Results

In this section, we compare the experimental results from our implementation of TEGUS to other results in the
literature. Since the heuristics are a tradeoff of robustness, simplicity, and efficiency, we will consider each of these
separately. From the results on the ISCAS benchmark networks, TEGUS is a good balance of these three factors.

Forareasonableevaluationofanew test generationalgorithm,it is necessaryto considerboth the total time andnumber
of abortedfaults, each with and without fault simulation. The execution times should be the total run time, including
all preprocessing. The results should be compared to the best known results, not to an attempted reimplementation
of another algorithm. For comparison, the times should be normalized based on direct execution (not extrapolated
from MIPS or other performance measures), and absolute times should be reported as well to allow future direct
comparisons. Until a fundamental improvement in algorithmcomplexity is achieved, such experimental comparisons
arecrucial for comparing different algorithms. Unfortunatelyvery few publishedresults meet these conditions.

19

Time (sec) Aborted Time (sec) Aborted

Network CNF SAT Total Faults Network CNF SAT Total Faults

c432 2. 1. 3. 0 c7552 62. 23. 86. 0

c499 8. 3. 11. 0 sl494 2. 1. 3. 0
c880 2. 1. 3. 0 s5378 7. 2. 9. 0

cl355 14. 5. 19. 0 s9234 32. 15. 48. 0
cl908 11. 3. 14. 0 S13207 46. 8. 56. 0

c2670 16. 6. 22. 0 S15850 100. 25. 125. 0

c3540 47. 21. 68. 0 S35932 48. 11. 61. 0

c5315 32. 9. 42. 0 S38417 145. 46. 193. 0

c6288 274. 84. 360. 0 S38584 77. 18. 98. 0

TOTAL 930. 280. 1220. 0

Table 3: ApplyingTEGUS without fault simulation demonstrates itsrobustness. Extracting the formulas takes over3
timesas long as solving them, since no easy faults weredropped by random tests.

The final testsetsizeis one factor we are notconsidering inthisreportTechniques for testcompaction canbe applied
to reduce the test set but with somepenalty in performance, and usually requiring a morecomplicated algorithm. As
one extreme example, in [35] a test set of 13 patterns is generated for network s35932. This is six times smaller than
thetestsetinTable 1,but it takesabout400 timesmoreCPU timetogenerate thissmaller testset Because thistradeoff
varies so widely, andsincemanycompaction techniques are independent of thetestgeneration heuristics, we will not
compare thenumberof patterns generated by TEGUSexceptto notethatit is aboutthe sameasotherpublished results
using no specialcompaction techniques (see Table 1).

5.1 Robustness

AlgorithmssuchastheD-algorithmandPODEM are complete, meaning thatgivenenough time,atestwillbegenerated
for each non-redundant fault. However, practical implementations of these algorithms add limitsto prevent exorbitant
amounts of time being spenton difficult faults. Commonly,a limit is placed on the numberofbacktracks allowed for
each fault, i.e. the numberof times the branching procedure is allowed to change a decision. Anotherapproach is to
impose a time limit for each fault (thiscan makeit difficult to reproduce results onthesame machine as system loads
vary, much less across different machines). If such a limit is exceeded for a fault, the fault is aborted, i.e. neither
detected nor proved redundant.

Decreasing the number of aborted faults, evenby a small amount, is expensive. If not aborted, the time used forjust
one fault exhibiting theexponential worstcase can dominate thetotal testgeneration time. Thus the first consideration
in comparing two test generation algorithms is howmany faults theyabort on. It is generally not possible to prove
theheuristics of onetest generation algorithm willabort less frequently than another, so if onealgorithm empirically
aborts on fewer faults than another, we will call the former more robust.

Ideally, robustness measures how well an algorithm will do on examples not yet seen, as well as on the benchmark
suite. When fault simulation is used (with or withoutrandom patterns), manyalgorithms have no aborted faults for
the ISCAS '85 benchmarks, and several algorithms have none for the ISCAS '89 benchmarks. This is an unreliable
evaluation of robustness because when fault simulation is used, testsare deterministically generated only for5-10%
of the faults. Since most of the ISCAS benchmarks have fewer than 4000gates (not counting one-inputgates), this
does not provide enough data fora validcomparison. The smaller setof faults is also not easily reproduced, which
canaffect the results since different algorithmshave troublewith different sets of faults,as shown in section4.S. Thus
algorithm robustness shouldbe evaluated withoutusing fault simulation.

Table 3 showsthatwithout fault simulation orrandom patterns, TEGUS eitherdetects or proves redundant every fault
in the ISCAS benchmarks. Fig.7 shows the corresponding distribution of backtracks. To be consistentwith other
reportedresults, this shows only the number of backtracks for the strategywhich was successful. Forexample, ifGl
and G2 both aborted on a formula after 25 backtracksand then G4 satisfied it with 3 backtracks, this is counted as 3

20

100 000

10000

1000

100

10

5 10

Humbor of Backtracks

15

Figure 7: Distribution of backtracks for results of Table 3. Note the logarithmic scale.

backtracks instead of 53. Since nearly 98% of the faults took three or less backtracks, it is apparent that if a strategy is
going to be successful it is usually successful quite early.

To evaluate the robustness of TEGUS, Table 4 compares it with seven other recent algorithms. No fault simulation was
used for any of the results in this table. A reminder of the central idea for each algorithm follows; the references should
be consulted for details. Algorithm CHE88[12] uses the D-algorithm with a modified 9-valued algebra. Algorithm
CHN8 9[11] uses five different search strategies in succession, based on different testability measures such as SCOAP,
CAMELOT, and random. Algorithm JAC89[22] uses an improved unique sensitization procedure in a 9-valued
algebra. Algorithm GIR90[16] extends the concept ofa D-frontier to an E-frontierof 0 and 1 values as well as D and
N. These frontiers are stored in a hash table to reuse search state information across different faults. For GIR91[17]
this algorithm was augmented with an improved backtrace procedure. Algorithm ABR90[1] uses a new testability
measure GLOBAL which is an improvement on FAST and SCOAP. Finally, algorithm RAJ90[36] uses a 16-valued
algebra to identify necessary assignments during the search.

Only two algorithms detect or prove redundant every fault in the ISCAS benchmark networks: TEGUS, and the EST
algorithm by Giraldi and Bushnell[16,17]. We reiterate that because of backtrack limits, all the algorithms in Table 4
are incomplete, so it should not be inferred that TEGUS or EST will never abort on any fault. Of the remaining five
algorithms, four aborted on more faults than even the greedy strategies Gl or G2 from Table 2. Any more complicated
algorithm which is not as robust as a single greedy strategy is of questionable value.

5.2 Efficiency

Assuming that two algorithms are equally robust, the second question is how they compare in efficiency. Tables 1 and
3 show the performance of TEGUS with and without random patterns respectively. To compare our results with other
algorithms, for each algorithm A we performed the following experiment.

• Port the code for TEGUS to the same model of computer used for the published results of algorithm A.

• Run TEGUS on the ISCAS benchmark examples using the same options reported for algorithm A (e.g.
with/without fault collapsing, with/without random patterns, with/without reverse pattern simulation).

• Normalize the reported times for algorithm A to those obtained for TEGUS, taking into account whether the
reported times for A included preprocessing or fault simulation time.

In order to guarantee identical results for TEGUS across different machines, we used the portable pseudo random
number generator described by Park and Miller[32]. The variety of DEC, Sun, Apollo, Amdahl and IBM computers
used all supported 32 bit integers. Consequently even the results for random test generation are identical for TEGUS
across all machines. In all cases, the native C compiler was used with full optimizations enabled. Variations caused

21

CHE88 CHN89 JAC89 GIR90 ABR90 RAJ90 GIR91 TEGUS

Network ab time ab time ab time ab time ab time ab time ab time ab time

c432 7 1.3 12 2.9 4 2.1 42. . 22. 12. 1.0

c499 0.5 17 6.8 20 11. 25 . 11. 13. 1.0

c880 0.9 1.8 2.6 7.7 • 24. 13. 1.0

C1355 128 2.4 26 2.4 48 9.1 62 - 44. 7.1 1.0

cl908 82 2.7 252 4.5 45 150. - 3 58. 18. 1.0

c2670 43 1.4 115 2.2 8 2.3 15. 85 2.4 20 26. 9.7 1.0

c3540 62 12 662 4.0 9 2.1 8.4 118 2.7 49 27. 10. 1.0

c5315 1.6 26 1.5 1 4.2 23. 45 33 30 19. 15. 1.0

c6288 231 1.2 4 1.5 514 8.1 10. 4 0.9 1127 21. 11. 1.0

c7552 245 2.9 94 1.9 89 5.3 23. 156 2.8 39 29. 15. 1.0

81494 . - 1.0

85378 - - - - - - - 1.0

89234 - - - 1.0

813207 - - . . - . - 1.0

sl5850 - - - - - - - 1.0

835932 - - . . 310. . - 1.0

838417 - . . . - - - 1.0

838584 - - - - - - - 1.0

Total 798 1.6 1208 2.2 693 6.6 0 16. 408 30. 1268 24. 0 12. 0 1.0

Table 4: Results without using any fault simulation (dash indicates not available). For each algorithm, column ab is
the number ofaborted faults, column time is the execution time normalized to TEGUS. Backtrack limits range from
25 for TEGUS to 2 x 106 for GIR90.

Network SIM89 SCH89 MIN89 LAR89 JAC89 SCH90 WAI90 MAH90 CHK91 GIR91 MAT92 TEGUS

c432

c499

c880

15.

49.

60.

0.7

1.1

1.6

4.0

3.9

7.3

9.0

11.

65.

3.2

6.3

5.4

1.0

1.7

2.4

0.6

0.4

0.8

1.1

2.9

0.6

2900. 14.

11.

25.

05

0.4

0.7

1.0

1.0

1.0

cl355

cl908

C2670

51.

76.

20.

1.8

2.9

1.0

9.9

14.

12.

17.

52.

37.

4.9

5.9

4.9

2.7

3.2

1.4

0.9

1.0

0.5

5.1

2.9

3.7
-

20.

44.

12.

1.1

0.9

0.3

1.0

1.0

1.0

c3540

c5315

c6288
-

1.2

2.1

1.3

5.4

16.

37.

32.

15.

3.6

13.

1.8

4.0

3.9

1.4

0.6

1.0

0.5

1.4

1.9

2.8
-

18.

59.

13.

0.7

1.1

0.5

1.0

1.0

1.0

c7552

81494

85378
-

2.5 40. 36. 12. 7.6

12.

11.

0.7

3.5

2.5

6.7

-

38. 0.5

1.7

1.5

1.0

1.0

1.0

89234

813207

815850
- - - - -

65.

45.

17.

1.1

0.9

0.8

6.5

5.0
- -

1.0

0.8

0.7

1.0

1.0

1.0

835932

838417

838584
- - - - -

38.

13.

120.

1.0

1.0

1.6

6.4

17.

15.
- -

1.1

0.9

1.3

1.0

1.0

1.0

Total 30. 1.7 22. 31. 6.8 36. 1.0 9.4 2900. 25. 0.9 1.0

Table 5: Execution time when random patterns are included, normalized to TEGUS (dash indicates not available).
Each algorithm uses slighdy different limits for terminating the random patternphase,and foraborting the deterministic
test generation for a fault

22

by changes in the compilersand operatingsystems since the originalresultswerereportedcould not be avoided since
thesedetailsare rarelyavailable. Also,sincefault simulation was usedfor Table 5, deterministic test generation was
not applied to the same set of faults in all algorithms. The total times for TEGUS on the different machines used in
these experiments varied by a factor of 17, indicating how meaninglessit is to compare the unnormalized CPU times.

Tables 4 and 5 show the results of these experiments. The algorithms in Table 4 and JAC89, GIR91 of Table 5
were mentionedpreviously. Algorithm SIM89[41] uses the general problem solving mechanism built into Prolog,
augmentedwith special guidanceprocedurescalleddemons. It is not clear if any redundant faults were actually proved
redundant, nor why results are not provided for the larger networks. Algorithm SCH89[381 is the version of Socrates
which includes nonlocal implications, both static and dynamic. The reported times do not include preprocessing,
whichcan be significantin structuralalgorithms. AlgorithmMIN8 9[31] uses a combinationof two search strategies,
one of which tries to justify values first and then propagate the fault effect, the other tries propagation first. With a
backtracklimit of 100, there are still 16 aborted faults which is close enough to be comparable. Algorithm LAR8 9[24]
is Larrabee's SAT-based algorithm. Column SCH90 shows mei^ults from running the program Socrates 4.0[15]. This
comparison uses the total run time including preprocessing. Algorithm WAI90[43] is an improved implementation
of severalexisting heuristics,primarily those from Socrates[38]. AlgorithmMAH9 0[28] revisits network partitioning
to improve performance, as described earlier in [4]. Algorithm CHK91[8] applies some of the implication graph
computationsfrom [24] to a structuralalgorithm. It is understandable why results are only available for the smallest
benchmark network. Algorithm mat92 [29] improves the unique sensitization procedure from [22], and adds the
subnetwork extraction technique from [24] to improve performance.

Although many of these report improved performance over other algorithms, it is not clear on what data these claims
are based. Some do not use the ISCAS benchmark networks [9, 10]. Other reports either make no experimental
comparison [8, 24, 29, 36, 38, 39,41, 43], or compare against other heuristics of their own implementation [1, 2,
13,16,17,18,23,25,28,31]. Neither of these approaches give a meaningful comparison. A noteworthy exception
is Cheng[12] who reported absolute run times, permitting future comparisons with his results, and also ran the new
algorithm on the same computer as in [11] for accurate normalizedcomparisonwith previous work.

From these tables, TEGUS performance is as good as the best results published for structural algorithms. It is important
to note that the same strategies and backtrack limits were used for TEGUS in both tables. Since some algorithms were
not run on the complete set of networks, the total times must be compared with care. TEGUS is 12 times faster than
the one algorithm which has been shown to be as robust Unfortunately, for the two algorithms WAI90 and mat92
which areas efficientas TEGUS, there are no results without using fault simulation to compare their robustness.

The dynamic ordering ofprimary input variables used by TEGUS is the main reason it is faster than the heuristics used
by Larrabee. The improved global implications procedure also makes it more effective. Overall the performance of
TEGUSis very close to the best published results for structuralalgorithms. AlthoughCPU time is the primary concern,
the memory requirements are also quite modest as shown in Table 1. Thus even with the overhead of generating the
CNF formulas, TEGUS is practical and competes with the best structural methods for combinational test generation.

5.3 Simplicity

Weclaim as well an advantageofsimplicityforTEGUS.Simplicityof an algorithmis very subjective,but it is important
to consider since it balances the tradeoffs ofefficiencyand robustness. Many of the algorithms in Tables 4 and 5 can
probably be made more efficientor robust, but usually requiring a more complicated implementation. Forexample, the
authors ofalgorithm GIR91 [17] claim that their algorithm is S.81 times faster than Socrates[38]. However, as Table S
makes evident, they do not actually compare with the published results for Socrates, but against another algorithm
they implementedwhich they believe is similar to Socrates. When GIR91 is compared direcdy to SCH89 taking into
account the difference in performance of the two computers used, Socrates is shown to be 13.5 times faster. If it is
even possible to improve the performance of algorithm GIR91 by nearly two orders of magnitude (the factor needed
to make GIR91 5.8 times faster than SCH89), it will require a carefully optimized, and probably more complicated,
implementation. Similar comments apply to the other algorithms,which range from 1.1 to 3200 times slower than the
fastest algorithm, MAT92. Thus the simplicity of an algorithm is an important factor.

23

The only operation in TEGUS is thatof assigning a value to a binary variable, so the branch and bound algorithm is
much simplerthan for structural algorithms, as shown in Fig.3. By usingseparate binaryvariables for the goodand
faulty values of a gate, the algorithm is equivalent to the 9-valued algebras usedin structural algorithms. The greedy
heuristics are generally simpler than the testability measures and backtrace procedures used with other algorithms.
The computation of global implications is also much simplerusing the CNF formula, and subsumes all the unique
sensitizationconditions used in structural algorithms.

Our implementation ofTEGUS is about 3 000 lines of C code. Of this, about800 lines implement the general SAT
package for constructing and solving a CNF formula. Much of this is for efficientmemory management, since a
differentCNF formula is extracted foreach faultandthis must be carefully optimized (consequendy making it more
complex). About 300linesareforthecodewhichspecifically extracts a formula fora stuck-atfault The faultsimulator
is about 80 lines. The rest of the code is for program control and I/O. TEGUS canbe appliedto other fault models
by changing the faultextraction code. Given a characteristic equation for the faultand the network elements, this is
relativelystraightforward, which is an advantage ofusing the generic SAT problemformulation. In contrast,consider
the extensive changes which must be made to a conventional algorithm when the faultmodel or network elementsare
changed, such as the switch-level test generation algorithm in [27].

TEGUS does not require many of the heuristics added to structural algorithms. It does not use testabilitymeasures,
multiplebacktracing, special processing of fanout-free regions, headlines,dominators, ordynamicglobal implications.
Some of thesemay improve the performance ofTEGUS a smallamount,but the greatest gainwouldbe to speedup the
formula extraction. Usingacacheor someotherheuristictoreuseparts ofthe formula might savesome time, but would
increase thememoryusage, andmake the implementation morecomplicated. Overall, thecurrent implementation is a
goodbalanceofrobustness, efficiency and simplicity.

6 Conclusions

We havedescribed TEGUS, analgorithmforcombinational testgeneration basedon satisfiability. Applying branch and
boundto the CNF formula resultsin a simple, elegantframework fortest generation which makes it easy to experiment
with differentheuristics. This is to be compared withotheralgorithms whichmust usemultiplebacktracing, testability
measures,specialcases fordifferent gates, 5-, 9- or 16-valuedalgebras, etc. Using ourheuristics,this approach is also
competitive with the best structural algorithms.

We haveidentifiedseveral greedysearch strategies usingdynamicvariable ordering that,when used in concert, solve
the CNF formulas derived for combinational test generation much more efficiently than Larrabee's staticheuristics.
Formulas for hard faults are solved efficiently using an improved staticglobal implicationsprocedure. This can also
be applieddynamicallyalthoughwe have not foundexampleswherethis is helpful.

Based on the results in this report,TEGUS is an excellentbalance of robustness, simplicity and efficiency. It is also
robust;as shown in Table4, TEGUS either detects or provesredundant every faultin the ISCAS benchmark networks
without usingfault simulation, and furthermore does so moreefficientlythan previouslypublished results. Doingthis
comparison without faultsimulation is essential to determine the real strength of the deterministic algorithm, and it is
unfortunatethatmost recentalgorithmshave been publishedwithout this information.

From Table 5, overallTEGUS performance is comparable to the best publishedresults for structural algorithms in
spite of the overheadof extractinga new CNF formula foreach fault Since all existing algorithms for deterministic
test generation have the same worst case time complexity, accurate comparisons of averagecase performance must
be measured using a real implementation. A reliable comparison must take into account differences in computer
performance and shouldbe basedon a direct comparison with existing results, not on extrapolations from a related
algorithm implemented by the experimenters.

The TEGUS algorithm would be improved by findinggood heuristicsto scale the backtrack limits based on formula
size. Sinceover half the time is spentextracting a newCNF formula foreach fault, finding moreefficientmethods for
doing this would greatly benefit TEGUS.

24

Acknowledgements

We thank D. Bultman, A. Ghosh, S. Jarriel, R. Neher, J. Patterson and S. Stephan for their generous assistance in
collecting the data used for Tables 4 and 5. We thank Tracy Larrabee for several enlightening discussions on her new
formulation of the testing problem. This work was supported by the Semiconductor Research Corporation under grant
92-DC-008, and by various grants from DEC, IBM, Intel, Motorola, AT&T and BNR.

References

[1] M. Abramovici, D.T. Miller, andR. Henning.Globalcost functionsfortest generation, hi Proc. Int'lTestConf.,pages35-43,
1990.

[2] M. Abramovici, D. T. Miller, and R. K. Roy. Dynamic redundancy identification in automatic test generation. In Proc. Int'l
Conf. Computer-AidedDesign, pages 466-469,1989.

[3] V. D. Agrawal, S. C. Seth, and C. C. Chuang. Probabilistically guided test generation. In Proc. Int'l Symp. Circuits and
Systems, pages 687-690,1985.

[4] P.S. Bottorff, R. E. France,N. H. Garges, and E. J. Orosz. Test generation for large logic networks. In Proc. 14th Design
Automat. Conf., pages 479-485, June 1977.

[5] F.Brglez, D. Bryan, and K. Kozminski. Combinationalprofilesof sequentialbenchmark circuits. In Proc. Int'l Symp.Circuits
and Systems, pages 1929-1934, May 1989.

[6] F. Brglez and H. Fujiwara. A neutral netlist of 10 combinational benchmark circuits and a target translator in FORTRAN. In
Proc. Int'l Symp. Circuits and Systems, pages 663-698, June 1985.

[7] R. E. Bryant. Graph-basedalgorithms for boolean functionmanipulation. IEEETrans.Compute C-35(8):677-691,1986.

[8] S. T. Chakradharand V. D. Agrawal. A transitiveclosurebased algorithm for test generation. In Proc. 28th Design Automat.
Conf., pages 353-358,1991.

[9] S. T. Chakradhar, V. D. Agrawal, and M. L. Bushnell. Automatic test generationusing quadratic0-1 programming. In Proc.
27th Design Automat.Conf., pages 654-659,1990.

[10] S. T. Chakradhar, M. L. Bushnell, and V. D. Agrawal. Automatic test generationusing neuralnetworks. In Proc. Int'l Conf.
Computer-Aided Design, pages 416-419,1988.

[11] S.J. Chandra and J. H. Patel. Experimental evaluation oftestability measures for test generation. IEEETrans. Computer-Aided
Design, 8(l):93-97, Jan. 1989.

[12] W.-T. Cheng. Split circuit model for test generation. In Proc. 25th Design Automat. Conf., pages 96-101,1988.

[13] H. Fujiwaraand T. Shimono. On the accelerationof test generationalgorithms. IEEETrans. Comput., C-32(12):1137-l 144,
Dec. 1983.

[14] M. R. Garey and D. S. Johnson. Computersand Intractability: A Guideto theTheoryofNP-Completeness. W. H. Freeman,
1979.

[15] A. Ghosh, personal communication, June 1992.

[16] J. Giraldi and M. L. Bushnell. EST: The new frontier in automatic test pattern generation. In Proc. 27th Design Automat.
Conf., pages 667-672, June 1990.

[17] J. Giraldi and M. L. Bushnell. Search state equivalence for redundancyidentification and test generation. In Proc. Int'l Test
Conf., pages 184-193,1991.

[18] P. Goel. An implicit enumeration algorithm to generate tests for combinational logic circuits. IEEE Trans.Comput., C-
30(3):215-222, Mar. 1981.

[19] L. H.Goldstein.Controllability/observability analysisfordigitalcircuits.IEEE Trans.CircuitsandSystems.CAS-26:685-693,
Sept 1979.

[20] A. Ivanov and V. K. Agarwal. Dynamic testability measuresfor ATPG. IEEE Trans.Computer-AidedDesign,7(5):598-608,
May 1988.

[21] A. Ivanov andV. K. Agrawal. Testability measures - what do they do forATPG? In Proc. Int'lTestConf., pages 129-138,
1986.

[22] R. Jacoby, P. Moceyunas, H. Cho, and G. Hachtel. New ATPG techniques for logic optimization. In Proc. Int'l Conf.
Computer-AidedDesign, pages 548-551, Nov. 1989.

25

[23] T. KirklandandM. R. Mercer. A topological search algorithm forATPG.InProc.24thDesignAutomat. Conf., pages502-508,
June 1987.

[24] T. Larrabee. Efficientgeneration of test patterns usingbooleandifference. In Proc.Int'lTestConf., pages795-801,1989.

[25] T. Larrabee. A framework forevaluating test pattern generation strategies. In Proc.Int'lConf. on Computer Design,pages
44-47,1989.

[26] T. Larrabee. Efficient Generation ofTest Patterns Using Boolean Satisfiability. PhDthesis,Stanford University, Feb.1990.

[27] K. J. Lee,C. A. Njinda, andM. A. Breuer. SWiTEST: A switchleveltest generation system forCMOS combinational circuits.
In Proc. 29th DesignAutomat. Conf.,pages26-29, June 1992.

[28] U. Mahlstedt, T. Griming,C. Ozcan, andW. Daehn. CONTEST: A fastATPGtool forvery large combinational circuits. In
Proc.Int'lConf. Computer-Aided Design, pages222-225, Nov. 1990.

[29] Y. MatsunagaandM. Fujita. A fast test pattern generation forlarge scalecircuits. In Proc.Synth, andSimulation Meeting and
Int'l Interchange, pages263-271, Apr. 1992.

[30] A. Miczo. DigitalLogicTesting andSimulation. Harper andRow, 1986.

[31] H. B. Min and W. A. Rogers. Searchstrategy switching: An alternative to increased backtracking. In Proc.Int'lTestConf.,
pages 803-811, Aug. 1989.

[32] S.K.Park andK.W.Miller. Randomnumbergenerators: Goodonesarehaidtofind.Commiin.o/<m;i4CAf,31(10):1192-1201,
Oct 1988.

[33] S. T. Patel and J. H. Patel. Effectiveness of heuristic measures for automatic test patterngeneration. In Proc. 23th Design
Automat. Conf., pages 547-552,1986.

[34] N. D. PhillipsandJ. G. Teller. Efficientevent manipulation: The key to largescalesimulation. In Proc.Int'lTestConf.,pages
266-273,1978.

[35] L Pomeranz, L. N. Reddy, and S. M. Reddy. COMPACTEST: A method to generate compact test sets for combinational
circuits. In Proc. Int'l TestConf., pages 194-203,1991.

[36] J. Rajski and H. Cox. A method to calculate necessary assignments in algorithmic test pattern generation. In Proc.Int'lTest
Conf., pages 25-34,1990.

[37] J. P. Roth. Diagnosisof automatafailures: A calculusanda method. IBM JournalRes. andDev., 10:278-291,July 1966.

[38] M. Schulz and E. Auth. Improved deterministic test patterngeneration with applicationsto redundancy identification. IEEE
Trans. Computer-Aided Design,8(7):811-816, July 1989.

[39] M. H. Schulz, E. Trischler, andT. M. Sarfert SOCRATES: A highly efficient automatictest patterngenerationsystem. IEEE
Trans.Computer-AidedDesign,7(1):126-137, Jan. 1988.

[40] F. F. Sellers, Jr., M. Y. Hsiao, and L. W. Beamson. Analyzing errors with the boolean difference. IEEE Trans.Comput.,
C-17(7):676-683,July 1968.

[41] H. Simonis. Test generation using the constraint logic programming language CHIP. In G. Levi and M. Martelli, editors,
Proc. 6th Int'l Conf.on LogicProgramming, pages 101-112. MTT Press, June 1989.

[42] J. J.Thomas. Automated diagnostic test programs fordigital networks.Computer Design,pages63-67, Aug. 1971.

[43] J.Waicukauski, P. Shupe, D.Giramma, andA. Matin. ATPGforultra-large structured designs.In Proc.Int'lTest Conf., pages
44-51, Aug. 1990.

[44] J. A. Waicukauski,E.B. Eichelberger, D.O. Forlenza, E. Lindbloom,andT. McCarthy. Faultsimulation forstructured VLSI.
VLSI SystemsDesign,6(12):20-32, Dec. 1985.

26

	Copyright notice1992
	ERL-92-112

