Copyright © 1992, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AUTOMATED TESTING IN AN INTEGRATED
SYSTEM DESIGN ENVIRONMENT

by

Kevin Tyrone Kornegay

Memorandum No. UCB/ERL M92/104

10 September 1992

AUTOMATED TESTING IN AN INTEGRATED
SYSTEM DESIGN ENVIRONMENT

by

Kevin Tyrone Kornegay

Memorandum No. UCB/ERL M92/104

10 September 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

AUTOMATED TESTING IN AN INTEGRATED
SYSTEM DESIGN ENVIRONMENT

by

Kevin Tyrone Komnegay

Memorandum No. UCB/ERL M92/104

10 September 1992

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Automated Testing in an Integrated

System Design Environment
by

Ph.D. Kevin T. Kornegay Department of EECS

Abstract

While the performance, density, and complexity of application-specific
systems increase at a rapid pace, very few advances are being made in making them
more easily testable, diagnosable, and maintainable. Yet in today’s VLSI industry,
designers are required to produce high quality and more reliable systems. Furthermore,
testability, diagnosability, and maintainability are three of the most important factors
contributing to system life-cycle costs. Even though testability bus standards, like
JTAG Boundary Scan, have been developed to help eliminate these costs, there exists a
need for efficient hardware and software tools to support them. Hence, a testability
design and hardware support environment for application-specific systems is described
which provides a designer with a set of hardware modules and circuitry, that support the
Boundary Scan standard and software tools for automatic incorporation of testability
hardware, as well as automatic test vector and test program generation. To describe the

test features of the various hardware components which make up these systems, a set of

Robert W. Brodersen

high-level languages are provided.

Chairman of Committee

To my wife Felicia:

My deepest gratitude goes to my best friend,
companion, and wife Felicia for her endless love, support,
and patience. She was always there when | needed her. It

was her undying faith in me that enabled me to complete my

dissertation.

e
n

eee
1]}

Table of Contents
INTRODUCTION w1
1.1 What is Design for Testability?cccccererererreerererereererereceneresesescssensanes 2
1.2 Background: DFT Methodologies and Standardse.ceuevereureeurnens 3
1.2.1 SCAN Path...cciueiiiiiiiiiiiiisnncnecrnecssnessssecsssseesssssesssasscsssnssssssssossssssssssosss 4
1.2.2 BUilt-In-SeIf-TeSt....ccc0etrerrennrcrresssanecsaneesrseessaesesssnnessssssssssssssossossosssssee 5
1.2.3 Boundary Scan Standardcccceeeeecesseeeesseeensessssseescsssssssessssnassesssnsses 6
1.3 Previous WOTKccocuruerererninsrenresseseressssesesesensssssscssssssssssssasesnssssssssasaens 8
1.3.1 Design Automation Systems for TeStability.........c.oeerseeereeereessessessnsecsneane 8
1.3.2 Test Hardware: Custom Test CONtrollErSceevveevveeneeesessessscsssssnsesnee 10
14 SUMMATYucurrrrerrerecereeereeenessesesesssssesssssssssnssssssessssssssssssssssnsssssens 12
THE SIERA DESIGN ENVIRONMENT 13
2.1 Overview Of SIERAcoooueeeeererereeeecreresessesesesesessnsssnsasssssessesssssas 14
2.1.1 System Design MethodOIOZYccccereererererssecssanecereesseesscossesessnsesnnnas 19
2.1.2 Hardware Module Generationceerseerseesaeessseressescsseessssosssosssassnnans 20
2.2 Test Strategy used in SIERAccocuveremeeeeeeeeuseesessessosesessessessssssens 20
2.2.1 Integrating Test into SIERA........cccccererruvecreeecsraersseernecsseesssseossssossasssnss 22
2.3 SUIMMATYcovverirerrrenrererersresnesesesessssssesessssssessssessesensesssssssassssesssssssessnes 23
TEST HARDWARE - CHIP LEVEL. 27
3.1 The Boundary Scan Standard: An OVEIVIEWcceverereuemeeeeenenenerenes 28
3.1.1 TeSt ACCESS POIt o..uuveveeceisnicssnssnecsanesssessanessansssneessssessnssssssssssssssssosees 28
3.1.2 TAP CONMTOLIETeccoruvrerraecssaecsracessncsssnsessessesssssessssssessassessssssossasssssnse 30
3.1.3 INSLIUCHON REGISIET ..uvereerererereeecrrseecsssreecssssresessssssssssssesssesssssnassasannns 32
3.1.4 Test Data REZISErcueieireerscsisraeecsneessneessneesssssnesssssessssssssssssossansesses 34
3.1.5 Bypass Register Cell DESigN....cccceeerreersanecrsereersrseecssseesssssssssssescosssssoses 37
3.1.6 Mandatory INStIUCHONSceeerrrneerssrnresssssecsssseseesessessssssosssssnsessssnsassses 40
3.2 Designing Chips with Boundary Scanccoceeeeeeeeeveeuenvereccenesseserenes 42
3.2.1 Boundary Scan MacrocCellcccvveeeerrrerreeesseeeecssssseescssessssosssssssssoses 43
3.2.2 Boundary Scan J/O Pad LIDIary.......cceceveeerseeerseecssaecssresssenecssessassossassons 43
3.2.3 Integrating Scan Path with Boundary SCan........c.eeeuveerueeesnercsreesseeessseoses 44

3.2.4 Integrating BIST with Boundary SCancceeereveersavencenecessseeecssasossaes 45

iv

3.2.5 Chip IMPIEMENALIONS c.uveerreireereseecsreerseresseesssacssssossasesessssssssssssssnsssssas 49
3.3 Trade-Offs: Design Costs VS. TESt COSLSuevvevererereeecereveesesnsassssensaesens 49
3.4 SUMMATY.....cueieerirenirenrnnassesssnesesessessssessssssssssssssssssssssssssnsssasessesssssnsens 52
TEST HARDWARE - BOARD LEVEL 53
4.1 Boundary Scan Component Libraryeeceeeemeeemereenesnenssesssesens 54
4.2 Board Level Test MOAUIES............cceverruerereeneesescsenmsesssssssssesssesesesesenes 57
4.3 Guidelines for Prototype Design and Implementation 59
4.4 The Test Master Controller Board............cceeesersueresneesessensersens veeneneene 60
4.4.1 TMC Prototype IMpIEMENtAtionccceererrerrueeersaessaesssessressressesssessnessns 63
4.5 System Level Test SUPPOIt..........ccevereeeeerernseseecsesssassssssessssnsssnssessens 66
4.5.1 Test and Diagnosis SYSLEM ...ccecveereerserserserserssessensasessesssesseesasesssossessnsee 67
4.6 Board Level Design vs. Test Trade-Off ISSUEScceveveveeeeereresesensrensnns 68
4.7 SUMMATY....c.crvcrerrerrererersrenennresssessesssssssosssssscsessssssssasssnsassssssssssssssessasssns 69
TEST SOFTWARE: Tools and Languages 71
5.1 Testability Hardware Design TOOISc.cceeruecesnemsecesesesnsesssecseseens 72
5.1.1 JTAGtool: Boundary Scan Path Routing Tool ceseeseesaassnnnessanas 73
5.1.2 Test Controller Configuration TOO0L........ceeesseerseessessreensssossssssssasnssssnssssns 74
5.2 Algorithms for Test VECtOr GENETationeeeeeveeerereseescsesesssesenens 76
5.2.1 Test Generation Algorithms for Combinational CirCUitscceeeeeeseeessanesss 77
5.2.2 Test Generation Algorithms for Board INterCONNECtcc.ceeseererneeseeeecs 81
5.3 TGS - A Test Vector Generation Tool for Combinational Circuits
[USCTG8EB]eerrreermererarrrnsnsresnsnesenssssessessasasssssessessssssnsnsassssssssesnsssses 85
5.3.1 oct2tgs - OCT to TGS Translator [Bomdica%0]cceeeeereveeeeseeeesseseesennens 86
5.4 Testability Hardware Description Languages.............c.ceceveveveeerersesennss 86
5.4.1 BSDL - Boundary Scan Description Language..........coceeeseessessasesecssassaes 88
5.4.2 CTL - Chip Test LaNGUAZE........cccererrereeruesserseesanesssssesssossssssssnsassasssnens 96
5.4.3 MTL - Module Test LANGUAZEccreereereerreereerseesasssacsnsossssssessassnssssasans 100
5.5 m2c - MTL to C Language COMPIIETc.ceermereeermeneneeeseresssseesenes 105
5.5.1 Template-based TDM MOGUIEcceerverveeereecesesesssescnssessnsecassasssssass 105
5.5.2 User-defined TDM MOGUIE.......ccceureereerevecrsocesescssossassessansesssssesssssss 105
5.5.3 Shift Adjustment MOGUIEc.ceeeueeerreesneesrecssssocssasecsnsessonseessssesssanes 107
5.5.4 The genTarget MOGULEc.veeveeerreesreeraessresseesecsasossssossnssssesssesssessases 109
5.5.5 Interconnect Test MOGUIEcccceeereeerereesneerareessnsossasesssasesssnsessssossases 109

5.5.6 DEVICE DIIVET...ccceiinruisirancrrneesaneeseessssesssaseessnsssssssassssssssssssessssssssssas 109
5.6 SUMMATY ..cucovenerrneriererenreresrnsessssesersesessssesessessesessesaessssesssssesssssssssassace 110
PROTOTYPE TESTING 113
6.1 Chips that Simplify Board Level DFTccccceveeveevermererncreevesnesennes 114
6.1.1 System Controllability, Observability, and Partitioning Octal Chips 114
6.2 The Digital Bus Monitor CHIDcceceeeveverenerereerercrerneresesssnsnsacsescssens 128
6.2.1 The Test Bus Controller CRiP.....ccceereerseeeraeessaresssaessaeessnesssseessasssssesanee 132
6.3 Prototype Testing using the TMC Board: A User’s Perspective......... 134
6.3.1 Traditional Test Methods....ccceeeeiercaeesareereneecsaseessssnessssanessssnesssssssssnes 135
6.3.2 Structured Debug/Test PIOCEAUIE.ccrveeerrrereeessrssrarecssssaeesessssesesssnnenes 137
6.3.3 Test Master Controller Board PrOtotyPe.....eeereeerseneerneecsseessvesssnessarersnee 139
6.3.4 Functional and Interconnect Test EXamplecccevveeeerrenneeeessnveeressaneses 140
6.4 Benefits of Boundary Scan vs. Traditional Methods............cceurueuee.. 143
6.5 Lessons Learned...........ccoceveeeenereresencnsncessseseserersssssessesesssessssesesesessens 145
6.5.1 Fault Isolation (Traditional vs. Boundary SCan)ceeeeveereveessveessneecns 145
6.5.2 Design Partitioning and TeSt ACCESS.......eeeeeeeersesssnsereeecessssnsssnaeceresssnses 145
6.5.3 Base of Use (TeSt SOftWAIE)ccceeeeeeerrsraneessecsssssssseeeeressrsssesasessssssssone 146
6.5.4 Scan Path DESigNccoorererruiersnecsnecsnecsssncessaneessssnsessssasssssassssasasssns 146
6.6 SUMMATYcceeerrererrrreresenanseseresessssesesersssescssssessssessensscsssscssosssessoseases 147
CONCLUSIONS AND FUTURE WORK 149
7.1 Test HATAWATE.........cccererreresrsrenereresannerereasssessssssesessesessesessssesssessssasasses 150
7.1.1 Boundary Scan MACIOCELLcceceeeerrrnnecrssssececssssnaseecsssssensesssssssosees 151
7.1.2 Boundary Scan J/O Padsccceceeereeerseeesseseesssssessssseessssssessassesssssaces 151
7.1.3 Boundary Scan Components Library and Test Modules........cceeeuveernnenee 151
7.1.4 Test Master Controller BOAIA.......ccceeeeceeccsescccseveecssassesssnssessansssssassns 152
7.2 TSt SOFtWATE......c.cocevrrerierrernrererrsesseanessaseseesesessesesessessssessasesessesesssseses 152
7.2.1 Testability Hardware Design TOOIScccceeersvreersreacsssneeessasesssnsasssssssns 153
7.2.2 Test Vector Generation TOOLSccceveeeerraseecsssaseeesessssescesssnsaseesssssessssns 154
7.2.3 Testability Hardware Description Languages........ccecereeeeerseerersanrecsssnees 154
7.2.4 Test Program GEnNeratioN........eccesssesarecsascssssssanssssnessaneessssessasssssesssnens 155
BIBLIOGRAPHY 157

APPENDIX A: BSDL Files........ccccc.... coresssssvesssesosacssseessseassenaane 161

vi

APPENDIX B: Test Hardware And Software Organization...... 179
L Test HArdware..........ccoueeeeveneeenenereneeeerenerenessessssssssesssesssssssessosnne

II. Test Software

oo

vii

Figure 1-1:
Figure 1-2:
Figure 1-3;
Figure 1-4:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-7:
Figure 3-8:
Figure 3-9:

Figure 3-11:
Figure 3-12:
Figure 3-13:
Figure 3-14:
Figure 3-15:

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:

List of Figures

Scan path example.................

General form of an off-line BIST structure.

W

Boundary Scan architecture.
Hierarchy of test and maintenance buses. ..

High level view of SIERA.......
Layering topology for architecture template.

Typical PCB design flow managed by DMoct.

Structure of SIERA including test environment.
Top level view of Boundary Scan test logic.

TAP controller state diagram. .

Instruction register.

Block diagram of instruction register cell.
Test data registers.

Output boundary scan register cell..............ccvvevrenenne

Testing a tri-state bus............

Boundary scan cell for tri-state output pin (above).

Example output pad implementation.

......

Embedded RAM BIST circuit.

.....

RAM BIST example..........ccceurrnee
Chip layout for TEST_CHIP1.

Chip layout for TEST_CHIP2.
Partial SDL file for xx244.

Test Master Controller module layout.

Data acquisition and clock generator modules.

Test Master Controller board architecture. .

10
.15

17
18
25
29

.31

33
34

w35

37

.38

39
40
47

.48

50
51

.55

58
59
62
63

Simplified controller state diagram...........
Hierarchy of SDL files for TMC board.

64
65

TMC board layout.
System hardware development environment

66

Test and Diagnosis system......

68

Block level diagram of JTAGtool....

Configuration file generation process.

Example circuit to illustrate use of D-algorithm. .

Decision tree diagram for D-algorithm.

.74

75
78
79

viii

Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:
Figure 5-10:
Figure 5-11:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:

Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:

Decision tree diagram for PODEM.

80

Typical printed circuit board interconnect faults.
Block level diagram of TGS.

... 82

87

Test control model used in CTL. ..

97

Test control model used in MTL

Example configuration with several chips bypassed.

Top level view of m2c.
Block diagram of octal register architecture

Using two ‘BCT244’s to verify PCB interconnect.

Logic verification using Boundary Scan
Simultaneous pseudo-random pattern generation and

parallel signature analysis.
Partitioning for test example.....

Digital bus monitor example.

Test bus controller example.......

Block diagram of structured debugy/test procedure.

Configuration of scan path on TMC prototype.......

101
104
106

.. 115

121
124

125
127
130
132
138

.. 140

ix

Table 3-1 :
Table 3-2 :
Table 3-3 :
Table 4-1 :
Table 4-2 :
Table 5-1:
Table 5-2 :
Table 6-1 :
Table 6-2 :
Table 6-3 :

List of Tables

JTAG_MACRO parameter definitions.e..ceuevvencuivecsesseceecesesesennnns 44
Listing of Boundary Scan pad library Cells.ccceoeuevernreemeercmeecereenecenenes 45
Component package /Pin FAtO.ceevererreererererenencesscseecsssesenseessnsnsesssesesns 52
Listing of Boundary Scan deviCes.cccceevvererrureerrereecscsncscssnesensesesessenns 56
Listing of board level test modules...............ccereverceieenirieeeneeeneeeeeeemressesenns 57
Information required by meta-procedure callfullscan.c.cecunec.... 107
Cases used for shifting calculation.ccoeueeeeveeeeeereeeneeereeesesesersrerees 108
Shorts/Opens VerifiCation............ccoceueeerereeenereereseeseseeeaeneeseseesessssensesnssnees 122
PRPG/PSA SEQUENCE.c.cuecueuenrenrrnrsresesetrsnsesssessssssesssssasssssesssssssscsenas 126

Differences in Traditional and Boundary Scan Test Methods.................... 144

Acknowledgments

A large number of people have contributed in many different ways to the successful completion of
this research. First I would like to thank God for providing me with the spiritual strength I needed
to complete this dissertation. My greatest appreciation is of course to my advisor Professor Robert
W. Brodersen for his encouragement, guidance, and support during the course of this research. I
consider it a privilege to have worked with him. His scholarship and insight was a constant source
of invaluable constructive criticisms have greatly enhanced the quality and presentation of this

dissertation.

I would also like to thank Professors A. Richard Newton, Charles Stone and Dean David A.
Hodges for serving on my dissertation committee. Next I would like to thank Professor Andy
Neurether and Chairman Paul Gray for their encouragement, friendship, and sound advise. Of
course, I cannot forget my dearly departed father for instilling in me the importance of education
and hard work, and my mother for her encouraging words and for making me stay in and study

while other kids where outside playing.

My heartfelt thanks go to all the members of bjgroup, especially my cubicle mates Anantha
Chandrakasan, Jane Sun, and Mani Srivastava. A special thanks to Susan Mellers, Brian Richards,
and Phil Schrupp for their invaluable help in this endeavor.

I am also fortunate to be acquainted with people who’s friendship I will cherish for the rest of my
life they include: Colin Parris, Robin Coger, Greg Uviegahara, Jon Duster, Charles Brooks,
Johnathan Reason, and Drs. Chris Gerveshi, Sheila Humphrys, and Jit Kumar. I am also grateful to
Tom Boot, Cheryl Craigwell, Peggye Brown, Carole Frank, Kia Cooper, Kevin Zimmerman, and
Kirk Thege. Finally, I cannot forget all of my colleagues and friends in Cory Hall who’s names I
did not mention. This research was jointly sponsored by AT&T Bell Laboratories Cooperative
Research Fellowship Program and the Defense Advanced Research Project Agency.

CHAPTER 1

INTRODUCTION

Recent advances in manufacturing and packaging technology have made it possible to
design very large, high performance VLSI systems. The process of taking a requirement
for a digital system and implementing that system in hardware begins with design and
ends with test. In the past, design and test was regarded as two separate steps but today,
they are thought of as two closely integrated tasks. So today, designers are faced with this
unformidable challenge and they can no longer adopt the old “toss it over the wall”
attitude. Some of the barriers they are faced with that compound the testing of these

systems are:

* the constant demand for greater integration;

* the widespread adoption of advanced packaging technology like surface mount and
multi-chip modules (MCMs) employed on both one-sided and two-sided printed circuit
boards (PCBs);

* the smaller distance between pins of surface mount devices;

L]

the inability to test PCBs via bed of nails access;

the increasing cost of Automatic Test Equipment (ATE) and associated test fixture;

the growing gap in speed between the device under test (DUT) and the ATE;

the increasing consumer demand for high quality, reliability, and maintainability.

Hence, developing a testability design and hardware support environment that helps
designers overcome some of these barriers would be of great value. This dissertation
addresses issues related to the automation of test in our system design environment. The
testability design techniques and dedicated hardware used are intended to reduce the cost
of adding test. Furthermore, these techniques are applied to a special class of systems that
perform dedicated tasks called application-specific systems.

1.1 What is Design for Testability?

Testing is the process of exercising a system to determine whether it performs its
intended functions. If an incorrect response is observed, a second objective of testing is to
diagnose why the device behaved incorrectly. Furthermore, in order to meet the stringent
demands imposed on today’s designers, such as reduced device to market time and
reduced cost, testing can no longer be considered as an afterthought, it must now be

considered as part of the design process.

Test complexity can be converted into costs associated with the testing process. There are
several aspects of this cost, such as the cost of test pattern generation, the cost of fault
simulation and generation of fault location information, the cost of test equipment, and the
cost related to the testing process itself, namely the time required to isolate and detect a
fault. Because these costs can be high and may even exceed design costs, it is important

that they be kept within reasonable bounds. One way to accomplish this goal is to make

use of design for testability (DFT) techniques [Williams83]. Testability is a design
characteristic that influences various costs associated with testing, while DFT techniques
are design efforts specifically employed to ensure that a device is testable. Most DFT
techniques require the addition of extra hardware to the design. These design

modifications affect such factors such as area, device pin count, and performance.

1.2 Background: DFT Methodologies and Standards

Several well know design for testability techniques are covered in this section. These
techniques were developed for chips and printed circuit boards. Since these techniques
deal with the total design methodology they are considered structured methods, as
opposed to, ad hoc approaches which do not. Most chip-level structured DFT techniques
are built upon the concept that if the values in all of the latches can be controlled to any
specific value, and if they can be observed with a straightforward operation, then test
vector generation can be reduced to that of doing test generation for the combinational

circuits between the controlled latches.

Built-in-self-test is the capability of a device (chip, board, or system) to test itself.
Building BIST into the design consumes added circuit and slightly increases pin count, but
at the same time results in reductions to the costs of testing when compared with an
external test using ATE. BIST achieves these savings by reducing the costs of test pattern
generation and fault simulation, shortening the test time by running tests at circuit speeds,

simplifying the external test equipment, and easily adopting to engineering changes.

To better address problems of board-level and system-level testing, several DFT standards
have been developed. The primary objective of these standards is to ensure that all of the

components of a board and/or system contain common DFT circuitry that will make test

A B
BEG[1] e REG[O] R
REG[Z] e REG[S]

COMPIN

SCANOUT

Figure 1-1: Scan path example.

development and testing of the system and its components more effective and less costly.

1.2.1 Scan Path

The scan path [Eichelberger77][Funatsu75][Williams73] methodology is the most
widely used method for testing those parts of the circuit that are constructed of clocked D-
type flip-flops interconnected by combinational logic. As illustrated in Figure 1-1, it is
based on converting the circuit’s D flip-flops into a serial scan path chain denoted by the
thick black line threading the circuit flip-flops. When the circuit is placed in test mode, the
circuit is configured as a shift register and test data can be shifted in on every clock cycle.
By returning the circuit to normal mode for one clock cycle, the contents of the register are
applied to the combinational circuitry and the results are captured at the register inputs. If

the circuit is then placed in again, the results of the proceeding test can be shifted out for

examination.

1.2.2 Built-In-Self-Test

Built-In-Self-Test (BIST) [McCluskey85a,b] techniques fall into two categories, off-
line (or nonconcurrent) and on-line (or concurrent). Off-line BIST requires a mechanism
for supplying test patterns to the device under test and a means for comparing the device’s
responses to known good response as illustrated in Figure 1-2. Additionally, both
mechanism and means must be compact enough to implement. There are many ways to
generate stimulus but, the two most widely used ones are called exhaustive and random

testing.

Stimulus generation in exhaustive testing, the test length is 2" tests, where n is the number
of inputs to the circuit. Since all possible test patterns are applied, all possible single and
multiple stuck faults are detected (excluding redundancies). The tests are generated with
any process that cycles exhaustively throughout the circuit input space, such as a binary
counter or an n-stage autonomous linear feedback shift register (ALFSR). An ALFSR isa

series connection of D-type flip-flops with no external inputs and with all feedback

St Functional

imulus _ Response

Generator [>| Circuit ™ Analyzer
Controller

Figure 1-2: General form of an off-line BIST structure.

provided by means of exclusive-or gates. Exhaustive testing for chips with high input pin
count requires relatively long test times, but in [Bozorgui80] it is suggested that circuits
can be added to partition such structures into subcircuits, each of whose input pin count is
low enough to permit exhaustive testing in a reasonable amount of time. Random testing
implies the application of a randomly chosen subset of 2" possible input patterns. A
guarantee of the test coverage for the subset can be obtained by running the tests against a
fault model. The number of the applied tests or the size of the subset is constrained by the
economically allowable test time. While circuit partitioning is not needed, some logic
modification may be necessary to ensure adequate coverage from the limited test set. A
linear feedback shift register is the typical choice for a random test generator since its

output data is approximately random.

Response analysis on-chip storage of a fault dictionary (all test inputs with the correct
output response) requires too much memory to be a practical method. The simplest
practical method for analyzing the output response is to match the outputs of two identical
circuits. The cheapest way to do this is to compress the output responses before comparing
them. The compressed response is signature of the device under test, and comparison is
made to the precomputed and stored reference signature. The most widely used data
compression method is signature analysis which uses a linear feedback shift registers and
the signature is the state of the register following the completion of a test

[McCluskey85a,b].

1.2.3 Boundary Scan Standard

The Boundary Scan [IEEE90a][Maunder90] standard consists of a dedicated serial test
bus which resides on a board, a protocol which controls the I/O pins that connect the chips

to the test bus, and control logic that resides on chip to interface the test bus to the DFT

TDI = Test Data Input

TDO = Test Data Qutput

TMS = Test Mode Select

BP = Bypass Register

SP = scan path Register Cell

BS = Boundary Scan Register Cell
IR = Instruction Register

TAP = Test Access Port Controller

TDI TMS TCK TDO

Figure 1-3: Boundary Scan architecture.

circuitry residing on the chip. The primary reasons for Boundary Scan are to allow
efficient testing of board interconnect, and to facilitate isolation and testing of chips either

through the test bus or with additional circuitry.

With Boundary Scan, chip-level testing can be supported at the board-level by simply
connecting Boundary Scan register cells between the chip’s application logic and I/O pins
as shown in Figure 1-3. There are two major components associated with this standard,
namely Boundary Scan register and the test access port (TAP) controller. The application
logic represents the normal chip design prior to the inclusion of logic required to support
the standard. This circuitry may include Scan Path or BIST hardware. If so, the scan paths
are connected via the test bus circuitry to the chip’s scanin and scanout pins. The
remainder of the test bus circuitry consists of the boundary scan register, a 1-bit bypass
register, and a n-bit instruction register. The test bus consists of the test clock (TCK), the

test mode signal (TMS), the test data input (7DI) signal, and the test data output (7DO)

signal. Test instructions and test data are sent to a chip over the TD/ line, while test results
and status information are sent from the chip over the 7DO line. Control of the test bus
circuitry is carried out by the TAP controller which receives its commands from the TMS

line.

1.3 Previous Work

In recent years, there has been a great deal of work in the areas of DFT automation
systems, hardware controller systems, and custom chip solutions, for example,
[Abadir85,89][Agrawal84][Beenker89][Emori90][Fasang85][Fung86][Geewala89][Halle
nbeck89][Lien88][Lien89][Lien90][Samad86][Samad89]1[Swan89][TI90][Yaud0]. While
it is beyond the scope of this dissertation to examine all of the work, some of the related
work will be discussed in the section that follows.

1.3.1 Design Automation Systems for Testability

Some CAD systems, like silicon compilers, automatically incorporate of testability by
following stringent guidelines to add special purpose test hardware, while other systems,
are more dedicated and use artificial intelligence techniques to guide the designer in
selecting DFT solutions. The Test Engineer’s Assistant (TEA) [Hallenbeck89] is an

example of such a system.

Test Engineer’s Assistant

TEA is a CAD environment developed to provide the knowledge base and tools
needed by a system designer for incorporating testability features into a board design.
TEA helps the designer meet the requirements of fault coverage and ambiguity group size.

Fault coverage is defined as the percentage of faults that can be detected out of the total

population of all single stuck-at faults of a device under test with a particular test set.
Ambiguity group is defined as the smallest hardware entity in a given level of the system
design hierarchy (that is, board, subsystem, and system) to which a fault can be isolated.
TEA interfaces to commercially available or prototype, beta-site tools to create an
environment in which the designer can perform design capture, functional verification,
design for testability, fault simulation, functional verification, and test program generation

for a particular automatic test equipment system.

The design methodology used in TEA addresses testability issues at all stages of design
(preliminary, detailed, and final) and at each level of the system hierarchy. Hardware and
software resources are identified during the preliminary design stage. In contrast to
traditional design practices, test resources are also determined at this stage. During
detailed design, specific functions of system resources are identified and verified through
simulation and checked against system requirements, including testability. Trade-offs are
made at this point to ensure that system requirements are met. TEA aids the designer in
identifying and implementing test resources and verifying that they will meet system test

and diagnosis requirements.

TEA uses the hierarchical test methodology shown in Figure 1-4, that is composed of a set
of subsystems communicating through a system bus. Each subsystem is composed of a
number of boards communicating through a subsystem bus during normal operation and
through a test bus in test mode. Bach board interfaces to the test bus through a test
interface. The test interface receives test data and control information from the test bus
and uses this information to initiate tests and receive results by controlling the chip’s local
test hardware on the board. The test interface can be a single chip and it can directly
interface to standard testability buses, such as the Boundary Scan test bus for

communicating test data to and from the board. The test data is generated by a Test

10

—
Backplane Test Bus Chip Level
Test Bus

g

System Subsystem Test g 3 lnterpal]
Bus ~%1% Test Control > Bus >l § Logic g

. Interface e °

Unit £ €

(=}

m
Board or Module Chip —

Rack or Subsystem

Figure 1-4: Hierarchy of test and maintenance buses.

Control Unit, a subsystem used exclusively to provide test data for every device under test
in the system and to analyze the results. This unit can be embedded in the system, or its

function can be performed by automatic test equipment.

1.3.2 Test Hardware: Custom Test Controllers

Several custom test controllers have been proposed. These systems were developed to
function in a structured testability hierarchy like that shown in Figure 1-4 and require
dedicated software to configure them for test and debug operations. The advantages of a
hierarchical test methodology are interoperability at each level of subassembly due to

standardized test interfaces and reduced overall test and maintenance costs.

Module Test and Maintenance Controller

Lien and Breuer describe the Module Test and Maintenance Controller (MMC)

[Lien88][Lien89] system that is capable of controlling the self-test process of a board by

11

accessing each chip’s test structures through a Boundary Scan test bus. It is intended to be
part of a hierarchy of test controller that are embedded into a target system’s physical
hierarchy. In their hierarchy, each testable chip contains an on-chip test and maintenance
controller (CMC); each testable board contains a module test and maintenance controller;
each testable subsystem contains a subsystem test and maintenance processor; and each
system has a system test and maintenance processor. The architecture for an MMC
consists of a 16-bit general or special purpose processor, a ROM, a RAM, a test channel,
test and maintenance processor with a Boundary Scan interface, and a bus driver/receiver,

which supports an expansion bus.

The major functions of the processor are listed below:

* transfer data between memory and test channels

* compare test results with stored good results

* transfer data between memory and expansion units
* execute test and/or diagnostic programs

* transfer data between memory and the subsystem maintenance processor

Once initialized by the processor, the primary function of the test channel is to control the

Boundary Scan test bus. Other functions of the test channel are listed below:

* serve as a Boundary Scan master

* transmit instructions to and receive status information from chips

* generate and transmit pseudorandom test data and receive compact results

* transmit deterministic test data to and receive test results from chips

* generate interrupts and also direct interrupts between chips and the processor

* and keep count of the number of tests applied and the number of bits in each test vector or

instruction that is transmitted.

12

The bus driver/receiver is a bidirectional interface to the MMC, and the RAM and ROM

are used to store test data and seed vectors required for BIST operations respectively.

1.4 Summary

The work described in the previous section only provided partial solutions to the two
part problem of automatically incorporating DFT features into application-specific
systems and providing hardware and software to support them. The uniqueness of the
work presented in this thesis is that it is a fully integrated solution to the system test
problem that deals with both pre-design and post-design test issues in an automated

fashion.

In the remaining chapters are described the details of the hardware and software for the
testing environment. Chapters 2 presents an overview an overview of the SIERA design
system and the test strategy employed in the system. The chip and board level test
hardware is discussed in Chapters 3 and 4 respectively. In Chapter 5, a detailed
explanation of the software used for designing and controlling the test hardware. Test
applications and some actual test sessions are presented in Chapter 6. Finally, Chapter 7

presents conclusions and some suggestions for future work.

CHAPTER 2

THE SIERA DESIGN
ENVIRONMENT

Advances in VLSI technology has led to the creation of chips which resulted in a
complexity that resulted in a bottleneck in the chip’s overall development time. This
bottleneck was alleviated by the use of silicon compilers which produce the physical
information required to fabricate chips from higher level descriptions of the design, these
could be a symbolic layout, a circuit schematic, a behavioral description of a

microarchitecture, an instruction set, or an algorithm for signal processing.

The compiler then transforms this high level description into a physical representation
required by the fabrication foundry. This transformation occurs in several steps. For
example, a compiler might transform a behavioral description of a design into a logic gate
level representation. A major advantage of this approach is that designers can work at
higher levels of abstraction without having to know specifics about the IC design and
process technology. Another and probably most important advantage of this approach is

the ability to rapidly produce chips. Further advances have also led to the creation of very

13

14

complex systems. Even though these systems contain hundreds of components, tools that
support the integration of these components to make up the system are still in a primitive
state. Additionally, these same tools do not exhibit usability and rapid prototyping
features. One such CAD environment that does exhibit these features is SIERA
[Srivastava91][Sun91][Srivastava92]. An overview of SIERA is presented in this chapter.
along with a discussion of the test strategy employed by SIERA along with the associated

testing environment.

2.1 Overview of SIERA

SIERA is an integrated CAD environment for the design of complex, application-
specific systems, where a system is a set of hardware modules that interact with each other
and the environment to collectively perform some function. In the context of this system, a
module can be a single chip or group of interconnected chips. SIERA’s origin stems from
the LAGER [Rabaey86][Shung91][Brodersen92] system, a custom chip design
environment. Some of the transformation steps used in LAGER are also used in SIERA
which include behavioral-to-structural and structural-to-physical. Dedicated tools were
developed to tackle the tasks associated with each transformation step. Many problems

inherent in system design that do not exist in chip design are addressed by SIERA such as:

* behavioral representation of systems

* simulation of behavioral representation
* structural representation of systems

* simulation of structural representation
* physical representation of systems

* and simulation of physical representation.

15

SIERA was developed to provide a CAD environment that is capable of synthesizing an
architecture, using both hardware and software modules, to implement the a system
specified in the form of a process network as described in
[Srivastava91][Sun91][Srivastava92]. Figure 2-1 illustrates a simplified high level view of

...............................

: Behavioral
! (system functionality)§

Y

Architecture
Mapping

{ Structural
{ (system architecture
! in SDL, C)

'

System-Level

Module
Generation

Physical
(s/w + board layout |
in gerber)

Fabrication .
& Design

Debugging

Y

Working System

Figure 2-1: High level view of SIERA.

16

SIERA. First, a behavioral representation of the design is mapped to an appropriate
architecture producing a structural representation which is then manually partitioned and
mapped onto a four-layer system architecture template as shown in Figure 2-2. The two
lowest layers consist of custom boards where each board contains one or more software
programmable processing modules based around programmable digital signal processors,
and running real-time customizable OS kernels. Each processing module in turn
coordinates a number of application-specific slave modules which can be either software
programmable or dedicated hardware modules. The custom boards reside in a back-plane
bus, typically VME, and are slaves to an off-the-shelf single-board computer which also
runs a real-time OS kernel. This constitutes the third layer. The processing modules on the
custom boards interact with the master single-board computer through a standard,
parameterized software and hardware interface. The VME master single-board computer
in turn, communicates with a UNIX workstation, which makes up the final layer, using

standard (Ethernet) and software protocols.

The software modules can be mapped to the top three layers which can be mapped to the
top three layers. For example, a software module is mapped either as a process on the
workstation, a process on the VME master single-board computer, or as a process on the
DSP processing module residing on a custom board. Layers 2 and 3 are used for process
with increasing real-time requirements while, the workstation is used for non-real-time
front-end or interactive processes. The architecture mapping as specified by the user is
accomplished by selecting a library module for each block in the block diagram. An
implementation of a block is either in the form of program code meant for execution as a
software process, or a behavioral or structural representation of a dedicated hardware

process.

Designs in SIERA are managed by the Design Manager called DMoct, which automates

17

/ Workstation LAYER 1
Software Processes Go Here ! I
\ LANorBus
Single-Board
Computer LAYER 2
e
A
System B
«f / $h-
/ Ve
: Buslnielfcce Wmm: ~~“~-~-
| Module JadSW tefacs el !
] ' ~-~‘~~ -
: : Te-e L [
: : Custom
\ IAYER3 ! Boards
q: ’ ‘ Processor 1/ : —'_,.—_
: o 3 < LAYERS3&
! Slave Bus t —'v" 4
:‘ﬂ 3 t g Jirtas
' : .*"/
V| stovets feeee | Soesn | | Application-Specific Hardware
: e Modules Go Here !
‘TERS— —— I
: LAYER4 |
! I
\

Figure 2-2: Layering topology for architecture template.

the generation of a hierarchical system comprised of parts created by a large variety of

tools. It accesses these tools in the proper order to preserve the design hierarchy contained

in a textual or schematic representation of the design. The design flow as managed by

DMoct is shown in Figure 2-3. The textual representation is written in a structural design
language called SDL [Brodersen92][Shung91] which has lisp like constructs, furthermore,

design constraints and parameters are also passed along with this representation. After

parsing the SDL file, an initial representation of the design called the structure-master

view is created and stored in the OCT object-oriented data base [Octools][Harrison86].

18

S]|DL Schematic
Design Y Design }
Flow Parser Manager
Parameterized Hierarchical :
Netlist of Modules (OCT)

Parameter Evaluator
&
Module Generators

R Y T A LR LN Y YT S R Y TN YR R T R TR
ccsascesssnsssnaae

Partially Placed Netlist of ICs (OCT)

Y
Board Place &
Logic Route Tool
Simulator (commercial)

Library o
Parame;gﬂged

(VHDL/THOR) t
Board Layout Modules

Figure 2-3: Typical PCB design flow managed by DMoct.

OCT was developed specifically for electronic CAD applications and it offers a
straightforward mechanism for storing all information pertinent to an evolving design.
Following this step, the parameters are evaluated and together with structure-processor
tools (which are dedicated tools that only operates on structure-master views), produce a
structure-instance view which is an expanded view of the total design as represented in
OCT. Finally, layout generation tools operate on structure-instance views to produce
output files containing physical geometry and implementation specific information

required to fabricate a chip, MCM, or board.

19

2.1.1 System Design Methodology

Embodied within the SIERA framework is a vertically integrated design methodology
that supports the development of application-specific systems at all levels from the high
level description to the board implementation and software generation. STERA uses an
“application-driven” approach which is based on examining actual implementations of
example systems, developing an initial design methodology, automating and improving
the design methodology through experience gained from the example systems. This
approach is different from the classical “tool-driven” method which develops a design
methodology after developing a set of automated tools. The design methodology used in
SIERA consists of two parts, namely Module Generation and Architecture Generation.
Module Generation will be discussed here, any information regarding architecture and

software generation can be found in [Srivastava92].

Module Generation is the physical implementation of a system from an architecture
comprised of hardware modules, where emphasis is placed on generation of multi-chip
board level hardware modules. A major feature of this hardware generation strategy is a
library consisting of reusable parameterized board-level sub-system modules that can be
integrated into a custom board design. These modules can be used for communication,
signal processing, data acquisition, or testing applications. Some modules are fixed and
while others can be customized for a given application via parameters provided by the
designer. For example, parameters can determine the type and size of a memory module.
The combination of the sub-system library and the hardware modules provides an
environment unmatched by commercially available board design tools. A typical board
design may consist of a number of these modules connected together to achieve the
desired functionality. Module generators produce sub-system netlists and component

placement information which are all processed by DMoct to produce a final board netlist.

20

The board netlist is then processed by a structure-processor called oct2rinf, which

produces an output file that is compatible with a commercial router.

2.1.2 Hardware Module Generation

The primary objective of the hardware module generation environment was to provide
an environment that can handle arbitrary hardware architectures implemented as custom
boards using custom and commercial ICs, as well as, the capability to explore alternative
implementations. Module generation was founded on the basis of pre-existing ASIC
generators, like those in LAGER, that automatically produce circuitry required to
implement dedicated chip level macro-functions and then, tie them together to achieve the
desired functionality. These same concepts also proved to be extremely useful at the board
level, where one or more custom and/or commercial ICs are grouped together to
implement a complex function. This environment also uses SDL to describe the designs,
OCT to store the design information, and DMoct to manage the design flow. Additionally,
chip level module generators and behavioral tools are also available to the board
designers. As a result, a complex board design can be represented as a netlist of high-level
modules that are maintained in a library consisting of parameterized reusable modules
(adders, multipliers, etc.) or as a behavioral description (FSM controllers, decoders). The
final step toward completing a board design is the layout, for this, several layout
generation tools were developed. This section is only intended to present the reader with
an overview of the hardware module generation environment, a more complete discussion

is in [Shung89].

2.2 Test Strategy used in SIERA

Traditional approaches to system test often employ a three level strategy. First, an

21

engineer with very little or no test experience runs a system self test to quickly determine
whether the system is operating correctly. If a failure occurs, the engineer runs additional
tests on each of the boards that make up the system, to locate the faulty board and then
replaces it. The faulty board is then returned to the manufacturer, where their test engineer,

who is experienced, uses sophisticated ATE to locate the faulty chip and replaces it.

The traditional approach presents many problems, three of the most important ones are

listed below:

1. the additional cost of shipping the boards out for repair;
2. the time required to develop a good functional test vectors;
3. difficulty of duplication of the problem.

The difficulty of the duplication probicm refers to the situation where one level of test
indicates a failure and that failure is transparent at the next level. This in part is due to
intermittent faults and/or differences in test procedures used at various levels of testing.
The causes of these problems, which have been identified [Breuer85), are environmental
dependency, which means that a failure is caused by environmental conditions like
temperature and vibration, false alarms caused by design errors or transient faults,
incompatibility of tests, which is caused by the use of inconsistent testability techniques at

different levels of the system hierarchy, and faults in the test hardware.

The approach described above is adequate for high volume production environments but
insufficient for low to medium rapid prototyping environments like SIERA. Hence, the
test strategy used in SIERA should eliminate or at least reduce the problems mentioned
above. The strategy used in SIERA should be able to support testing at all levels of the
system’s hierarchy, support existing testability bus standards, produce test vectors, have a
facility to initiate and execute tests and provide a means to integrate DFT techniques into

the design process. This will result in a complete solution that deals with the design, as

22

well as, the testing of a system. This approach is contrary to the approaches described in

the Previous Work section in Chapter 1, where the authors only presented partial solutions.

Embedded within SIERA is a test environment that fulfills the above requirements, where
the designer, has available, testable hardware modules at both the chip and board level that
implement a DFT methodology or testability bus standard, software tools that tie these
modules together, test languages that describe what DFT modules are used and how to use
them during test, and a dynamically reconfigurable custom controller board that is used to
control and access the devices (chips and boards) which contain the testable hardware.
Specific details and issues regarding the design, implementation, and application of each
component of the test environment is the subject of this dissertation. Each component is
addressed in the chapters that follow, but a discussion on how we integrate test into

SIERA is warranted.

2.2.1 Integrating Test into SIERA

The DFT techniques used in STERA must tackle test problems at both the chip and
board levels. Furthermore, these techniques must not significantly impact performance or
area. While preserving these objectives, test is integrated into SIERA in two phases. The
first phase involves identifying the building blocks that comprise a chip or board. For
example, there are three fundamental units of logic that used to implement a chip, namely
combinational logic, registers, and random access memories. At the board level, devices
are categorized as either Boundary Scan or non-Boundary Scan components. After the
fundamental system components have been identified, specific test methodologies, in
particular, those described in Chapter 1, are chosen for each component in the second
phase. At the chip level, the registers are configured as a Scan Path and used to test the

combinational logic, while memory is tested using the BIST technique. The Boundary

23

Scan devices are chained together forming a Boundary Scan path where these devices are
used to test the board interconnect, as well as, provide access to chip level Scan Path and
BIST functions. Dedicated test hardware modules have been developed that implement
Scan Path, BIST, and Boundary Scan using the hardware module generation feature in
SIERA. Special languages and software tools have also been developed to support these
modules, all of which are arranged in a test library. Figure 2-4 illustrates how these
features are integrated into SIERA. The design, implementation, and some examples of
these modules and the Test and Diagnosis system are discussed in the next Chapter 4,

while the software tools that support this hardware are discussed in Chapter 5.

2.3 Summary

An overview of SIERA, the system design methodology, the hardware module
generation environment, our system test strategy, the test environment and how it’s
integrated into SIERA have been presented. The test methodologies used in SIERA are
only intended to assist the designer in two ways: (1) to help verify the complete
functionality of their system; and (2) to isolate the faulty device down to the logic gate
level. Moreover, our approach allows us to deal with testability as part of the design

process not as a post-design process.

The test methodologies used in SIERA were chosen because of their ease of
implementation and suitability in a rapid prototyping environment. Our approach does not
require that the designer be intimately aware of all of the DFT techniques that exist and
their implementation, but rather allows the designer to work at a high level with libraries
and software tools to implement the actual test. Finally, the role of the chip level
macrocells and the board level modules is to help the designer incorporate testability

features into the design to meet system test requirements. With a system designed using

24

these modules, the designer can isolate system faults down to a single chip. This capability

is particularly attractive in terms of repair times and repair costs.

Behavioral

(system functionality)
Aﬁl;itepture Subject of
pping this dissertation
Structural :
(system architecture
in SDL, C) OUUSUSUSUUSRUSSURUUUOR! SOOI S
* : Test Environment
System-Levell Test
Module |e—ipl TestHW Vector
Generation | : |Generation| | Generation
Physical
(s/w + board layout Test
in gerber) Lan*guageS
: Test Test
Fabrication : Program &Diagnosis|
' : | Generation System
Application
——®| Specific -
System Repair
Working System

Figure 2-4: Structure of SIERA including test environment.

26

CHAPTER 3

TEST HARDWARE - CHIP
LEVEL

In 1985, an ad hoc group composed of key semiconductor manufacturers formed to
establish a solution to the problems associated with board level testing. This concerted
effort involved the producers of both chips and board level products. The solution they
came up with eventually led to the development of a standard chip level test architecture
called Boundary Scan that, not only, solves the board level test problem, but also allows
designers to add test features, like Scan Path and BIST, to meet their own requirements. To
be compatible, a chip must have certain basic test features which are outlined in the

standard specification.

This chapter presents an overview of the Boundary Scan standard, addresses
implementation issues associated with integrating Scan Path and BIST with Boundary

Scan and examines design versus test cost trade-offs.

27

28

3.1 The Boundary Scan Standard: An Overview

Two continuing trends are increasingly making it more difficult to test printed circuit
boards:

1. Increasing complexity - As chips become more complex, so does the task of generating
tests for boards that use them. For functional testing, test generation times are
significantly longer, due to the need to propagate test data through some chips while
tests are applied to others. Test lengths also increase as complexity increases.

2. Greater miniaturization - The use of multi-chip modules as well as surface mount
packaging technology, particularly when coupled with double-sided component
mounting reduces board geometries making boards more difficult to probe using
traditional bed-of-nails access.

The purpose of the Boundary Scan [IEEE90a] standard is to provide the basis for solutions
for these problems. Boundary Scan solved these problems by eliminating the need to
physically probe a component’s I/O pins by implementing an electronic probe inside the
component’s I/O pins. This section describes the principal features of the Boundary Scan
Macrocell.

The standard architecture requires of three major circuit blocks shown in Figure 3-1 and
described below:

TAP Controller - a finite state machine that responds to control signals supplies through
the test access port (TAP) and generates the clocks and control signals required for
correct operation.

Instruction Register - an n-bit shift register whose contents determine which test is to be
executed

Test Data Register - an n-bit shift register that applies the test stimuli or conditioning
values required by a test. At the end of a test, the results in the test data register can be

shifted out for examination. This register, for example can be implemented as a Scan
Path register.

3.1.1 Test Access Port

These circuit blocks are connected to a TAP which includes four or, optionally, five

29

" TDO
-
Test Data Register
| o — 1y
% A - - Instruction Decode —A U Output
% Instruction Register J_ X Bu{f o
@]
= A Control Signa]s‘--
g [YYYY)
5 TAP
é TMSE | Controller
: TCK
(optional)
Py TRST*
AN

Figure 3-1: Top level view of Boundary Scan test logic.

signals used to control the operation of tests and the application of test data and

instructions. The TAP consists of:

Test Clock Input (TCK) - allows test operations to be synchronized between various
chips on the board.

Test Mode Select (TMS) - Operation of the test logic is controlled by a sequence of Os
and 1s applied to this input. The sequence on TMS directs the execution of the TAP
controller.

Test Data Input (TDI) - Data applied to this serial input is fed either into the
instruction register or into the test data register depending on the sequence applied to
the TMS pin.

Test Data Output (TDO) - The serial output from the test logic is fed either from the
instruction register or from the test data register. During shifting, data applied to TDI
will appear at TDO after N clock cycles, where N is the register size. When data is not
being shifted through the register, TDO is in a high impedance state.

30

Test Reset Input (TRST*) - This optional input is used to reset the test logic when a 0
is applied.

The TDI, TMS, and TRST* inputs are equipped with a pull-up resistor so that when they
are not driven by an external source, the test logic always sees a logic 1. In the case of the

TMS input, this ensures that the TAP controller always starts in the correct state after 5

clock cycles.

3.1.2 TAP Controller

A key goal during the development of the Boundary Scan standard was to keep the
number of pins in the TAP to a minimum because chip designers are always reluctant to
allocate additional pins for test purposes. The TAP controller achieves this goal with a 16-
state finite state machine that implements a serial test protocol. The state diagram for the
TAP controller is shown in Figure 3-2. Note that all data register operations end with a
‘_DR’ and all instruction register operations end with a ‘_IR’. State to state transitions
occur on the rising edge of TCK. The Os and 1s shown adjacent to the state transition arcs
indicate the TMS value that must be present together with a rising edge on TCK, for that
particular transition to occur. Eight of the sixteen controller states determine operation of

the test logic, allowing the following test functions to be performed:

Test-Logic-Reset - All test logic is reset, allowing normal operation of the chip to
occur without interference. Regardless of the starting state of the TAP controller, this
state can be reached by applying a 1 to the TMS input for five clock cycles.
Alternatively, if TRST* is provided, it can be used to asynchronously reset the TAP
controller at any point during operation.

Run-Test/Idle - The operation of the test logic in this controller state depends on the
instruction in the instruction register. For example, if an instruction activates a self-test,
then the self-test will run in this state. If the instruction happens to be one that selects a
data register for scanning, then the test logic will be idle.

Capture-DR - Each instruction must identify one or more test data registers that are
enabled to operate during test mode when the instruction is selected. In this state, data

31

0.
Jda-arepdn
da-oxd

I

i
T
-

Figure 3-2: TAP controller state diagram.

32

is loaded from the parallel inputs of the selected test data registers into its shift register
paths.

Shift-DR - Bach instruction must identify a single test data register that is to be used to
shift data between TDI and TDO in this state. Shifting allows the results of the previous
test to be examined while applying the next test.

Update-DR - This state signifies the end of the shifting process. Some test data
registers may contain latched parallel outputs to prevent signals applied to the system
logic or through the chip’s I/O pins, from toggling while new test data is shifted into the
register.

Capture-IR, Shift-IR, and Update-IR - These states are analogous to Capture-DR, Shift-
DR, and Update-IR respectively, but only affect operation of the instruction register. A

new instruction is applied in the Update-IR state.

In the Update-DR and Update-IR states, action takes place on the falling edge of TCK,
while action takes place on the rising edge of TCK in all of the other states. TDO is active
only during the Shift-DR and Shift-IR states. The test logic remains idle in the remaining
eight states. The pause states, Pause-DR and Pause-IR, are provided to allow the shifting
process to be temporarily halted. The Select-DR-Scan, Exitl-DR, Exit2-DR, Select-IR-

Scan, Exitl-IR, and Exit2-IR states are decision points in the state diagram.

3.1.3 Instruction Register

The instruction register provides on the alternate serial paths between TDI and TDO. It
operates during the instruction scanning portion of the controller state diagram. The
instruction register is a parallel-in, parallel-out shift register. The parallel output is latched
so that a new instruction can be shifted in without altering the previous instruction. The
latched output is updated from the shift register path in the Update-IR state; at this time,
the new instruction becomes current. In the Test-Logic-Reset state, the latched output is
reset to load the BYPASS instruction. The instruction register must contain at least two

stages. No maximum length is defined, since this will be determined by the number of test

33

Optional Stages Mandatory Stages
7 N/ AN
From \\S \ To
TDI TDO
— IN ———- 12 10 —

%
%

N

ooy

Instructions

-

Figure 3-3: Instruction register.

instructions required. A block diagram of the instruction register is shown in Figure 3-3.
Stages I1 and I0 must be set to 0 and 1 respectively in the Capture-IR state. These fixed
values ease detection and location of faults that may exist in the scan path. In a board
design, instruction registers are daisy-chained together in the Shift-IR state so that
different instructions can be shifted into each chip in the path. The TAP controller is
implemented using the Standard Cell logic design methodology. It was synthesized from a
behavioral description written in BDS [Octtools].

Instruction Register Cell Design

The instruction register provides one of the alternate serial paths between TDI and
TDO. It operates when the instruction scanning portion of the TAP controller state
diagram is entered. The instruction register allows test instructions to be entered into each
chip along the board level scan path. These registers are daisy-chained together at the
board level in the Shift-IR controller state, so that a different instruction can be loaded into

each chip on the path if required. A block diagram of the instruction register cell is shown

34

To Next Cell
Data | pm Instruction
) D D Q Bit
From X
& g [[08
€l shiftiR
CIkIR Reset

Figure 3-4: Block diagram of instruction register cell.

in Figure 3-4. Each cell has a latched output to which instructions are transferred when
they are valid, this assures that the test logic receives only valid instructions. The function
of the ShiftIR, ClockIR, and UpdateIR signals are analogous to the ShiftDR, ClockDR,
and UpdatelR respectively. When the TAP controller enters the Test-Logic-Reset state, it

applies a 0 the Reset* input and forces a 0 to appear at the instruction register’s output.

3.1.4 Test Data Register

The Boundary Scan standard specifies the design of three test data registers, two of
which must be included in the design. The mandatory test data registers are the bypass and
boundary scan registers. The device identification register is optional. All test data
Operation of the various test data registers is controlled according to the current
instruction. An instruction can place several test data registers into their test mode of
operation, but it can select only one register to connect between TDI and TDO in the

Shift_DR controller state as shown in Figure 3-5.

Registers that are not used during a test operation are configured such that they do not

35

Boundary Scan Register

""""""""""" Device Identification | —| M | 1o
From | ;Optional Register = Y [Too
TDI | e,

__ Scan Path Register

Loptional

Bypass
Register

Figure 3-5: Test data registers.

interfere with the operation of the chip’s internal logic. Registers that are used during a test
operation will load data from their parallel inputs in the Capture-DR state and make any
new data available at their latched outputs in the Update-DR state. In other words, the
results of a test are sampled in the Capture-DR state, and the new test data is available, at
the latest, in the Update-DR state. Any test operations required between the Update-DR
and Capture-DR states must occur in the Run-Test/Idle state.And, the register selected by
the instruction to be the serial path between TDI and TDO must shift data from TDI
towards TDO in the Shift-DR controller state. All other test data registers enabled for test

operation will retain their state while shifting occurs.

Boundary Scan Register Cell Design

To comply with the Boundary Scan standard, a chip must contain boundary scan
register cells at its input and output pins, as shown in Figure 3-6. These cells should be

located:

36

Inputs
Outputs

| = Boundary Scan Register Cell

Figure 3-6 : Organization of boundary scan register cells.

* between each input pin (clock or data) and the corresponding input to the chips internal
logic;
* between each output from the chip’s internal logic and the corresponding output pin;

* and between each tri-state enable or direction control output from the chip’s internal

logic and the corresponding output driver pin.

A block diagram of an output boundary scan register cell is shown in Figure 3-7. During
normal operation, the MODE signal is disabled and the cell becomes transparent and data
passes directly to the chips output pin. When an instruction is selected, the ShiftDR and
CIkDR signals are asserted until all test data is loaded into the boundary scan chain after
which, the UpdateDR signal is asserted and the test data is applied to the output pins.
Meanwhile, the mode signal is asserted during the entire test. Test results can then
captured at the input pin of an adjacent chip and shifted out for comparison with that of a

good circuit.

37

Data From
o B L e
ovions)I(D Q D Q
ShiftbR | | ¢ ¢ Mode

ClockDR UpdateDR

Figure 3-7: Output boundary scan register cell.

These cells operate in conjunction with the cells at the data connections of the chip’s
internal logic, furthermore, they allow the state of the output driver and the data value
driven when the driver is active, to be controlled. The reason for the necessity of these
cells is illustrated in Figure 3-8 which shows a board level tri-state bus that can be driven
by chip A, chip B, chip C, or chip D. To test the interconnection between these chips, it is
necessary to determine whether the bus can be driven to both a logic O or logic 1, and
whether each chip can drive signals onto the bus independent of the others. Figures 3-9
and 3-10 illustrate how boundary scan cells are used in a tri-state pin and bidirectional,
respectively. An additional cell is required to control the state of both the tri-state and
bidirectional pins. The CHIP_TEST* signal is provided to prevent the I/O pin from
toggling during Scan Path and BIST testing. The EXTEST* signal is provided to prevent

the chip’s internal logic from changing during component interconnect testing.

3.1.5 Bypass Register Cell Design

The bypass register must also be present in all chips that conform to the standard. It is
the shortest path between the TDI and TDO pins and allows data to be shifted through the

38

A
s

B é D
@

Cc TDO
/

TDI

Figure 3-8: Testing a tri-state bus.

chip without interfering with its system operation. The bypass register consists of a one bit
shift-register that loads a constant logic 0 in the Capture-DR controller state when the
BYPASS instruction is selected. It does not have a parallel data output, therefore, the data
present in the register when shifting is completed is unimportant. The importance of this
register is illustrated in the following example, consider a board containing 100 Boundary
Scan chips all connected into a single serial chain and you need to access the boundary
scan register that’s located on the 49th chip in the chain, but you do not want to interfere
with the operation of the remaining 99 chips. In this case, the required instruction would

be loaded into Chip3, with the BYPASS instruction being loaded into the other chips. The

39

...
.

CHIP_TEST*;

Output M

Enal IB: U
M To Next Cell l_ X
Y [Lggt %ﬁ

D o' DQ
Shif!DR Pc I—c Mode ggoixgrol
:Ce

T T ClockDR T UpdateDR
Output i NLEN
atzl: M _D__- 1/0
: Ur Pin
: M X |:
From s U l —:
Coll X D Q DaQ | :
| c c :
ShiftDR |_ [_ Mode @ ueput
... ¢ Cell
ClockDR UpdateDR

Figure 3-9: Boundary scan cell for tri-state output pin (above).
Figure 3-10 : Boundary scan cell for bidirectional I/O pin (below).

...
.

Qutput_ :
Co

l I_ M To Next Cell —_l—
'g—l—o A 53

ShzfltDR rc c
..... kiR Uiy oo eeeeneesd
Outpnt: 41
Dats
M
L e
e
L] X D g-Da :
c c Mode?2 :

F |
Prom i ShiftDR |_
ClockDR UpdateDR

.
...

40

Bo
Scan
Register
Cell

Figure 3-11: Example output pad implementation.

serial bit stream shifted into TDI during the instruction scanning cycle would be:
111....1111CCC...CCC1111...111 where CCC...CCC is the instruction to be loaded into the
495th chip.

3.1.6 Mandatory Instructions

A chip implementation must support several mandatory instructions in order to satisfy
the minimum requirements mandated by the standard called EXTEST and SAMPLE. The
Mode signal in Figure 3-7 is generated by decoding the current instruction and should be
asserted (set to 1) when the EXTEST instruction is executed and it should be disabled (set
to 0) otherwise. This instruction allows the Boundary Scan register to be used for board

interconnect testing in the following way:

41

* Test data shifted into the Boundary Scan cells located at the chips output pins are driven
through the connected pins onto the board interconnections. This process is initiated by
executing the EXTEST instruction and then moving to the Shift DR controller state.
One bit of data is shifted into the Boundary Scan register on every rising edge of TCK.

* Shifting is complete when the controller enters the Update_DR controller state. On the
falling edge of TCK in this state, the data is transferred from the Boundary Scan regis-
ter stages onto the latched parallel outputs of each cell. Because the Mode signal is
asserted by the EXTEST instruction, the test is applied to the board interconnections at
this time.

* The test results are captured in the cells at the system input pins. This occurs on the ris-
ing edge of TCK in the next Capture_DR controller state.

* The test results are examined by moving back to the Shift DR controller state. The data

held in the Boundary Scan register move one stage towards the TDO pin on each rising
edge of TCK.

When the SAMPLE/PRELOAD instruction is executed, the Mode signal is dis-
abled allowing the chip to continue its normal operation without interference.
This instruction supports two distinct test operations. In the first instance, the
Boundary Scan cells at both inputs and outputs load the state of the signal flow-

ing through them between the I/O pin and the chip logic:

* A snap shot of the data flowing through the chip’s I/O pins is taken by first executing
the SAMPLE/PRELOAD instruction and then moving to the Capture_DR controller
state.

* The captured data can be shifted out for examination in the Shift DR controller state.
On each rising edge of TCK, the data held in the Boundary Scan register advance one
stage towards TDO.

42

Applications of the SAMPLE test include debugging of prototype boards.

In the second instance (PRELOAD), data can be shifted into the Boundary Scan
cells without interfering with the normal flow of signals between the chip pins
and the application logic. This allows the latched parallel outputs in the Bound-
ary Scan cells to be initialized with data before the next instruction is selected.

The following events occur before execution of this instruction:

* testdata is shifted into the Boundary Scan register by first selecting the SAMPLE/PRE-
LOAD instruction and then moving to the Shift DR controller state.

* after the data is loaded and shifted in, the scanning sequence is halted by moving to the
Update_DR controller state at which time the data is applied for initialization.

By loading suitable data when PRELOAD is selected, the user can ensure that all signals
driven off the chip are defined as soon as the EXTEST instruction is selected.

3.2 Designing Chips with Boundary Scan

When incorporating the Boundary Scan architecture into a chip, there are several
issues that must be addressed. The decision to incorporate this architecture in a chip first
should be considered from a board or system level point of view. If Boundary Scan is to be
used as a system requirement, then it is very important to define the instructions at the
system or board level first, and then implement the appropriate instructions on the chip. As
a minimum, the standard requires that a chip must be able to execute three instructions:

BYPASS, SAMPLE, and EXTEST.

To implement the logic required by the standard, the designer must either design the
Boundary Scan test circuitry manually or use an existing library module. The module must

consist of a minimum of four basic building blocks: a Boundary Scan register, a TAP

43

controller, an instruction register, and a bypass register.

The standard also contains a number of design requirements that must be followed to
ensure that the chip works properly with other Boundary Scan chips. First, a Boundary
Scan cell must be placed at each I/O pin except the four test bus signals. Second, the TMS
and TDI test bus signals must use a pull-up cell to prevent unstable TAP controller
operation. These requirements represent the most common implementation guidelines,

and additional rules can be obtained from the actual specification.

3.2.1 Boundary Scan Macrocell

The design of the Boundary Scan architecture should be a structured, parallel
effort that complements the natural top-down design style associated with each
chip. All this is achieved by a macrocell called JTAG_MACRO that automatically
implements this architecture has been developed. It is written in the SDL language and
requires that the designer provide parameters such as boundary scan register length. A
summary of all the required parameters and their corresponding functions are given in
Table 3-1. The designer can also dictate the shape of the Boundary Scan macrocell using
the BSrows and SProws parameters. Pointers to the SDL files for the JTAG_MACRO are

given in Appendix B.

3.2.2 Boundary Scan I/O Pad Library

To accommodated designs where the designer is constrained to a limited chip core
area, a library of input and output pads have been developed that contain boundary scan
registers inside them. The serial scan path is constructed by simple abutment of pad cells
that form a frame around the border of the chip. A plot of an input boundary scan output

pad is shown in Figure 3-11 and Table 3-2 describing boundary scan pad library cells is

44

Parameter Function

BSwidth Determines width of Boundary Scan;gister

BSrows Stdcell parameter used to determine the shape of the Boundary
Scan register

BSreset Selects reset option for Boundary Scan register cells

SPwidth Determines width of Scan Path register

SProws Stdcell parameter used to determine the shape of the Scan Path
register

SPreset Selects reset option for Boundary Scan register cells

MUXwidth Determines the width of the multiplexers. Default value is 3,
increase by one for each additional register

TAPflag Selects between Stdcell and PLA controller implementations
Stdcell is default implementation.

Table 3-1 : JTTAG_MACRO parameter definitions.
given below.

3.2.3 Integrating Scan Path with Boundary Scan

The Scan Path test methodology can be used easily supported by using a private

SCANTEST instruction whose opcode is 100. When this instruction is selected, the Test

Mode Select signal, which controls movement between controller states, acts like the test

mode control for a traditional Scan register, which causes movement between shift and

load. Test data is loaded into the Scan register when TMS = 1, and data is shifted when

TMS = 0. For chips that employ a single scan path, the TDI and TDO pins become the

SCANIN input and SCANOUT output. In this case, the TDO driver must be modified to

allow it to be active in the Pause_DR controller state. Multiple scan paths can be

supported by multiplexing the serial inputs and outputs onto normal package pins when
TMS i= 0 and SCANTEST is selected.

45

I/O Pad Function

_'Ezu B Input Boundary Sca;_l;d I

out_2u Output Boundary Scan Pad

io_2u Bidirectional Boundary Scan Pad

tdi Test Data Input Pad

tdo Test Data Output Pad

tms Test Mode Select Pad

tck Test Clock Input Pad

vdd_2u Power Pad

gnd_2u Ground Pad

analog_in_2u Unbuffered Boundary Scan Pad

space_2u Space Pad

corner_2u Pad Frame Corner Pad

Table 3-2 : Listing of Boundary Scan pad library cells.
3.2.4 Integrating BIST with Boundary Scan

In [LeBlanc84], the idea of integrating BIST with Boundary Scan was introduced.
Similar to the Scan Path case, the Boundary Scan circuitry can be supplemented to provide
test support for BIST applications. By selecting the RUNBIST instruction and placing the
TAP controller in the Run_Test/Idle controller state for as many clock cycles as is required
to execute the self-test and providing additional circuitry for control, BIST circuitry can be

easily controlled through the Boundary Scan test bus interface.

Embedded memory testing is one of many applications that is ideally suited for BIST. In
embedded memories, the address, data, and control inputs may not be directly controllable
and the data output may not be directly observable at a chip’s input and output pins.

Further, the test patterns for memories are required to detect a wide variety of complex

46

faults. These faults are different from classical stuck-at faults. Since, the use of scan based
design techniques do not simplify the problem of testing embedded RAMs, it becomes
cost-effective to incorporate BIST features in embedded memories to avoid complex time
consuming test generation. The BIST feature of embedded memories provides vertical

testability of the RAM, not only at the board level, but at the system level as well.

The embedded memory BIST macro requires a counter, exclusive-OR gates, several
multiplexers, and a Linear Feedback Shift Register (LFSR) as shown in Figure 3-12. A
linear feedback shift register can be formed by exoring the outputs of two or more of the
flip-flops together and feeding them back into the input of one of the flip-flops. The
counter is used to supply the test patterns to the embedded RAM and to control the testing
sequence. Unlike typical BIST techniques which use an LFSR as a pseudo-random pattern
generator, the counter provides a deterministic set of patterns necessary for thorough .
testing of the RAM circuitry. The LFSR in this BIST approach is used to compress the
output data from the RAM using signature analysis techniques.

For purposes of illustration, a RAM with 16 addressable locations and 4 bits per location
will be considered as shown in Figure 3-13. The basic idea is to use a counter during
testing to supply the address to the RAM, to supply data, and also to control the entire test
sequence. A 6-bit counter is used in this example. The four lower bits of the counter are
used to supply the address and data. The fifth bit is used to control reading and writing of
the RAM during the testing sequence such that the entire RAM is written and then read.
The sixth bit is used to invert the data going into the RAM during the test. The test
proceeds as follows. First the RAM is written with the address such that address location 0
contains the data ‘0000°, address location 1 contains the data ‘0001°, and address location
F (Hexadecimal) contains the data ‘1111°. Thus each address location contains a unique

data value. This approach assumes that the number of data bits in each RAM location is

47

Counter
Qn Qn-1

MUX
g
P2
>
=

ASIC

RAM Signature

Figure 3-12: Embedded RAM BIST circuit.

greater than or equal to the number of address bits. Next, the RAM is read, via the fifth bit
of the counter controlling the read operation and the first four bits controlling the address,
beginning with address location 0. When location 0 has been read, any faults in the
address decoding circuitry of the RAM will be detected since a failure would have caused
either location O to be overwritten during the writing sequence or another location to be
read during the read operation. When the entire RAM has been read, the sixth bit of the
counter is used to invert the data entering the RAM and the entire RAM is rewritten with
the complemented data. In this case, address location 0 is written with the data ‘1111°,
address location 1 is written with ‘1110, and so on. Once again the RAM is read under

control the fifth bit of the counter. When the read sequence is finished, each bit in the

48

Counter
BO Bl B2 B3 B4 B5

A0 Al A2 A3 RW DO D1 D2 D3

16 X 4 RAM
00 O1 02 03

To LFSR

Figure 3-13: RAM BIST example.

RAM has been tested for failures which would render that bit stuck at a logic 0 or 1.
Hence, all classical “stuck-at” faults associated with the RAM are detected.

Due to the large number of patterns which can be encountered using the counter testing
technique described above, propagating the RAM output data to the chip’s outputs can be
difficult. By including a data compression technique such as signature analysis, the BIST
mechanism is obtained. In the BIST circuit for the RAM, a parallel entry LFSR is most
appropriate since the data typically leaves the RAM in parallel. During the write
sequences to the RAM the LFSR is disabled from shifting or loading in new data since the
output of the RAM may be unknown during a write operation. The LFSR is controlled in
this case by the same counter bit output that controls the writing and reading of the RAM.
The LFSR is disabled at the end of the test and the resulting signature is read for
comparison with a stored correct signature or is compared to a predefined correct

signature stored on the chip. The latter case requires the use of a comparator. At present,

49

the LFSR in this macrocell is generated by hand. The SDL for this macrocell called
BIST_MACRO is given in Appendix B.

3.2.5 Chip Implementations

Two prototype chips have been implemented in 2u CMOS technology using the
MOSIS fabrication facility. They were designed using the LAGER
[Brodersen92][Shung89] silicon assembly system. The layout for TEST_CHIP1 which
contains the JTAG_MACRO is shown in Figure 3-14. In this chip, the boundary scan
register is embedded within the chip’s internal core circuitry, whereas TEST_CHIP2 uses
boundary scan pads and its corresponding chip layout is shown in Figure 3-15. Moreover,
each chip contains a Scan Path register embedded in its data path that is accessible through
the Boundary Scan TAP bus.

3.3 Trade-Offs: Design Costs vs. Test Costs

The impact of Boundary Scan as seen at the chip level is much more profound that at
both the board and system levels. This is because Boundary Scan at the chip level affects
the I/O pins, which consequently affects the package size, the overall gate count, and the
performance due to the additional delay seen at the I/O pins. The Boundary Scan standard
requires a minimum of four extra I/O pins. This overhead is always required, but is less
obvious in larger package devices. Table 3-3 shows the percent of additional pins per
package size. The number of gates required to implement Boundary Scan is primarily
driven by the number of chip I/O pins. The reason for this is because the standard requires
each functional I/O pin to have a boundary scan register cell. Naturally, chips with low
gate counts and a high number of I/O pins will have proportionally more gates to

implement the Boundary Scan architecture. The standard also requires a 2-bit Instruction

50

o R T L D T TR
t Test Access Port 4 g
1 JhsssssssssssRunaii SR SREEREE S SIS NERSe Y ;
Ho L o iJs |
i: i il kl“l ill 1 i
B == Ik il || oun can i |
' Register |
] | !

: Data Path i

i | + & i |

: i ScanPath H 2 : ¥

O =] | i

V)g gs I :

' B8 @ i !

& e : :

| S R Gt | b

8 g 1 :

TAP i |

! Controller ; !

: 1Y 1 |=

1 IE (N] ! i

! oun can } !
| ' Register ; |
| — =L
: - | S N === === =i i : :
! | : E
! : .
% I i i
-:Iu'............... T T T T T T T i...,..i.,,...i:m;::::::::::::::::::::-:h

Figure 3-14: Chip layout for TEST_CHIPI.

Register as a minimum, but longer Instruction Registers are allowed to implement
additional application specific instructions. The following formula can be used to estimate

the gate count overhead (functional I/O pins are only counted):

Gate Count = (TAP) + [(IR) * (IR bit width)] + (Bypass) + [(# I/O pins)* (# gates/pin)].

F::::::::Z:::::::::::::::::Z::::::::::::::::::::::Z::::::::I:ZZII:::::::::::::::::I:::::::::::::::::::::Zi
ﬂ Test Access Port d

| SRR IFH B S e i R = ::I:::::::::::::::::::! .

g HO

5 = Data Path 1§ g

: : + =

; § Scan Path 3

: : + Rk

1 : _g' TAP Controller =

. . g —— - o

. . 1z '.U

1 X ©

: 1= B

SIS = = :

: Boundary Scan /O Pads

Figure 3-15: Chip layout for TEST_CHIP2.

Boundary scan register cells introduce a propagation delay in the data path that is
equivalent to that of a 2-1 multiplexer. A typical value for a 2um CMOS technology is on

the order of 3.0 nanoseconds.

52

Package Size Percent of Boundary Scan Pins vs. Total Component Pins
" 24pins 167%
40 pins 10.0%
64 pins 6.3%
100 pins 4.0%
132 pins 3.0%
160 pins 2.5%
208 pins 1.9%

Table 3-3 : Component package /pin ratio.

3.4 Summary

An overview of the Boundary Scan standard was presented in this chapter. Two
prototype chips implementing the Boundary Scan architecture and Scan Path have been
described. Finally, trade-offs between design and test costs are addressed.

CHAPTER 4

TEST HARDWARE - BOARD
LEVEL

Testing at the system or subsystem level is not always accomplished by simply using a
set of testable chips unless they are properly integrated at the board level. Traditional
board level testing consumes a great deal of time and requires special hardware and
complex Automated Test Equipment for each type of board or device. This ultimately

results in increased development time.

An innovative approach to the problems associated with traditional board level testing is
to incorporate DFT techniques that allow embedded testing to be performed. For example,
scanned in values can initialize states before testing, and testing can be done while the
component is embedded within a board. Board level testing can made easy with Boundary
Scan components. These components can be used to effectively partition and isolate
sections of a board for quicker fault isolation. Furthermore, these components can
eliminate physical access problems and provide the designer with access to and control of

hard to access nodes on the board. Not only do these components perform functions such

53

54

as buffers, transceivers, latches, and flip-flops, but they also include components that
perform dedicated low level test functions. These low level test functions can be easily
combined to create high level test functions. Some of these high level test functions are
used in a prototype design called the Test Master Controller board which is used to control

and access the Boundary Scan components of a target board.

This chapter deals with the requirements, design, and implementation of the hardware that
is used to support board level testing, which includes a Boundary Scan coxhponents
library, dedicated board level test modules, a custom Test Master Controller board, and a

discussion on board level trade-off issues.

4.1 Boundary Scan Component Library

Due to widespread adoption of the Boundary Scan standard by the commercial ASIC
industry, many Boundary Scan components are beginning to appear on the market. Since
most board designs include octal devices - buffers, latches, transceivers, flip-flops - for bus
operations, manufactures have provided families of octal chips that support the Boundary
Scan standard. These octals can replace their standard IC counterparts to enhance the
testability at the board level. When used in their test mode, these octals offer designers a
number of useful test features such as pseudorandom pattern generation and parallel

signature analysis.

»

A variety of Boundary Scan components which are manufactured by a number of ASIC
vendors are organized into a test component library. Table 4-1 provides a description of

the components and their corresponding function .

As an example, a partial listing of an SDL file for an octal buffer is shown in Figure 4-1.
The file provides a black-box footprint of a generic TTL LS244 part where the I/O

55

..

..

rerrrrrry

(parent-cell xx244 (PACKAGECLASS PCB)
(bag JTAG (BSR 18) (IR 8) (BPR 1) (MASTER 0)))

(parameters ;
;jpre-defined local variables
(PKGLIST *‘(“DIP” “SOIC” “PLCC”) (local))

;user parameters
(PKGTYPE “SOIC” (assert (memgl PKGTYPE PKGLIST)))
(JTAG 1 (assert (or (= JTAG 0) (= JTAG 1))))

;local variables determined from parameters
(PKGCODE (list-index PKGTYPE PKGLIST) (local))

;oct2rinf variables

(PARTNAME (sel_jtag “74BCT8244” “74LS244”)) (PHYSNUMBER
(sel_jtag (sel_pkg “L-GEN24” “L-GENSO24WB” “L-PLCC28SA")
(sel_pkg “L-GEN20” “L-GENSO20WB” “L-PLCC28SA”)))

;info for interconnect test pattern generation
(PARTTYPE “DIGITAL”))
(layout-generator NONE)

..

(net A ((parent (term A (PINNUMBER (pin (sel_jtag
(sel_pkg (23 22 21 20 19 17 16 15)

(23 22 21 20 19 17 16 15) (6 5 4 3 2 27 26 25))
‘(2 4 6 811 13 15 17))))

(TERM(net TDI (CONDITIONAL (= JTAG 1))
((parent (term TDI (PINNUMBER (sel_pkg 14 14 24))
(TERMTYPE SIGNAL) (DIRECTION INPUT)))))

TYPE SIGNAL) (DIRECTION INPUT)) (width 8))))

(end-sdl)

Figure 4-1: Partial SDL file for xx244.

56

Boundary Scan Component Function
Component
—_— —_—
TI SN74BCT8244 Scan Test Device with Octal Buffer

TI SN74BCT8245 Scan Test Device with Octal Bus Transceiver
TI SN74BCT8373 Scan Test Device with Octal D-type Latch

TI SN74BCT8374 Scan Test Device with Octal D-type Flip-Flop
TI SN74ACT8990 Boundary Scan Test Bus Controller Chip

TI SN74ACT8994 Boundary Scan Digital Bus Monitor Chip

TI SN74ACT8997 Boundary Scan Path Linker Chip

TI SN74ACT8999 Boundary Scan Path Selector Chip

TITMS320C40 Floating-Point DSP for Parallel Processing with Boundary
Scan

TI TMS320C50/51 Fixed-Point DSP Chip with Boundary Scan

TI TMS29F816 Boundary Scan Flash EEPROM Chip

Table 4-1 : Llsung of Boundary Scan devices.
terminals are the same but the pin mappings are different for a given package type. In this
example the JTAG contains all of the Boundary Scan implementation specific information
for this particular device. This information includes the size of the Boundary Scan (BSR),
Instruction (IR), and Bypass registers (BPR) and a variable indicating whether the chip is
a Boundary Scan slave (MASTER 0) or master (MASTER 1) device.

The local variable PKGLIST is used to define the various package types that are available
for the given part. PKGCODE is a Lisp function that checks to see if the package type
value, which in this case can be a dual-in-line or small outline or leadless chip carrier
package, assigned to PKGTYPE by the user is a valid one. The other user parameter,
JTAG, is used to distinguish between a non-Boundary Scan and a Boundary Scan

component. By default, values for both user parameters are chosen for the user to bias

57

designs to use Boundary Scan components housed in surface mount packages and most

importantly, this is the first step toward automating the process.

The PARTNAME and PHY SNUMBER variables contain information that is required by
the board layout generation tool, while the Lisp functions sel_jtag and sel_pkg are used to
select the correct part name and part number based on the chosen package type. For
example, if the PLCC package type chosen and JTAG is 1, the sel_pkg and sel_jtag will
select part name “74BCT8244”, part number “L-PLCC28SA” and generate the correct pin
mappings for this package. The CONDITIONAL property is used to create the additional
nets and terminals for a Boundary Scan component. The TERMTYPE and DIRECTION

properties to facilitate netlist checking.

Module Name Module Function
1149.n Master Con- | A software programmable test master controller that can be
troller configured to implement any one of the IEEE 1149 serial test
protocols. This feature is achieved by using a Xilinx FPGA.
Local Boundary A Boundary Scan test bus controller module that supports effi-
Scan Master cient transfer of serial data and control to and from target

devices on the local serial test bus.

Real-Time Monitor Provides a method of monitoring embedded digital signals
paths between components on a board. Can be used to reveal
timing-sensitive and/or intermittent failures that are otherwise
undetectable without the use of external test equipment.

Table 4-2 : Listing of board level test modules.

4.2 Board Level Test Modules

As mentioned in the previous section, the 1149 controller module consists of three
dedicated test modules which perform specific testing functions. These board level test

modules are intended to be used as building blocks for higher level testing functions.

58

Local e l.l.... o8k
Boundary o JONS0S000IENS
Scan 'H 'H
Master - s G es Programmable
2 H § 338 ,-1149.n Master
s E s Controller
H o8 (XC4005)
g B og
. Sg Sy
Real'T',Tg"’”"ﬂ ¥ LR
Monitor CEBSNNNSEED

A A
—mdl] W OF o
B BN o) o D o
SOEX

Figure 4-2. Test Master Controller module layout.

Therefore, a designer can enhance the testability of their board design by simply adding
one or more of these modules to their design. The modules can also be accessed and
controlled via Boundary Scan test bus. The functionality of each of the modules is
determined by groupings of one or more of the test components contained in the Test

Component Library described in the following section.

These modules have been created using the tools described in the previous chapter. A
library of these reusable board level modules has been created and is listed in Table 4-2
along with their corresponding functions. Although the number of library elements is
small, it will continue to grow as the demand for modules with more sophisticated test
functions increases. The modules are usually specified in a hierarchical SDL file
describing the structural interface between its primitive test components. The SDL file
also contains floorplanning information. The layout for the 1149 Master Controller
module is shown in Figure 4-2. This module does not require any parameters or placement

information because, as with the other two modules, the primitive test components that

59

Crystal
Oscillator
N

Sa

Acquisition

Test Clock
Generator

Figure 4-3: Data acquisition and clock generator modules.

make up the modules have already been pre-placed. Other useful modules include the data
acquisition and the clock generation both of whose layouts are shown in Figure 4-3. Paths
to the SDL files for these modules can be found in Appendix B.

4.3 Guidelines for Prototype Design and Implementation

A set of guidelines that should be followed are given below. Other factors such as
board layout limit the type of fabrication and repair process one can use. These guideline

are listed below:

1. choose components that either make the testing of the components themselves easier or
enhance the testability of the modules or boards that use them. Example features that

60

make components themselves highly testable include Scan Path and BIST. Boundary
Scan is an example feature that enhance board level testability;

2. if a programmable device is to be used in the design, it must be possible to set the
device into a known state by applying a signal to one of its inputs. Ideally, the device
should be provided with a single asynchronous or synchronous reset input which, when
the correct signal value is applied, causes the device to set to a known state;

3. avoid asynchronous design. Asynchronous devices cause significant test and reliability
problems and are best avoided completely. If this is not possible, restrict asynchronous
devices to a small part of the design which can be isolated from the remainder of the
components during test;

4. if necessary, to ease the repair process, all components should be oriented in the same
direction. This will also lead to a more reliable design when using a solder flow
process.

5. use single-sided component mounting, whenever possible, on plated-through-hole
boards. This assembly style uses through-hole or surface mount components. Where
components must be mounted on both sides of an assembled board it is essential that all
of the components mounted on the bottom side be Boundary Scan components, since
this eliminates the need to physically probe their pins;

6. and every board must have one central TAP connected to a 2 x 5 row right-angle
connector.

4.4 The Test Master Controller Board

The Test Master Controller (TMC) board [Kornegay91] [Kornegay92] is used to
control the test process of a target board by accessing each components’s DFT structures
via Boundary Scan bus. The TMC transmits test data to and from every component under
test in the system. It is also intended to be used embedded in a system as illustrated in
Figure 4-7. It also receives instructions and data, which are provided by the user, from the
CPU board through the UNIX workstation. These instructions determine which tests are to
be executed for the targeted chips on the application board. After a test has been executed,
the results are gathered and uploaded to the UNIX workstation where they can be

analyzed. Further, it can access a chip’s DFT structures through a Boundary Scan

61

interface. Finally, it can be dynamically reconfigured to support other testability bus

standards that use a 5 wire serial test access port.

The architecture consists of the five board level modules shown in Figure 4-4. This
architecture was designed with modularity and reusability in mind. Breaking the
architecture into smaller, more manageable parts makes testing systems using this
architecture, easier. The modules are designed to be reused in other systems. A description
of the modules which were created using the module generation environment described in

the previous chapter is given below:

VME Bus Interface Logic - implements the VME bus protocol which orchestrates
communication between the TMC and the CPU boards.

Control Register - contains execution specific control information required to
configure the TMC to operate in one of its test modes.

Status Register - contains all of the system specific status information such as test
completion signals, boundary scan path integrity checking information, and other
information pertinent to proper system operation.

Clock Generator - a jumper programmable clock generator that produces a two phase
non-overlapping clock that operates at clock rates up to SOMHz.

1149.n Test Module - a software programmable test controller module that consists of
three smaller modules: a data acquisition, memory, and 1149.n controller.

The data acquisition module contains one 12-bit user programmable Analog-to-
Digital Converter that operates up to 100KHz, and one 8-bit Digital-to-Analog
Converter that also operates up to 100KHz. This module is provided for testing
mixed-signal systems. The memory module which consists of 2 245k x 1 bit
SRAM, one for storing the test data to be applied to the device under test, and
the other for storing the results that are captured at the end of a test. The 1149.n
controller module is the heart of the system is also made up of several smaller

dedicated test modules which will be described in the next section.

62

VME
Interface g ontr ;” H“; ta;‘sltir Clock
Logic egister g Generator
1149.n Test Module
Memo
§ 1149.n Module | .
E Controller ;
i | Analog Module E
E Analog | |
Hodule Module | :
\ [Analog | [11491 | [11492 | [11495 | [Analog | |
Interface | | Interface | | Interface | | Interface | | Interface | :

Figure 4-4: Test Master Controller board architecture.

It can be reconfigured, using software, to implement any one or all of the IEEE
1149 [IEEE90a,b][IEEE91] standard bus protocols. In fact, the controller can be
configured to perform any custom test protocol provided it uses a five wire serial
port. A simplified version of the state diagram for the controller is shown in Fig-
ure 4-5. After initialization, the controller begins in the idle state, from which
point, it can traverse any one of the branches depending on the value of the test
mode (TM) signal. For example, when TM = 0, the controller executes the
Boundary Scan bus master protocol. Likewise, the controller will execute any of

the other IEEE 1149 bus protocols exercise any BIST features of the devices, or

63

T™=0 T™M =2
Module Test &
B°§2§',? Y Mairétggance Self Test

Figure 4-5: Simplified controller state diagram.

apply/capture analog data when TM = 1, 2, or 3. Physical ports exist for the
IEEE 1149 buses and the analog module.

4.4.1 TMC Prototype Implementation

The guidelines described in a previous section were strictly adhered to during the
design and implementation of the TMC board. Figure 4-6 shows the hierarchy of SDL
files. The TMC board was implemented on a 6 layer 6 inch x 9 inch card and contains over
160 surface mount components (chips, capacitors, switches, etc.). The layout of the board

is shown in Figure 4-7.

The actual use of the board will depend on whether a centralized or distributed control
strategy adopted. In the distributed approach, most of the test functionality is implemented
in dedicated hardware that resides on the target boards, whereas, the centralized approach
uses the TMC board to implement all board level test functions. The benefits of both of

these approaches are outlined below:

64

T™C

S W R,
s, %

VME 200, etc) (AD558, etc.

I R AU s
2 %)
2, 2

R

¥
(4

0Sc, caps, etc.)/ act8990, etc. }

-~

Figure 4-6: Hierarchy of SDL files for TMC board.

Centralized Approach:
* Cost - By centralizing all test functions to a single controller, test sequencing capabili-
ties are not required for each of the target application boards. This can reduce the cost

of the test interface and control hardware on each board in a system.

* Simplicity - As the test interface on each board does not contain any board-specific test

information, a common test interface can be used on each of the application boards in a

system.

Distributed Approach:

* Software - Because distributed test hardware and software allow higher level test func-
tions, less software is required for the TMC board for each of the target application
boards. Distributed software can reduce the software development time.

65

00

0000000000000000000000000000000 0 00000000000000000000000000000000
.:...::::ﬁ_

%%ﬁﬁ , _
‘ ﬁ m - ﬁw —— aiﬂ ﬁ —

(111 8...&.__.. ’ . . . ! 1800 ecessee

-
- ® .
s .e esf . WAl 00]] eeecees

s
:
L}
L

Figure 4-7: TMC board layout.

66

Ethernet
-
Card Cage
CPU
Board
VME Bus
] | ; 1 |
Unix
. Custom Custom
WOI’kStatlon Board ‘I_ Board

Figure 4-8: System hardware development environment.

* Bus Traffic - Since self-test routines and test patterns are contained on the individual
application boards, test bus traffic is restricted to instructions and compressed test
results.

* Test Application Speed - The distributed approach facilitates concurrent testing of indi-
vidual boards, allowing substantial reduction in overall system test time.

4.5 System Level Test Support

When the application boards are finally assembled to form a complete system, they
must be tested while it operates in the environment for which it was developed in order to
verify its correct operation and diagnose any failures. A high level view of the system
hardware development environment that supports SIERA is shown in Figure 4-8. It
consists of a VME card cage for housing the application boards, a single-board CPU that

runs a real-time customizable operating system kernel, Ethernet board for communicating

67

with the host workstation, and a UNIX workstation which is used for software
development and debugging. To support system level testing, a system must satisfy the

following requirements:

1. be capable of accessing chip level test structures;

2. provide control sequences to enable proper execution of chip level test structures;
3. apply test data and collect test results;

4. provide a facility for analyzing test results;

5

. be able to test the interconnection between various components on a board via
Boundary Scan registers;

be compatible with the existing hardware development;
7. operate at system clock rates;

8. be flexible enough to support a variety of testability bus standards such as Boundary
Scan;

9. provide access and control of non-Boundary Scan, as well as, analog components for
mixed signal applications;

10.be implemented at a low cost.

4.5.1 Test and Diagnosis System

To fulfill the requirements mentioned above, a hierarchical test system called the Test
and Diagnosis System (TDS) is described which uses a hierarchy of Boundary Scan test
buses embedded into the system’s physical hierarchy. In this hierarchy, each chip contains
a Boundary Scan interface; all Boundary Scan devices on each board are serially cascaded
forming a single scan path where all of the control and test data are applied through a
centralized Boundary Scan slave interface; all Boundary Scan slave interfaces on every
board are tied to the Boundary Scan master interface on the Test Master Controller board,
where test programs direct the execution of all test functions for the entire system; at the
next level, the CPU board is used to initialize the Test Master Controller board, which is

described in the next section; and finally, at the top-most level, the UNIX workstation

68

hernet
- Ethern -
Card Cage
CPU
Board
- VME Bus -
Test
Unix Controller Céjsto:jn
Workstation Board oar
- Test Bus -

Figure 4-9: Test and Diagnosis system.

provides the user interface for TDS where test vectors are automatically generated and test
results are analyzed. A high level diagram of the Test and Diagnosis System is shown in
Figure 4-9.

4.6 Board Level Design vs. Test Trade-Off Issues

Design costs are easy to calculate in terms of part costs, manufacturing assembly,
design costs, etc. Test costs are also quantifiable but may not be done so easily. Certainly
test equipment and test software costs can be readily calculated, but troubleshooting and
repair costs are not so obvious. In complex systems, the life cycle costs of the product is
dominated by test and maintenance costs, not design and production costs. Therefore, it
becomes vitally important to invest time and effort into design for test which will
ultimately reduce test and maintenance costs. Some of the design costs such as

performance and area costs board level is discussed below.

69

Partitioning is always a very important consideration for board level testing. Any complex
board must have adequate partitioning to allow independent testing of major logic
functions. In most designs, partitions can be created by simply replacing the normal
buffers and transceivers, which are already required in the design with their Boundary
Scan counterparts. By adding these parts, individual functional units on a board such as
memory, data bus, or processor can be tested. Repair savings can be achieved through
faster troubleshooting and fault isolation of fewer components. By using Boundary Scan
devices for partitioning, board failures can be detected and isolated with less probing.
Boundary Scan reduces or eliminates the use of test points on a board. Board test logic real
estate can be minimized, and, in some cases, board real estate can be gained by using
Boundary Scan devices. Board real estate savings can be accomplished by replacing a chip
added for test purposes with a Boundary Scan device. Test logic that is added for fault

isolation can be efficiently controlled via Boundary Scan test bus.

4.7 Summary

With the system test hierarchy described in this chapter, a user can perform system
diagnosis and identify a failed component without removing any parts of the system
because all test facilities can be accessed throughout the system hierarchy. By exploiting
the module generation facility that already exists in SIERA, testability features can be
added to a design with little effort and requiring very little knowledge of how to
implement them on the designers behalf. The test hardware modules described in this
chapter can perform dedicated test functions that can detect defective components and
interconnect on a board. Board level costs associated with the implementation of these

features has also been presented.

70

CHAPTER 5

TEST SOFTWARE: Tools and

Languages

As described in Chapter 2, the objective of our test strategy is to integrate test into our
system design environment. To realize this strategy requires dedicated software tools.
These tools should automate the addition of the test hardware required to implement a
DFT methodology, while at the same time, spare the designer of having to know about any
implementation specific details. After adding the test hardware, test patterns can then be
applied to test the target chip or board interconnect via local test buses. Producing these
tests manually is an arduous and tedious task that is very prone to error, especially for
large designs. On the other hand, generating test patterns automatically eliminates these
problems while producing them efficiently and error free. Furthermore, the test pattern
generation task is ideal for automation because many algorithms exist for both

combinational circuits and printed circuit board interconnect.

The widespread adoption of the Boundary Scan standard has necessitated the need for a

way to simply and effectively describe its implementation specific details in a manner

71

72

suitable for software to utilize. The Boundary Scan Description Language (BSDL)
[IEEE91b] was developed for this purpose. Two other languages called the Chip Test
Language (CTL) [Lien90] and the Module! Test Language (MTL) [Lien90] which
describe how to use the test features implemented on a chip and board for testing has been
developed. These two languages allows the designer to write high level test procedures
which are later compiled to produce low level test programs (written in C) which control
the operation of Test Master Controller board. With CTL and MTL, test programs can be

generated automatically.

This chapter is organized into five sections which cover testability hardware design tools,
test generation algorithms and tools used for combinational circuits and board

interconnect, and testability hardware description languages and a compiler.

5.1 Testability Hardware Design Tools

To ensure design for testability, the system designer must follow a methodology that
addresses testability issues as part of the design process. Much published work on CAD
tools, that are now available, support a testability design methodology at the chip level
only. However, there also exists a need for tools that support testability design
methodologies at the board level. One such tool called JTTAGtool described here has been

developed to ensure that every Boundary Scan chip, in a board design, is correctly

connected to the scan chain.

Some test applications may require the use of a custom test protocol or some new standard

comes along requiring a new test protocol, in either case, the architecture of the Test

L. In the context of this work, the term medule and board are used interchangeably.

73

Master Controller (TMC) board is flexible enough to support them. As described in
Chapter 3, the TMC uses a programmable device for this purpose. A tool called PLDS
[Yu91] is used to map a behavioral representation of the test protocol to the target

programmable device, which in this case is a Xilinx Field Programmable Gate Array.

The JTAGtool and the procedure for using PLDS to reconfigure the 1149.n Controller
module for the TMC board will be discussed in the sections that follow.

5.1.1 JTAGtool: Boundary Scan Path Routing Tool

The role of JTAGtool is twofold: one, it threads all of the Boundary Scan chips in the
design as they appear in the design hierarchy, and two, it generates a file containing the
design netlist, which is used in the Module Test Description of the board described later in
Section 4.4.3. This tool also eliminates any errors that may otherwise occur when the
designer has to manually configure the Boundary Scan path. A block diagram of
JTAGtool, which consists of three modules, is shown in Figure 5-1. In the ProcessFacet
module, the st ructure_instance view [Shung89] that contains all of the structural
information of the design that has been created from a hierarchy of SDL files is flattened
down to the PACKAGECLASS property. This will allow JTAGtool to preserve the order
of the Boundary Scan chips during creation of the Boundary Scan path. The

MakeBScanPath module performs the following tasks:

1. Identifies all of the Boundary Scan master and slave chips present in the design;

2. Cascade all Boundary Scan slave chips in the order in which they appear in the design
with the TDI of the first chip connected to a global TDO net and the TDO of the last
chip connected to a global TDI net.;

3. The TMS and TCK pins of every slave chip are connected to global TMS and TCK
nets;

74

OCT structure_instance view

'

ProcessFacet

'

MakeBsPath

'

GetBslinfo

Flattened

structure_instance + Nedist
view Information

Figure 5-1: Block level diagram of JTAGtool.

4. The global nets TDI, TDO, TMS, and TCK are all connected to a local Boundary Scan
master controller chip that is either added automatically by a test module or added
manually by the board designer;

5. Finally, the TDI, TDO, TMS, and TCK nets are connected to a 10 pin right angle
connector which is to be placed manually by the board designer.

Lastly, the GetBSinfo module extracts all of the pertinent information required for board

interconnect test generation such as the board net list.

5.1.2 Test Controller Configuration Tool

One of the most important features of the Test Master Controller board architecture is
its reconfigurability. By reconfigurability, we mean hardware that can be changed

dynamically or hardware that must be adapted to different user applications. Commercial

75

1149.n
Behavioral
Description

XACT
Development
System

1149.n
C Configuration)
File

Figure 5-2: Configuration file generation process.

devices such as Field-Programmable Gate Arrays (FPGAs), in particular, the Xilinx
XC4000 Logic Cell Array family [Xilinx92], exhibit this feature. These devices can be
dynamically reconfigured an unlimited number of times. Xilinx FPGAs comprise three
major configurable elements: configurable logic blocks (CLBs), input/output blocks
(IOBS), and interconnections. CLBs provide the functional elements for implementing the
user’s logic. IOBs provide the interface between the package pins and internal signal lines.
The programmable interconnect resources provide routing paths to connect the inputs and
outputs of the CLBs and IOBs. Reconfiguration is established by programming internal

static memory cells that determine the logic functions and their interconnect.

Figure 5-2 illustrates the reconfiguration procedure. The procedure is partitioned into two

76

steps. In the first step, a file describing the behavior of the 1149.n device to be
implemented is used as an input to PLDS whose objective is to provide a solution to
efficiently map a high-level description of a design into a set of one or more
programmable devices. It provides an interface between the Oct database and
commercially available tools supplied by the manufacturer which in this particular case is
Xilinx. PLDS produces output files, in Xilinx Netlist Format [Xilinx91], which are then
used by the Xilinx XACT Development System [Xilinx91]. Finally, after running the
design through the XACT software, an 1149.n configuration file is generated which must
be down-loaded to the Test Master Controller board to configure a XC4005 FPGA during

system initialization.

3.2 Algorithms for Test Vector Generation

A test for a fault is an input that will produce different outputs in the presence and
absence of the fault, thus making the fault effect observable. In a combinational circuit, a
specific stuck fault can be tested by a single vector. Stuck faults are not only the simplest
faults to analyze, but they also have proved to be very effective in representing the faulty
behavior of actual circuits. The simplicity of stuck faults is derived from their logical
behavior; so these faults are often referred to as logical faults. Stuck-faults are assumed to
affect only the lines between gates. Each line can have two types of stuck faults: stuck-at-
1 and stuck-at-0. Thus, a line with a stuck-at-1 fault will always have a logical value 1
irrespective of the correct logical output of the gate driving it. In general, several stuck-
faults can be assumed to be simultaneously present in a circuit. A circuit with n lines can
have 3"~ 1 possible stuck line combinations. This is because each line can be in any one of

the three states: stuck-at-1, stuck-at-0, or fault-free.

Algorithms for automatic test generation mostly work on the principle of path

77

sensitization. That is, they attempt to find an input vector that will sensitize a path from the
fault site to a primary output. Efficient programs for combinational circuits are available
based on well-known algorithms such as D-algorithm [Roth67] and PODEM [Goel81].
They provide the motivation for the use of the Scan path test methodology to convert a
sequential test problem to a combinational one. The ultimate goal of test generations is to
obtain test vectors of high quality at a reasonable cost. The term fault coverage, which is
commonly used to denote test quality, is the ratio of modeled faults detected over the total
number of test vectors. For a given fault in a circuit, a test is a set of input stimuli that
make the fault effect observable at a primary output. An ideal test generator must be able
to find a test for each modeled fault in a circuit at the chip level or a modeled fault in the

interconnect between two adjacent chips on a board.

5.2.1 Test Generation Algorithms for Combinational Circuits

A significant theoretical ;tudy by Ibarra and Shani [Ibarra75] shows that test
generation for combinational circuits belongs to the class of problems called NP-
complete, strongly suggesting that no test generation algorithm with a polynomial time
complexity is likely to exist. The non-polynomial time complexity here refers to the
worst-case effort of test generation in a circuit. Test generation algorithms used in practice
appear to be able to achieve slower average time growth by using heuristic search
techniques. Goel [Goel81] argues that the time for complete test generation must grow at

least as the square of the number of gates in the circuit.

The D-algorithm described in [Roth67] is the most widely used test generation algorithms.
In generating a test, the D-algorithm creates a decision structure in which there is more
than one choice available at each decision node. Through an implicit enumeration process,

all alternatives at each decision node are capable of being examined. For the stuck-at-1

78

Figure 5-3: Example circuit to illustrate use of D-algorithm.

fault f in Figure 5-3, the D-algorithm typically goes through the following steps:

1.

A

The test for stuck-at-0 requires a logicl on M for the good circuit. Setting E and F each
to 1 results in a D at M, where D designates the correct logic value for a good circuit.

. Generating a sensitized path from net M to the primary output Z, using recursive

intersection of D-cubes, may result in the ordered assignments K=1and L = 1
illustrated in the decision diagram in Figure 5-4. Alternative assignments K=0andL =
0 are still available for consideration should the present assignments prove futile.

. The D-algorithm justifies each internal net assignment on a levelized basis. Since the

functions P and P realized at nets h and i, respectively, are complementary, no
justification is possible for the concurrent assignments K = 1 and L = 1. However, in
establishing the absence of the justification, the D-algorithm must enumerate 23
primary input values before it can correct the bad decision made on L, that is, change
the assignment on L from 1 to 0.

class of circuits for which the D-algorithm performs particularly poorly are those

79

(A=1,B=0)

Figure 5-4: Decision tree diagram for D-algorithm.

containing exclusive-or trees. The degradation in performance arises due to excessive
amount of backtracking. This motivation has motivated Goel [Goel81] to devise a new test
generation algorithm called Path Oriented Decision Making (PODEM) where he uses a
branch and bound technique. PODEM implementations are know to run an order of
magnitude faster than the D-algorithm on most circuits. The PODEM test generation
algorithm is an implicit enumeration algorithm in which all possible primary input
patterns are implicitly, but exhaustively, examined as a test for the given fault. The
examination of primary input patterns is terminated as soon as a test is found. If it is
determined that no primary input pattern can be a test, the fault is untestable. The decision
tree structure used in PODEM is shown in Figure 5-5 where all primary inputs are

unassigned.

80

Unused Alternate
Assignment

PR2=1
Unused Alternatez
Assignment
Node Pl4=0 -_ Pl4=0
Removed . S Node
< h Sy Removed
Backup Backup
No Test No Test P5=1 " _-" PI5=0
: - \.\.
Backup Backu
® No Test No Tes‘i

Figure 5-5: Decision tree diagram for PODEM.

An initial assignment (“branch”-in the context of branch and bound algorithms) of either 0
or 1 on a primary input is recorded as an unflagged node in the decision tree. Implications
of present Primary assignments uses the five-valued logic described in [Roth67]. The
decision tree is an ordered list of nodes with; 1) each node identifying a current
assignment of either a 0 or 1 to one primary input, and 2) the ordering reflects the relative
sequence in which the current assignments were made. A node is flagged (indicated by a
check mark inside the node) if the initial assignment has been rejected and the alternative
is being tried. When both assignment choices at a node are rejected, then the associated

node is removed and the predecessor node’s current assignment is rejected. The last

81

primary input assignment made is rejected if it can be determined that no test can be
generated with the assignments made on the assigned primary inputs, regardless of values
that may be assigned to the as yet unassigned primary inputs. The rejection of a primary
input assignment results in a “bounding” of the decision tree, in the context of branch and
bound algorithms, since it avoids the enumeration of the subsequent assignments to the
unassigned primary inputs. In using a branch and bound technique, PODEM solves the
test generation problems faced by the D-algorithm.,

5.2.2 Test Generation Algorithms for Board Interconnect

Detecting and locating faults on board interconnect has drawn much attention since
the emergence of the Boundary Scan standard. Many boards will soon be designed with
chips containing the Boundary Scan architecture where during test mode, the chip’s I/O
pins can be accessed through the Boundary Scan test bus achieving a virtual bed-of-nails
capability. Hence, faulty interconnect can be isolated and tested without the need to
physically probe the board. Recent work dealing with the problem of generating tests for
detecting and locating faults in board interconnect has been reported in
[Hansen89][Hassan88][Hassan89][Wagner87]. When testing interconnect on a board,
both stuck-at and bridging faults must be considered. Some of these faults are illustrated in
Figure 5-6. Since the Boundary Scan path provides direct access to these interconnect, test
patterns can be generated which provide 100% coverage of these faults. Because stuck-at
faults occur on a variety of bus configurations, different test pattern generation algorithms
are required for wired-AND, wired-OR, and tri-state configurations. In [Wagner87], he
presents algorithms for generating interconnect test patterns for stuck-at and bridging
faults. These algorithms and some of their features are described in the sections that

follow.

82

...
..

TDI
Y 00
A
—{Bs
I Stuck-at-0
—IBS
IC1 _ T L
—BS as—
r [IC3
BS|—
BS—
Bridging
—Igs Fault
—IBs
IC2 A
—IBS
—{BS
Boundary Scan Path
Board

...

Figure 5-6: Typical printed circuit board interconnect faults.

Testing wired-AND Bus Configurations

As the name implies, the values forced on a wired-AND bus configuration are
logically ANDed to obtain the resulting value. Hence, the wired-AND net can be treated
in the same way as an AND gate where 100% of all stuck-at faults can be detected with k

+ 1 test patterns where k is the number of inputs. The test patterns can be divided into k

83

patterns which test for stuck-at-1 faults and one pattern which tests for all stuck-at-0

faults. The algorithm used for generating tests for a wire-AND configuration is given

below.

1. The driver to be tested is set to a logic 0
2. All other drivers on the net are set to a logic 1
8. The data is clocked into the receivers

4. All receivers on the net are examined for a logic 0

. Repeat steps 1-4 until each driver is tested
6. Bvery driver is set to a logic 1

7. The data is clocked into the receivers

8

. Bvery receiver is examined for a logic 1
Testing wired-OR Bus Configurations

Generating tests for a wired-OR bus configuration is nearly identical to the wired-
AND case. For a wired-OR net with K drivers, 100% of all stuck-at faults can be detected
with k + 1 patterns. In this case, the test patterns can be divided into k patterns which test
for stuck-at-0 faults and a single pattern which tests for all stuck-at-1 faults. The algorithm

used for generating tests for a wired-OR bus configuration is listed below.

1. The driver to be tested is set to a logic 1

. All other drivers on the net are set to a logic 0

. The data is clocked into the receivers

. All receivers on the net are examined for a logic 1
. Repeat steps 1-4 until each driver is tested

. Bvery driver is set to a logic 0

. The data is clocked into the receivers

O N &6 0 s DN

. BEvery receiver is examined for a logic 0

84

Testing Tri-State Bus Configurations

When a tri-state bus configuration is used, multiple drivers control one or more
receivers as shown in Figure 3-8. Since only a single driver can be enabled at any one
time, a special restriction is imposed on the generation of the test patterns. In order to
achieve 100% stuck-at fault coverage, each driver on the net must be tested individually
for stuck-at-1 and stuck-at-0 faults while the remaining drivers are disabled. Since this
requires 2 test vectors per driver, 100% stuck-at fault coverage can be achieved using 2k
test vectors where k is the number of drivers on the net. The algorithm for testing this type

of bus configuration is provided below.

1. The driver to tested is enabled and set to a logic 1

2. All other drivers are set to a logic 0 and disabled

3. The data is clocked into the receivers

4. The receivers are examined for a logic 1

5. Repeat steps 1-4 until all drivers have been tested

6. The driver to be tested is enabled and set to a logic 0
7. All other dﬂvers are set to a logic 1 and disabled

8. The data is clocked into the receivers

9. All receivers are examined for a logic 0
10.Repeat 7-10 until all drivers have been tested

Bridging Fault Test Pattern Generation

In addition to testing for stuck-at faults, testing for bridging faults must also be
considered. A bridging fault occurs when two nets are electrically connected as shown in
Figure 5-6. The algorithm for detecting this fault is given below.

1. Enable the drivers on each net

2. Apply a logic 1 to all drivers on the first net
8. Apply a logic 0 to all drivers on the second net

85

4. Clock the data into the receivers
5. Examine at least one receiver on each net

6. If the data at the receiver of either net does not correspond.
With the data applied to the respective driver, then a bridging fault exists between the nets.
This algorithms is good for only two nets. Since a typical board may contain hundreds of

interconnection nets, this algorithm must be applied to every possible pair of nets to

achieve 100% fault coverage.

5.3 TGS - A Test Vector Generation Tool for
Combinational Circuits [USCTGS88]

The Test Generation System (TGS) is designed for generating test vectors for
combinational circuits described at the gate level. The gate types supported by the system
include AND, OR, NAND, NOR, INV (inverter), BUF (buffer), and INPT (input gate).

The system provides the following functions:

a. Fault collapsing

b. Test Vector Generation

c. Fault Simulation

d. Integration of a, b, c, to derive a complete set of test patterns. Each of these functions
will be described briefly.

The main objective of fault collapsing is to classify the set of all possible stuck faults in
order to reduce the total number of tests. Typically, a test for an arbitrary fault detects
several other faults in the circuit. The test vector generation process provides a test vector
for any given detectable fault (meaning a test can be generated for it). The system uses the

PODEM test generation algorithm described in the previous section. Given enough time

86

PODEM will find a test for the target fault if it is detectable. Fault simulation attempts to
identify all faults that can be detected by a given input vector. It provides a list of faults
and an associated primary output. If any fault in this list is injected into the circuit, then
the logic values of the good circuit and the faulty circuit will differ at the associated
primary output under the given input vector. Besides the functions described above, an
integrated system which combines fault collapsing, test generation, and fault simulation
into one complete test system is provided. The purpose of this system is to execute a
complete test generation procedure without any user intervention, once the required input

parameters are set up. Figure 5-7 shows high level block diagram of the integrated system.

5.3.1 oct2tgs - OCT to TGS Translator [Bomdica90]

Before combining the combinational logic blocks of a chip with its other functional
blocks such as ALUs or RAMs, the combinational blocks must be processed using oct2tgs
which is a conversion utility that generates a TGS format circuit description from a
flattened OCT structure_instance view (default view) or symbolic view of the
chip. It decomposes macro cells, such as multiplexers or decoders into primitive logic
descriptions which are given in the technology file. Further, it ignores latches, like the
scanlatch in the stdcell library, and treats the logic between the latches as an independent
logic block and later combines them to form a top level TGS input file. After running this

input file through the TGS system to produce test vectors, they can be used to test the

combinational logic blocks via Scan Path.

5.4 Testability Hardware Description Languages

Recent adoption of the Boundary Scan standard has prompted the need for

development of dedicated languages which describe the testability features implemented

87

Input Parameters

¥

Fault
Collapsing

Yes Report
Results

No

Test
Generation

'

Fault
Simulation

l

Fault
Counting

Figure 5-7: Block level diagram of TGS.

at both the chip and board levels. Not only should these languages describe
implementation specific details, but they should also describe how to use these features to
test chips and boards that have them. To accommodate these needs, several languages
have been developed. These include the Boundary Scan Description Language (BSDL)
[IEEE91b] which is proposed as a supplement to the Boundary Scan standard and two
other languages developed by Lien called Chip Test Language (CTL) [Lien90] and
Module Test Language (MTL) [Lien90]. BSDL was developed to describe the

implementation specific details of a chip containing the Boundary Scan architecture,

88

whereas, CTL and MTL were developed were developed to describe how to test a chip or
board that uses the Boundary Scan architecture. Features of these languages along with

some examples will be presented in the following sections.

5.4.1 BSDL - Boundary Scan Description Language

As more commercial chips become available that support the Boundary Scan standard,
each will have the problem of how to describe their unique application of the standard.
Some sort of description will be necessary for describing these chips. This section
describes a language that captures the essential features of an implementation. This
language is called the Boundary Scan Description Language [IEEE91b] and is written
within a subset of the VHSIC Hardware Description Language (VHDL) [IEEE88]. The
goal of the language is to facilitate communication between chip manufacturers,
designers, and tools that need to exchange information on the design of the test logic that
complies with the standard. The BSDL language allows description of the testability
features in Boundary Scan compliant devices. This language can be used by tools that
make use of those testability features. Such tools include testability analysis, test
generation and failure diagnosis. With additional capabilities provided by VHDL, it is

possible to perform simulation, verification, compliance analysis, and synthesis function.

Boundary Scan Features

What are the Boundary Scan that require a description? All Boundary Scan compliant
devices must contain three major parts: a Test Access Port, a TAP controller, and a
Boundary Scan register all of whose parameters are described in BSDL. The Boundary
Scan register consists of Boundary Scan register cells which are associated with a chip’s
input, output, bidirectional, and tri-state pins. The Test Access Port contains either four or
five dedicated signals, namely TCK, TMS, TDI, TDO and the optional TRST*. It must

89

also contain a TAP controller, an instruction register, and a Bypass register. The controller
implements a minimum set of mandatory instructions which control the operation of the

Boundary Scan test logic.

Language Elements

The language consists of a case-insensitive free-form multi-line terminated syntax
which is a subset of VHDL. Comments are any text appearing between a “--” and the end
of a line. BSDL is composed of three sections which are the entity, package, and package
body. An entity is the basis for describing a chip within VHDL. An example of a BSDL
file for a TI ACT74SN8244 is given in Appendix A. Within the entity, the Boundary Scan
parameters of a chip are described. The 1149.1 related definitions come from a pre-
written, standard VHDL package and package body. The definitions for a Boundary Scan
package and package body can be found in [IEEE91b]. The package information is
directly related to the Boundary Scan standard and development of new standards would

require new packages to be created.

The Entity Description

An entity describes a chip’s I/O port and important attributes of the chip. For BSDL,

an entity has the following structure:

entity chipname is -- an entity for chipname
[generic parameter]

[logic port description]

[use statement (s)]

[package pin mappings]

[scan port identification]

{TAP description]

[Boundary Scan Register description

end chipname;

-- End description

Generic Parameter

The generic parameter is a VHDL construct used to pass data into a VHDL model. In

90

BSDL, it is intended as a method for selecting among several packaging options that a
chip may have. Each option may have a different mappings between the pins of the
package and the bonding pads of the chip. This is called the logical-to-physical
relationship of the signals of the chip. The description of the Boundary Scan architecture
of the chip is done using logical signals. Applications such as board testing will need to
know how the logical structure of the chip maps onto a set of physical pins. For this, a
VHDL generic parameter is used. It must have the name shown in order for the software to
distinguish it from other parameters that might be passed to the entity. It has the following

form:

generic(PHYSICAL PIN_MAP:string:="undefined”);

Logical Port Description

The port description uses the VHDL port list. It is used to assign meaningful symbolic
names to the chip’s I/O pins. The inclusion of non-digital pins such as power, ground, or
analog signals in the BSDL port description is optional, however, they are recommended

for completeness. The logical port description has the following form:

<logical port description>:==port (<pin spec>; {<PinID>});

<pin spec>::=<identifier list>:<mode><pin type> <identifier
list>:=<VHDL identifier> {,<VHDL identifier>}

<mode>:== in | out | buffer | inout | linkage

<pin type>:==bit | Bit vector {<range>}

<range:=<numberic constant> to

<numeric constant> downto <numeric constant>

The value of mode indicates the direction of signal flow and linkage is used for power,

ground, or analog pins.

Use Statement(s)

The use statement identifies the VHDL package required for defining attributes, types,

constants, and other items that will be referenced.

91

Package Pin Mapping

VHDL attribute and constant statements are used to show the package pin mapping.

These are shown by example:

attribute PIN_MAP of chipname:entity is PHYSICAL_PIN_MAP;
constant dw_package:PIN_MAP_ STRING:=<MapString>;

Attribute PIN_MAP is a string that is set to the value of the parameter
PHYSICAL_PIN_MAP, described above. VHDL constants are then written, one for each
package variation, that describe the mapping between the logical and physical pins of the
chip. An example of a mapping is:

“CLK:1,DATA:(6,7,8,9,15,14,13,12),CLEAR:10,"&
*Q:(2,3,4,5,21,20,19,18), VCC:22, GND:11”

The symbol on the right of the colon is the physical pin associated with the port signal. It
may be a number or an alphanumeric identifier because some packages like Pin Grid
Arrays (PGAs) use coordinate indentifiers like AO7 or H13. If signals like DATA are
<PinVector>’s in the definition, then a matching list of pins enclosed in parenthesis are

required. The physical pin mapped onto DATA[S] is pin 15 in the example above.

Scan Port Identification
Five attributes define the scan port of the chip. These signals are shown below:

attribute TAP_SCAN_IN of TDI:signal is true;
attribute TAP_SCAN_OUT of TDO:signal is true;
attribute TAP_SCAN_MODE of TMS:signal is true;
attribute TAP_SCAN_RESET of TRST:signal is false;
attribute TAP_SCAN_CLOCK of TCK:signal is true is
(17.5e6, BOTH);

Here, signal names TDI, TDO, TMS, TRST*, and TCK must appear in the port
description. The TAP_SCAN_RESET attribute is optional but the others must be specified
for correct implementation. The TAP_SCAN_CLOCK attribute is a record with a real

number field that gives the maximum operating frequency for TCK. The second field is an

92

enumerated type with values LOW and BOTH which specify with state(s) the TCK signal
may be stopped in without data loss in the Boundary Scan mode.

TAP Description

The next major part of the Boundary Scan architecture that must be described is the
chip dependent characteristics of the TAP. It may have four or five control signals, already
identified. It may have a user specified instruction set and a number of data register and

options.

The Instruction Register may have any length 2 bits or longer and is required to support
certain opcodes and some of these have mandatory bit patterns. A circuit designer may
add optional instructions and/or new instructions with completely dedicated functions. An
instruction may have several bit patterns. Unused bit patterns will default to the BYPASS
instruction. The standard also has provisions for private instructions. The characteristics
of the instruction register that are captured with the language are length, opcodes, capture,

disable, private, and usage. Some examples of these are given below:

attribute INSTRUCTION_LENGTH of Chipl:entity is 4;
attribute INSTRUCTION OPCODE of Chipl:entity is

“Extest (0000),” & “Bypass (1111),” & “Sample (0001),”;
attribute INSTRUCTION_CAPTURE of Chipl:entity is “0101”;
attribute INSTRUCTION DISABLE of Chipl:entity is “Hi_z";
attribute INSTRUCTION PRIVATE of Chipl:entity is ™“Secret”;

The instruction_length attribute defines the length of all opcode bit patterns. The
instruction_opcode attribute is a BSDL string containing the opcode identifiers and their
associated bit patterns. The rightmost bit in the pattern is closest to TDO. The standard
mandates the existence of EXTEST, BYPASS, and SAMPLE instructions with mandatory
bit patterns for the first two. The instruction_capture attribute string determines what bit
pattern is loaded into the instruction register when the TAP controller enters the

Capture_IR state. The optional instruction_disable attribute identifies an opcode that

93

makes a Boundary Scan chip disappear. In this mode, the tri-sate outputs are disabled and
the BYPASS register is placed between TDI and TDO. The optional instruction_private
attribute identifies opcodes that are private and potentially unsafe for access. Software can
monitor the instruction register to issue warnings or errors in a private instruction is
loaded during run time. The optional instruction_usage is a means for describing static
design parameters of a Boundary Scan implementation. The standard contains two
instructions whose details of operation are not statically defined, which are RUNBIST and
INTEST. The instruction_usage provides additional information about the operation of an
instruction. The types of information needed are: register, identification, result
identification and clocking information. Below are examples for describing the RUNBIST

and INTEST instructions:;

attribute INSTRUCTION USABE of chipname: entity is

Runbist (registers Boundary, Signature;” &
“result 0011010110000100;” &
“clock TCK in Run_Test_Idle;”“length (clock 4000 cycles),” &
“Intest (clock TCK shifted)”;

The RUNBIST usage shows that two registers are used, the Boundary Scan register and a
second register called Signature. When the test is complete, the result shifted out from
Signature should match the given pattern. The test is run by clocking TCK for 4000 cycles
while in the Run_Test_Idle controller state. The INTEST usage shows that shifting of the

internal Scan register occurs every TCK.

Register Access

All TAP instructions must place a shiftable register between TDI and TDO. User-
defined instructions may access the Boundary Scan register, IDCODE register, or
BYPASS register. The standard allows additional data registers in the design. These are
referenced by user-defined TAP instructions. It is important for software to know the

existence and length of these registers and their corresponding instruction. An attribute

94

has also been provided for this purpose. The attribute for this is:

attribute REGISTER ACCESS of chipname:entity is
“Boundary (Secret, Userl),” &
“Bypass (Hi_Z, User2)”;

In this example, Secret, Userl, User2, and Hi_Z must be previously defined user
instructions. This ability to identify register access allows software to know the length of a

scan sequence, which is dependent on the current instruction.

Boundary Scan Register Description

The Boundary Scan register is an ordered list of Boundary Scan cells, numbered 0 to N
with cell O closest to TDO. These cells vary in design and purpose. Cells must be
identified before thay are referenced in the Boundary Scan register description. Three

attributes are required to define a register. Examples of their usage are given below:

attribute BOUNDARY_CELLS of chipname: entity is “BC_1, MyCell”;
attribute BOUNDARY_LENGTH of chipname: entity is 3;
attribute BOUNDARY_REGISTER of chipname: entity is ™

0 (BC_1, IN, input, X)” & “

1 (BC_1, *, control, 0)” & ™

2 (MyCell, OUT, output3, X, 1, 0,2)”;
The first attribute defines the cells used to construct the register. The second attribute
defines the number of cells in the Boundary Scan register. This third attribute is a string
containing a list of elements, each with two fields. The first field is merely the cell numbser,
which must be between 0 and LENGTH-1. The second is a set of subfields within the
parentheses. There can be from four to seven subfields labeled: cell, port, function, safe,
ccell, disval, and rslt. All cells at least contain the first four subfields. Only cells providing
data for device outputs that can be disabled contain the remaining three subfields. These
three determine how to disable the output. The cell subfield identifies the cell design used.
The port subfield identifies the port signal that is driven or received by this cell. The

function subfield indicates the primary function of the cell. The safe subfield gives the

95

value that a designer prefers to be loaded into the cell, while the ccell subfield identifies
the cell number of the cell that serves as an output enable. The disval subfield determines
the value that ccell must have to disable the output driver and the rslt subfield determines

the state of the driver when it is disabled.

Defining a Boundary Scan Register Cell

A cell is defined as a VHDL constant. It is an array of records with the range of the
array unspecified, but implicit from the number of records given in the constant definition.
An example of a Boundary Scan register cell called C_Ex_1 that supports EXTEST,
SAMPLE, and INTEST. It loads a ‘1’ during the EXTEST if the cell is used for an input,
output or control function, where output2 is a 2 state output function and output3 is a 3
state output function. During INTEST, as an input, it reloads the cell with the data value
that was shifted into it. The description for this cell is given below:

constant C_Ex_1l: CELL_INFO:= (

(Output2, Extest, One),
(Output3, Extest, One),
(Output2, Sample, PI),
(Output3, Sample, PI),
(Output2, Intest, PI),
(Output3, Intest, PI),
(Control, Extest, One),
(Input, Extest, One),
(Control, Sample, PI),
(Input, Sample, PI),
(Control, Intest, PI),
(Input, Intest, PI));

This is only an overview of the BSDL language. It is an extensible language for defining
the basic testability features of a device implemented with the Boundary Scan standard
architecture. It is specifically designed for describing implementations, in a way such that
they can be exploited by software tools. For additional information, the reader is referred

to [IEEE91b]. BSDL descriptions for some common parts are given in Appendix A.

96

5.4.2 CTL - Chip Test Language

The Chip Test language [Lien91] was developed to be a superset of BSDL. It tco, has
a VHDL-like syntax. As mentioned in the BSDL section, BSDL can be used to describe
the Boundary Scan architecture features implemented on a chip, however, it does not
describe how to utilize these features to test a chip. CTL describes how to utilize the
Boundary Scan features for testing through the use of a Test Procedure, which provides
the information required for testing a chip. A chip test description (CTD) is written in CTL
which includes a Test Procedure in addition to the original BSDL description. The
incorporation of the Test Procedure is achieved by adding a VHDL attribute called
TEST_PROC. The example below demonstrates how a Test Procedure is incorporated in a
CTL file.

attribute TEST_PROC of chipl: entity is “Test_Begin” &
TDM 1 = FULLSCAN;” & “REG= SCANPATH, VECFILE=tstvecl,
RESFILE=resultsl;” & “REG=BOUNDARY,VECFILE=tstvec2,
RESFILE=results2;” &

CLOCK = FCK 1.0 CYCLES_IN RUN_TEST_IDLE;” & “Test_End”;

It is also possible to forgo using this attribute and describe the Test Procedure in a separate
file, where the quotes and & are excluded. For example, the example above can be re-

written in a file called chipl.ctp as follows:

TEST_PROC of chipname: entity is TEST_BEGIN
TDM <tdm_id> = FULLSCAN; REG= <regl>, VECFILE=<filel>,
RESFILE=<file2>;

CLOCK = FCK <numberl> CYCLES_IN RUN_TEST_IDLE; TEST_END

A Test Procedure consists of one or more test sequences which will test different parts of a
chip according to a predefined test methodology called a Testable Design Methodology
(TDM) [Breuer84]. According to Breuer, a TDM deals with the entire process of
designing an easily testable structure, developing the test programs, where appropriate,
and testing the structure using external and/or built-in-test hardware. Some example

TDMs include Scan-Path and Built-In-Self-Test. TDMs are categorized into two types:

97

TCK .
TMS Chip

Test TDI Under

]
Controller D0 Test

Figure 5-8: Test control model used in CTL.

template-based and user-defined. A template-based TDM is used to describe the procedure
for testing a chip designed with a commonly used TDM such as FULLSCAN (Scan Path).
A user-defined TDM is used to describe an arbitrary procedure which is written by the
designer using the C programming language. The Test Procedure in the example above
uses the FULLSCAN TDM which executes a Scan Path test procedure. The tdm_id
identifies the TDM in the CTL file. The selected scan register is regl, which must be
previously defined in the CTL file. The test vectors are stored in filel and the test results
are stored in file2. After a test vector is scanned into the Scan Path register, it is necessary
to apply numberl cycles of clock FCK to the chip under test before test results are
available for scanning out. Note that the test bus must be kept in the RUN_TEST_IDLE
controller state during the application of clock FCK. The test control model used by CTL
is shown in Figure 5-8. This control model consists of a Boundary Scan Master controller
which orchestrates the test process via Boundary Scan test bus and the device under test.

In summary, TDMs are dedicated test functions that execute the test sequences required

98

for implementing the desired test. Template-based TDMs that are currently supported
include: FULLSCAN, RUNBIST, and INTEST. The function of these TDMs are

described below:

FULLSCAN TDM

The FULLSCAN TDM is used to test a chip designed with the Scan Path technique,
where all flip-flops on the chip are made scannable and are cascaded to form a serial scan

chain. It executes a Scan Path test in the following steps:

1. Load a test vector into the scan chain by shifting s times where s is the length of the Scan Path
register.

2. Repeat for t-1 times t is the number of tests vectors Update the scan chain by running the
functional clock for one cycle. Scan out the previous result while scanning in the next test
vector.

3. Grab the last result by shifting s times.
RUNBIST TDM

A chip that utilizes BIST hardware can be tested using the RUNBIST public
instruction defined in the Boundary Scan standard. Once the RUNBIST instruction is
loaded into the instruction register of the TAP, the self-test procedure can be executed
simply by applying the test clock, TCK, during the RUNT_TEST_IDLE controller state.
In the RUNBIST TDM example below, the result of the test is stored in the regl register.

Valuel represents the expected good circuit result.

TDM <tdm id> = RUNBIST;

CLOCK = TCK <numberl> CYCLES_IN RUN_TEST_IDLE; EXPECTED_RESULT
<regl> = <valuel>;

INTEST TDM

A chip can also be tested using the INTEST instruction defined in the Boundary Scan
standard. The INTEST instruction must be loaded into the instruction register of the

Boundary Scan architecture before execution is started. This TDM differs from

99

FULLSCAN in that only the Boundary Scan register is included in the scan chain and no
internal scan path registers are used. The procedure for testing a chip using the INTEST
TDM is described in the following steps:

1. Repeat for t times a. Shift a test vector into the boundary scan register.

2. Apply one or more functional clock cycles.
3. Scan out the results of the Boundary Scan register.

The INTEST TDM is listed as follows:

TDM <tdm_id> = INTEST; VECFILE = <filel>, RESFILE = <file2>;
CLOCK = FCK <numberl> CYCLES_IN RUN_TEST_IDLE;

User-defined TDM

Some additional C functions have been developed to assist the designer in describing
user-defined TDMs. A brief description of these TDMs are given below:

ScaniR (outS);

This TDM is used to load the Boundary Scan instruction register with the contents of
string outS while the previously instruction is scanned out at this time. The format of the
instruction is determined by the chip designer except for those instructions defined in the
Boundary Scan standard.

ScanDR (outS);

This function is similar to the ScanIR except that the target register is one of the chip’s test
data

registers which is determined by the contents of the instruction register. When scanning in

a new data string, the results of the previous string are scanned out.

Bring2State (i);

This function is used to change the TAP controller state from its current state to state i

100

which can be any one of the following states: Run_Test_Idle, Test_Logic_Reset,

Scan_DR, Pause_DR, Scan_IR, or Pause_IR.

RepeatState (i, n);
This function allows the TAP controller to remain in state i for n consecutive clock cycles.

Note that this function can only be applied to the Pause_DR, or Pause_IR states.

RunTest (n);
This function is used to keep the TAP controller in the Run_Test_Idle state for n
consecutive clock cycles when exercising the BIST circuitry implemented on the target

chip.

The formal definition of the CTL syntax is done using YACC [YACC78] and can be found
in [Lien91].

5.4.3 MTL - Module Test Language

The Module Test Language (MTL) is a high level language that can be used to
describe how to test a module. It has been developed such that it requires very little
knowledge of testing, on behalf of the designer, to use it. The test control model used in
MTL is shown in Figure 5-9, where a board consists of one to many Boundary Scan chips
which are serially cascaded forming a scan chain and a Boundary Scan master controller
chip which can access the chip’s Boundary Scan circuitry through two Boundary Scan
rings. The test clock TCK which is connected to each chip is not shown.

A module test description (MTD) which contains all the information required for testing
the board must accompany each board design A board test program is automatically
generated from the board test description and chip test descriptions of the parts that make
up the board using a tool call m2¢ which will be described in the next section. An MTD

101

o [Chip1 | Chip2 |- Chip3 |

Test 0 A A A
Controller |rmsi
TDI

» Chip4 —»{ Chip5 —

Figure 5-9: Test control model used in MTL.

consists of the following parts: library_id, device_list, test bus configuration, net_list, and
test_procedure. The library_id points to the directory containing the CTDs. The
device_list ties every chip used on the board with its corresponding CTD in the library. An

example device list consisting of two devices is given below:

device_list = (Chipl adder) (Chip2 multiplier);

The test bus configuration describes how the chips on the board are configured and how
they are connected to a Boundary Scan master controller chip via Boundary Scan test bus.
The the chips may be configured in a ring, star, or combination of both topology. In a
MTD, a test bus is modeled as a multiple ring topology which can be mapped into any one
of these topologies. A ring configuration is formed when all chips exist in the same path,
while a star configuration is formed when every ring contains only one device. The test

bus for Figure 5-9 is given below.

102

test bus =

ring 0: Chipl => Chip2 => Chip3,

ring 1: Chip4 => Chip5;

The net_list describes how the chips on a board are physically connected. Bach terminal of
a chip is specified by two names, the first name specifies the chip name, while the second

specifies the I/O pin number. An example consisting of two nets is given below.

net_list =

net 1: (Chipl inpl) (Chip2 outpl),

net 2: (Chip2 inpl) (Chip3 inpl) (Chipl outpl);

The test procedure contains the necessary information required for testing a board. This
information is represented in terms of standard C code and some test-specific functions.
These functions assume no knowledge about the test controller and can be translated to

low level functions which are fully supported by a library of test functions written in C.

These I/O functions are used to control the Test Master Controller board or the Local .
Boundary Scan master controller chip located on the target board. With every chip on a
board containing the Boundary Scan architecture, it is possible to write a test procedure
for testing the target board using only test-specific functions. Hence, a designer with little
knowledge of testing can easily write a test procedure thus greatly reducing test program
development time. The only case where testability knowledge is required are situations
involving boards which contain a mix of Boundary Scan and non-Boundary Scan
components. A brief description of the test-specific function that are used to describe a test

procedure are listed below.

Testchip (chip_id);

A Boundary Scan master controller chip or the Test Master Controller board can test a
chip, identified by chip_id, by executing this function. To impalement this test, the MTL
compiler, m2c, uses the chip test description (written in CTL for each chip), which

contains one or more test procedures.

103

Testchip (chip_id) Use TDM (tdm_id);
This function allows part of the target chip to be tested using a TDM, designated by
chip_id and tdm_id respectively. With this function, parts of a chip can be tested in

different time intervals where one or more test sessions are executed in each interval.

TestInet ();

This function performs the interconnect test on the target board where every net
connecting at least two boundary scan devices is tested. The algorithms used for test
pattern generation are described in the section on Test Vector Generation. This function is

only used to detect the presence of faults on a net, not for diagnosis.

Diagnosisinet ();

This function is used to diagnose faulty nets on the target board. This function uses a
universal test set that includes a walking ones sequence, a walking zeroes, all zeroes
vector, and all ones vector. According to [Lien91], all diagnosable faults can be identified
using this function.

SampleRing (ring_id);
A snap shot of the current stated of the target ring, designated by ring _id, can be achieved
using this function. The value returned by this function is a string of 0’s and 1’s

representing the current state of the chips in the Boundary Scan ring.

ScaniR (ring_id, outS);

This function sends instructions to the instruction registers of all the devices under test
that are part of the test bus ring designated by ring_id. When sending instructions, all
chips in the selected scan ring receive a new instruction which is contained in the string

outS.

104

Chip1 Chip2 Chip3
{ Target | o
Nighalt > _Register | | BP !
TDO Souroe‘ TDI
i Register :
Test Controller

Note: BP = Chips in Bypass mode

Figure 5-10: Example configuration with several chips bypassed.

ScanDR (ring_id, preDR, postDR, outS);

This function is similar to the ScanIR except that it sends a string of 0’s and 1’s contained
in outS to the selected test data register. For situations where it may be necessary to bypass
every chip except the one you’re currently sending data to, preDR and postDR are used to
indicate the number of bypass registers that appear before and after the test data register of
the target chip. The number of shifts required for transmitting data to the target chip is
calculated automatically using preDR and postDR. This situation is best illustrated in

Figure 5-10. The formal definition of the Module Test language syntax can be found in

[Lien91].

105

5.5 m2c - MTL to C Language Compiler

The m2c compiler generates a test program for the target board from its MTL
description and the CTL descriptions of each chip on the board. m2¢ produces a test
program written in ANSI C format that can be used to test the board and a file which
describes the board interconnect. A block diagram of m2c shown in Figure 5-11. It
consists of a parser module, a template-based TDM module, an interconnect test and
diagnosis module, a shift adjustment module, and a test program generation module. Some

of the more important modules are described below.

5.5.1 Template-based TDM Module

Meta-procedures that can generate C programs from a template-based TDM are
provided. They require a test procedure as an input and they generate a C program for
executing the test process of the selected TDM. These meta-procedures consist of
callfullscan, callintest, and callrunbist where each procedure generates programs for the
Fullscan, INTEST, and RUNBIST TDMs respectively. All information required for
generating a test program must be provided to these meta-procedures. For example, the
following information listed in Table 5-1 is required when using the meta-procedure

callfullscan. These values are extracted directly from the CTL and MTL descriptions.

5.5.2 User-defined TDM Module

A user defined TDM is a C program including some test-specific functions. It is
necessary to translate them into normal C statements that can be readily executed by the
Test Master Controller board or Boundary Scan master controller chip. Because of the
differences between the two control models used in CTL and MTL, the test-specific

functions are modified to reflect these differences. For example, the test-specific function

106

MTL file

MTL

Parser

user-Def
TDM
Module

Shift
Adjustment
Module

Device
Driver

CTL file

CTL
Parser

Global
DATABASE

Test
Program

Manufac.
Module

Test Program

(inC)

Figure 5-11: Top level view of m2c.

Template
Based
TDM
Module

Intercconn.
Test
Module

Netlist
Information

107

Parameter Description

chipr the name of the chip under test -

chipType the type name of the chip under test

ringID the test bus ring where the chip under test is located

pre the number of cells between the chip under test and the controller when
shifting data

post the number of cells between the controller and the chip under test when
shifting data

ipre the number of cells between the chip under test and the controller when
shifting an instruction

ipost the number of cells between the controller and the chip under test when
shifting an instruction

regins the instructions that are used to select the register

vecFID test data input file name

expFID test data output file name

Table 5-1 : Information required by meta-procedure callfullscan.
scanlR (outS) is converted to scaniR (RingID, ipre, ipost, outS) so that the same string of
data outS can now be sent to the correct chip under test. The parameters of the latter

scanlR function are computed by the Shift Adjustment Module described next.

5.5.3 Shift Adjustment Module

In some cases, it may be desirable to send and receive test data to one specific chip in
the scan ring while keeping the other chips in the bypass mode. When exchanging data
with a single chip in a scan ring, the number of shifts must be adjusted so that data is sent
to and received from the chip under test correctly. The number of shifts is determined by
the various cases listed in Table 5-2. (Note that the parameter len in the table is the size of

the source Boundary Scan register.)

108

Cases pre >post | pre<post | pre = post
| — —_— — |

Number of Shifts len + pre len + post len + post

Number of leading zeroes added when pre - post 0 0
applying test data

Number of trailing zeroes added when post post post
applying test data

Number of leading bits ignored when pre pre pre
receiving test data

Number of trailing bits ignored when 0 post - pre 0
receiving test data

Table 5-2 : Cases used for shifting calculation.
Case 1: pre > post
In this case, the total number of shifts is len + pre. It is necessary to add pre - post leading
zeroes to the output string before loading it into the memory of the Test Master Controller
board, such that after shifting, the output string will be properly loaded into the target
chip’s selected test data register. It is also necessary to discard the first pre number of bits

so that the correct string is received by the target chip’s test data register.

Case 2: pre < post

In this case, the total number of shifts is /en + post, hence, no leading zeroes are require.
However, it is necessary to ignore the first pre bits received by the memory of the Test
Master Controller board. It is also necessary to ignore the last post - pre bits received by

the memory so that the contents of the source Boundary Scan register can be collected

properly.

Case 3: pre = post
In this case the total number of shifts is len + post and requires no leading zeroes.

However, it is necessary to ignore the first pre number of bits captured by the memory of

109

the Test Master Controller board so that the source data can be collected properly.

5.5.4 The genTarget Module

The purpose of this module is to reduce the manual operation in compiling test
programs, therefore, reducing errors that may occur during the compilation of the test
program on the host system, which in this case is a UNIX workstation. genTarget

generates a makefile that can produce the executable code that runs the test program.

5.5.5 Interconnect Test Module

This module performs the testing and diagnosis of the board interconnect. It consists
of four major components which include net_list generation, test generation, test
application and results analysis. The net_list generation component extracts the net list of
the board from the MTL file where the drivers and receivers of these nets are all part of the
Boundary Scan registers of the chips on the target board. The CTL files for these chips are
then read to determine the physical configuration of the Boundary Scan registers. A
mapping mechanism is then used to map the terminals of a net to their corresponding
physical location in the Boundary Scan register. This mapping information is stored in a
file called infofile.net which is later used for interconnect testing. In the test generation
part, a test set that can identify all diagnosable faults is generated.This implements the
interconnect test generation algorithms described in the Section 4.6.1.A test schedule for
applying test vectors and gathering test results is produced by the test application part.
Finally, in the results analysis part, test results are compared with their corresponding test

vectors for analysis. Faults are detected based on the results of this analysis.

5.5.6 Device Driver

The device driver consists of two C functions reading and writing test data to and from

110

the Test Master Controller board or a Boundary Scan master controller chip. These
functions, called read and write, are hardware dependent in that the device address is
determined by the physical location of the TMC or local Boundary Scan master chip. Each
of the functions have two arguments namely addr, which is the physical address location
of the target device on the Test Master Controller board, and datafile, which is a pointer to

a file where data can be read from or written to.

5.6 Summary

The tools and languages presented in this chapter are intended to relieve the system
designer of all of the mundane tasks associated with testing a system. This tasks include
Boundary Scan path threading, test pattern generation for both the chip and board levels,
and test program generation. The JTAGtool completes the work started by the test
modules, which automatically adds Boundary Scan test components, by making sure that
every Boundary Scan chip is connected to the scan chain. Furthermore, JTAGtool extracts
net list information which is used later during interconnect test generation. PLDS is used
to dynamically configure the local controller on the Test Master Controller board to

implement a desired test protocol.

PODEM is an efficient test pattern generation tool for combinational logic which can only
be used if the Scan Path method is employed. It produces tests that will detect classical
stuck-at faults with a high percentage of fault coverage. Board interconnect tests are
generated by the Interconnect Module of the m2c test program compiler. This module
implements algorithms that provide 100% stuck-at and bridging fault coverage of board
interconnects. The Boundary Scan Description Language provides a simple, complete,
and automated way of describing implementations. It is specifically designed for

describing the numerous options that may be exercised in such implementations. The Chip

111

Test and Board Test Languages provide a complete testability framework that hides the
details of serial scan protocols from the user. These languages control and track the state
of the Boundary Scan hardware so that the user can view the target hardware system from
a high-level perspective - the same way that a computer’s operating system makes the

details of computer operation transparent from the user.

112

CHAPTER 6

PROTOTYPE TESTING

The use of chips incorporating the Boundary Scan standard offers significant
advantages when testing prototype systems Prototype systems primarily are developed to
allow designers to prove a design concept or implementation before committing it to full
production, where the cost to correct problems can be prohibitive. With the test hardware
and software tools described in the two previous chapters, designers can verify such items
as the basic design concept, theory of operation, board layout, parts selection, etc.
Furthermore, the proposed test hardware and software tools reduce the amount of
engineering effort required to test a system. However, in order to obtain the full benefits of
the test hardware and software requires some knowledge of how to properly use them in a

design as well as how to apply them for testing.

An overview of the Boundary Scan chips that provide a means for thorough testing of
digital system including how they may be used in a design along with their respective test

applications are presented in this chapter. After a discussion on the traditional test methods

113

114

used for prototype verification, a structured debug/test procedure is presented that outlines
steps a designer can follow in order to properly use these Boundary Scan chips for
prototype testing. This is followed by some functional and interconnect test examples
which includes test procedures, Chip Test Language and Module Test Language files.
Finally, the benefits of Boundary Scan versus traditional test methods and the lessons

learned from this prototype testing experience.

6.1 Chips that Simplify Board Level DFT

By placing Boundary Scan chips at critical nodes on a board and in key signal paths,
the boundary scan path can be used to provide access to critical nodes on the board. When
the system is operating normally, the test circuitry is disabled and devices perform their
normal function. During test operations, the chip’s I/O boundary is controlled by

dedicated test circuitry.

The procedure for implementing test functions varies according to the operation
performed. In general, the user will preload one or more data registers, execute an
instruction via the instruction register, capture data in the Boundary Scan register, and then
scan out the resulting data from the register for comparison with some expected value. The
remainder of this section describes the chips, listed in Table 4-2, and the test functions

they perform with examples to illustrate how these chips can be used to build in testability

are presented.

6.1.1 System Controllability, Observability, and Partitioning
Octal Chips

System Controllability, Observability, and Partitioning Environment (SCOPE) octals
[TI90b,c,d,e] are standard logic chips that contain Boundary Scan which are intended to

115

IN
——{ TCR1 REG TCR2 _..OUT
|
oC —{ BCR
—1—{ TC2 |
- BYPASS
CK
—1— TC1 — [IREG MUX2
‘ —
TAP MUX1
TDI T™™S TCK TDO

Figure 6-1: Block diagram of octal register architecture.

be place in a system design to greatly enhance overall testability in areas from design and
prototype debug to final test and field service of production systems. These devices can be
substituted for their non-testing counterparts in a variety of board level design application
such as: pipeline registers, board I/O buffers, address and data buffers/transceivers, and

finite state machine designs.

Along with the normal function associated with each octal, four pins are added to support
the Boundary Scan standard. A block diagram of the SN74BCT8374 octal register type is
shown in Figure 6-1. The functional architecture of the ‘BCT8374 consists of an 8-bit
register (REG), eight data inputs (IN), eight data outputs (OUT), a clock input (CK), and a

tri-state output control input (OC). The Boundary Scan architecture consists of a Test

116

Access Port, an IREG, and a data register section. The data register consists of a bypass
register, a boundary control register (BCR), and a Boundary Scan register. The Boundary
Scan register consists of Test Cells 1 and 2 (TC1, TC2), and Test Register Cells 1 and 2
(TCR1, TCR2). The other octals have a similar architecture placed around buffer,
transceiver, and latch functions. The Boundary Scan register provides the mandatory test

features required for compatibility as well as special test features.

Normal Mode Operation

During normal operation, the Boundary Scan register is transparent, allowing input
and output signals to pass freely through the test cells, enabling the chip to perform its
intended function. While in normal operation, the Test Access Port can receive control
from the TMS and TCK inputs to shift data through the chip from its TDI input to the
TDO output. Three test instructions can be executed while the device is in this mode:
SAMPLE, BYPASS, and a special SCOPE self-test instruction. The SAMPLE and
BYPASS functions were described in Chapter 3. While the SAMPLE instruction at first
may appear very attractive, the user must know when to sample in order to obtain
meaningful data. The self-test instruction executes a self check of each SCOPE cell in the

Boundary Scan register.

Test Mode Operation

When placed in an off-line test mode, the normal operation of the SCOPE octal is
inhibited. In test mode, instructions can be shifted into the chip to perform all mandatory
Boundary Scan instructions, as well as, an extended set of test instructions develop
specifically for the SCOPE octals. Prior to loading these instructions, the Boundary Scan
register should be set so that a desired test control pattern is applied to the REG inputs, tri-

state buffers, and chip outputs. The step ensures that the chip will be in a known state

117

when the test mode is entered.

When EXTEST or INTEST instruction is loaded into the chip, Boundary Scan register
cells TC1, TC2, TCR1, and TCR2 are set to allow simultaneous observation of signals
appearing at their I/O pins. During EXTEST and INTEST execution, the Test Access Port
receives external input to cause the Boundary Scan register to capture date on CK, OC,
and IN inputs as well as the internal REG outputs. While captured data is shifted out, the
next test control pattern is shifted in via TDI input. The Boundary Scan register outputs
remain in their present state during the shift operation. The process of capturing data,
shifting the Boundary Scan register to extract stored data and loading new test data,
followed by the application of the new test from the register outputs, is repeated until the

test is complete.

Test Extensions

To support extended testing features required additional instructions. The benefits of
developing an extended test architecture is that every octal will share a consistent test
instruction set, compatible test modes, and reduced complexity in the development of test

software tools. These extended instructions are described below:

Control Boundary to High-Impedance

When this instruction is loaded into an octal, the outputs are placed in a high-impedance
state and the bypass register is selected. This instruction is designed primarily to facilitate
a blend of in-circuit testing and Boundary Scan testing. By disabling the outputs of the
device, an in-circuit tester can drive the inputs of another device coupled to the output of
the octals without damaging the octal’s buffers. While this instruction is in effect, the
bypass register is selected to provide a minimum data register scan length through the

chip.

118

Control Boundary to a LogicOor 1

When this instruction is loaded into an octal, the Boundary Scan register outputs are set to
a prescanned combination of logic 1’s and 0’s and the bypas register is selected. This
instruction allows the test cells to output a control pattern to the REG inputs, tri-state
buffers, and chip output. This places the chip in a preferred state while testing neighboring

components.

Boundary Read

The contents of the Boundary Scan register can be shifted out when this instruction is
executred.This instruction differs from EXTEST or SAMPLE in that the capture operation
that normally occurs during the Capture_DR controller state is replaced with a data ‘
register hold operation which causes the Boundary Scan register to capture their present
state instead of the data values sitting on their inputs. This instruction allows a signature

that has been collected in the Boundary Scan register to be shifted out for inspection.

Run Test

This instruction was developed to support BIST approaches. Run Test is a generic
instruction that executes the boundary BIST operation setup by control bits programmed
in the BCR, shown in Figure 6-1. The BCR control bit settings must be set up via a scan
operation prior to loading the Run Test instruction. Run Test will execute during the
RUN_TEST/IDLE controller state. The length of a particular Run Test test operation is
determined by the number of TCK inputs applied. The Run Test instruction has four
operational modes: 16-bit Parallel Signature Analysis (PSA) of the IN inputs, 16-bit
Pseudo-Random Pattern Generation (PRPG) form the QUT outputs, simultaneous PSA
and PRPG, and simultaneous SAMPLE of IN inputs and TOGGLE of OUT outputs.

During a 16-bit PSA Run Test mode, the 8-bit TCR1 and TCR2 cells are tied together to

119

form a 16-bit Linear Feedback Shift Register (LFSR). The parallel inputs to the TCR1 are
enabled to accept data from the IN bus and the parallel inputs to TCR2 are disabled. In this
configuration TCR?2 acts as an 8-bit LFSR extension to TCR1. During test, the parallel
inputs from the IN bus are compressed into the 16-bit LFSR on the rising edge of TCK.
Linking TCR1 to TCR2 allows the octal to receive an extended sequence of 8-bit patterns
from the IN bus. At the end of the PSA mode, the 16-bit signature can be shifted out of
TCR1 and TCR2 for inspection. While TCR1 and TCR2 are collecting the signature, the
outputs of TC1 and TC2 remain in their present state. TC2 can be set to enable or disable
the OUT buffers during a test.

During the 16-bit PRPG Run Test mode, TCR1 and TCR2 are tied together to form a 16-
bit LFSR as described in the 16-bit PSA test. During the 16-bit PRPG test mode, both
parallel inputs to TCR1 and TCR2 are disabled so that both act only as LFSRs. During
test, the parallel output from TCR2 drives pseudorandom patterns to the OUT bus one
each falling edge of TCK. Since the width of the OUT bus is 8 bits, individual patterns
will be repeated during every 256 pattern output sequence. However, the test circuit will
produce 256 sets of unique 256 pattern output sequences. TC2 is set to enable the OUT
buffers during this test.

During the simultaneous PSA and PRPG Run Test mode, TCR1 and TCR2 operate as two
separate 8-bit LFSRs. The parallel inputs to TCR1 are enabled to accept data from the IN
bus and the parallel inputs to TCR2 are disabled. During test, TCR2 outputs
pseudorandom patterns to the OUT bus on the falling edge of TCK. glue logic residing at

the chip’s I/O pins can be quickly tested using the Run Test instruction.

During the simultaneous Sample Inputs/Toggle Outputs Run Test mode, TCR2 outputs
alternating data patterns to the OUT bus on the falling edge of TCK, and TCR1 accepts

120

data input form the IN bus on the rising edge of TCK. By adjusting the frequency of TCK,
this test can be used to measure the propagation delays through external logic residing

between the OUT and IN buses.

Boundary Self-Test

The Boundary Scan register is selected in the scan path. This operation tests the logic in
the Boundary Scan cells by loading the complement of the current logic value in the cells.
By loading a known value in the register, executing CELLTST, and inspecting the

resulting data through a scan operation, the integrity of the register can be verified.

Boundary Toggle Outputs
Functional outputs are toggled on each falling edge of TCK.

Verifying Board Interconnect

Perhaps one of the simplest examples of how Boundary Scan can be used to improve
the testability of a board is by verifying the board interconnects (detecting “stuck-at”
faults) between chips on a board or between two boards in a system. Figure 6-2 shows two
‘BCT8244s being used to buffer signals between two separate parts of the board. They
could be on either side of an edge connector, separated by board traces, or in any number

of other configurations. The procedure for verifying the interconnect for this example is

described below:

1. Initialize the scan path through a reset operation.

2. Scan! all zeroes into the output Boundary Scan cells of Ul. This can be done with any of
several instructions.

3. Scan the EXTEST instruction into both U1 and U2.
4. Capture the Boundary Scan register of U2.

1. Scan means put the Test Access Port in the appropriate shift state and serially load data through the TDI pin.

121

[- I
TMS TCK T™MS TCK

U2

U1

‘BCT244 ‘BCT244

TOMMOO @[>

Test Bus
Controller

HEEERERN

‘ACT8990 Ll T‘TO
TMS
TCK
TDI
TDO

IrpEEEEEENN

Figure 6-2: Using two ‘BCT244’s to verify PCB interconnect.

5. Scan out the captured contents of U2’s input Boundary Scan cells for inspection, while
scanning in the next pattern into the output Boundary Scan cells of U1.

6. Repeat steps 4 and 5 for each pattern.

Step 1 can be accomplished by applying g a logic 1 to the TMS pin, by scanning all 0’s
into the Boundary Scan register, or by a power-down/power-up sequence. During step 2,
load the output Boundary Scan cells of U1 with the data that will be applied through the
functional outputs. The EXTEST instruction in loaded by putting U1 and U2 into the
Shift_IR controller state and scanning in its opcode (00000000) into the instruction
register of both chips. During the previous controller state, Ul will force through its

outputs, the data loaded in step 2. Since EXTEST places the Boundary Scan register

122

between TDI and TDO, going to the Capture_DR state (step 4) will load the input
Boundary Scan cells of U2 with the data appearing at its functional inputs.

The Test Access Port controller of both Ul and U2 are placed in the Shift_ DR controller
state in step 5. The scan path is now 36 bits long, 18 bits from ul’s Boundary Scan register
and 18 bits for U2’s Boundary Scan register. The data from the input Boundary Scan cells
of U2 is scamied out to be stored and/or examined. Since all 0’s from U1 were forced, the
expected value of the data captured at the input Boundary Scan cells of U2 is also all 0’s.
During this same shift, the output Boundary Scan cells of U1 are loaded with the next
pattern. When passing through the Update_DR controller state after shifting is complete,
the output Boundary Scan cells of Ul will force the next test pattern is applied. As an
example, assume that some wiring defects in the circuit of Figure 6-2 have caused an open
between Ul and U2 on signal C, and a short circuit between signals E and F. Table 6-1
Table 6-1 : Shorts/Opens Verification.

Pattern # Pattern a"_'é;d byUl | Pattern C&l::l;l;'ed by U2
1 00001111 — oolouir |
2 11110000 11110000
3 00110011 00110011
4 11001100 11701100
5 01010101 01710001
6 10101010 10100010

lists six patterns U1 can apply to check for any opens and shorts that may exist between

Ul and U2, or shorts between any two pins, along with the data they would capture.

123

Glue Logic Testing

Pseudo-random pattern generation and parallel signature analysis can be used to verify
the logic implementation of a design. During a pseudo-random generation or parallel
signature analysis operation, the Boundary Scan registers of a device are configured as
linear feedback shift registers and will perform either a pattern generation or data
compression operation on every TCK cycle. By loading a known seed value (other than all
zeroes) into the Boundary Scan register and knowing the algorithm used, the user can
determine (NOTE: Those bits indicating the presence of a defect appear in izalic type) the
patterns that will be generated and/or signature resulting from the data compression of the
inputs. In order to exercise the system logic shown in Figure 6-3, the Boundary Scan cells
of Ul can be configured to output pseudo-random patterns and the input Boundary Scan

cells of U2 configured to compress data by performing the following operations:

1. Initialize the scan path.

2. Load the Boundary Scan registers of both U1 and U2 with the seed values to be used
during PRPG and PSA. Any value but all zeroes is acceptable.

3. Scan the SCANN instruction into both U1 and U2.

Scan the PRPG data into Ul’s Boundary Scan register and the PSA data in U2’s
Boundary Scan register.

»

Scan in the Run Test instruction into U1 and U2.

Go to the Run_test/Idle controller state.

Execute the PSPG and PSA instruction for the desired number of clock cycles.
Scan U2 with the Boundary Read instruction.

. Scan out the contents of U2’s input Boundary Scan cells and compare the resulting
signature with the expected values.

© ® N o o

To illustrate this concept, assume that a seed value of all ones is loaded into the Boundary
Scan register of both U1 and U2 during step 2, and there is no logic between Ul and U2
(i.e., U2’s 1A1 =Ul’s 1Y1, U2’s 1A2 = Ul’s 1Y2, etc.) During Steps 3-5 the octals are

124

| |
TMS TCK TMS TCK
i [] w2
‘BCT244 [1-8(Glie)\ — wcTR44
Test Bus] |
Controller] —
TDI TDI TDO
‘ACT8990 TITO T
T™MS
TCK
TDI
TDO

Figure 6-3: Logic verification using Boundary Scan.

loaded with the proper data and instruction to perform the pattern generation and data
compression operations. SCANCN places the boundary control register between TDI and
TDO so the simultaneous PSA/PRPG code (11) can be loaded using the Shift_ DR
controller state. Run Test is loaded into the instruction register, and tells the octals to
examine their Boundary Scan registers and execute the specified test. In this example, the
simultanecus PSA/PRPG function is being used. Figure 64 shows the configuration used
during this operation. After generating sufficient patterns to test the logic, the signature in
U2’s input Boundary Scan cells must be examined. This is accomplished using the

Boundary Read instruction. It is important that this instruction rather than EXTEST,

125

| |
TMS TCK TMS TCK
U1 u2
‘BCT244 Glue P ‘BCT244
E Logic S
A
Test Bus
Controller
‘ACT8950 TDI TDIO T:)l TDO
TMS
TCK
TDI
TD

Figure 6-4: Simultaneous pseudo-random pattern generation and
parallel signature analysis.

INTEST, or SAMPLE be used, because while all of these instructions will place the
Boundary Scan register between TDI and TDO for the ensuing Shift DR controller state,
the other instructions will preload the input Boundary Scan cells with the current input
data during the Capture_DR state and overwrite the signature. Boundary Read does not
preload the Boundary Scan register during Capture_DR, so the signature is preserved.
Table 6-2 shows the pseudo-random patterns generated, and the resulting signature after
each pattern, for the first 15 TCK cycles. The first pattern, applied during the falling edge
of TCK in Update_IR, is the seed value of all 1’s, and the first signature (generated on the
first rising edge of TCK after entering Run_Test/IDLE) is based on that value. On the first
falling edge of TCK after entering Run_Test/IDLE, the signature is generated on the rising
edge of TCK as the controller state changes from Run_Test/Idle to Select_DR_Scan.

Although this example contains no logic between Ul and U2, the same principles are

126

Cycle Pattern After TCK Signature After TCK
(1Y1-1Y4, 2Y1-2Y4) (1A1-1A4,2A1-2A4)
1 — 11111111 1600000000

2 01111111 00111111
3 00111111 10100000
4 10011111 01101000
5 01001111 00011010
6 00100111 10001000
7 00010011 10000100
8 00001001 11001100
9 10000010 10100001
10 10100001 00101000
11 01010000 10111100
12 00101000 11001010
13 10010100 00101111
14 11001010 11110001
15 11100101 11110010

Table 6-2 : PRPG/PSA sequence.
applicable in more complex cases. This method can also be used to verify address
decoding to memories, or to apply patterns to the input of a complex chip. By placing the

octals in the critical paths, the user can control the signals being applied to any node on the
board.

Partitioning for Test

Using octals to buffer key signals can allow for effective partitioning of a board during
test to remove unconnected or unwanted components. Partitioning a board into separate

stand-alone test cells can reduce the number of patterns required to test the section(s) of

127

DATA
U1t
ADDR u2
DATA
Memory
DATA us
ADDR
ADDR U4
|
TDI T™S TCK TDO

Test Bus Controller

Figure 6-5: Partitioning for test example.

interest. In Figure 6-5, octals are used to partition a shared-memory configuration in which
a digital signal processor and graphics signal processor share the same memory. The
‘BCT8245s (U1 and U3) are used to buffer data transmission between the processors and
memory, and the ‘BCT8373s (U2 and U4) are used as address latches. The four octals are
connected in a serial scan path with common TCK and TMS signals. Using the octals in

128

this configuration creates many testing possibilities that go far beyond simple interconnect
testing. For example, one or both processors can be effectively removed from system
operation by scanning and executing the Control Boundary to High-Impedance instruction
on the units buffering it, which will cause the functional outputs of the octals to go into the
high-impedance state. This instruction also protects the octals if some type of fixtured
testing, such as bed-of-nails test, is to be used by ensuring that the functional outputs are

not back driven.

The status of the octal inputs and outputs can also be captured at any time by using the
SAMPLE instruction. This operation does not disturb the normal operation of the chips
and will not affect the system, but will capture the logic levels at all inputs and outputs.
This information can be scanned out and compared against an expected value. The
SAMPLE instruction is also useful for preloading the Boundary Scan register prior to
another test operation, since the octals will continue to function in a normal mode during

the preload scanning.

The circuit in Figure 6-5 would also allow the contents of any or all memory locations to
be written to or read from. A memory location can be verified by using the EXTEST
instruction to force an address using U2 or U4 and capture the data appearing using U1 or
U3. This illustrates the ability of the chips to both control and observe the signals to which
they are connected. If the entire contents of the memory are known, the PRPG and PSA
operations could unload the entire memory using a minimum number of clock cycles, with

the final signature being scanned out for inspection.

6.2 The Digital Bus Monitor Chip

The Digital Bus Monitor (DBM) chip can be included in a board design to provide a

129

method of monitoring embedded digital signal paths between chips like data buses. The
DBM is capable of monitoring digital signal paths while the board is either on-line and
operating normally or is in an off-line test mode. The benefit of on-line monitoring is that
it can be used to reveal timing sensitive and/or intermittent failures that are otherwise

undetectable without the use of external test equipment and mechanical probing fixtures.

One of the advantages in using DBM chips to construct board level BIST structures is that
the monitoring capability is embedded in the board design and can be used throughout the
life cycles of the board prototype testing, system integration, system test, and real-time
diagnostics. Another advantage in using these chips is that it does not significantly impact
the performance of the board circuitry. Since the signals to be monitored don not pass
through the DBM chip but are only input to the chip, no significant performance penalty is
paid when using these chips. In the example shown in Figure 6-6, two chips operate
together via address, data, and control interface paths to perform a desired function. In
normal operation, Chipl outputs address and control to Chip2 to pass data between the
two chips. Two DBM chips are included in the circuit for address and data bus monitoring.
The DBM chips are connected via Boundary Scan test bus and the two-wire event
qualification bus. The address and data bus to be monitored are input to the DBMs via
observability data inputs (ODIs). The control outputs from Chip1 are input to the DBM
chips via clock inputs (CK) to allow them to operate synchronously with the circuit during

on-line monitoring.

The test circuitry residing behind the ODI input pins consists of a RAM buffer, and a test
cell register. The memory buffer provides storage for multiple ODI input patterns. The test
cell register operates as either a Boundary Scan register or PSA register. The memory
buffer and test cell register can be operated together or separately, as required by the given

test operation. The ODI inputs to the test cell register can be masked individually to allow

130

Data
-t .
Address
Chip1 > Chip2
< Control

CK¢ ODI CK ODI
y

Y
SCANIN DBM1 DBM2 SCANOUT
Beo| & B 4 [ggo
L 5| Vote |

Figure 6-6: Digital bus monitor example.

diagnosing which input or groups of inputs caused a multiple-input PSA operation to fail.
When the circuit in Figure 6-6 is placed in an off-line test mode, Chip1 can be made to
output data on its address and data bus. The data and address output from Chip1 can be
stored into DBM1 and DBM2, respectively, via ODI inputs. After the data have been
stored, they can be shifted out for inspection via Boundary Scan path. Similarly, Chip2 can
be made to output data on its data bus, to be stored and shifted out for inspection by

DBM2. In the off-line test mode, control to store data and operate the scan path is input

via Boundary Scan test bus.

131

When the circuit in Figure 6-6 is on-line and functioning normally, chips DBM1 and
DBM2 can continue to monitor the data and address buses suing an internal Event
Qualification Module resident in each Digital Bus Monitor chip. During on-line
monitoring, the Event Qualification Module outputs control to store the data appearing on
the observability data inputs. This module operates synchronously with the control signal
input to the Digital Bus Monitor’s clock inputs. To determine when to store data, the Event
Qualification Module includes comparator logic that can match the data appearing on the
observability data inputs against predetermined expected data pattern(s). The compare
operation performed on each observability data input can be masked individually to
eliminate input signals not required for event qualification. The Event Qualification
Module has protocols that allow it to perform different types of event-qualified monitoring
operations. The type of monitoring operation to be performed (for example, RAM storage)

determines the type of protocol used.

To expand the event-qualification capability, many Digital Bus Monitor chips can be
connected via the two-wire event-qualification bus to allow qualification of a test
operation to be distributed over a range of chips. During expanded event qualification,
each DBM operates to output a match condition on its Event-Qualification Output pin.
The match signals from these chips are combined via a voting circuit to produce a global
matching signal. The global matching signal is input to each chip via and Event-
Qualification Input signal. When a global match signal is received, the internal Event
Qualification Module initiates a test monitor operation. In some cases, it may be required
to qualify a monitor operation further using external signals. In this case, the external
signals are input to the voting circuit to allow finer resolution as to when a monitor

operation is performed.

132

Chip1 Chip2 |-

P TEST BUS
8 CONTROLLER| 1ys T
C
E — > TCK
S
: !

TDO

<— Chip4 Chip3 —

Figure 6-7: Test bus controller example.

6.2.1 The Test Bus Controller Chip

The Test Bus Controller chip is a Boundary Scan test bus controller that supports
efficient transfer of serial data and control to and from target chips sitting on the test bus.
Figure 6-7 shows an example application of the Test Bus Controller chip which provides
the hardware link between a host processor and target chips residing on the scan path. To
the processor, it is a peripheral mapped into a particular area of the processor’s external
memory space. It’s processor interface consists of a 16-bit bidirectional data bus; inputs

for address, read/write, and chip select signals; and an interrupt output signal.

The chip’s test bus interface consists of five signals which are Test Data Output signal,
Test Data Input, Test Mode Select, Test Clock Input, and Test Clock Output. The two Test

Mode Select outputs allow the it to support separate scan paths. The Test Data Output

133

signal is a serial data output from the chip that drives the Test Data Input pin of the first
target chip in the scan path. The Test Data Input signal is the serial data input to the Test
Bus Controller chip that receives the data from the last target chip in the scan path. The
Test Mode Select signals are serial control outputs from the chip that drive Test Mode
Select inputs of target devices in the scan path. These outputs conforms to the protocol
described in the Boundary Scan standard to cause target chips on the scan path to shift
data. The Test Clock Input signal is generated externally and is distributed via Test Clock
Output to each target device in the scan path. In addition to the required Boundary Scan
test bus signals, the interface includes an output signal for initialization of target chips and

input signals for receiving test related interrupts from target chips.

Before a scan operation, it receives the parallel data input from the processor (e.g. VME
CPU board) that is to be transmitted serially to the target chips in the scan path. Also, the
processor inputs a count value into an internal counter, specifying the number of serial
data bits to be transferred. After the data and count values have been set up, it receives a
command from the processor to initiate the scan operation. During scan operations, it
outputs serial data and control signals to the target chips via the Test Data Output and Test
Mode Select output signals and receives serial data from the target chips via Test Data
Input. By reading status bits from the Test Bus Controller chip, the processor determines
when it requires additional read and write operations to maintain the flow of serial data to
the target chips in the scan path. When the it’s internal counter reaches a minimum value,
it outputs an interrupt to the processor, indicating that the required number of serial data
bits has been shifted through the scan path.

In addition to controlling scan operations, it simplifies the execution of BIST features
incorporated in the target chip. The Boundary Scan test bus protocol state diagrams
includes a Run_Test/Idle state in which BIST operations may be executed. If a target chip

134

has BIST capabilities, an instruction invoking the BIST operation can be scanned into the
device. After the target device receives the BIST instruction, execution of the test occurs
when it transitions the test bus into the Run_Test/Idle state. As defined in the standard
specification, the length of a BIST operation is defined by the number of clock inputs
applied while the test bus is in the Run_Test/Idle controller state. To simplify the
execution of BIST operations, the Test Bus Controller chip contains two types of run test
commands. Both command types are executed while the test bus is in the Run_Test/Idle
controller state. The first type uses the internal counter to count the number of clocks
applied while the test bus is in the Run_Test/Idle controller state, supporting the BIST
procedure detailed in the standard specification. When the counter reaches a terminal
value, it transitions the test bus from its current state into either a scan or pause state to
terminate the execution of the BIST operation. The second type uses its interrupt inputs to
determine the length of time the test bus is in the Run_Test/Idle controller state. This
command differs from the first in that it assumes the target chip(s) have additional test pins
from which an end-of-test interrupt may be issued to it. When it receives this interrupt, it
transitions the test bus from the Run_Test/Idle controller state to either a scan or pause

state to terminate the BIST operation.

6.3 Prototype Testing using the TMC Board: A User’s
Perspective

A prototype system is normally a low cost, low volume production of the end product.
Most of the money spent during prototype development is devoted to building the
prototype and verifying the design concept; very little usually is allocated for testing.
Prototype testing usually is accomplished through simple functional operation and

verification of the system as a whole. Functional test of system hardware and software

135

typically are performed on the entire system or parts of the system, possibly with some
unavailable function being emulated externally. When failure are detected during this
design verification process, a significant amount of time is spent determining the cause of
the failure and correcting it. This debugging process is a manual, often time consuming,
task that does not guarantee immediate success. Several hours may be spent rerunning the
system after swapping boards and components that are believed to have caused the failure
but, in fact, did not. Mixing design verification with fault verification can be costly in the

long run if these processes do not complement one another.

Design verification and fault verification can be less painful by using devices that support
the Boundary Scan standard and partitioning the system into small, easy to test functions.
The use of Boundary Scan allows each partitioned function to be verified and tested
independently, thereby reducing the time spent locating the cause of a failure. Boundary
Scan provides an increase in the controllability and observability of internal circuit nodes,
which is mandatory when isolating system hardware faults and verifying operation of
system software. Standard chips implementing Boundary Scan are very beneficial in this
situation. The use of such chips supports a hierarchical test philosophy in which the same
test capabilities and test programs can be reused at each level of system integration (chip,

board, system).

6.3.1 Traditional Test Methods

During prototype system design, testing issues are often far from the minds of the
designers. If test is an issue, ad-hoc testability techniques sometimes are implemented.
The design primarily is concerned with how to implement a given piece of the system and
have it interface correctly with the rest of the system, as well as, how the system is going

to function when all the pieces are put together. The designer is also concerned with

136

getting the system software working and verified on the system. The complexity of the test

problem comes to the surface when all the pieces are assembled and the system does not

function properly. Determining why the system does not function as intended can be a

major problem. Typical problems include:

A manufacturing problem (mis-wire, wrong component, etc.)
A design error (incorrect design implementation)

A software problem (incorrect algorithm)

A hardware failure (bad part, etc.)

There are many approaches to identify the problem, but no real test strategy exists for

debugging. The e designer usually determines the process for obtaining a functional

system. The equipment used in the traditional test and debug process will very depending

on whether a whole system, subsystem, or a few boards are being checked out. Types of

equipment that are needed include:

1.

o o » @

Hardware and software emulator

Logic analyzer

Oscilloscope

Multimeter

Specially designed debug boxes (special test equipment)
Logic probes

Depending on the design, the equipment cost may be very expensive and hard to justify

for a low volume system. User expertise and related training costs, if necessary, are other

factors to consider. A typical approach taken to verify/debug/test the hardware and

software in a prototype system is:

1.

Make a visual inspection of all the boards to check for any obvious problems; for
example, wrong parts on the board.

137

2. Do a continuity test of VCC and GND to check for shorts. This always should be
performed on each board before placing it in the system to avoid the possibility of
damaging the whole system when power is applied.

3. At this point, there are many different options, depending on what the designer decides
is the best approach. One approach is to run the hardware and software, making
necessary patches (either hardware or software), to get around parts not currently
available. If everything runs as intended, it is assumed that no problem exists. If not,
there are may ways to proceed which include the following:

4. - Lower the hardware complexity by removing boards and patching around the boards
5. - Lower the software complexity by changing the software

6. - Execute the software in an single step mode and attempt to identify the source of the
problem by using a logic analyzer and/or oscilloscope.

Other approaches like swapping boards can induce faults into the system other than those
faults associated with the system under test. The traditional methods described above
usually do not involve a structured design verification and testing strategy. Concurrent
verification of hardware and software makes it difficult to isolate between hardware and
software faults. The increasing complexity and density of today’s systems may require
costly equipment for verification and test, furthermore, board real-estate must be allocated

for probing.

6.3.2 Structured Debug/Test Procedure

The use of the Test Master Controller board and the test software described in Chapter
4 coupled with intelligent use of Boundary Scan devices altogether provide the designer
with a structured procedure for verifying, debugging, and testing systems that can be
reused for future systems. This procedure uses a building block approach whereby
individual parts of the system are verified and then may be used to verify the remaining
parts. The procedure is shown in Figure 6-8 and can be divided into the following three
phases:

138

Automatic Insertion
of Boun Scan chips
HARDWARE dary P
DESIGN
Create CTL and MTL Files
DEBUG/TEST Visual Inspection
STRATEGY
DEFINITION
Continuity Check
Verify Scan Path
Run m2c, Generate C
TEST Source code, compile,
PROGRAM download, and execute test
GENERATION

Working Chip, Board, System

Figure 6-8: Block diagram of structured debug/test procedure.

139

* Hardware design
* Define test strategy

* Automatic test program Generation and execution

The hardware design phase consists of automatically incorporating Boundary Scan chips
into the design to partition it into easily testable functions. During the test strategy
definition phase, the designer decides on the best test strategy for their board(s) and then
creates CTL and MTL files that will implement their strategy. The CTL and MTL files are
then processed, by the m2c program, to produce the source C code for the test program.
Next, the test program manufacturing module is used to create a make file which gets
processed by the Unix Make utility to create the executable code. Finally, the executable
code is transferred to the VME CPU board to control the Test Master Controller board

during a test.

6.3.3 Test Master Controller Board Prototype

The Test Master Controller board was developed to fulfil two primary objectives:

1. to control the test process of target slave boards containing Boundary Scan

2. to study the benefits of using standard chips incorporating Boundary Scan as a tool for
hierarchical test. in a board design

Both of these objectives can be fulfilled by implementing a prototype where Boundary
Scan is an essential design element. Scannable buffers, latches, and flip-flops were used to
partition the design into sub-functions that could be easily verified. A Boundary Scan test
bus controller chip and data bus monitoring chips were also used in the prototype design.
The implementation of these chips in the Test Master Controller board prototype is shown
in Figure 6-9 where 28 Boundary Scan chips consisting of buffers, latches, and flip-flops
were placed strategically on data, address, and control signals, Thus it is divided into five

140

In:g\rdfsce Control Status Clock
Logic Register Register Generator
peeseeses, goreneene e || s e |] eececiie..

FEREN o e .. :
' 1149.n
Analog Memory Analog
Controller
Module Module Module
| Module
| —] |
Analog 1149.5 Boundary 1149.2 Analog
Interface || Interface Scan Interface Interface Interface

Figure 6-9: Configuration of scan path on TMC prototype.

distinct sub-functions, each individually accessible through the local Boundary Scan
interface. These sub-functions are the VME interface logic unit, the clock generator, the

memory module, the analog module, and the 1149.n controller module.

6.3.4 Functional and Interconnect Test Example

The debug/test procedure described above is demonstrated in the following example.
This example uses an octal buffer chip and a digital bus monitor chip, all containing
Boundary Scan, to verify interconnect between an address buffer and a digital bus monitor
chip. To generate test programs for this example requires five files: tmc.mtl., buf_2.ctl,
buf_3.ctl, buf_4.ctl, and act8994.ctl. These files are listed below.

141

MTL file for Test Master Controller Board

Module = TMC;

LIB = lib (3);

DEVICE_LIST = (Chip1 buf_2) (Chip2 buf_3) (Chip3 buf_4) (Chip4 dbm);
TEST_BUS =

RING 0: Chipl => Chip2 => Chip3 => Chip4;
NET_LIST=

NET 1: (Chip1 Y[1]) (Chip4 D[0]),

NET 2: (Chip1 Y[2]) (Chip4 D[1]),

NET 3: (Chip1 Y[3]) (Chip4 D[2)),

NET 4: (Chip1 Y[4]) (Chip4 D[3]),

NET 5: (Chip1 Y[5]) (Chip4 D[4]),

NET 6: (Chip1 Y[6]) (Chip4 D[5]),

NET 7: (Chip1 Y[7]) (Chip4 D[6]);

NET 8: (Chip2 Y[0]) (Chip4 D[7]),

NET 9: (Chip2 Y[1]) (Chip4 D[8]),

NET 10: (Chip2 Y[2]) (Chip4 D[9]).

NET 11: (Chip2 Y[3]) (Chip4 D[10]),
NET 12: (Chip2 Y[4]) (Chip4 D[11)),
NET 13: (Chip2 Y[5]) (Chip4 D[12]),
NET 14: (Chip2 Y[6]) (Chip2 D[13]),
NET 15: (Chip2 Y[7]) (Chip2 D[14]),
NET 16: (Chip3 Y[0]) (Chip3 D[15]);
MODULE_TEST

#include <stdio.h>;

ftinclude “comp.h”

main ()

{

testinet (; /*test the entire interconnect */
testchip (Chip1); /*test the entire chip */

}
END_TEST

The test bus is organized into one Boundary Scan ring. There are a total of 28 chips in the
scan ring. Only four chips are used in this example, the remaining 24 chips are bypassed.
The test procedure for this test consists of the testinet test procedure that implements an

interconnect test for the chips listed in the device_list.

142

CTL Files

BSDL descriptions of the TI8244 and digital bus monitor chips are given in Appendix
A. Hence only the test procedure part of the CTL files are given below. The test
procedures for the two other buffer chips are almost identical differing in test data only.
The test procedure for the digital bus monitor chip differs in length of Boundary Scan
register as well as test data. The example test procedure presented is intended to verify the
functionality of the devices in addition to verifying the interconnection between the chips

involved in the test.

Test_Begin
TDM 0 = USER_DEFINE;
#include <stdio.h>
#include <string.h>
#define IR 1
#define DR 0
top O

{

char outs[32], ins[32];

char *pl, *p2;

sprintf(out2, “00000000”); /* OPCODE for EXTEST INSTRUCTION*/
scanIR(outs); /* SCAN CONTENTS of STRING to INSTRUCTION REGISTER */
sprintf(ousts, “000000001010101010™);

strepy(ins, scanDR(outs));

/* load D = 10101010 into Chipland GET PREVIOUS TEST RESULT */
pl = ins+24; /* Advance Pointer to Beginning of result String */

p2 = outs+14 /* Advance Pointer to Beginning of Data String */

if (strncmp(pl, p2, 8) I=0) {

printf(error in 10101010 test\n™;

exit(1);

}

else printf(“buf_2 Tested OK \n");

Test_End

Generated Test Programs

The generated test program for the Test Master Controller board consists of seven

files, namely comp.h, tmcmain.c, buf_2tops.c, driver.c, inetpc.c, template.c, and

143

infofile.net. The file comp.h defines all of the variables used in by the main program
tmcmain.c The prefix tmc of the tmcmain.c file is extracted from the tmc.mtl file. The file
tmcmain.c contains four functions. The first one, inetpc is used to test the interconnect.
The second one, buf_2tops.c is used to test Chip1 using the user-defined TDM. The third
one, driver.c, contains all of the functions required to control the Test Master Controller
board during a test. The file template.c contains all of the template-based TDM functions.
The inetpc procedure uses the information provided in the inforile.net for test generation.

The buf_2tops.c file is a translated version of the user-defined proceduré for testing Chipl.

6.4 Benefits of Boundary Scan vs. Traditional Methods

The key benefits of using Boundary Scan versus using traditional methods for design
verification, debugging, and testing are shown in Table 6-1 and discussed below.
Incorporating Boundary Scan into prototype designs will provide the designer with a
structured approach to design verification, debugging, and testing of prototype systems,
which typically does not exist using traditional methods. As the complexity and density of
designs increase, the need for more equipment will be required when using traditional
methods. The need for different types of equipment was shown to decrease when
Boundary Scan was implemented into the design. The equipment required in debug and
test of the prototype system described in the previous section included Boundary Scan
octal chips incorporated into the design. and a dedicated Test Master Controller board and
test software. In traditional methods, the software generated by designers during design
verification and debug is usually discarded after verification of the system. If the software
is not discarded, it rarely can be used for board and system testing. In contrast, the
hierarchical test method used on the prototype system allowed the software generated for

board level debug to be reused to generate system level tests. The controllability and

144

observability in the traditional debug and test methods usually requires the attachment of

emulators, logic analyzers, or oscilloscopes to the device under test. Controllability and

observability can be easily achieved with Boundary Scan chips. With this increased

internal visibility, fault isolation and system software debug are accomplished more easily.

The use of Boundary Scan octal chips, requires the use of four I/O pins and a slightly

larger chip foot print a board. In the traditional approach, the amount of space used is

dependent on the ad-hoc testability added to the design. Space also needs to be allocated

so that boards can be probed.
Trade-offs Traditional Boundary Scan

Approaches Usually not structured Structured approach
Usually starts after design has | Starts during design
gone through manufacturing

Test Equipment Complexity/density of designs | Limited equipment needed to
require more test equipment to | test and debug systems. No
test and debug systems need for expensive special test

equipment

All “Hands On” “Hands On” limited

Software Tests generally not reusable Reusable test software go

from debug -board

Internal Visibility | Fault isolation depends on ad- | Fault isolation increased
hoc testability
Manual probing required No manual probing required
Required external hardware to | Has internal node visibility
look at internal nodes

Board Real Estate | Additional real estate required | Additional real estate, four I/O
to support ad-hoc testability and | pins, and a larger board pack-
space to allow for probing age footprint

Table 6-3 : Differences in Traditional and Boundary Scan Test Methods.

145

6.5 Lessons Learned

Major benefits of using boundary scan versus using traditional methods for design
verification, debug, and test were discovered through development of the TMC prototype.
Most of the lessons learned fall into one of the following categories: fault-isolation, design
partitioning and test access, ease of use, and scan path design. A discussion of these
categories and specific lessons, design rules, and observations that were made is provided

below.

6.5.1 Fault Isolation (Traditional vs. Boundary Scan)

Using Boundary within the memory module, the memory was loaded and verified.
This allowed the problem to be isolated to a design error within the memory enable logic.
Another example of how the Test Software and Boundary Scan were successful in
isolating various system problems was in testing the 1149.n Test Controller module, where
a miswired bus enable signal was creating bus contention on data line. Boundary Scan
helped isolate the problem quickly, without requiring any manual probing of the board. In
addition to design errors that were isolated, several component and signal failures also

were isolated.

6.5.2 Design Partitioning and Test Access

It is very important that Boundary Scan be implemented at functional partitions,
especially the board-to-board interface, to allow functions to be exercised and isolated
completely. Also, Boundary Scan access to key control signals, such as microprocessor
HOLD signals, is important to avoid bus contention when attempting to drive buses with

Boundary Scan registers.

By providing controllability and observability of each board’s backplane signals through

146

Boundary Scan chips, each board could be tested independently as it arrived from
fabrication. Emulation of board interfaces, whenever required, can be controlled through
backplane Boundary Scan chips. Using this method, board-to-board dependencies can be
eliminated, and each board could be verified stand-alone. This way, faults caused by
backplane wiring can be detected and isolated easily.

6.5.3 Ease of Use (Test Software)

Using the test software to debugj/test the TMC board proved to be less time-consuming
than taking the traditional approach. For example, I was able to write CTL and MTL files
and finish debugging the TMC in 1 week. Once these files were complete enough to verify
all TMC functionality, they can be reused later to test the other TMC board.

6.5.4 Scan Path Design

While there are obvious benefits to using Boundary Scan within a design, there are
also problems that can be created if it is implemented correctly. Instances where this may
occur deal with scan clock control and changing of scan path lengths. These problems can
be eliminated through careful adherence to scan path design rules.

Some BIST designs may require explicit clock control over independent scan paths and,
therefore, mandate that scan clock be gated. Careful design should be used when such
gating is necessary. This gating may cause incorrect data to be gathered during a scan
cycle. While the Boundary Scan specification allows scan clocks to be disabled, it toes not
encompass the system design considerations necessary to ensure the operation of a chip’s
additional test capabilities, such as those available on the SCOPE octals. Another problem
of concern is the collapsing and expanding of scan rings within a design. For example,

collapsing and expanding of scan rings should not be performed arbitrarily with respect to

147

the test bus controller. Changing the scan path length without notifying the test bus
controller will cause the controlling software to become confused and possible not
recover. All scan path length changes should be done in conjunction with the local test bus

controller chip.

6.6 Summary

Chips incorporating Boundary Scan impose a minimal real estate overhead and change
the process of design verification and test, which make it beneficial to the designer. By
using chips that support the Boundary Scan standard in a prototype system, some of the
problems and questions associated with the verification and testing of prototype systems
were solved. In addition to solving test problems, the verification and test process was
simplified. Finally, the structured debug/test procedure eliminates the traditional ad hoc

techniques used in the past.

148

CHAPTER 7

CoNcLUSIONS AND FUTURE
WORK

The work presented in this dissertation not only automates the process of
incorporating testability into the SIERA integrated system design environment, but it also
provides dedicated hardware and software for controlling the test circuitry that has been

added to each level of the system’s hierarchy.

The test hardware incorporation was automated by hardware module generators. These
generators relieve the designer of having to know how to implement a specific DFT
methodology and they guarantee correct implementation. The test circuitry that is added to
an already existing design supports the JTAG Boundary Scan standard described in
Chapter 3, as well as, traditional test methodologies such as Scan Path and Built-In-Self-
Test. Test issues associated with each level of system integration can be easily dealt with
using the hierarchical test strategy and debug procedure described in Chapters 2 and 5
respectively. Hence, prototypes designed with our integrated CAD system can be

functionally verified in a timely fashion.

149

150

The mundane tasks of writing test programs for a target system are automated by the test
program generation software. The test program generation software extracts the necessary
information required to generate a test program from several high level testability

description languages.

Various issues related to the incorporation of test into the system design flow, test
hardware implementation, Boundary Scan path routing, test vector generation, and
testability hardware description languages are addressed in this work. The research
presented here can be categorized into two major areas: test hardware and test software.
The contributions made in each of these areas as a result of the work presented in this
dissertation is described in the sections that follow. Additionally, some of the open
problems for future research are discussed, which in some cases are related problems that
were outside the scope of this work but nonetheless, arise as a direct consequence of the

contributions.

7.1 Test Hardware

The test hardware includes circuitry or components that must be either added to a chip
or a board in order to improve its testability, as well as, a custom board for controlling the
hardware that is added to a design. This hardware impacts the circuit’s area, pin count and
delay, which must be balanced against the gains achieved in using them. Hence, a means
of determining these costs would be of vital use. Moreover, increases in chip area and/or
logic complexity increase power consumption and decrease yield rendering tools that
determine the effect of these costs equally useful. Although there are costs associated with
implementing chip level hardware, they are minimal when compared to the expense of

testing a complex board or system where testability was not considered at all.

151

7.1.1 Boundary Scan Macrocell

The boundary scan macrocell automatically generates the minimum circuitry required
by the JTAG Boundary Scan standard from a set of designer provided parameters. The
designer need only provide parameters that determine the boundary scan register length
and the overall shape of the macrocell. It is implemented in a scalable CMOS standard cell
technology and is described in the SDL language. The macrocell also has provisions for
supporting one internal scan path. A future enhancement to the macrocell must include

provisions for supporting chips that contain multiple internal scan paths.

7.1.2 Boundary Scan I/O Pads

Boundary Scan I/O pads have also been developed for situations where a chip design
may be constrained by core area and are fixed number of I/O pins. In this case, the
Boundary Scan cells become part of the I/O pad circuitry. This provides a designer with
more design options when he or she is considering using Boundary Scan. Placing the
Boundary Scan cells in the I/O pads as opposed to placing them inside the chips core
circuitry reduces the delay costs associated with their implementation. At present, pads
only exist in 2y CMOS technology, but in the future, pads for sub-micron technologies
need to be developed. Again, care must be taken in their design to ensure that they do not
impact circuit area or performance. Furthermore, these cells can be modified to support

AC parametric tests like delay faults.

7.1.3 Boundary Scan Components Library and Test Modules

The elements of the Boundary Scan components library only constitute a fraction of
the devices that are currently available as new devices are introduced. It is anticipated that

as other testability bus standards like the Module Test and Maintenance Bus (P1149.5)

152

evolve, controllers and interface chips that support it will become available too. When
they do, they too must be added to the existing test components library. The components
of this library can then be combined forming dedicated test modules, that implement
higher level system test functions. A direction one would take in the future would be to
determine what is the smallest combination of components that will provide the most

amount of test functionality.

7.1.4 Test Master Controller Board

The design and implementation of a generic test master controller board that can be
configured using software to implement a variety of standard testability bus protocols,
Boundary Scan in particular, was presented in Chapter 3. With this board, it is possible to
test and diagnose defective components and interconnects at the chip, board, subsystem,
and system level via Boundary Scan test bus. It is intended to be used in a system that '
employs a hierarchy of testability buses. Some of most important attributes of this board
are its:

* dynamic reconfigurability - its functionality is determined by software during initializa-
tion which also makes it extremely flexible.

* compatibility - fits in well with our system hardware development environment

* low cost - compared to conventional Automatic Test Equipment

* and better performance - capable of running test at system speeds where most Auto-

matic Test Equipment cannot.

7.2 Test Software

The software tools described in Chapter 4 support a hierarchical test strategy for

integrating test into our system design environment. These tools perform tasks such as

153

automatic test hardware generation, automatic test pattern generation for combinational
logic and board interconnect, and automatic test program generation from high level

languages.

7.2.1 Testability Hardware Design Tools

Several tools that address testability issues as part of the design process have been
developed. Most importantly, these tools relieve the designer of the mundane and
redundant tasks required to implement a design for test methodology. For example, the
JTAGtool tackles issues associated with board level scan path chaining, as well as,
perform all of the pre-processing required for board interconnect testing, while PLDS is
used to generate the input file required by the Xilinx XACT software from a high level

behavioral description of the test controller.

At present, the JTAGtool only deals with issues associated with single scan path rings,
however, it cannot support multiple scan path rings or hybrid ring/star scan path
configurations. Supporting multiple and hybrid scan path configurations presents new

questions which should be addressed in future work such as:

* what is the most efficient way to configure the rings such that they impose minimal

impact on test application time, ease implementation, and test development?

* and for densely populated boards, how should components be placed where they

impose minimal impact on routing?

Another issue that’s independent of the scan path configuration problem is what affect

does Boundary Scan components have on system reliability?

154

7.2.2 Test Vector Generation Tools

The test vector generation tools described in Chapter 4 produce efficient test patterns
for testing combinational logic and board interconnect. Using the Scan Path test
methodology affords us two distinct advantages: 1) it allows us to control and monitor
internal logic nodes and 2) it simplifies the test generation problem. Assuming a chip is
designed with the Scan Path test methodology, the Test Generation System uses PODEM,

a well known combinational logic test generation algorithm, to produce tests.

The algorithms used to generate tests that will detect wiring faults in board interconnect
implement some variation of a simple marching scheme, where a logic value (1 or 0) is
written to and read from each Boundary Scan cell in the scan path. Though this scheme
produces a simple test vector set, the time required to apply the test is O (V' 2) where N is
the number of bits in the scan path. It is obvious from this that as N increases so does the
test application time. This would warrant future investigation into algorithms that will
produce a minimal size test vector set in order to reduce the test application time without
any compromise in diagnostic resolution. Also, with system operating at higher and higher
speeds, these algorithms can perhaps be enhanced to produce tests that will detect line
delay faults. Another issue that should be addressed is how can use the results of a test to

drive the repair process.

7.2.3 Testability Hardware Description Languages

BSDL is a way to provide a consistent description of chip designs complying with the
Boundary Scan standard. By writing BSDL files, designers can specify the exact
implementation of a chip’s Boundary Scan features. CTL complements BSDL by
describing how to use these chips for chip level testing. MTL, on the other hand, is used to

describe how to use these chips for board level testing. However, since CTL and MTL are

155

confined to the chip and board levels, a system level or hierarchical test description
language that encompasses the chip, board, and system levels would be extremely useful.
One such language that is being strongly considered for standardization is called
Hierarchical Scan Description Language (HSDL) developed by Texas Instruments. HSDL
extends and complements BSDL by describing how devices are connected at the board,

system, or MCM level.

7.2.4 Test Pfogram Generation

A major advantage to automating the test program generation process is the reduction
in the time required to develop them. The generation process starts with the preparation of
test description files, written in high level languages, for each chip and board. Tools have
been provided to translate these test descriptions into a test program that runs on the TMC

board to control the test hardware implemented on the target board.

Although test program generation reduces test program development time, it takes time to
manually create the test description files it uses. Hence, automatic generation of these files
would reduce the overall test development time even further. This can be accomplished by

generating them as a by-product of the chip and board synthesis.

156

BIBLIOGRAPHY

1. [Abadir85] M. Abadir, M. Breuer, “A Knowledge Based System for Designing Testable
VLSI Circuits”, IEEE Design and Test, August 1985.

2. [Abadir89] M. Abadir, “TIGER: Testability Insertion Guidance System”, Proc. Int’1
Conf. on Computer Aided Design, November 1989, pp. 562-565.

3. [Agrawal84] V. Agrawal, S. Jain, D. Singer, “A CAD System for Design for Testability,
VLSI Design, October 1984, pp. 46-54.

4. [Archambeau88] E. Archambeau, K. Van Egmond, “Built-In Test Compiler in an ASIC
Environment”, Proc. Int’l Test Conf., September 1988, pp. 657-664.

5. [Avra87] L. Avra, “A VHSIC ETM-Bus Compatible Test and Maintenance Interface”,
Proc. Int’1 Test Conf., pp. September 1987, pp. 964-971.

6. [Beenker89] F. Beekner, R. Dekker, R. Stans, M. van der Star, “A Testability Strategy
for Silicon Compilers”, Proc. Int’l Test Conf., August 1989, pp. 660-669.

7. [Bomdica90] A. Bomdica, “oct2tgs - Users Manual”, Mississippi State University,
March 1990.

8. [Bozorgui80] S. Bozorgui-Nesbat, E. McCluskey, “Structured Design for Testability to
Eliminate Test Pattern Generation”, 10th Annual Fault-Tolerant Computing Sympo-
sium, October 1980, pp. 158-163.

9. [Breuer84] M. A. Breuer, “A Methodology for the Design of Testable VLSI Chips”
,JEEE Design and Test of Computers, 1984.

10. [Breuer85] M. A. Breuer, “On-Chip Controller Design for Built-In-Test”, Technical
Report CRI-88-04, Dept. of EE-Systems, USC, December 1985.

11. [Brodersen92] R. W. Brodersen, (ed.), “Anatomy of a Silicon Compiler”, Klewer Aca-
demic Publishers, 1992.

157

158

12. [Budde88] W. O. Budde, “Modular Testprocessor for VLSI Chips and High-Density
PC Boards”, Trans. on CAD, October 1988, pp. 1118-1124.

13. [Dutt90] N. Dutt, D. Gajski, “Design Synthesis and Silicon Compilation”, IEEE
Design and Test of Computers, December 1990, pp. 8-23.

14. [Eichelberger77] E. Eichelberger, T. Williams, “A Logic Design Structure for LSI Test-
ing”, Proc. 14th Design Automation Conf., June 1977, pp. 462-468.

15. [Emori%0] M. Emori, T. Aikyo, Y. Machida, J. Schikatani, “ASIC CAD System Based
on Hierarchical Design for Testability”, Proc. Int’l Test Conf., September 1990, pp.
404-409.

16. [Fasang85] P. Fasang, J. Shen, M. Schuette, W. Gwaltney, “ Automated Design for
Testability of Semicustom Integrated Circuits”, Proc. Int’l Test Conf., November 1985,
pp. 558-564.

17. [Funatsu75] S. Funatsu, N. Swkatsuki, T. Arima, “Test Generation Systems in Japan”,
12th Design Automation Conf., June 1975, pp. 112-114.

18. [Fung86] H. Fung, S. Hirschhorn, “An Automatic DFT System for the Silc Silicon
Compiler, IEEE Design and Test, February 1986, pp. 45-57.

19. [Gheewala89] T. Gheewala, “CrossCheck: A Cell Based VLSI Testability Solution”,
Proc. Design Automation Conf., June 1989.

20. [Goel81] P. Goel, “An Implicit Enumberation Algorithm to Generate Test for Combi-
national Logic Circuits”, IEEE Trans. on Comp., March 1981, pp. 215-222.

21. [Hallenbeck89] J. Hallenbeck, J. Cybrynski, N. Kanopoulos, T. Markas, N. Vassantha- -
vada, “The Test Engineer’s Assistant: A Support Environment for Hardware Design for
Testability”, IEEE Computer, April 1989, pp. 59-68.

22. [Hansen89] P. Hansen, “Testing Conventional Logic and Memory Clusters using
Boundary Scan Devices as Virtual ATE Channels”, Proc. Int’l. Test Conf., August
1989, pp. 166-173.

23. [Harrison86] D. S. Harrison, et. al., “Data Management and Graphics Editing in the
Berkeley Design Environment”, Proc. Int’l Conf. Computer-Aided Design, November
1986, pp. 24-27.

24. [Hassan88] A. Hassan, J. Rajski, V. K. Agrawal, “Testing and Diagnosis of Intercon-
nects using the Boundary Scan Architecture”, Proc. Int’l. Test Conf., September 1988,
pp. 126-137.

25. [Hassan89] A. Hassan, V.K. Agrawal, J. Rajski, B Dostie, “Testing of Glue Logic Inter-
connects using Boundary Scan Architecture, Proc. Int’l. Test Conf., August 1989, pp.
700-711.

26. [Ibarra75] O. H. Ibarra, S. K. Sahni, “Polynomially Complete Fault Detection Prob-
lems”, IEEE Trans. on Comp., March 1975, pp. 242-249.

27. [IEEE88] IEEE Std. 1076-1987, “IEEE Standard VHDL Language Reference”, IEER
Standards Board, March 1988.

28. [IEEE90a] IEEE Std. 1149.1-1990, “IEEE Standard Test Access Port and Boundary
Scan Atchitecture”, February 15, 1990.

29. [IEEES0D] IEEE Std. P1149.5/D0.2, “Standard Backplane Module Test and Mainte-
nance (MTM) Bus Protocol”, April 1990.

30. [IEEE91a] IEEE Std. P1149.2/D0.2, “Extended Digital Serial Subset”, February 1991.

159

31. [IEEE91b] IEEE Std. P1149.1b/D1,”Supplement (B) to Standard Test Access Port and
Boundary Scan Architecture”, October 7, 1991.

82. [Kornegay90a] K. T. Kornegay, R. W. Brodersen, “A VME Based Test Controller
Board for TSS”, First Great Lakes Symposium on VLSI, February 1990.

38. [Kornegay90b] K. T. Kornegay, “A Test Controller Board for TSS”, M. S. Report,
Memorandum No. UCB/ERL M91/4, January 1991.

34. [Kornegay91] K. T. Kornegay, R. W. Brodersen, “A VME Based Test Controller
Board”, Preseted at Int’l. Test Conf., November 1991.

35. [Kornegay92] K. T. Kornegay, R. W. Brodersen, “An Architecture for a Reconfigurable
1149.n Master Controller Board”, Proc. Int’l Test Conf., September 1992.

36. [LeBlanc84] J. LeBlanc, “LOCST: A Built-In-Self-Test Technique”, IEEE Design and
Test, November 1984, pp. 45-52.

87. [Lien88] J. Lien, M. Breuer, “A Test and Maintenance Controller for a Module Con-
taining Testable Chips”, Proc. Int’l. Test Conf., September 1988, pp. 502-513.

38. [Lien89] J. Lien, M. Breuer, “A Universal Test and Maintenance Controller for Mod-
ules and Boards”, IEEE Trans. on Industrial Electronics, May 1989, pp. 231-240.

39. [Lien91] J. Lien, “Design of Hierarchically Testable and Maintainable Systems”, Ph.D
Thesis, July 1991, University of Southern California, CEng Technical Report 91-19.
40. [Maunder90] C. Maunder, R. Tulloss, “The Test Access Port and Boundary Scan

Architecture”, Computer Society Press, 1990.

41. [McCluskey85a] E. McCluskey, “Built-In-Self-Test Techniques”, IEEE Design and
Test”, April 1985, pp. 21-28.

42. [McCluskey85b] E. McCluskey, “Built-In-Self-Test Structures”, IEEE Design and
Test”, April 1985, pp. 29-36.

4. [Muris90] M. Muris, “Integrating Boundary Scan Into An ASIC Design Flow”, Proc.
Int’] Test Conf., September 1990, pp. 472-477.

44. [Octtools] Berkeley CAD Group, “OCTTOOLS Reference Manuals”, EECS Dept., U.
C. Berkeley, 1991.

45. [Rabaey86] H. Rabaey, S. Pope, R. W. Brodersen, “An Integrated Automatic Layout
Generation System for DSP Circuits”, IEEE Trans. on CAD, July 1985.

46. [Racal] Racal-Redac Inc, “VISULA-PLUS User’s Guide”.

47. [Roth67] J. Roth, W. Bouricius, P. Schneider, “Programmed Algorithms to Compute
Tests and to Detect and Distinguish Between Failures in Logic Circuits”, IEEE Trans.
Electronic Comp., October 1967, pp. 567-580.

48. [Samad86] M. Samad, J. Fortes, “Explanation Capabilities in DEFT - A Design for
Testability Expert System”, Proc. Int’] Test Conf., September 1986, pp. 954-963.

49. [Samad89] A. Samad, M. Bell, “Automating ASIC Design for Testability - The VLSI
Test Assistant”, Proc. Int’l Test Conf., August 1989, pp. 819-828.

50. [Shung89] C. S. Shung, et.al., “An Integrated CAD System for Algorithm-Specific IC
Design”, IEEE Trans. on CAD, April 1991.

51. [Srivistava92] M. Srivastava, “Rapid-Prototyping of Hardware and Software in a Uni-
fied Framework”, Ph.D. Thesis, June 1992.

52. [Stroud86] S. K. Jain, C. E. Stroud, “Built-In-Self-Ttest of Embedded Memories”,
IEEE Design & Test, October 1986, pp. 27-37.

160

53. [Sun91] J. Sun, M. Srivasstava, R. W. Brodersen, “SIERA: A CAD Environment for
Real-Time Systems”, 3rd IEEE/ACM Physical Design Workshop, May 1991.

54. [Swan89] G. Swan, Y. Trivedi, D. Wharton, “CrossCheck - A Practical Solution for
ASIC Testability”, Proc. Int’l Test Conf., August 1989, pp. 903-908.

55. [TI90a] Texas Instruments, “SCOPE Testability Products Applications Guide”, 1990.

56. [TI90b] Texas Instruments, Scan Test Devices with Octal Bus Tranceivers Data Sheet.

57. [TI90c] Texas Instruments, Scan Test Devices with D-Type Edge Triggered Flip-Flops
Data Sheet.

58. [TI90d] Texas Instruments, Scan Test Devices with Octal Buffer Data Sheet.

59. [TI90e] Texas Instruments, Scan Test Device with Octal Latch Data Sheet.

60. [USCTG88] USC Test Group, “Test Generation System (TGS) User’s Manual -- Ver-
sion 1.0”, USC, Dept. of Elec. Eng.-Sys., Technical Report No. CENG 89-03.

61. [VHSIC86] VHSIC Phase 2, “Interoperability Standards ETM-bus Specification”, Ver-
sion 2.0, December 31, 1986.

62. [VxWorks] Wind River Systems, “VxWorks Programmers Guide”.

63. [Williams73] M. Williams, J. Angell, “Enhanced Testability of Large Scale Integrated
Circuits via Test Points and Additional Logic”, IEEE Trans. on Computers, January
1973.

64. [Williams83] T. Williams, K. Parker, “Design for Testability - A Survey”, Pro. of the
IEEE, January 1983, pp. 98-112.

65. [Wagner87] P. Wagner, “Interconnect Testing with Boundary Scan”, Int’l Test Conf.,
September 1987, pp. 52-57.

66. [Xilinx91] Xilinx Inc., “User’s Guide and Tutorials”, 1991.

67. [Xilinx92] Xilinx Inc., “The XC4000 Data Book”, 1992.

68. [Yau90] C. Yau, “The Boundary Scan Master: Target Applications and Functional
Requirements”, Proc. Int’] Test Conf., September 1990, pp. 311-315.

69. [Yacc78] S. C. Johnson, “Yacc: Yet Another Compiler-Compiler”, UNIX Program-
mer’s Manual, AT&T Bell Laboratories, 1978.

70. [Yu91] R. Yu., “PLDS: Prototyping in LAGER using Decomposition and Synthesis”,
M. S. Report, U. C. Berkeley, May 1991, ERL Memo. No. UCB/ERL M91/53.

APPENDIX A: BSDL Files

-- BSDL description of Texas Instruments 74bct8244 Octal D Flip-Flop

-- source : /sccs/scan/src/s.74bct 8244
-- revision : 13.1
-- date : 04/22/91-22:30:35

entity ttl74bct8244 is
generic (PHYSICAL_PIN MAP : string := “DW_PACKAGE”);

port (G1l_BAR:in bit; Y:out bit_vector(l to 8); A:in bit_vector(l to
8);
GND, VCC:linkage bit; G2_BAR:in bit; TDO:out bit; TMS, TDI,
TCK:in bit);

use STD_1149_1_1990.all; -- Get Std 1149.1-1990 attributes and
definitions

attribute PIN MAP of ttl74bct8244 : entity is PHYSICAL_PIN_ MAP;

constant DW_PACKAGE:PIN_MAP_STRING:=“Gl_BAR:1,
Y:(2,3,4,5,7,8,9,10), ™ &

“A:(23,22,21,20,19,17,16,15),"” &

“GND:6, VCC:18, G2_BAR:24, TDO:11, TMS:12, TCK:13, TDI:14”;

constant FK_PACKAGE:PIN_MAP_STRING:="Gl_BAR:9,
Y:(10,11,12,13,16,17,18,19),” &

“A:(6,5,4,3,2,27,26,25)," &

“GND:14, VCC:28, G2_BAR:7, TDO:20, TMS:21, TCK:23, TDI:24";

161

162

attribute TAP_SCAN_IN of TDI signal is true;

attribute TAP_SCAN MODE of TMS : signal is true;

attribute TAP_SCAN_OUT of TDO : signal is true;

attribute TAP_SCAN_CLOCK of TCK : signal is (20.0e6, BOTH);
attribute INSTRUCTION_LENGTH of ttl74bct8244 entity is 8;
attribute INSTRUCTION_OPCODE of ttl74bct8244 : entity is

“BYPASS (11111111, 10001000, 00000101, 10000100, 00000001),”
&

“EXTEST (00000000, 10000000),” &

“SAMPLE (00000010, 10000010),” &

“INTEST (00000011, 10000011),” &

“TRIBYP (00000110, 10000110),” & -- Boundary Hi-2

“SETBYP (00000111, 10000111),” & -- Boundary 1/0

“RUNT (00001001, 10001001),” =& -- Boundary run test

“READBN (00001010, 10001010),” =& -- Boundary read normal

“READBT (00001011, 10001011),” & -— Boundary read test

“CELLTST (00001100, 10001100),” & -- Boundary selftest
normal

“TOPHIP (00001101, 10001101),” & -- Boundary toggle out
test

“SCANCN (00001110, 10001110),” & -~ BCR Scan normal

“SCANCT (00001111, 10001111)~; -- BCR Scan test
attribute INSTRUCTION_CAPTURE of ttl74bct8244 : entity is

*10000001”;
attribute INSTRUCTION_DISABLE of ttl74bct8244 : entity is “TRIBYP”;
attribute REGISTER_ACCESS of ttl74bct8244 : entity is

“BOUNDARY (READBN, READBT, CELLTST),” &

“BYPASS (TOPHIP, SETBYP, RUNT, TRIBYP),” &

“BCR{2] (SCANCN, SCANCT)”; -- 2-bit Boundary Control Register
attribute BOUNDARY_CELLS of ttl74bct8244 entity is “BC_1";
attribute BOUNDARY_LENGTH of ttl74bct8244 : entity is 18;
attribute BOUNDARY_REGISTER of ttl174bct8244 : entity is

-- num cell port function safe [ccell disval rslt]

“17 (BC_l, G1l_BAR, input, X),” & -- Merged Input/Control

“17 (BC_1, *, control, 1),” & -- Merged Input/Control

“16 (BC_l, G2_BAR, input, X),” & -- Merged Input/Control

“1l6 (BC_1, *, control, 1),” & -- Merged Input/Control

“15 (BC_1, A(1), input, X),” &

“14 (BC_1, A(2), input, X),” &

“13 (BC_1l, A(3), input, X),” &

“12 (BC_1l, a(4), input, X),” &

“11 (BC_1, A(5), input, X),” &

“10 (BC_1, A(6), input, X),” &

“9 (BC_1, A(7), input, X),” &

“8 (BC_1l, A(8), input, X),” &

“7 (BC_1, Y(1), output3, X, 17, 1, 2),” & -- cell 17 @ 1
-> Hi-Z.

“6 (BC_1, Y(2), output3, X, 17, 1, 2),” &

“5 (BC_1l, Y(3), output3, X, 17, 1, 2),” &

“4 (BC_1l, Y(4), output3, X, 17, 1, 2),” &

“3 (BC_1l, Y(5), output3, X, 16, 1, 2),” & - cell 16 @ 1
-> Bi-Z.

“2 (BC_1, Y(6), output3, X, 16, 1, 2),” &

“1 (BC_1, Y(7), output3, X, 16, 1, 2),” &

“0 (BC_1, Y(8), output3, X, 16, 1, 2)”;

163

end ttl74bct8244;

-~ BSDL description of Texas Instruments 74bct8245 Octal Transceiver

-~ source : /sccs/scan/src/s.74bct8245ab
-—- revision : 13.1
-~ date : 04/22/91-22:30:36

entity ttl74bct8245ab is
generic (PHYSICAL_PIN_MAP : string := “DW_PACKAGE”);

-- This BSDL description for the ‘8245 treats the ‘A’ signals as
inputs
-- and the ‘B’ signals as outputs, that is, as a unidirectional
device.

port (DIR:in bit; B:out bit_vector(l to 8); A:in bit_vector(l to
8);
GND, VCC:linkage bit; G_NEG:in bit; TDO:out bit; TMS, TDI,
TCK:in bit);

use STD_1149 1 1890.all; -- Get Std 1149.1-1990 attributes and
definitions .

attribute PIN_MAP of ttl74bct8245ab : entity is PHYSICAL_PIN_MAP;

constant DW_PACKAGE:PIN_MAP_STRING:="DIR:1, B:(2,3,4,5,7,8,9,10), *
&
“A:(23,22,21,20,19,17,16,15),” &
“GND:6, VCC:18, G_NEG:24, TDO:11, TMS:12, TCK:13, TDI:14”;

constant FX_PACKAGE:PIN_MAP_STRING:="DIR:9,
B:(10,11,12,13,16,17,18,19),” &
“A:(6,5,4,3,2,27,26,25),” &
“GND:14, VCC:28, G_NEG:7, TDO:20, TMS:21, TCK:23, TDI:24";

attribute TAP_SCAN_IN of TDI
attribute TAP_SCAN_MODE of TMS
attribute TAP_SCAN_OUT of TDO
attribute TAP_SCAN_CLOCK of TCK

signal is true;
signal is true;
signal is true;
signal is (20.0e6, BOTH);

*s se 00

..

attribute INSTRUCTION_LENGTHE of ttl74bct8245ab : entity is 8;

attribute INSTRUCTION_OPCODE of ttl74bct8245ab : entity is
“BYPASS (11111111, 10001000, 00000101, 10000100, 00000001),”

&
“EXTEST (00000000, 10000000),” &
“SAMPLE (00000010, 10000010),” &
“INTEST (00000011, 10000011),” &
“TRIBYP (00000110, 10000110),” & -~ Boundary Hi-2
“SETBYP (00000111, 10000111),"” & -- Boundary 1/0
“RUNT (00001001, 10001001),”" & -- Boundary run test
“READBN (00001010, 10001010),” & -- Boundary read normal
“READBT (00001011, 10001011),” & -- Boundary read test
“CELLTST (00001100, 10001100),” & -- Boundary selftest

normal

164

“TOPHIP (00001101, 10001101),” & -- Boundary toggle out
test

“SCANCN (00001110, 10001110),” & -- BCR Scan normal

“SCANCT (00001111, 10001111)”; -- BCR Scan test

attribute INSTRUCTION_CAPTURE of ttl74bct8245ab : entity is
*10000001";

attribute INSTRUCTION_DISABLE of ttl74bct8245ab : entity is
“TRIBYP”;

attribute REGISTER_ACCESS of ttl74bct8245ab : entity is
“BOUNDARY (READBN, READBT, CELLTST),"” &
“BYPASS (TOPHIP, SETBYP, RUNT, TRIBYP),"” &
“BCR(2] (SCANCN, SCANCT)”; -- 2-bit Boundary Control Register

attribute BOUNDARY_CELLS of ttl74bct8245ab : entity is “BC_1";
attribute BOUNDARY_LENGTH of ttl74bct8245ab : entity is 18;

attribute BOUNDARY_ REGISTER of ttl74bct8245ab : entity is
-- num cell port function safe [ccell disval rslt])

“17 (BC_1, DIR, input, 1),” & -- Sets direction A to B
“16 (BC_l, G_NEG, input, X),” & -- Merged Input/Control
“1l6 (BC_1, *, control, 1),” & -- Merged Input/Control
“15 (BC_1, =, internal,X),” & -- Treat this as an
internal cell
“14 (BC_1, *, internal,X),” & -- Treat this as an
internal cell
“13 (BC_1, *, internal,X),” & -- Treat this as an
internal cell
“12 (BC_1, *, internal,X),” & -- Treat this as an
internal cell
“11 (BC_1, ~*, internal,X),” & -- Treat this as an
internal cell
“10 (BC_1, *, internal,X),” & =-- Treat this as an
internal cell
“9 (BC_1, *, internal,X),” & -- Treat this as an
internal cell
“8 (BC_1, *, internal,X),” & -- Treat this as an
internal cell
“7 (BC_1l, B(1l), output3, X, 16, 1, Z),” & -- cell 16 @ 1
-> Hi-2.
“7 (BC_1l, A(1), input, X),” & -- Merged Input/Output
“6 (BC_1l, B(2), output3, X, 16, 1, 2),” &
“6 (BC_1l, A(2), input, X),” & -- Merged Input/Output
"5 (BC_l, B(3), output3, X, 16, 1, 2),” &
“5 (BC_1l, A(3), input, X),” & -- Merged Input/Output
“4 (BC_1, B(4), output3, X, 16, 1, 2),” &
“4 (BC_l1l, A(4), input, X),” & =-- Merged Input/Output
“3 (BC_1, B(5), output3, X, 16, 1, 2),” &
“3 (BC_1l, A(5), input, X),” & -- Merged Input/Output
“2 (BC_1l, B(6), output3, X, 16, 1, 2),” &
“2 (BC_1, A(6), input, X),” & -- Merged Input/OQutput
“1 (BC_1, B(7), output3, X, 16, 1, 2),” &
“1 (BC_1, A(T), input, X),” & =-- Merged Input/Output
“0 (BC_1l, B(8), output3, X, 16, 1, 2),” &
“0 (BC_1, A(8), input, X)"; -- Merged Input/Output

end ttl74bct8245ab;

165

—-- BSDL description of Texas Instruments 74bct8245 Octal Transceiver

-- source : /sccs/scan/src/s.74bct8245ba
~-- revision : 13.1
-- date : 04/22/91-22:30:37

entity ttl74bct8245ba is
generic (PHYSICAL_PIN_MAP : string := “DW_PACKAGE”);

-- This BSDL description for the ‘8245 treats the ‘B’ signals as
inputs
-- and the ‘A’ signals as outputs, that is, as a unidirectional
device.

port (DIR:in bit; A:out bit_vector(l to 8); B:in bit_vector(l to
8);
GND, VCC:linkage bit; G_NEG:in bit; TDO:out bit; TMS, TDI,
TCK:in bit); :

use STD_1149_1_1990.all; -- Get Std 1149.1-1990 attributes and
definitions

attribute PIN_MAP of ttl74bct8245ba : entity is PHYSICAL PIN MAP;

constant DW_PACKAGE:PIN_MAP_STRING:="DIR:1, B:(2,3,4,5,7,8,9,10), ™
&
“A:(23,22,21,20,19,17,16,15)," &
“GND:6, VCC:18, G_NEG:24, TDO:11, TMS:12, TCK:13, TDI:14”;

constant FK_PACKAGE:PIN_MAP_STRING:="DIR:9,
B:(10,11,12,13,16,17,18,19),"” &
“A:(6,5,4,3,2,27,26,25),” &
“GND:14, VCC:28, G_NEG:7, TDO:20, TMS:21, TCK:23, TDI:24";

attribute TAP_SCAN_IN of TDI : signal is true;
attribute TAP_SCAN MODE of TMS : signal is true;
attribute TAP_SCAN_OUT of TDO : signal is true;
attribute TAP_SCAN_CLOCK of TCK : signal is (20.0e6, BOTH);

attribute INSTRUCTION_LENGTH of ttl74bct8245ba : entity is 8;

attribute INSTRUCTION OPCODE of ttl74bct8245ba : entity is
“BYPASS (11111111, 10001000, 00000101, 10000100, 00000001),”

&
“EXTEST (00000000, 10000000),” &
“SAMPLE (00000010, 10000010),” &
“INTEST (00000011, 10000011),” &
“TRIBYP (00000110, 10000110),” & -- Boundary Hi-2
“SETBYP (00000111, 10000111),” & -- Boundary 1/0
“RUNT (00001001, 10001001),” & ~-- Boundary run test
“READBN (00001010, 10001010),” & -- Boundary read normal
“READBT (00001011, 10001011),” & -- Boundary read test
“CELLTST (00001100, 10001100),” & -—- Boundary selftest
normal
“TOPHIP (00001101, 10001101),” & -- Boundary toggle out
test
“SCANCN (00001110, 10001110),” & -- BCR Scan normal

“SCANCT (00001111, 10001111)”; -- BCR Scan test

166

\\1

attribute INSTRUCTION_CAPTURE of ttl74bct8245ba : entity is
0000001";
attribu%e INSTRUCTION_DISABLE of ttl74bct8245ba : entity is

“TRIBYP”;

->

attribute REGISTER_ACCESS of ttl74bct8245ba : entity is
“BOUNDARY (READBN, READBT, CELLTST),” &
“BYPASS (TOPHIP, SETBYP, RUNT, TRIBYP),” &
“BCR[2] (SCANCN, SCANCT)”; -- 2-bit Boundary Control Register

attribute BOUNDARY_CELLS of ttl74bct8245ba : entity is “BC_1";
attribute BOUNDARY_LENGTH of ttl74bct8245ba : entity is 18;

attribute BOUNDARY_REGISTER of ttl74bct8245ba : entity is
-- num cell port function safe [ccell disval rslt]

“17 (BC_1, DIR, input, 0),” & -- Sets direction B to A
“16 (BC_l, G_NEG, input, X),” & =-- Merged Input/Control
“1l6 (BC_ 1, *, control, 1),” & -- Merged Input/Control
“15 (BC_1, ~*, internal,X),” & -- Treat this as an
internal cell
“14 (BC_1, *, internal,X),” & -- Treat this as an
internal cell
“13 (BC_1, *, internal,X),” & ~-- Treat this as an
internal cell
“12 (BC_1, *, internal,X),” & -- Treat this as an
internal cell
“1l1 (BC_1, *, internal,X),” & -- Treat this as an
internal cell
“10 (BC_1, *, internal,X),” & -- Treat this as an
internal cell
“9 (BC_1, ~*, internal,X),” & -- Treat this as an
internal cell
“8 (BC_1, ~, internal,X),” & -- Treat this as an
internal cell
Hiz “7 (BC_1, A(1), output3, X, 16, 1, 2),” & -- cell 16 @ 1
i-z.
“7 (BC_1l, B(1l), input, X),” & -- Merged Input/Output
“6 (BC_1l, a(2), output3, X, 16, 1, 2),” &
“6 (BC_l1, B(2), input, X),” & -- Merged Input/Output
5 (BC_1, A(3), output3, X, 16, 1, Z),” &
"5 (BC_1, B(3), input, X),” & -- Merged Input/Output
“4 (BC_1, A(4), output3, X, 16, 1, 2),” &
“4 (BC_1, B(4), input, X),” & -- Merged Input/Output
“3 (BC_1l, a(5), output3, X, 16, 1, 2),” &
“3 (BC_1, B(5), input, X),” & -- Merged Input/Output
“2 (BC_1, a(e), output3, X, 16, 1, 2),” &
“2 (BC_1l, B(6), input, X),” & =-- Merged Input/Output
"1l (BC_1, A(7), output3, X, 16, 1, 2),” &
“l1 (BC_1, B(7), input, X),” & -- Merged Input/Output
“0 (BC_1l, a(8), output3, X, 16, 1, 2),” &
“0 (BC_1, B(8), input, X)”; -- Merged Input/Output

en

d ttl74bct8245ba;

BSDL description of Texas Instruments 74bct8373 Octal D Latch
source : /scecs/scan/src/s.74bct8373

revision : 13.1

167

-- date : 04/22/91-22:30:38

entity tt174bct8373 is
generic (PHYSICAL_PIN_MAP : string := “DW_PACKAGE”);

8)port (CLK:in bit; Q:out bit_vector(l to 8); D:in bit_vector(l to
i

GND, VCC:linkage bit; OC_NEG:in bit; TDO:out bit; TMS, TDI,
TCK:in bit);

use STD_1149_1 1990.all; -- Get Std 1149.1-1990 attributes and
definitions

attribute PIN_MAP of tt174bct8373 : entity is PHYSICAL PIN MAP;

constant DW_PACKAGE:PIN_MAP_STRING:="CLK:1, Q:(2,3,4,5,7,8,9,10), ®
&

“D: (23,22,21,20,19,17,16,15),” &

“GND:6, VCC:18, OC_NEG:24, TDO:11, TMS:12, TCK:13, TDI:14”;

constant FK_PACKAGE:PIN_MAP_ STRING:="CLK:9,
Q:(10,11,12,13,16,17,18,19),” &
“D:(6,5,4,3,2,27,26,25),” &
“GND:14, VCC:28, OC_NEG:7, TDO:20, TMS:21, TCK:23, TDI:24";

attribute TAP_SCAN_IN of TDI : signal is true;
attribute TAP_SCAN MODE of TMS : signal is true;
attribute TAP_SCAN_OUT of TDO : signal is true;
attribute TAP_SCAN_CLOCK of TCK : signal is (20.0e6, BOTEH);

attribute INSTRUCTION_LENGTH of ttl174bct8373 : entity is 8;

attribute INSTRUCTION_OPCODE of ttl174bct8373 : entity is
“BYPASS (11111111, 10001000, 00000101, 10000100, 00000001),”

&
“EXTEST (00000000, 10000000),” &
“SAMPLE (00000010, 10000010),” &
“INTEST (00000011, 10000011),” &
“TRIBYP (00000110, 10000110),” & -- Boundary Hi-2
“SETBYP (00000111, 10000111),” & -- Boundary 1/0
“RUNT (00001001, 10001001),” & -- Boundary run test
“READBN (00001010, 10001010),” & -- Boundary read normal
“READBT (00001011, 10001011),"” & -- Boundary read test
“CELLTST (00001100, 10001100),” & ~-—- Boundary selftest
normal
“TOPHIP (00001101, 10001101),” & -- Boundary toggle out
test
“SCANCN (00001110, 10001110),” & -- BCR Scan normal
“SCANCT (00001111, 10001111)"; -~ BCR Scan test

attribute INSTRUCTION_CAPTURE of ttl74bct8373 : entity is
*10000001~;
attribute INSTRUCTION_DISABLE of ttl74bct8373 : entity is “TRIBYP”;

attribute REGISTER_ACCESS of ttl74bct8373 : entity is
“BOUNDARY (READBN, READBT, CELLTST),” &
“BYPASS (TOPHIP, SETBYP, RUNT, TRIBYP),” &
“BCR[2] (SCANCN, SCANCT)”; -- 2-bit Boundary Control Register

168

attribute BOUNDARY_CELLS of ttl74bct8373
attribute BOUNDARY_ LENGTH of ttl74bct8373

: entity is “BC_1";
entity is 18;

-
-

attribute BOUNDARY_ REGISTER of ttl74bct8373
-- num cell

17
16
16
15
“14
*13
*12
“11
%10
w 9
“w 8
w 7

-> Bi-Z.

w 6
\\5
\\4
w 3
\\2
w l
w o

(BC_1,
(BC_1,
(BC_1,
(BC_1,
(BC_1,
(BC1,
(BC_1,
(BC_1,
(BC_1,
(BC_1,
(BC_1,
(BC_1,

(BC_1,
(BC_1,
(BC_1,
(BC_1,
(BC_1,
(BC_1,
(BC_1,

end ttl74bct8373;

port
CLK,
OC_NEG,
*

D(1),
D(2),
D(3),
D(4),
D(S5),
D(6),
D(7),
D(8),
Q(),

Q(2),
Q(3),
Q(4),
Q(3),
Q(6),
Q(7),
Q(8),

input,
input,
control,
input,
input,
input,
input,
input,
input,
input,
input,
output3,

output 3,
output3,
output3,
output3,
output 3,
output3,
output 3,

X) R ”
X) R ”
1) ’ "
x) ’ ”
x) R ”
x) R ”
x) B ”
x) R ”
x) ’ ”
x) , ”
x) R ”
X,

X,
X,
X,
X,
X,
X,
X,

MR R R

PRRrRERRPRR= P
Ao O
L Y ~

: entity is

function safe [ccell disval rslt]

-- Merged Input/Control
-- Merged Input/Control

Z),I’

z),”
Z) 'II
z),”
Z) ,Il
Z) 'II
Z) 'Il
z)";

o]

AR R

-- cell 16 @ 1

—-— BSDL description of Texas Instruments 74bct8374 Octal D Flip-Flop

-—- source
-- revision

-- date

/sccs/scan/src/s.74bct 8374

13.1

04/22/91-22:30:40

entity ttl74bct8374 is

generic (PHYSICAL PIN_ MAP

8);

string :=

“DW_PACKAGE”) ;

port (CLK:in bit; Q:out bit_vector(l to 8); D:in bit_vector(l to

GND, VCC:linkage bit; OC_NEG:in bit; TDO:out bit; TMS, TDI,

TCK:in bit);

use STD_1149_1 _1990.all;

definitions

attribute PIN MAP of ttl174bct8374

-- Get Std 1149.1-1990 attributes and

entity is PHYSICAL_ PIN MAP;

constant DW_PACKAGE:PIN_MAP_ STRING:="CLK:1, Q:(2,3,4,5,7,8,9,10), “

&

“D:(23,22,21,20,19,17,16,15),"

“GND: 6,

“D:(6,5,4,3,2,27,26,25),”

vCC:18,

constant
Q:(10,11,12,13,16,17,18,19),” &

&

OC_NEG:24, TDO:11, TMS:12, TCK:13, TDI:14";

FK_PACKAGE:PIN_MAP_STRING:="CLK:9,

&

“GND:14, VCC:28, OC_NEG:7, TDO:20, TMS:21, TCK:23, TDI:24";

attribute TAP_SCAN_IN

of TDI : signal is true;

169

attribute TAP_SCAN_MODE of TMS signal is true;
attribute TAP_SCAN_OUT of TDO : signal is true;
attribute TAP_SCAN_CLOCK of TCK : signal is (20.0e6, BOTH);
attribute INSTRUCTION_LENGTH of ttl74bct8374 entity is 8;
attribute INSTRUCTION_OPCODE of ttl74bct8374 : entity is
“BYPASS (11111111, 10001000, 00000101, 10000100, 00000001),”
&
“EXTEST (00000000, 10000000),” &
“SAMPLE (00000010, 10000010),” &
“INTEST (00000011, 10000011),” &
“TRIBYP (00000110, 10000110),” & -- Boundary Hi-2
“SETBYP (00000111, 10000111),” & -- Boundary 1/0
“RUNT (00001001, 10001001),” & -- Boundary run test
“READBN (00001010, 10001010),” & ~- Boundary read normal
“READBT (00001011, 10001011),” & -- Boundary read test
“CELLTST (00001100, 10001100),” & —-- Boundary selftest
normal
“TOPHIP (00001101, 10001101),” & -- Boundary toggle out
test
“SCANCN (00001110, 10001110),” & -- BCR Scan normal
“SCANCT (00001111, 10001111)"; ~-- BCR Scan test
attribute INSTRUCTION_CAPTURE of ttl74bct8374 entity is
*10000001~;
attribute INSTRUCTION_DISABLE of ttl74bct8374 : entity is “TRIBYP”;
attribute REGISTER_ACCESS of ttl74bct8374 : entity is
“BOUNDARY (READBN, READBT, CELLTST),” &

“BYPASS (TOPHIP,
“BCR[2] (SCANCN,

SETBYP,
SCANCT)";

RUNT, TRIBYP),”

attribute BOUNDARY_CELLS of ttl74bct8374
attribute BOUNDARY_LENGTH of ttl74bct8374 :

attribute BOUNDARY_REGISTER of ttl74bct8374

&

entity is

-- 2-bit Boundary Control Register

entity is “BC_1”";
entity is 18;

-- Merged Input/Control
-- Merged Input/Control

-—cell 16 @ 1

-- num cell port function safe [ccell disval rslt]

“17 (BC_1, CLK, input, X),” &

“16 (BC_1l, OC_NEG, input, X),” &

“1l6 (BC_1, ¥, control, 1),” &

“15 (BC_1, D(1), input, X),” &

“14 (BC_1, D(2), input, X),” &

“13 (BC_1l, D(3), input, X),” &

“12 (BC_1l, D(4), input, X),” &

“11 (BC_1l, D(5), input, X),” &

“10 (BC_1, D(6), input, X),” &

“9 (BC_1l, D(7), input, X),” &

“8 (BC_1l, D(8), input, X),” &

7 (BC_1, Q(1), output3, X, 16, 1, 2),” &

-> Bi-2.

“6 (BC_1l, Q(2), output3, X, 16, 1, 2),” &
“5 (BC_1, Q(3), output3, X, 16, 1, 2),” &
“4 (BC_1l, Q(4), output3, X, 16, 1, 2),” &
“3 (BC_1l, Q(5), output3, X, 16, 1, 2),” &
“2 (BC_1l, Q(6), output3, X, 16, 1, 2),” &
*1 (BC_1, Q(7), output3, X, 16, 1, 2),” &
“0 (BC_1, Q(8), output3, X, 16, 1, 2)”;

end ttl74bct8374;

entity scanl8245t is
generic (PHYSICAL_PIN_MAP : string := “SSOP_PACKAGE”);

port (Gl _NEG:in bit; Al:inout bit_vector(0 to 8); A2:inout
bit vector(0 to 8);

- G2_NEG:in bit; Bl:inout bit_vector(0 to 8); B2:inout
bit vector(0 to 8);
- GND:linkage bit_vector(0 to 7); VCC:linkage bit_vector(0 to

3);
’ DIRl:in bit; DIR2:in bit; TDO:out bit;
TMS, TDI, TCK:in bit);
use STD_1149_1 1990.all; -- Get Std 1149.1-1990 attributes and
definitions

attribute PIN_MAP of scanl8245t : entity is PHYSICAL_PIN_MAP;

constant SSOP_PACKAGE:PIN_MAP_STRING:="Gl_NEG:54, G2_NEG:31,” &
- “*B1:(2,4,5,7,8,10,11,13,14),
B2:(15,16,18,19,21,22,24,25,27)," &
“Al:(55,53,52,50,49,47,46,44,43),
A2:(42,41,39,38,36,35,33,32,30),” &
“GND:(6,12,17,23,34,40,45,51)," &
“VvCC:(9,20,37,48),"” &
“DIR1l:3, DIR2:26, TDO:28, TMS:1l, TCK:29, TDI:56";

constant PLCC_PACKAGE:PIN_MAP_STRING:="Gl_NEG:54, G2 _NEG:31,” &
“Bl:(2,4,5,7,8,10,11,13,14),
B2:(15,16,18,19,21,22,24,25,27),” &
“Al:(55,53,52,50,49,47,46,44,43),
A2: (42,41, 39, 38, 36, 35,33, 32,30),” &
“GND: (6,12,17,23, 34,40,45,51),” &
“vce: (9,20,37,48),” &
“DIR1:3, DIR2:26, TDO:28, TMS:1, TCK:29, TDI:56";

attribute TAP_SCAN_IN of TDI
attribute TAP_SCAN_MODE of TMS
attribute TAP_SCAN OUT of TDO
attribute TAP_SCAN_CLOCK of TCK

signal is true;
signal is true;
signal is true;
signal is (25.0e6, BOTH);

es ee ve e

attribute INSTRUCTION_LENGTH of scanl8245t : entity is 8;

attribute INSTRUCTION OPCODE of scanl8245t : entity is
“BYPASS (11111111),” &
“EXTEST (00000000),” &
“SAMPLE (10000001),” &
“HIGHZ (00000011),” &
“CLAMP (10000010)”;

attribute INSTRUCTION_CAPTURE of scanl8245t : entity is “00111101”;
attribute INSTRUCTION_DISABLE of scanl8245t : entity is “HIGHZ";

attribute REGISTER_ACCESS of scanl8245t : entity is
“BYPASS (HIGHZ,CLAMP)”; -- HIGHZ and CLAMP

attribute BOUNDARY CELLS of scanl8245t : entity is “BC_1, BC_4";
attribute BOUNDARY_LENGTH of scanl8245t : entity is 80;

171

attribute BOUNDARY REGISTER of scanl8245t

-- num cell

\\0

\\1

\\2

\\3

\\4

\\5

\\6

\\7

\\8

\\9

\\10
\\11
\\12
\\13
\\14
\\15
\\16
\\17
\\18
19
20
21
22
23
24
25
26
27
28
*29
30
31
32
33
%34
35
36
\\3'7
38
39
40
~41
“42
43
“44
45
~46
47
48
“49
50
51
\\52
\\53
\\54
\\55
\\56
\\5‘7

(BC_1,
(BC_1,
(BC_1,
(BC_1,
(BC_1,
(BC_1,
(BC_1,
(BC_1,
(BC_1,
(BC_1,
(BC_1,
(BC_1,
(BC_1,
(BC_1,
(BC1,
(BC 1,
(BC 1,
(BC_1,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_1,
(BC_1,
(BC 1,
(BC_1,
(BC1,
(BC_1,
(BC1,
(BC1,
(BC_1,
(BCT1,
(BCT1,
(BCT1,
(BC1,
(BC_1,
(BCT1,
(BC_1,
(BC1,
(BC_1,

port

A2(8),
A2(7),
A2(6),
A2(5),
A2 (4),
A2(3),
A2(2),
A2(1),
A2(0),
Al(8),
Al(7),
Al (6),
Al (5),
Al (4),
Al(3),
Al(2),
Al(1),
Al(0),
B2(0),
B2 (1),
B2(2),
B2 (3),
B2(4),
B2(5),
B2(6),
B2(7),
B2(8),
B1(0),
Bl (1),
B1(2),
B1(3),
B1(4),
B1(5),
B1(6),
B1(7),
B1(8),
B2(8),
B2(7),
B2(6),
B2(S5),
B2 (4),
B2(3),
B2 (2),
B2 (1),
B2(0),
B1(8),
B1(7),
B1(6),
B1(5),
Bl (4),
B1(3),
B1(2),
B1(1),
B1(0),
A2(0),
A2(1),
A2(2),
A2(3),

output3,
output3,
output3,
output3,
output3,
output 3,
output3,
output3,
output3,
output3,
output3,
output3,
output 3,
output3,
output3,
output 3,
output3,
output3,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
output 3,
output 3,
output3,
output3,
output 3,
output 3,
output 3,
output 3,
output 3,
output 3,
output3,
output3,
output 3,
output3,
output 3,
output3,
output3,
output 3,
input,
input,
input,
input,

X,

~ ~
- - W~ LI I B L] - W W L T S
N T I YYD

-
<

T YYYY YRR

N

.
.

73,
73,
73,
73,
73,
73,
73,
73,
73'
77,
77,
117,

entity is
function safe [ccell disval rslt]

0,

Z)’II
Z)"I
z),l’

z)'"'

z),’l
Z),II
Z),”

2),” .

Z)'Il
Z)'II
Z),'I

Z)'l’l.

z)"l
Z)'”
z),”
z),”
Z),l’
2),”

Z)’”

&

oI R

PRI R IR R

172

“58 (BC_4, A2(4), input,
“59 (BC_4, A2(5), input,
“60 (BC_4, A2(6), input,
“61 (BC_4, A2(7), input,
“62 (BC_4, A2(8), input,
“63 (BC_4, Al(0), input,
“64 (BC_4, al(1), input,
“65 (BC_4, Al(2), input,
“66 (BC_4, Al(3), input,
“67 (BC_4, Al(4), input,
“68 (BC_4, al(5), input,
“69 (BC_4, Al(6), input,
“70 (BC_4, Al (7), input,
“71 (BC 4, Al(8), input,

“72 (BC_1, *,
“73 (BC_1, *,

“74 (BC 4,
“75 (BC_4,

“76 (BC 1, *,
w77 (BC 1, *,

“78 (BC_4, G1_NEG,
“79 (BC4,

end scanl8245t;

G2_NEG,
DIR2, input, X),”

X)'II
x)'ll
x)'”
X),”
x)'"
X) "
X), "
x),”
X),”
x)’”
x)'ll
X), "
x),ll
x),ll

control, 0),”

control,

control,
control,

-- Motorola 68040 BSDL description

-- source
~-—- revision

-- date

/sccs/scan/src/s.68040

s 13.

3

input,

] input,
DIR1, input, X)”

0)

0)
0)

.

’

: 12/05/91-07:40:19

entity MC68040 is

generic (PHYSICAL_PIN MAP:string := “PGA_18x18");

port (TDI:
TDO:
TMS:
TCK:
TRST:
RSTO:
IPEND:
CIOQUT:
UPA:
TT:
A:
D:
LOCKE:
LOCK:
R_W:
TLN:
TM:
SIZ:
MI:
BR:
TS:
BB:

in

out

in

in

in
buffer
buffer
out
out
inout
inout
inout
out
out
inout
out
out
inout
buffer
buffer
inout
inout

bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit;
bit_vector (0
bit_vector (0
bit_vector (0
bit_vector (0
bit;
bit;
bit;
bit_vector(0
bit_vector (0
bit_vector (0
bit;
bit;
bit;
bit;

to
to
to
to

to
to
to

”
’

&
&

x)’ll

&
”
’

”
’

&
&

x),l’

1);
1);
31);
31)

=N R
' N

LA T Y

’

AR AR IR RIRRY R

900618

173

TIP:
PST:
TA:
TEA:
BG:
SC:
TBI:
AVEC:
TCI:
DLE:
PCLK:
BCLK:
IPL:
RSTI:
CDIS:
MDIS:
EGND:
EVDD:
IGND:
IVDD:
CGND:
CVDD:
PGND:
PVDD:
)i

out
buffer
inout
in

in

in

in

in

in

in

in

in

in

in

in

in
linkage
linkage
linkage
linkage
linkage
linkage
linkage
linkage

bit;
bit_vector (0
bit;
bit;
bit;
bit_vector (0
bit;
bit;
bit;
bit;
bit;
bit;
bit_vector (0
bit;
bit;
bit;
bit_vector(l
bit_vector (1
bit_vector(1l
bit_vector(l
bit_vector (1l
bit_vector(l
bit_vector(1l
bit_vector(l

use STD_1149_1_1990.all;

attribute PIN_MAP of MC68040 :

-- 18x18 PGA Pin Map

constant PGA_18x18

“TDI:
“TDO:
“TMS:
“TCK:
“TRST:
“RSTO:
“IPEND:
“CIOUT:
“UPA:
WTT:
\\A:

&

w

&

"

N3,

W

G3,

w“w

A9,
C15, ”

W

T18,

PIN_MAP_STRING :

s3, “ &

TZ' " &

85' w &

sS4, ™ &

T3, “ &

R3, ™ &

81, “ &

Rl, “ &

(@3, o1), “ &

(P3, P2), ™ &

(L18, K18, J17, Jis,

Nl, M1, L1, K1,

pl, F3, E2, C(Cl,

(C3, B3, €4, A2,

aAl0, All, Al2, Al3,

Alg, Cl6, Bl18, D1s,
: R18, “ &

518, “ &

N1l6, ™ &

(Q18, P18), “ &

(N18, M18, K17), “

(P17, P16), ™ &

Ql6, ™ &

&

to

to

to

to
to
to
to

to
to
to

entity is

PHYSICAL_PIN MAP;

H18, G18, Gl6, Fl18, El8, Fl6, P1l,
k2, J1, H1l, J2, Gl1l, Fl, E1,
E3, Bl, D3, Al), ™ &

A3, A4, A5, A6, B7, A7, A8,

Bl1l, Al4, B12, Al5, Al6, Al7, BlSs,
Ccl8, El16, E17, D18), ™ &

&

174

“TS:
“BB:
“TIP:
“PST:
“TA:
“TEA:
\\BG
\\SC .
“TBI:

“AVEC:

“TCI:
“DLE:

“PCLK:
“BCLK:

“IPL:

“RSTI:
“CDIS:
“MDIS:
“EGND:

B10,” &

w

“w &

“EVDD:

S16),” &

“IGND:

s10),” &

“IVDD:
“CGND:
“CVDD:
“PGND:
“PVDD:

R16, ™
T17, ™
R15, “
(T15, Ss1
T14, ™
s13, ©
T13, ™
(T12, s1
s1ii,
T11, “
Tlo, w
T9, “
Rg' "
R7, w
(T8, T7
87, "
TS, A3Y
s6, “ &

(s2, Q2, N2, L2, H2, F2, D2, B2, B4, B6, BS,

. R14, T16), ™ &

RN IR SRR R
o’
-~
H
"3

RS YRR
<]
[«)}
~
-
H
-4

B13, B1l5, Bl17, D17, F17, H17, L17, N17, Q17, S17, S15),
(R2, M2, G2, €2, B5, B9, Bl4, Cl1l7, G17, M17, R1l7,
(T4, R4, L3, K3, €7, C9, Cll1l, Kl6, M16, R13, R11,

(R5, M3, c¢8, c10, €12, Ll1l6, R12), ™ &
(C6, C13), ™ &

(J3, H3, C5, Cl4, H1l6, Jl6), ™ &

(s9, R10, R6), “ &

(s8, R8) %;

-- Other Pin Maps here when documented

attribute
attribute
attribute
attribute
attribute

attribute

attribute
“EXTEST
“HI_2Z
“SAMPLE

TAP_SCAN_IN of TDI:signal is true;

TAP SCAN _OUT of TDO:signal is true;

TAP SCAN _MODE of TMS:signal is true;

TAP SCAN _CLOCK of TCK:signal is (10.0e6, BOTH);
TAP SCAN _RESET of TRST:signal is true;

INSTRUCTION_LENGTH of MC68040:entity is 3;

INSTRUCTION _OPCODE of MC68040:entity is
(000), &
(001), &
(010, 011),” &
&

“SHUTDOWN (100, 101),”

“BYPASS

attribute
attribute

attribute
“BYPASS

attribute

(111, 110)”;

INSTRUCTION_CAPTURE of MC68040:entity is “001”;
INSTRUCTION_DISABLE of MC68040:entity is “HI_z”;

REGISTER_ACCESS of MC68040:entity is
(SHUTDOWN, HI _2) %

BOUNDARY_CELLS of MC68040:entity is

“BC_2, BC_4";

attribute

attribute

BOUNDARY_LENGTH of MC68040:entity is 184;

BOUNDARY_ REGISTER of MC68040:entity is

175

—--num
\\0
\\1
\\2
\\3
\\4
\\5
\\6
\\‘7
\\8
\\9
io.ab
\\10
\\11
\\12
\\13
\\14
“15
\\16
\\17
\\18
‘\19
——num
\\20
\\21
\\22
\\23
\\24
\\25
\\26
\\27
\\28
\\29
‘\30
\\31
\\32
\\33
\\34
\\35
\\36
\\37
\\38
\\39
—-num
\\40
\\41
\\42
\\43
\\44
\\45
\\46
\\47
\\48
\\49
\\50
\\51
\\52
\\53
io.db
\\54
\\55

cell

(BC_2,
(BC_2,
(BC_2,
(BC 2,
(BC_2,
(BC 2,
(BC 4,
(BC_2,
(BC_4,

(8C_2,

(BC_4,
(BC_2,
(BC 4,
(8C 2,
(BC_4,
(BC 2,
(BC_4,
(BC 2,
(BC_4,

(BC_2,

(BC 4,

(BC_2,
(BC 2,

port

RSTO,
IPEND,
CIOQUT,
UPA (0)

-

UPA(1),

TT(0),
TT (0),
TT (1),
TT(1),
A(10)

A(10),
A(ll),
A(l1ll),
A(12),
A(12),
A(13),
A(13),
A(14),
A(l49),
A(15),
port
A(15),
A(le),
A(1l6),
A(17),
A(17),
A(18),
A(1l8),
A(19),
A(19),
A(20),
A(20),
A(21),
A(21),
A(22),
A(22),
A(23),
A(23),
A(24),
A(24),
A(25),
port
A(25),
A(26),
A(26),
aA(27),
A(27),
A(28),
A(28),
A(29),
A(29),
A(30),
A(30),
A(31),
A(31),
D(0),

D(1),
D(2),

function safe ccell dsval rslt
output2, X), “ &
output2, X), ™ &
output3, X, 156, 0, 2), “ &
output3, X, 156, 0, 2), ™ &
output3, X, 156, 0, Z), ™ &
output3, X, 156, 0, 2), ™ &
input, Xy, &
output3, X, 156, 0, 2), ™ &
input, X), ™ &
output3, X, 150, 0, 2), ™
input, X), &
output3, X, 150, 0, 2), ™ &
input, X), &
output3, X, 150, 0, 2), ™ &
input, X)), “ &
output3, X, 150, 0, 2), ™ &
input, Xy, ™ &
output3, X, 150, 0, 2), “ &
input, Xy, © &
output3, X, 150, 0, 2), ™ &
function safe ccell dsval rslt
input, X), &
output3, X, 150, 0, 2), ™ &
input,), ™ &
output3, X, 150, 0, 2), “ &
input, X)), “ &
output3, X, 150, 0, 2), “ &
input, X), © &
output3, X, 150, 0, 2), ™ &
input, X, v &
output3, X, 150, 0, 2), ™ &
input, Xy, © &
output3, X, 150, 0, 2), “ &
input, Xy, ™ &
output3, X, 150, 0, 2), ™ &
input, Xy, © &
output3, X, 150, 0, 2), “ &
input, Xy, “ &
output3, X, 150, 0, 2), “ &
input, Xy, ™ &
output3, X, 150, 0, 2), “ &
function safe ccell dsval rslt
input, Xy, “ &
output3, X, 150, 0, 2), “ &
input, X), © &
output3, X, 150, 0, 2), ™ &
input, X), % &
output3, X, 1501 or Z)I " &
input, X), ™ &
output3, X, 150, 0, 2), “ &
input, X)), © &
output3, X, 150, 0, Z), “ &
input, X), &
output3, X, 150, 0, 2), % &
input, X), ™ &
output3, X, 151, o, 2), ™
output3, X, 151, 0, 2), “ &
output3, X, 151, 0, 2), “ &

-- 151

176

\\56
\\5‘7
\\58
\\59
——num
60
“61
%62
63
64
65
66
67
68
69
*70
“71
%72
~73
~74
*75
~76
~77
~78
\\79
=-num
\\80
\\81
\\82
\\83
\\84
\\85
\\86
\\87
\\88
\\89
\\90
\\91
\\92
“93
\\94
\\95
\\96
\\97
\\98
\\99
—-—num
100
%101
%102
%103
104
105
106
107
108
109
%110
*111
112
113

(BC_2,
(BC_2,
(BC_2,
(BC_2,
cell

(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC 2,
(BC_2,
(BC_2,
(BC 2,
(BC 2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
(BC_2,
cell

(BC_2,
(BC_2,
(BC 2,
(BC 2,
(BC_2,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
cell

(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,
(BC 4,
(BC 4,
(BC_4,
(BC_4,
(BC_4,
(BC_4,

D(3),
D(4),
D(5),
D(6),
port
D(7),
D(8),
D(9),
D(10),
D(11),
D(12),
D(13),
D(14),
D(15),
D(16),
D(17),
D(18),
D(19),
D(20),
D(21),
D(22),
D(23),
D(24),
D(25),
D(26),
port
D(27),
D(28),
D(29),
D(30),
D (31),
D (0),
D(1),
D(2),
D(3),
D(4),
D(5),
D(6),
D(7),
D(8),
D(9),
D(10),
D(11),
D(12),
D(13),
D(14),
port
D(15),
D(1s6),
D(17),
D(18),
D(19),
D(20),
D(21),
D(22),
D(23),
D(24),
D(25),
D(26),
D(27),
D(28),

output3,
output3,
output3,
output3,
function
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
output3,
function
output3,
output3,
output3,
output3,
output3,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
function
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,
input,

safe

X),
safe
X),
X),
X),
X),
X),
X),
X),
X),
X),
X),
X),
X),
X),
X),

151,
151,
151,
151,

z),
z),
z),
z),

ccell dsval

151,
151,
151,
151,
151,
151’
151,
151,
151,
151,
151,
151,
151,
151,
151,
151,
151,
151,
151,
151,

z),
z),
z),
z),
z),
2),
z),
z),
z),
Z),
z),
z),
2),
z),
z),
z),
z),
z),
z),
z),

ccell dsval

151,
151,
151,
151,
151,

w

ccell dsval rsl

ALY

W

A\

A\)

“w

w

w

w

w

w

“w

w

w

z),
z),
z),
z),
z),

w

W

“

A

rsl

W
w
w
ALY
w
w
w
W
w
w
W
w
w
w
“w
“w
w
ALY
“w
“w

H
[
han}

LAl AN Sl Al Al A Al ol Al ol ol N B s g ST N I I S O I G I I I W W S SN O I O W S S O S - O O O O O - L O O W SR I W I R)

w

w

w

w

“w

177

“114 (BC_4, D(29),

“115
“116
117
“118
“119
—-num
“120
“121
“122
w123
“124
“125
“126
“127
“128
“129
“130
*131
“132
“133
“134
“135
“136
“137
“138
“139
—-num
“140
“141
“142
“143
“144
“145
“146
“147
“148
“149
“150
“151
“152
“153
\\154
“155
“156
“157
“158
“159
=-num
“160
“1l61
“162
“163
“164
“165
“166
\\167
“168
“169
“170
“171

(BC_4,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
cell
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC_4,
(BC_2,
(BC_4,
(BC_2,

(BC_4,
(BC_4,
(BC_4,

D(30),
D(31),
A(9),
A(9),
A(8),
port
A(8),
A(7),
A(7),
A(6),
A(6),
A(S),
A(5),
A(4),
A(4),
A(3),
A(3),
A(2),
A(2),
A(L),
A(L),
A(0),
A(0),
T™(2),
TM(1),
TM(0),
port
TLN (1),
TLN(0),
SIz(0),
S1z2(0),
R_W,
R_W,
LOCKE,
SIZ (1),
SIZ (1),
LOCK,

*

’
*

’
MI,
BR,

*
’

*
!

*I
Ts'
TS,
BB,
port
BB,
TIP,
PST(3),
PST(2),
PST(1),
PST(0),
TA,
TA,
TEA,
BG'
SC(1),
SC(0),

input, Xy, ©

input, Xy, ©

input, X), »

output3, X, 150, 0, 2), ™
input, X), ™

output3, X, 150, 0, 2),
function safe ccell dsval
input, Xy, ™

output3, X, 150, 0, 2),
input, Xy, »

output3, X, 150, 0, 2),
input, X), ™

output3, X, 150, 0, 2),
input, Xy, »

output3, X, 150, 0, 2),
input, Xy, ™

output3, X, 150, 0, 2),
input, x),

output3, X, 150, 0, 2),
input, Xy, “

output3, X, 150, 0, 2),
input, Xy,

output3, X, 150, 0, 2z),
input, X, v

output3, X, 156, 0, 2),
output3, X, 156, 0, 2),
output3, X, 156, 0, 2),
function safe ccell dsval
output3, X, 156, 0, 2),
output3, X, 156, 0, 2),
output3, X, 156, 0, 2),
input, Xy, “

output3, X, 156, 0, 2),
input, X), ©

output3, X, 156, 0, 2),
output3, X, 156, 0, 2),
input, X), ™

output3, X, 156, 0, 2),
controlr, 0), ™

controlr, 0), “

output2, X), “

output2, X), “

controlr, 0), ™

controlxr, 0), ™

controlr, 0), *

output3i, X, 156, 0, Z), ™
input, X, »

output3, X, 155, 0, 2z), ™
function safe ccell dsval
input, X, v

output3, X, 155, 0, z),
output2, X), “

output2, X), “

output2, X), ™

output2, X), “

output3d, X, 154, 0, 2), ™
input, X, "
input, Xy, %
input,), ™
input,), ©
input, Xy, ©

w

&
&
&
& —- 150 = io.ab
&
w &
rslt
&
w &
&
w . &
&
" &
&
A . &
&
"W &
&
“w &
&
w &
&
w &
s
& -- 156 = io.0
w &
w &
rslt
w &
w &
w &
&
w &
&
w &
" &
&
ALY &
& -- io.ab
& -- io.db
&
&
& -- io0.2
& -- io.l
& — io0.0
& -- 156 = io0.0
&
& -- 155 = io.1l
rslt
&
& -- 155 = io0.1
&
&
&
&
& -- 154 = jo.2
&
&
&
&
&

178

“172 (BC_4, TBI, input, Xy, » &
“173 (BC_4, AVEC, input, X), » &
“174 (BC_4, TCI, input, X), % &
“175 (BC_4, DLE, input, Xy, “ &
“176 (BC_4, PCLK, input, X), v &
“177 (BC_4, BCLK, input, Xy, » &
“178 (BC_4, IPL(0), input, Xy, » &
“179 (BC_4, IPL(1l), input, X, © &

--num cell port function safe ccell dsval rslt
*180 (BC_4, IPL(2), input, X), » &
“181 (BC_4, RSTI, input, Xy, ™ &
“182 (BC_4, CDIS, input, X, v &
“183 (BC_4, MDIS, input, X) %

attribute DESIGN_WARNING of MC68040: entity is
“A non-standard clocking protocol on BCLK must be observed ™ &
“when entering Boundary Scan Test Mode.”;

end MC68040;

APPENDIX B: Test Hardware

And Software Organization

Most of the software tools and hardware libraries described in this thesis. This
appendix describes the organization and location of the test hardware and software. test
programs, SDL files for the new parts and hardware modules can be found in the

following directories.

I. Test Hardware

This directory is organized into two parts: chip level hardware and board level

hardware. The files and directories in each of the subdirectories are listed below.

a. ~sieraftesthw/chiplevel/bscan
This directory contains chip level macro that generates all of the circuitry required to
support the Boundary Scan architecture described in Chapter 3.

b. ~siera/testhw/boardlevel/TMCboard
This directory contains all SDL files for the Test Master Controller Board.

179

180

c. ~siera/testhw/boardlevel/SDL. MODULES . .
This directory contains all of the dedicated board level test modules described in
Chapter 4. :

d. ~siera/testhw/boardlevel/SDL.LEAF
This directory contains leafcells for all of the programmable parts used in the TMC
board design.

e. ~siera/testhw/boardlevel/NEWPARTS
This directory contains SDL files for all of the components used in the TMC board
design.

t. ~sieraftesthw/boardlevel/BSDL.FILE
This directory contains Boundary Scan descriptions of all of the Boundary Scan
components.

The guidelines listed below are provided to ensure correct operation of
the JTAG_MACRO described in Chapter 3.

1. LSB of Boundary Scan Register must connect to BSRin

LSB of Internal Scan Register must connect to INTin

MSB of Internal and Boundary register must connect to tdi

INPUT_MODE signal must drive MODE signal of input BSR registers
OUTPUT_MODE signal must drive MODE signal of output BSR registers

phil must be connected to the global clock

tdi, tdo, and tms must be brought out to the package pins

tdi and tms must be driven by unbuffered pads because they contain internal pullups
tdo must drive a tristate pad controlled by EN

10.SCAN is the control signal for the internal scan register

11.15tb is the active low reset signal used to reset the IR, and TAP controller
12.CLK_DR, Shift DR, and Upd_DR are control signals for the BSR register

13.0¢e_in is used for tristate or bi-directional pads, this is the user generated control signal

14.The pad order must be followed when using the bspads, I/OTDL.TMS.TDO....J/O,
otherwise use any preferred ordering.

©® ® N O B s LN

I1. Test Software

The test software directory is also partitioned into two parts: chip level tools and board

level tools. The two chip level tools are oct2tgs and JTAGtool. The man page for oct2tgs

181

already exists in ~lager/SUN4_2.0/LagerIV while the man page for JTAGtool is listed
below.

JTAGtool(1) SIERA Tools Users Manual JTAGtool(1)

NAME
JTAGtool - threads all of the Boundary Scan components
contained in an OCT structure_instance view of a board
design.

SYNOPSIS
JTAGtool [-=V vov_flags]) [-=E on_error] [-q] [~-L Logfile]
[-d] cell

DESCRIPTION
JTAGtool is used to thread all of the Boundary Scan chips in
a board design in the order they appear in the design hierarchy
and it also generates a file containing the design netlist which
is to be used later for debugging purposes. The input must be
it must be a hierarchical OCT view.

INPUT
The input is taken as the cellname indcated on the command
line. If the view and/or facet are omitted, the contents
facet of the SIV is used.

JTAGtool requires that the OCT views contain the following
properties:

When using the structure_instance view:

i. The cell:structure_instance:contents facet must have
the direction properties attached to all the formal
terminals. Also, the formal terminals should contain
the nets they are connected to.

OPTIONS
-=V: reserved to control design manager VOV
(not used yet)
-=E: cause fatal errors to core dump (on_error = “core”)
or exit (on_error = “exit”)
-q: turn off terminal messages
-L: Log file name
-d: debug mode
cell: name of cell:structure_instance to be processed
SIERA Release 1.0 Last change: Aug 1992 1
JTAGtool (1) SIERA Tools Users Manual JTAGtool (1)
AUTHOR

Kevin T. Kornegay (UC Berkeley)

182

The procedure for using the M2C tool is described below.

Using M2C
Before using this tool, the user must prepare an MTL description of the board under

test and a CTL description for all of its Boundary Scan components.

An MTL file consists of a part that describes the configuration of the board under test
and another part that describes how the board is to be tested using the test specific

statements described in Chapter 5.

The CTL file consists of a BSDL description of the part and one or more template-
based or user-defined TDM procedures.

Once the CTL and MTL files are prepared, the user can generate a test program by
executing M2C boardname, where boardname.mtl is the name of the MTL file. Then
execute genTarget to create the test program. The test program which is written in C is
placed in a directory called workDIR. Compile the executable files using the Unix make
utility on the boardname.mak file produced by.' genTarget. Pop up a window on the target
VME card cage and load the executable file on the VME CPU board and execute the test
program. M2C and genTarget are located in ~siera/testsw/bin.Examples are located in

~siera/testsw/examples.

	Copyright notice1992
	ERL-92-104 (1 of 3)
	ERL-92-104 (2 of 3)
	ERL-92-104 (3 of 3)

