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Abstract

In this paper, we steer nonholonomic systems with linear velocity constraints repre
sented mathematically in a special form, called chained form. We observe that chained
form systems can be steered from an initial configuration to a final configuration with
sinusoidal inputs. The controller we use is open loop and no special provisions are
made for obstacle avoidance. Sufficient conditions are presented for converting a three-
input system with nonholonomic velocity constraintsinto a "two-chain, single-generator
chained form." An algorithm is stated that constructs the sinusoidal control inputs to
steer this system from any initial configuration to any desired final point. Our example
of a three-input nonholonomic system is a firetruck, or tiller truck. In this three-axle
system, the control inputs are the steering velocities of both the front and rear wheels
of the truck and the driving velocity of the truck. Simulation results are given for the
familiar parallel parking problem and other trajectories.
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1 Introduction

In this paper, we investigate how sinusoids can be used for steering chained form systems and
how to convert systems into a special class of chained form systems. The main reason for using
sinusoids for steering such systems is stated in [5], motivated by an optimal control problem. The
original contributions of this research are the introduction of a three-input system as an example of
a nonholonomic system that can be controlled using sinusoids, a steering algorithm for three-input
chained form systems and a theorem for converting a nonholonomic system with linear velocity
constraints into a special chained form system.

We are interested in steering mechanical systems with nonholonomic, or non-integrable, con
straints. Specifically, our interest is in systems with linear velocity constraints

b>i(x)x = 0 i = 1,2, •••,/:,

where x e Rn is the state of the system and Ui(x) € Rn i = 1,2, ••-,& are row vectors. These
constraints arise, for example, when a wheel rolls on the road but does not slip in the direction per
pendicular to the motion. If these constraints are integrable, they are called holonomic constraints
and yield level surfaces hi(x) = ct- for some constant Cj to which the trajectory of the system is
restricted. Thus, the holonomic constraints reduce the order of the system. If these constraints
are not integrable, i.e., these constraints cannot be written in terms of the configuration variables,
then they are called nonholonomic constraints.

We assume that the wt-, i = 1,2, • ••, k are linearly independent and smooth. The corresponding
co-distribution Q(z) = span{a;i(a;),W2(a;), •••,o>fc(a:)} has dimension k. Therefore, we can find an
(n —A;)-dimensional distribution A(x) = 8j>an.{gi(x),g2(x),-—,gn-k(x)}, with gi(x) G Rn, i =
1,2, •••,n —k such that A = ft1, i.e.,w(x)•g(x) = 0, Vu> € ft, V<jf € A. Then a mechanical system
with the above nonholonomic linear velocity constraints can be represented as a control system
with inputs u € Rn~*:

x = gi(x)ui + g2(x)u2 + •••+ gn-k(x)un-k •

It will be shown that under some conditions, it is possible to control such systems after a coordinate
transformation and state feedback using sinusoidal inputs.

Our motion planning problem therefore consists of controlling the system

£ : x(t) - gi(x)ui{t) + •••+ gm{x)um(t)

where x 6 open set U C Rn, u € Rm and the gi are smooth (C°°) linearly independent vector fields.
All subsequent conditions are assumed to hold on the open set U. Given x° and x*, we wish to
find a control law u(t) = («i(i),..., um(t)) to steer x(0)= x° to x(T) = x* in [0,T].

Recent work [6, 9] in the area of controlling nonholonomic systems by using sinusoidal inputs
has concentrated on systems with two inputs:

* = 91(2)11! + g2(x)u2

where x € Rn, <7i,#2 € Rn linearly independent and smooth and Ui,u2 € R. If the system meets
certain conditions allowing it to be transformed into what we call a single-chain, single-generator



chained form

h = n z2 - v2

z3 = z2vx

by a change of coordinates and state feedback, then the system is controllable. The main idea for
steering such a system is to set the inputs v\ and v2 to be sinusoids at integrally related frequencies
and systematically steer the state variables. For example, starting at the top of the chain, states
z\ and z2 are directly controlled with constant (zero-frequency) inputs Vi and v2. For the other
states in the chain, if the inputs are set as (1 < k < n)

v\ = a sin ut

v2 = p cos kut ,

then z2 has a frequency component at ku, which is periodic; 23 has a frequency component at
(A; - l)u>, which is periodic; ...; and i* has a constant component, which yields net motion in this
state. The systematicmethod continues down the chain with the ideaof setting the frequencies of
the inputs such that a zero-frequency term emerges after integration over one period, causing a net
motion in that variable. Hence, the system is point-to-point controllable.

In this paper, weextend the above idea to three-input systems. The plan is to put a three-input
system with nonholonomic velocity constraints into a two-chain, single-generator chained form by
state feedback and a coordinate transformation. In this special form, it can be controlled using
sinusoidal input functions using a similar algorithm to that for the single-chain, single-generator
chained form. This idea is also extended to the general case of m inputs. The Appendix states a
proposition for converting a m-input system to (m-l)-chain, single-generator chained form.

We suggest Chapters 4 and 5 of [4] and Chapter 3 of [8] for references on controllability and
Chapter 1 of [4] for reference on distributions and Lie brackets.

The outline of this paper is as follows. In Section 2, a three-input example of a nonholonomic
system is introduced. The kinematic equations are derived and represented as a control system.
This example, the firetruck, will be used throughout the paper to illustrate the theoretic results.
In Section 3, we give sufficient conditions for transforming a three-input nonholonomic systeminto
a two-chain, single-generator chained form and showhow the example can be transformed into this
special form. In Section 4, the controllability of two-chain, single-generator chained form systems is
proven. In Section 5, we present a step-by-step algorithm to control these systems using sinusoids.
The example is continued to show how the steps of the algorithm work in driving the system to
a desired final configuration. In Section 6, simulation results are given for the firetruck example.
Traditional phase plots are given along with clips from a movie of the running simulation. In
Section 7, conclusions are drawn.

2 A Nonholonomic System with Three Inputs

In a fire department, firetrucks are used to carry aerial ladders, tools and equipment and have
the main purpose of rescue and ventilation. The driver sits up front in the cab, driving the truck



Figure 1: Configuration Space

and steering the front wheels. The tiller person sits in the rear of the truck, steering the rear wheels.
The two communicate via an intercom system.

The firetruck is anexample of athree-input nonholonomic system. It is mathematically modeled
as two planar rigid bodies supported by three axles. The support of the rear body, hereinafter called
"trailer", is over the rear axle of the front body, hereinafter called "cab". The two outer axles are
allowed to pivot, while the middle axle is rigidly fixed to the cab body. The wheels are assumed to
roll but not slip, thus giving linear velocity constraints.

The derivation ofthe kinematic equations for the firetruck refers to Figure 1,where we emphasize
the truck's tworigid bodies. The states of the mathematical model, all functions oftime, are chosen
as (so, 2fo, <£o, 0o, *i, Vu <t>u #i), where (aj0,3/0) is the Cartesian location of the center of the rear axle
of the cab, <j>0 is the steering angle of the front wheels with respect to the cab body, and 0O is the
orientation of the cab body with respect to the horizontal axis of the inertial frame. The states
(^1,2/1,^1,^1) are described similarly for the trailer, except that <j>i is the angle of the rear wheels
with respect to the trailer body.

Let the distance between the front and rear axles of the cab be /0, and the length of the link
between trailer and cab, i.e., the distance between the centers of the rear axles of the cab and
trailer, be lu as shown in Figure 1. This link between the trailer and cab gives the twoconstraints

Xi = Xq —li cos 9\

Vi = 2/o -h sin 0i, (1)

which are holonomic inthe sense that they reduce bytwo thenumber ofvariables needed to specify
the state of the system. The six coordinates x = (ao,2/o,0o,0o,<£i,0i) are sufficient to represent
the positions of the cab, trailer and wheels.

For mechanical systems with wheels rolling and turning onasurface, thenon-slipping constraint
states that the velocity of a body in the direction perpendicular to each wheel must be zero. This
can be stated in terms of coordinates as follows: for a wheel centered at location (x,y) and at an



angle (p with respect to the horizontal axis of the fixed frame,

0 = vx sin (p —vy cos (p .

In order to simplify our model of the firetruck, each pair of wheels is modeled as a single wheel
centered at the midpoint of the axle. In other words, we will assume that the pairs of wheels all
have the same angle1. Assuming that none of the wheels slip, the linear velocity constraints are

0 = -^{xq +10 cos 0O) sin(0o 4- <j>o) - -j-(yo +hsin 0O) cos(0o +<j>Q)
0 = x0 sin 0o - £ocos 0O

0 = xi sin^i + ^x) -yicos^x + ^i)

which may be expressed using the holonomic constraints (1) as

0 = x0 sin(0o + 0o) - yo cos(0o + ^o) - /o0o cos <f>0
0 = xq sin 0O - yocos 0O

0 = xQ sin(0i + fa) - y0 cos(0i + fa) - h0\ cos fa .

These constraints are nonintegrable, or nonholonomic, and will not further reduce the reachable
configuration space. They can be expressed more compactly as u>i(x) •x = 0, where we represent
the entire state as x = (s0,3/0, <£o, 0o, fa, 0i) and the 1-forms Ui(x) are row vector fields in R6:

wi(tr) = [ sin(0o +<fo) -cos(0o +<£o) 0 -/ocos0o 0 0 ]
u2(x) = [ sin 0O -cos 0O 0 0 0 0 ]
U3(X) = [ 6^(01+0!) -COs(0i +<£i) 0 0 0 /iCOS^x ].

The corresponding co-distribution is Q(x) = span{<Ji(3),w2(aO,W3(aO}. Since Q has dimension
three and the state space is ofdimension six, we can find athree-dimensional distribution A(x) -
span{0i(a:), 02M, 03(a)}, sucn tnat A = ft-1-, i.e.,

u>(x) >g(x) = 0, Vw€ft,V0€ A.

A simple calculation will show that the following vector fields gug2,g3 form a basis for A.

/ cos 0o \

9i =

COS 0o
sin 0o

0

'0
0

/1 cos <f>\

92-

)

0

1

0

0

Vo/

93 =

0

0

0

1

W

The nonholonomic constraints u(x) •x=0, Vw €Qare equivalent to x€ A =span^,^,^},
i.e., x is alinear combination ofvector fields in A. Therefore thekinematic equations ofthe firetruck
as a control system with three inputs can be written as

x = gi(x)ut + g2(x)u2 + g3(x)u3 ,

aThis is asimplification since it may be shown (see Alexander and Maddocks [1]) that the two wheels in fact have
different angles and their normals all intersect at a point.



where the state is x = (a;0,2/0, ^0,0o, fa-, 0i)and input u\ corresponds to the forward driving velocity
ofthe truck, u2 corresponds to the steering velocity ofthe front wheel ofthe cab and u3 corresponds
to the steering velocity of the rear wheel of the trailer.

It will be necessary later onto consider an equivalent representation obtained by dividing g\ by
cos 0o, which is the same as an input transformation u\ = u\ cos0o. The state remains the same,
and the the system equations become

/ x0 \
i/o
<t>Q

00

fa

/ 1

tan 0o
0

tan i^n

Jo cos 6q
0

-sinf^i -g0 +fli)
l\ cos 4>\ COS Oq

\

)

Wl +

0

1

0

0

V 0 /

u2 +

0

0

0

1

Vo/

V>3

In this representation three of the states are controlled directly, so their velocities are the inputs.

3 Converting Systems to Two-Chain, Single-Generator Chained
Form

The above kinematic equation for the firetruck becomes very complicated when we investigate
how find control inputs {u\(t), u2{t), u3(t)} that will steer the state x GR6 from an initial point to
a desired point. For this reason, we seek a simpler form of the system. Chained form systems are
constructed in such a way that they are easily steered with sinusoidal inputs. Transforming the
kinematic equationto a chained form equation uses a similar method asin transforming a nonlinear
system to a linear system.

Recall that a Lie bracket is defined as

ad°0(s)

ad^(x) [f(x), ad*"1^*)]

where f,g are vector fields. A distribution, A, is said to be involutive if

/,<7€A=^[/,0]€A.

Using similar conditions to those in Isidori [4] for full state linearization of nonlinear control
systems, it has been shown [6, 9] that a two-input nonholonomic system can be put into a chained
canonical form structure for which a simple steering algorithm has been developed. For example, [6]
gives sufficient conditions for a two-input system

x{t) = <7i(x(*)H(*) + g2(x(t))u2(t)

with x € U C Rn, 01,02 linearly independent smooth vector fields and uuu2 € R to be put in the
single-chain, single-generator chained form

zi = vi



z2 = v2

h = z2v^

Zn = Zn-lVl

by a change of coordinates and state feedback. The sufficient conditions are that the distributions

:= span{flf1,02,ad\7l02,...,ad£-2fl(2}
Ai

A2

= span{flr2, ad5l02, ••,ad£ 2g2}
= span{02,ad5l02,...,adj-3flf2}

are constant rank and that (1) A0(x) = Rn and (2) Ai and A2 are involutive.
Extending this idea to three-input nonholonomic systems is more complicated; the sufficient

conditions for transformation aresimilar, but the distributions areconstructed differently. A set of
sufficient conditions for transforming a three-input nonholonomic system into a two-chain, single-
generator chained form is stated in the following proposition.

The proposition will use the fact that linearly independent vector fields 01,02,03 can locally be
put into the form

* = KT +g^Ws:

92 = E^Woi:
n q

93 = E^M*)*- (2)
t=2 OX%

by a non-unique change of input.

Proposition 1 (Converting Three-input Systems to Two-Chain, Single-Generator
Chained Form )
Consider a three-input, drift-free, nonholonomic system

x = gi(x)ui + g2(x)u2 + g3(x)u3

with smooth, linearly independent input vector fields gug2,g3 in the form ofequation (2). Define
the distributions

A0 = span{0!, g2l a.dgig2,..., adj,g2, g3, adyi03,..., ad*^}
Ai = span{02, ad5lflr2,..., ad',02, 03, ad5l03,..., ad* ^3}
A2 = span{02, ad5l02, •••,adj~102, 03, ad5l03,..., ad* 03}
A3 = span{02, ad5l02,..., adj-^i 03, ad5l03,..., ad*-103}



where j + k + 3 = n. If for some open set U C Rn, A0(s) = Rn Vz € U and Aif A2 and A3 are
involutive on U, then there exists a local feedback transformation on U

«,C,i?) = *(*)
u — {3(x)v

such that the transformed system is in two-chain, single-generator chained form

£0 = vi

Co = v2 770 = v3

(1 = Co^i f)i = 7?0Vl

: Vk = »/Jk-iVi

6= Ci-i^i (3)

Proof We will need the fact (see [4] section 1.4) that for A = span{/i, /2,..., /„} having rank n on
an open set U and A' = span{/2, f3i..., /n} involutive, there exists a smooth function h : U —> R
such that dh • / = 0 V/ € A' (or more compactly, dh-A' = 0) and dh•/i = a(x) ^ 0.

Suppose there exists an open set (7, such that Ao(s) = Rn Va; 6 J7 and Ai, A2 and A3 are
involutive on U. Noting that by definition A3 C A2 C Ai C A0, there exist smooth functions
/ii,h2 and h3:U —>R such that

dhi - A\(x) = 0 dh\ •0i(a;) = 1

d/&2 •A2(a;) =0 d/&2 •adj^OO =a2(x) ^ 0
dh3 •A3(a:) =0 dh3 •adj103(a:) = a3(s) ^ 0. (4)

Here weusedthe fact that h\ canbe chosen asx\ since the gfs are in the special form in equation(2).
Therefore consider the local coordinate transformation $ : x »-*• (£,C,*?) (see [4] section 5.1)

£0 = h\ = xq

Co — L'gih2

O-i = Lgih2

0 = h2

Vo := Lgih3

Vk-1 = Lgih3

Vk = h3.



To verify that the above coordinate transformation is valid, we show that it is a local diffeo-
morphism. First calculate the derivative of the coordinate transformation with respect to x.

dh\
dLgih2

dx

dLgih2
dh2

dLkgih3

dLgih3
dh3

We now multiply on the right by the nonsingular matrix whose columns are the n independent
vector fields in the definition ofA0. Without loss ofgenerality, assume that j > k (the calculations
for the other case are similar, or indeed can be reduced to this case by a renumbering of the vector
fields).

dh\
dH,h2

dLgi h2
dh2

dL*slh3

dLgih3
dh*

[01 02 ad5l02 ••• ad^02 03 ad5l03 ••• ad^03]

0

±02(2:)

0 ±02(0:)

*

*

0

0

0

*

* :

••• 0 a2(x) 0
* ±a3(x)

0

*

*

0

*

• 0 * 0 ta3(x) ;

0 0 0 0 0 a3(x)

Here, the functions a2(x) and a3(x) are nonzero by definition.
That the resulting matrix has rank n for all x can be seen most easily by considering row

operations. Using the first row, one can eliminate all the terms in the first column without altering



the other columns. Then using row j + 1 (corresponding to the dh2 terms), all the *'s in column
j + 1 can be similarly eliminated. Now the only nonzero term in the nth row is a3(x), and this
can be used to reduce column n, and so forth. The matrix §f •[A0] is therefore equivalent under
row operations to a nonsingular diagonal matrix with l,a2(x),...,a2(x),a3(x),.. .,a3(x) on the
diagonal.

Since [Ao] is offull rank, the Jacobian matrix ||> must also be nonsingular locally and thus
(f, C, V) = &(x) is a local diffeomorphism and a valid coordinate transformation on the open set U
(see [4] Proposition 1.2.3).

The input transformation needed to put the system into the two-chain, single-generator chained
form can be easily computed by taking derivatives of transformed coordinates and cancelling terms
by using the zero entries ofthe above matrix || •[Ao].

6) = ui

6> = Lit* fc2*i +Lg2 L^ h2u2 +Lg3 Ljgi h2u3

Cj-i = Lgih2ui = Ci-2«i

0 = Lgih2ui = Ci-iUi
fiQ = Lk+lh3ui + LgzLkgih3u3

Vk-l

The input transformation

- Lgia3Ul = ^-2^1
= Lgih3ui = rjk-iUi

Vi = Ui

v2 = L3+Xh2ui +L^ Lgi h2u2 +Lg3 Lgi h2u3
v3 = L^hsui + Lg^hsus

will result in the two-chain, single-generator chained form (3). •

Example. We will now apply Proposition 1 to the firetruck system described in Section 2. We use
the system equations in the following form.

/ xQ \
3/o

00

fa

\ h }

x = 0i(a:)tti + 02(a:)«2 + 03(«)«3

/ 1 \1

tan^o
0

tan i^q
Iqcos 9o

0

l\ CQ8<f>\ COS5q

Wi +

10

0

1

0

0

v o y

u2 +

0

0

0

1

Vo/

«3



It can be seen that the choice of (j,k) = (2,1) will resulting in the following distributions. For
notation's sake, let g4 = ad5l02, 05 = ad5l03 and g6 = ad^02.

Ao = span{0i,02,ad5l02,ad^02,03,ad5l03} = span{0i,02,04,06,03,05}

Ai

A2

A3

= span <

/ 1

tan 0o
0

tan0o
/o cos do

0

-sintoi-flo+fli)
l\ cos 01 cos Oq

0
1

{0 cos2 00 COS3 00
0

0

0
1 cosdfo+01)
\ loh cos2 0ocos0i cos3

\

0

1

/

,
0

0

,

/ \o)

7

0

0

0

1

Vo/

span{02, ad5l02, ad^02,03, sAgig3}
span{02, adffl02,03, ad5l03}
span{02,ad5l02,03}

0

0

0
-1

/o COS2 00 cos I
0

\

0

0

0

0

0
COS(01—0q)

\ h cos2 0i cos6

M

The distribution A0 is of full rank2 on U= {(a>0, y0, 4d, 0o, fa, #i) : 0o-9u 4o, fa, #o # f,} CR6.
It may be verified that Ai, A2 and A3 are involutive on U by computing the Lie brackets of

their elements (0,-, g5 £ Ak for 1 < ij < 3 implies \gugj] € Ak for k= 1,2,3).
A comment should be made here on why (j,k) = (2,1) was chosen when there are actually

four possible combinations (j,k) such that .; + k+ 3 = 6. For the two cases (j,k) = (1,2) and
(j,k) = (0,3), A0 is not offull rank. For the case (j,k) = (3,0), A0 is of full rank, but A2 =
span{02,04,06,03} is not involutive. Therefore (j, k) = (2,1) is the only combination that satisfies
all conditions of Proposition 1.

The functions hi = x0, h2 - y0 and h3 = 6X satisfy equation (4) for (j, k) = (2,1). Note
that there is a lack of uniqueness in the h's; other choices may yield a more intuitive numerical
interpretation. Using these h% the coordinate transformation (£, C, n) = $(x) from equation (5) is
computed.

Co = hi

Co= L]xh2 =

= Xq

tant^o
/o cos3 0Q

'This can be easily checked by showing that the six vector fields that define Ao are linearly independent, i.e.,

de%i g2 gA ge ffs gs] = #• TT^—2 , ha .
IqI\ cos4 0o cos2 0i cos5 9q

11



Ci = Lgin2 = tan^o
C2 = h2 = y0

, -sinOfti-flo + flx)
Vo= Lgih3 =— —^

/1 cos 0i cos 0o

»?i = ^3 = 0i

This is a valid coordinate transformation since the matrix

0£
dx

[Ao] =

dhi
Ufa
dLgih2

dh2
dLgi h3

dh3

[01 02 ad5l02 ad^02 03 adffl03J

1 0 0 0 0 0 1

* a2(x) * * * *

* 0 -a2(x) * 0 *

* 0 0 a2(x) 0 0

* 0 * * -a3(x) *

* 0 0 * 0 a3(x) .

has determinant c^{x)(^{x) ^ 0; therefore it is of full rank.
Next, we take the derivatives with respect to time

Co = «o

Co =
#Co a dCo ;

Ci = Wo00
(2 = yo

Vo = dOi9l+d0o °+00o
Vi = 01,

00

whichgive the following equations showing the required state feedback to put the system equations
into the two-chain, single-generator chained form

Co = «i

= Vi

3 tan 0o tan 0o
Co = ll cos4 0O

= v2

Ci =
tan 0o

/o cos3 0Q
ui

Ui +
/o COS2 0o cos3 0Q

u2

12



D

= Co«i

C2 = tan 0o ui

Vo

— bOU. UQ u>i

= &*>i
_ / cos(0i + 0i) sin0o cos(0i - 0O + 0Qsin(0i - 0p + 0Q\

\/oficos 0o cos 0i cos3 0o l\ cos2 0i cos2 0O / 1
- cos(0i - 0O)

+ - r—: — U-i1 T2 IT u3ll COS* 0i COS 0o
= v3

-5^(01-00 + 0!)
rn = — —'- m

ll COS 01 COS 00
= VqVi .

4 Controllability of Two-Chain, Single-Generator Chained Form
Systems

In this section we show that a system in two-chain, single-generator chained form is completely
controllable. Since controllability is unaffected by state feedback and coordinate transformation, it
follows that the original system is also completely controllable.

Proposition 2 (Controllability of Systems in Two-Chain Single-Generator Chained
Form)

The three-input, two-chain, single-generator chained form system in equation (3), where (C, C, v) €
Rn and n = j + k + 3, is completely controllable.

Proof. The system is of the form

C =/l(C,C,»?)Vl + /2(C,C,»7>2+/3(C,C,»7>3,
V v J

where the input vector fields are

f _ *
<?Co

f - d

Recall that a system of the form

t=i

13



is completely controllable if the involutive closure of the distribution A = span{/i,...,/m} at
each configuration is equal to the entire state space Rn (see Chow's Theorem [3]). Define A =
span{/i,/2,/3}. The existence of n independent vector fields in the involutive closure, A, will
imply complete controllability.

Consider the n-dimensional distribution, a subset of A, resulting from taking successive Lie
brackets with f\.

G = span{/i, /2, ad/, /2,..., ad^ /2, /3, ad/, /3,..., ad^ f3]

1 0 0

0 1 0

Co 0 1

O-i

0

Vo

Vk-i o 0

0 0 0

0 0 0

The columns are linearly independent vector fields in for each x € U. Therefore the system is
completely controllable. D

5 Steering Two-Chain, Single-Generator Chained Form Systems

An algorithm to steer the two-chain, single-generator chained form system in equation (3) from
a given initial configuration to a desired final configuration will be stated for the case j > ib, since
through a renaming of the vector fields this can always be achieved. The algorithm systematically
steers the states, starting at the top (those stateswithzero subscript) and working down the chains.

The algorithm exploits the decoupling ofthe two chains, allowing for simultaneous steering. The
main idea, considering for a moment only the Cchain, is that if vx = asinw* and v2 = fl cos£u>t,
then Co will have a frequency component at £w, Ci will have a frequency component at (£- l)w, •••
and (i will have a frequency component at zero. By simple integration over one period, this yields
net movement in & while Co, •• •, Ce-i return to their previous values.

This algorithm is an extension ofthe algorithm for two-input systems in Murray and Sastry [7].

Algorithm 1 (Step-by-step Steering with Sinusoids)

Step 0. Set the inputs to be constant over the time interval [0,T].

vi = Uti ~Co°)
»2 = £(Co/-Co°)
*>3 = t(Vo - Vo)

This will drive Co, Co ond no to their final positions.

14



Step I. For £ = 2,..., k. Over the time interval [£T, (£+ 1)T], set the inputs to be
Vi = a sin ut
v2 = P cos £u>t
v3 = 7 cos &jt ,

w/iere u; = ^r and a, /3 and 7 ore chosen such that
<i - «*r) =At
4 - Vt(kT) =jgfcT,

causing Q and m to reach their final values. After step £, the first £ coordinates in
each chain, namelyCo, Co, •••, O-i, Wo, •••, W1-1 have returned to their final values.

Step II. For £ = k + 1,..., j. Over the time interval [£T, (•£+ 1)T], sef tAe mpwte to be
vi = asinu>*

v2 = fi cos &;*
V3 = 0,

wAere w = y" and a and(5 are chosen such that
C{-(e(kT) =J0sT,

causing Q to reach its final value. After step£, the first £ coordinates in each chain,
namely Co, Co, •••, C*-i ,Wo,-",Wk have returned to their final values.

Example (Continued). The details ofthe algorithm are shown below for controlling thefiretruck,
a system in two-chain, single-generator chained form with (j,fc) = (2,1).

Co= vi

Co = v2 f}0 = v3

Ci = Cot>i m = Wi

6= C1V1 (5)

Let the initial state be (C°, C°, W°) and the desired final state be (Cy, Cy, WS)-
Step 0: The tops of the chains are steered first since they are directly controllable by the

inputs. This is accomplished by setting the input functions to be constants in the time interval
[0,T]

*i = f(U-e0)
— jKCo ~Co)

which yield, after integration,

v2

v3

&(T) = (£
Co(T) = C>
Vo(T) = 4

15



The constant inputs affect the other three states,but these stateswill be steered in the subsequent
steps.

Step 1: The second coordinates in the chains, Ci and 7/1, are steered as follows. In the time
interval [T, 2T] the inputs are

vi = asinwt

v2 = /? cosut

v3 = 7 cos ut,

where w= ^r. Therefore, by directly integrating the state equations from T to t, the states in the
interval [T,2T]are

CoW = Co(T) - -(cosw* - 1)
LJ

CoW = Co(T)+ -sinurt
LJ

WoW = Wo(T)+-sinwt
LJ

Ci(0 =C.(T) +j£[«r)+gsinwr a sin urdr

=Cl(T)-^(coswt-l)+g(t-r)+gsin^
•hW = ii(r)+/'L(r)+Isinwr a sin ojrdr

= Wi(T) - ^^(cosojt - 1) +|I(t-T) +̂ sin2a;<
C2W = C2(T)+ l\i{r)vi{T)dT.

Jt

Evaluating the states at 2T,

&(2T) = &(T) = f0>
Co(2T) = Co(T) = Co'
%(2T) = %(T) =^

Ci(2T) = <i(T)+f;T
m(2T) = m(r) +̂ T

2TC2(2T) = CaCO +jf CiO>i(r)dr,
the tops of the chains have returned to their final desired values while the second-level coordinates
moved a net amount. Notice how both chains are steered simultaneously due to the decoupling.
Here again, the third-level coordinate C2 was affected, but it will be steered in the next step. If the
parameters a, ft and 7 are chosen such that
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v(-Vi(T) = %T
then

Ci(2T) = C/
ni(2T) = 4.

Step 2: Since j = 2, this is the last step of the algorithm, in which state C2 is controlled. In
the time interval [2T,3T], set the input functions to be

vi = a sin ut

v2 = p cos 2ut

v3 = 0

with u = ^ as above. By integrating the state equations from 2T to * the states in the interval
[2T,3T]are

4

CoW = &(2T)--(coBurt-l)
u

CoW = Co(2T)+^-sin2wt
WoW = ifc(2T)

CiW = (i(2T) +J\(o(2T)+^sm2ur]asmuTdT
= Ci(2T) (cos art - 1) + --% sinart - —^ sin3ut

*h(*) = %(2T)+ / i?0(2T)asinwrdr
./2T

=%(2D-22^(oo.«f-i)
6W = C2(2T) +/' fCi(2T) - 2«2I)(cosu,r - 1) +̂ 8inwr

J2T L u 4ar
a/?

12w2
sin3a;r a sin wrdra si]

=c^-^^^-D+̂ i^^-D
+|? [|(«- 2T)+ £*,**] -g [£*,**- ij.bU**] .

Evaluating thestates at 37\we note thatthose states that have azero frequency term do not return
to their previous values. The non-zero frequency terms vanish when integrated over one period.

Co(3T) = Co(2T) =C0/
Co(3T) = Co(2T) = C0/

17



Wo(ST) = Wo{2T) = ni
Ci(3T) = Ci(2T) =C/
i&(3T) = ifc(2r) = ij>

C2(3T) = C2(2T)+0T
All of the states except C2 have returned to their final values. Selecting the parameters a, /3 and 7
such that

C2'-C2(2T) =0T,
yields C2(3T) = C2. Thus, the states are all driven to their desired values by Algorithm 1.

6 Simulation Results

The simulation of the firetruck system was performed onthetransformed system in equation (5).
The transformed states (C, C, w) were steered from aninitial point to a final point by using sinusoids
for the the transformed inputs vu v2 and v3 as in Algorithm 1. Then the inverse coordinate
transformation

«o = Co

3/o = C2

<f>o = tan-1(/0 Co cos3(tan""1 Ci))
Oq = tan-1 Ci

1 _ tan"1 (8in^m ~~ tan"X 6)+ ** mcos(tan"X Ci) 1
1 cosfo - tan"1 Ci) J

Oi = ??i (6)

was performed on the simulation data to simulate the trajectory of the firetruck in the original co
ordinates. The results arepresented for the familiar parallel-parking maneuver and for an arbitrary
trajectory. Snap-shots from a movie animation of the simulation results are presented along with
plots showing the steps of the algorithm.

Figure 2 shows nine frames from a movieof the simulation results for the parallel parking maneu
ver. In the original coordinates, this corresponds to steering the firetruck from (a?o, yo, 4>o, #o, fa,#i) =
(0,3,0,0,0,0) to (0,0,0,0,0,0). This maneuver is carried out by Step 2 of Algorithm 1, since the
only state that must be changed is y0 = C2, which is the third coordinate of the "C" chain. A trace
of the trajectory is shown in Figure 3.

Figure 4 shows frames from the movie of the simulation results for steering the firetruck
from an arbitrary initial configuration (z0,2fo, ^0,^0,^1,^1) = (-2,2,0.099,0.197,0.544,0.4) to
(0,0,0,0,0,0). The last two frames correspond to the parallel parking trajectory shown in more
detail in Figure 2.

The steps of Algorithm 1 can be seen clearly in Figure 5, which shows sample trajectories with
the arbitrary initial configuration above. The following discussion assumes small angles. The first
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Figure 2: Movie of Parallel Parking Trajectory
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Figure 3: Trace of Parallel Parking Trajectory

part of the path, labeled A, corresponds to Step 0 and uses constant input to steer the transformed
coordinates Co, Co, *?o (tops of the chains) to their final values. In the original coordinates, this
means that xq and <f>o are steered to their desired position while the other four states drift. The
second part, labeled B, corresponds to Step 1 and uses sinusoidal input to steer Ci and rji to their
final positions. Referring to equation (6) with small angles, this means that the body orientations
00 and $i are steered to their desired positions. The wheel orientation fa is now at its final value,
since it involves both first and second coordinates of the chains. Step 1 also brings states a?o,^o
back to their correct values. The last part, labeled C, drives yo to its desired value and returns the
other states to their final values.

The Lissajous figures arise because of the model's structure. Refer to the portion of the trajec
tory labeled C in Figure 5 and consider only the first three plots (one chain). The <f>o vs. x0 phase
plot has a Lissajous figure with two loops, the Oq vs. xq plot has one loop and the yo vs. xq plot
has net motion in the yo variable. The state xq is controlled directly by the input ui and therefore
is moved in the direction of vector field g\. Similarly, <j>o is moved in the g2 direction. Taking
first-order Lie brackets shows that 8q is moved in the direction adgig2. The state yo is driven in
the direction of the second-order Lie bracket ad2^. The number of loops is determined by the
order of the Lie bracket needed to get net motion in a desired direction. For example, the figures
show that in order to get net motion in the yo direction, ^o vs. xq goes through two loops and Bq
vs. xq goes through one loop. We are essentially rectifying the harmonics of the sinusoidal input
functions [2] using the Lie bracket vector field directions.

In Figure 6 the three parts of the transformed and original input functions needed to control the
above example are shown. The transformed inputs are the open-loop control laws for the system
in two-chain, single-generator chained form. The original inputs, however, depend on the original
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Figure 4: Movie of Trajectory with Arbitrary Initial Configuration
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^0 VS. Xq

yo VS. Xq

1.0 -

c

o.» - / \

A / \
. •—""""^ 7 \ T

0.0 • / >

-o.» . \ /

-1.0 ...

00 VS. Xq

fa —00 + 01 VS. Xq

01 VS. Xq

Figure 5: Sample Trajectories for Arbitrary Initial Configuration
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Vi vs. t Ml VS. t

v2 vs. t u2 vs. 2

» I B I C

v3 vs. t u3 vs. £

Figure 6: Inputs for Arbitrary Initial Configuration
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states of the system, as can be seen in the following equations.

Ui = Vi

i 2± 3a ( 3 tan2 4>o tan0o \u2 = l0cos' 0o cos"3 do \v2 - Ui „——
\^ /g COS4 0O /

—li cos2 fa cos 0o / / cos(0i + 6{)sin 0o
cos(#i —Bq) V \/o'i cos (j>o cos 0i cos3 Bo

cos(0i - 0O + 0i)sin(0i - Bp + 0Q\ \
ll cos2 fa cos2 0O //

t*3 =

+

7 Conclusions

Sufficient conditions have been given for transforming a three-input drift-free nonholonomic
system into a two-chain, single-generator chained form by a coordinate transformation and state
feedback. In this special form, the system was shown to be completely controllable and easily
steerable by using sinusoidal input functions with integrally related frequencies. The steering
algorithm provided a step-by-step method for open-loop, point-to-point control.

The main example used to illustrate the ideas of this paper was a firetruck, our example of
a three-input nonholonomic system. The kinematic equations were derived using nonholonomic
linear velocity constraints for the non-slipping conditions of the wheels rolling on the road. The
system was transformed into a two-chain, single-generator chained form and steeredusing sinusoids
at integrally related frequencies. Simulation results showthe effectiveness of this algorithm.

We would like to mathematically investigate how the ability to steer the firetruck's back wheels
allows for sharper turning. Future work also includesextending the theory to m-input nonholonomic
systems, which may be associated with the example of automating trucks with multiple trailers,
where each trailer has the ability to steer one set of wheels. Such m-input systems would be
converted to a m(m-l)-chain, m-generator form. The Appendix gives sufficient conditions for the
special case of an (m-l)-chain, single-generator chained form.

Other future work on the firetruck example includes decentralized control, deriving a collision
avoidance controller and using the Alexander-Maddocks condition [1] for the simulations, which
would restrict the wheel angles of the firetruck to be more realistic (wheel differentials).

Acknowledgements. The authors would like to thank Captain David Orth, tillerman George
Fisher and driver Bob Humphrey at Berkeley Fire Department Station 2.
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Appendix.
We extend the theory in this paper to general chained form systems with only one generator. For
a m-input system, the m-input, m(m-l)-chain, m-generator chained form is stated in [5] as follows.

2° = Vj 1 < j < m

• ..'•.. . . ?tj = ztvj *> 3 and z}% := zj2t - zlj
. ' }ij = ziflvJ 1<V<«»; i±y, k>\

For example, when,m —3 , the chained form system has six chains:

*21 = z2 *>l *31 = *3V1

z2=v2

z32 — z$v2

z3 = v3

• : z\2 - z\2v2 '. ^13 = *13V3 ^23 — ^23^3

«21 =4l1»l ^31 =4l1«l zl2 = zl2*V2 z32 = 42lV2 Zkz = ZkslV3 *& =Z^lV3

where k > 1, z\2 := z\z% - z\x, z\z := z\z% - z\x and 4, := zgzg - z\2.
Here wegive conditions for transforming an m-input system into a (m-l)-chain, single-generator

chained form.

Proposition 3 Converting Systems to m-Input, (m-l)-Chain, Single-Generator Chained
Form

Given the system

x = gi(x)ui + •••+ gm{x)um ,

with x € U C Rn, Ui € R and the gi smooth linearly independent vector fields. Define the distribu
tions

A2

k •

= span{£i,ad\,{#; kj; = 0,..., nj\ j = 2,..., m}

= span{ad^5i; kj = 0,...,^; j =2,...,m}
= spanladjj^; A;2 =0,...,n2 - 1; fy =0,...,^- j ^ 2; j =2,...,m}

Am := span{adj;'#; ^ = 0,...,n,-l; j = 2,...,m}

where J2f=2 rij + m+l = n.
If (1) Ao(o:) = Rn and (2) Aj forl<j <m are involutive, then 3 local feedback transformation

on U

z = $(a:)

u = fl(x)v
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such that system is in m-input, (m-l)-chain, 1-generator chained form:

*\l = *?»1 *31 = *°»1 ••• *ml = *>1

The proof follows the same method as in the proofof Proposition 1.
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