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Abstract

This paper is written as a tutorial on how to use a 1-dimensionnal map de
rived from Chua's circuit to study the circuit's complicated dynamics. While the
derivation of this 1-D map is non-trivial, a user-friendly program is presented to
help the beginner to uncover and witness, without any prior backround on chaos,
numerous periodic, homoclinic, heteroclinic and chaotic orbits. In keeping with
the pedagogical nature of this paper, these bifurcation phenomena will be pro
fusely illustrated with pictures generated from a computer program, along with
the exact parameters so that the reader can easily duplicate them. The program
is written in the C-language for both PC-486 computers and UNIX workstations,
and available upon requests from the Nonlinear Electronic Laboratory in Berkeley.

1 Introduction

Chua's circuit1 is the simplest electronic circuit that exhibits the ubiquitous phenomenon
called chaos. The history of the invention of this circuit is given in Reference 2. Because
of its simplicity, robustness, and low cost3, Chua's circuit, shown in Fig. 1, has become a
pedagogical tool for studying and experimenting chaos. The state equations describing
Chua's circuit are given in Reference 1. Since we will be concerned only with computer
simulations in this paper, we will use this following simpler, equivalent, dimensionless
equations4 :

x = a(y - x - f(x))
y = x-y + z (1)
z = -py

where

f(x) = rmx+ -(m0 - mi)[|a: + 1| - \x - 1|] (2)



is the equation describing the 3-segment piecewise-linear vr —Ir characteristic of the
nonlinear resistor (Chua's diode3) in Fig. 1. For pedagogical purposes, it is convenient
to assume :

x = vcx, y = vc2, and z = tj,

Under these assumptions, the dimensionless Chua's circuit is described exactly by equa
tions (1) and (2). Throughout this paper, we will assume :

and L = ±H
(3)

mo = —8/7 and mi = —5/7 (4)

where mo is the slope of the outermost segment and mi is the slope of the middle segment
of the v-i characteristic shown in Fig. 1(b). It is important to stress that because eq. (2)
is a dimensionless equation, there is no loss of generality in our assumption (3) in the
sense that for any behavior in the original circuit due to any choice of circuit parameters
R, (7i, C2, and L, there is a corresponding (a, /?) where the dimensionless circuit behaves
identically.

r=9(vr)

(a) (b)

Figure 1: (a) Chua's circuit, (b) The v-i characteristic of the nonlinear resistor Nr.

Our goal in this paper is to use a 1-dimensional Poincare map /, to be defined
in Section 2, to help us pick strategic values of the parameters (a, /?) which give rise
to various qualitatively distinct behaviors in Chua's cicuit. The advantage of using a
1-D map is that the dynamical behavior of 1-D maps is much easier to explain and
understand5 compared to a brute force trial and error approach in the original system,
while at the same time it offers a systematic method for choosing a and /?.

For each choice of (a,/?), we will also integrate the state equation (1) and show a
projection of the corresponding waveform {x(t),y(t),z(t)\ as well as the time wave
form for x(t). In most cases, we will see that the qualitative property of the solution
(x(t),y(t),z(t)) agrees with what is predicted by an inspection of the 1-D map / with
the same parameters a and /?.

However, since the 1-D map / is derived from eq. (1) by making an approximation,
there exist parameters (a, /?) where the numerical solution of eq. (1) differs qualitatively



from what is predicted by /. We will provide some guidelines on when such discrepancies
might occur. In such cases, the 1-D map /, though still interesting in its own right as a
1-dimensional dynamical system, can not be used as an exact model of Chua's circuit.

2 Description of the 1-D Poincare map f and its
Associated Software

A careful analysis4 of the flow shows that in each of the outer regions of our piecewise-
linear dynamical system, trajectories are strongly attracted towards the two dimensional
unstable eigenspace of the unique outer equilibrium point P+. In fact, the stable com
ponent of the vector field in this region is predominant and squeeze trajectories onto the
unstable eigenspace. Though this result is not generic for Chua's circuit, it holds for
the range of parameters to be investigated in this paper. Hence, the flow in the outer
linear regions of the vector field is quickly confined in an infinitesimal neighborhood of
the unstable eigenspace. Since a point in this volume is numerically indistinguishable
from its projection onto the unstable eigenspace, it is therefore natural to construct an
approximate 1-D Poincare map /, of a line into itself, from an original 2-D Poincare map
defined on a selected4 plane, transverse to this unstable eigenspace. Then, the domain
of the map / lies on the intersection of the original Poincare plane with the unstable
eigenspace. Due to the geometric structure of the flow, it is possible to find an invariant
interval for /. And, with a proper choice for the Poincare plane, this 1-D map can be
calculated efficiently, without solving any transcendental equations. We point out here
that the equations of / obtained so far have a parametric form : we do not find an
explicit formula for the function /.

To sum up, / is defined to be a single-valued function y = f(x) from a closed interval,
[0, b] after rescaling, into itself:

/: [0,6]-* [0,6] (5)

where for the purpose of this section, / is generated by a computer program in the form
of its graph, a non-monotonic curve C. For each value of (a, /?), the program generates
a corresponding curve C(a,f3). The theory and exact algorithm implemented by the
program are given in Section 5.

In this section, we will present some typical curves C(a, /?) which gives rise to various
distinct asymptotic behaviors. The uninitiated reader is referred to Reference 5 for
introductory backround in 1-D maps.

2.1 Period-1 orbit

Figure 2(a) shows the curve C corresponding to a = 8 and /? = 100/7. Note that
the fixed point ^(intersection between C and the unit-slope line through the origin)
is stable because the magnitude of the slope S of C at this point is less than unity.



The corresponding solution (x{t),y(t),z{t)) of Eq. (1) is projected onto the X-Y plane
(O.P)-(8.100/7) (O.PWS.100/7)

s =li ^ :: :1 -"•»-*

(c)

Figure 2: Stable period-1 orbit for a = 8 and £ = 100/7

in Fig. 2(b), and the time waveform for x(t) is shown in Fig. 2(c). Using the theory
from Appendix A, we can formulate the following operational interpretation, under the
standing assumption that / is a realistic model of Chua's circuit.

Interpretation 1 A stable fixed point of the 1-D map f implies the existence of a stable
periodic solution in Chua's circuit, called a period-1 orbit.

2.2 Period-3 orbit

Figure 3 shows the curve of the third iterate function /3, corresponding to a = 8.58
and /? = 100/7. This picture is generated from an algorithm included in the computer
program presented with this paper (see Section 5). A fixed point, x, for the map f3
which is not a fixed point for / is called a period-3 point for the Poincare map /. The
orbit of / based on such a point x visits the three-point sequence {x, f(x), f2(x)} before
mapping onto f3(x) = x. This sequence is called a period-3 orbit for our 1-D map and
each of its component is necessarily a fixed point for f3.

By the chain rule of differentiation, we obtain :

f3\x) =f'(ns))f'(m)f'(x)
It follows that the derivative of f3 is the same at x, f(x) or f2(x). One could use this
simple property to find out the period-3 orbits of the 1-D map / from the plot of f3 and
by the way determine the stability of this periodic orbit. Among the period-3 sequences



Figure 3: For a = 8.58 and p = 100/7, the 1-D map / is iterated three times to obtain
the plot of f3. The almost horizontal segments represent the slope of f3 at the 3 stable
fixed points. The other fixed points of f3 haveslopes greater than unity and aretherefore
unstable.

exhibited in Fig. 3, note that the sequence {Xi,X2l X3} is stable because the magnitude
of the slope of the curve of f3 at these points is less than unity.

Figure 4(a) shows the corresponding period-3 orbit on the curve C(a,/9), with a
schematization of the sequence of points visited by the orbit. The corresponding solution
(xM>yMj2(*)) of Eq. (1) is projected onto the X-Y plane in Fig. 4(b), and the time
waveform for x(t) is shown in Fig. 4(c). Still using the theory from Appendix A, we can
formulate the following operational interpretation, under the standing assumption that
/ is a realistic model of Chua's circuit.

Interpretation 2 A stable period-3 sequence of the 1-D map f implies the existence of
a stable periodic solution in Chua's circuit.

With the same standing assumption, provided by the theoretical approach presented
in Appendix A, the same interpretation can be extended to any periodic sequence of the
1-D map /.

Here we mention the fascinating result obtained by Li and Yorke6 in 1975. If a 1-D
continuous map of an interval into itself has a stable or unstable period-3 orbit, then
there is an uncountable set of initial points for which the flow leads to a chaotic motion
(see Section 2.5 for a presentation of another kind of chaos).

However, this particular chaotic behavior is generally physically unobservable7 be
cause for most -in the senseof Lebesguemeasure- other points, the system is not necessar
ily chaotic. In fact, both a computer simulation of eq. (1) with a = 8.58 and /? = 100/7,
and an experimental realization of Chua's circuit show that most initial points on the
interval [0, b] converge toward the unique stable period-3 orbit of the dynamical system.



(a.P)-(8J8.100/7) (a.0)-(8.58.100/7)
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Figure 4: Stable period-3 orbit for a = 8.58 and p = 100/7

2.3 Homoclinic orbits

A homoclinic orbit for the dynamical system (1) is a trajectory connecting an equilibrium
point to itself. This equilibrium point is of saddle-focus type in Chua's circuit. Fig. 5(b)
presents an image of a homoclinic orbit in Chua's circuit. The fixed point O has a one-
dimensional unstable manifold Wu (along the vector associated with a real eigenvalue
of the linear flow) and a two-dimensional stable manifold Ws (the plane associated with
a complex conjugate pair of eigenvalues of the flow, with negative real parts). As shown
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Figure 5: Structural instability of homoclinic orbits in i?3. (b) Homoclinic orbit for
the parameter set (a0,/?o) — (11.0917459,100/7). (a) and (c) Behavior of the unstable
manifold of the fixed point 0 for a < ao and a > cto respectively.

in this figure, the trajectory based at the origin first advances on the unstable manifold
Wu while in the middle region. Then its continuation in the outer region re-enters the
central region on the stable manifoldWs and keeps looping on it as time tends to infinity.



The trajectory cannot intersect the plane Ws transversaly, as a direct consequence of
uniqueness of solutions in autonomous systems.

As a general rule, a homoclinic orbit forms a closed loop like a periodic orbit, but
unlike a periodic orbit, it takes infinitely long time to traverse the loop. The orbit
approachs the stationary point in both forwards or backwards time but never reaches it
in a finite time, in each time direction. However, as stressed in Section 4, it can still be
thought of as a limiting case of periodic orbits for our particular system.

A homoclinic orbit is destroyed by a general perturbation of the dynamical system
in which it arises. This property, known as the structural instability of homoclinic orbits
in R3, comes from the non-transversality condition mentioned above. As depicted in
Fig. 5, a slight variation on the set of parameters which gives rise to a homoclinic orbit
dramatically changes the qualitative behavior of the flow, and the homoclinicity does
not hold any more. This remark, combined with the fact that the fixed point visited by
the homoclinicity is of saddle type, makes it virtually impossible to observe any such
orbit both experimentally, or through extensive computer simulations.

However, it remains possible for Chua's circuit to establish the existence of homoclinic
orbits. Having in mind the global 2-parameter bifurcation structure of eq. (1) briefly
presented in Section 4, one can even easily localize several homoclinic orbits with the
help of our 1-D map /.

2.4 Heteroclinic orbits

A heteroclinic orbit is the union of distinct fixed points of the flow, and the trajectories
connecting them. Unlike in the case of a homoclinic orbit, this union does not necessarily
form a closed loop in the phase space. The trajectories belonging to the heteroclinic

Figure 6: Heteroclinic orbit.

orbit approach the two stationary points they connect in either forwards or backwards
time as time tends to infinity. As shown in Fig. 6, any such trajectory is both included
in the unstable manifold of one fixed point and the stable manifold of the other fixed
point, in each linear region separately.

A heteroclinic orbit in eq. (1) disappears throught an arbitrarily small perturbation
and is thus structurally unstable in Chua's circuit.

Like homoclinic ones, the heteroclinic orbits of our dynamical system are experimen
tally and physically unobservable, as a direct consequence of the saddle-focus nature



of the fixed points and the structural instability of its heteroclinic orbits. But unlike
homoclinic orbits for which the knowledge of the global 2-parameter bifurcation struc
ture allowed their localization with the only help of the 1-D map / (see Section 4),
heteroclinic orbits are very difficult to localize.

2.5 Chaotic orbit

A pragmatic characterization of a chaotic trajectory is an unpredictable and bounded
motion. The limit set for chaotic trajectories is not a simple geometric object such as
an equilibrium point, a periodic or a quasiperiodic trajectory but is related to fractal
and Cantor sets. A chaotic trajectory accumulates on a so-called strange attractor.
The name 'strange attractor' refers to its surprising properties. The crucial one is the
so-called sensitive dependence on initial conditions : two trajectories of the attractor
initially infmitesimally close to one another exponentially diverge as time increases (in
practice, an initial condition is always specified within a tolerance interval). In other
words, the auto-correlation function becomes equal to zero after a finite amount of
time. Therefore, no matter how precisely the initial condition is known, the asymptotic
behavior of a chaotic trajectory is unpredictable.

Two examples of chaotic trajectories exhibited in Chua's circuit are shown in Fig. 7
: the Double Sroll attractor and the Rossler-type attractor. It is obvious from these pic-

(P.P)-(9.100/7)

3 =i i :

(c)

Figure 7: Chaotic trajectories, (a) Double Scroll attractor. (b) Time waveform of the
x component of (a), (c) Rossler-type attractor. (d) Time waveform of the x component
of(c).

tures that for these two sets of parameter's values, the trajectories are, indeed, bounded
and aperiodic. Rigorously, we would need some additional information (the spectrum

8



of the x component of the trajectory for example) to determine whether the solution is
quasiperiodic or not.

The reader is referred to Reference 4 for a rigorous mathematical proof of the chaotic
nature of the Double Scroll attractor, derived from a direct application of Shilnikov's
theorem. Also, some experimental results such as the calculation of Lyapunov exponents
or fractal dimensions confirm the occurence of robust chaos in Chua's circuit.

3 Catalog of all period-n orbits, n = 1,..., 5

Here we present an exhaustive catalog of a wide variety of stable periodic orbits exhibited
by the 1-D map / of Chua's circuit, for different parameter values. Here, the classification
of a periodic orbit is determined by the order of the periodic sequence of /, and the
position of the critical point a (a on the interval [0,6]) relatively to the components
of this periodic sequence. Briefly speaking, the critical point a is a gate beyond which
the trajectory emanating from an initial point on the interval [0,6] crosses the two
separation planes of the dynamical system (1) (namely the planes {(x,y,z) : x = ±1})
before reaching the first return point on the domain of our 1-D map. Instead, for an
initial point below a, the trajectory crosses only one discontinuity. For each type of
periodic sequence, a three-part figure is provided, with a set of exact values for a and p.
Sometimes the standing assumption leading to interpretation 1 and 2 in section 2 does
not hold : to a stable periodic orbit of / may correspond an unstable periodic orbit in the
original 3-D system (see Appendix A). In such a case, the unstable periodic trajectory is
ploted with a dotted curve instead of a solid curve for stable periodic trajectoties. The
parameter values have been arbitrarily chosen among non-empty intervals of the control
parameter's space (a,/9) for which the 1-D map / is known to contain the same type
of attractor. In this section, we use the following convention for each figure : (a) shows
the curve C(a,/9), (b) the projection of the solution \x(t)yy(t),z(t)j of eq. (1) onto the
X-Y plane and (c) the time waveform for x(t).

As the reader shall notice, the period orders of the orbits of the 1-D map may differ
from those of the real 3-D system described by eq. (1). These differences come from
the geometrical nature of the flow and the construction of the 1-D map. In a periodic
sequence of /, we count the number of revolutions performed by the original trajectory in
the upperregion ({(x,y,z) : x > 1}) of the piecewise-linear vector space, while ignoring,
apparently, the motion of this trajectory in the two other regions. For example, for
a = 10.49 and p = 100/7, the 1-D map / has a stable period-3 orbit which correspond
to a period-2 trajectory in the original system.

Furthermore, due to the symmetry of the vector field with respect to the origin, each
time the displayed periodic trajectory (b) is asymmetric, a second periodic trajectory
exists, which is the odd-symmetric image of the ploted trajectory. Here, we do not
represent them in order to make the plots more clear.



3.1 Period-1 orbits

A)
(B.P)=(8.10(y7)

(c)

B)
(g,P)=<4.71.S)

(c)

10

(g.P)=<8.HW7)

ams =1 1 £

S*o

(qp)=(4.71.S)

3 n :: 5



3.2 Period-2 orbits
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3.3 Period-3 orbits
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3.4 Period-4 orbits
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3.5 Period-5 orbits
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4 One-parameter bifurcation of asymmetric orbit
nj and symmetric orbit n1

In this section an analysis of the bifurcation phenomena occuring in Chua's circuit is
presented in order to make the occurence of periodic limit cycles in this dynamical
system easier to understand and provide a general comprehension of the mechanisms of
orbit creation.

In the previous sections, our concern was to establish the consistency of our approx
imation in predicting the existence of periodic trajectories in the 3-D system (1). Here,
we focus our attention on explaining the complex structure of periodicities in eq. (1),
for numerous windows in the parameter space. At this point this complexity is mostly
suggested by the high variety of periodic orbits of all orderobservedon the graph of / for
parameter values in these windows. The consistency of our approximation guarantees
the validity of this interpretation. Hence, for the purpose of this section, a one-parameter
bifurcation diagram of Chua's circuit is presented in Fig. 8 (we fix p = 100/7 whilevary
ing a). The main contribution of this diagram is to provide valuable information on the
approximate 1-D map / as well as on its bifurcation structure.

n§
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«*»:«»SK8K!:::::»sr

8°*,

"**....
u--. n1
* —-".

****>

WSJ"1*1

^2

\no

1
1 0
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Figure 8: Experimental bifurcation curves of the periodic orbits JIo an(^ II1- The de
formation of these orbits as they approach the homoclinicity Tj, is illustrated in Fig.
9. The unstable sections of the curves are plotted with dotted lines and the stable ones
with plain lines. Here the periodic orbits are represented with their full period, and not
the usual half period in the literature.

The dynamics of system (1) has a fixed point in each linear region : the origin O
of saddle-type focus, and P+ and P~ located in the two outer regions, and symmetric
with respect to the origin. In the central region 0 has a two-dimensional unstable
manifold and a one-dimensional stable manifold. For a < c*o> P+ and P~ are sinks.
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Figure 9: The two orbits IIo and II1 illustrated at the consecutive solid dot points on
Fig. 8 : (a) for the periodic orbit Ylo and (b) for n1- The stable periodic orbits are
plotted with solid curves, and the unstable ones with dotted curves.
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A Hopf-like bifurcation occurs at a = a0 - 7.0, giving rise to a pair of nonsymmetric
stable periodic orbits Xlo an<^ a symmetric unstable periodic orbit J[l. Fig. 8 shows
how these periodic trajectories evolve in the parameter space a (the ordinate gives the
period of the trajectory). The orbit IIo l°ses stability in a period-doubling bifurcation
at a = aPl, giving rise to a period-2 orbit IIo which then bifurcates at a = 8.1639
in a period doubling cascade process. After that, the orbits nj an(^ II1 wind around
a = Tj c± 11.0917, while period tends to infinity and amplitude of oscillations decreases
as they approach Tj. The periodic orbits converge towards the homoclinic orbit Tj in a
so-called homoclinic bifurcation. This behavior has been first observed in Chua's circuit

by George10 while the theory of this bifurcation is due to Glendinning and Sparrow11.
Fig. 9 shows the continuous deformation of IIo and II1 m*o the homoclinic orbit Tj.

In this process, IIo an<^ II1 successively lose and regain their stability through saddle-
node (atl,ctt2,ctt2) and pitchfork bifurcations (api,ap2,aP2). The stable sections of the
curves appear to be very short and even numerically indistinguishable as we approach
the homoclinicities. The latter bifurcations and the period-doubling bifurcations also
produce other periodic orbits of higher orders for which we expect a behavior similar
to IIo and II1 in the parameter space. We refer the reader to Reference 12 for further
details on the bifurcation diagram of Chua's circuit.

Through all simulations performed so far, the periodic orbits of the 1-D map / itself
behave identically to the periodic trajectories of eg. (1) in a-space. Although / is an
approximate model, the intrinsic errors it carries only affects the coordinate values of the
periodic orbits in this bifurcation diagram. The construction of a bifurcation diagram
on the dynamics of the map / itself produces an identical but shifted image of the
bifurcation diagram presented in Fig. 8, in the parameter space.

5 Algorithms for studying the 1-D map /

In this chapter we present some numerical algorithms to implement the approximate
1-D map /, to iterate this Poincare map, to locate its fixed points and to compute
the corresponding Schwarzian derivative's graph. These algorithms are introduced in
order to provide a complete set of tools to analyse / and then derive some qualitative
predictions on the dynamics of (1).

Here we keep most of notation introduced in Reference 4. The vector field associated
with equation (1) is odd-symmetric and afBne in the three regions £Li, Do and D\
partitioned by the U-\ = {(x,yyz)/x = —1} and U\ = {(x,y,z)/x = 1} symmetric
planes. This piecewise-linear vector field is characterized by the six parameter family
{(7o,c^,7o,<7i,u>i,7i}, where ((70 ± w^o>7o) and (af\ ± mJi,7i) are the eigenvalues of (1)
in Do and D\, respectively. In order to simplify analysis, affine changes of coordinates
reduce each of the three linear vector fields to a canonical real Jordan form. In the text,
"transformed Do" will refer to the region Do with the new coordinate system.
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5.1 Derivation of the 1-D map

The construction of / is entirely symmetric with the construction of the 1-D map ir*
described in Reference 4. The main contribution of this approach is the derivation of
explicit formulas to compute the coordinates of points belonging to the graph of /. The
algorithm presented here is an extension of the algorithm established in Reference 9 :

Step 1 Given the parameters (a,/?, mo, mi), calculate the eigen
value family {erbjWo, 7o» ^11^1,71}, using Laguerre's or Cor-
dano's method to solve the two third order characteristic

equations associated with (1).

Step 2 Normalize the eigenvaluesvia 70 = 70/w0, cr0 = <f0/tJo, 7i = Ti/^i,
o~i = ^i/tJi and k ——70/71.

Step 3 Find the coordinates of the fundamental points A0, #0 in
the transformed D0 region via (2.20), (2.21) and (2.22) of
Reference 4. Calculate the affine connection map $ using
the explicit formulas (4.40) and (4.44) of Reference 4.

Step 4 Given two return times to and t0, 0 < to, t0 < 00, calculate
the associated inverse-return time functions :

**<M.)-$K«& and U-(M;) =J$^
respectively. Where h = (1,0,1)T denotes the normal vector
from the origin to V\ in the transformed Do region, and (.,.)
the usual scalar product in R3.
Repeat this operation with t0 = t0-\- At (t0 = t0 + At) until
to (t0) is a first return time.

Step 5 From to and the value of u obtained in step 4, calculate
x(u) = A0u + (1 —u)Bo and the intersecting point y(u)1 of
the trajectory starting fromx(u) with Vi, in the transformed
Do region :

y(u) = y#(x(u))
_ (e<To*°(xx cos t0 —xy sin to), e<T°i°(xx sin to + xy cos t0))

Step 6 Convert the coordinates of points x(u) and y(u) from the
transformed Do region to the transformed D\ region via the
connection map $.

Step 7 Calculate X(u), the intersection of the trajectory starting
from x(u) and spiraling inward (in backward time) with the
Poincare line (the line OiVioo in Reference 4).

X(u) = (1 + Xy)*exp[—<7i (7T -|- arctanxj,)]

^ere the coordinates ofx(u) and y(u) are denoted by (xx,xy,xz) and (y*,yy,yz) respectively.
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Step 8 Calculate Y(w), the abscissa on ONi^ of the intersection of
the trajectory starting from y(u) with the Poincare plane
(the plane Wi in Reference 4).
If the trajectory emanating from {yx,yy) loops once in Di
before entering Do, the calculation of Y(u) necessarily re
quires an analytic algorithm. Considering that the main
contribution of this algorithm is to derive the exact repre
sentation of the graph of /, we recommend a global analyt
ical approach (Runge-Kutta method for example) in such
cases. Stop the simulation.
Else Y(u) is given by the following explicit equations :

Y(w) = ivl +vD*exp[-ai arctan JJ] if yx < 0
Y(u) = (vl +y2)*esp[-o"i(ir - arctan Jj)] if yx >0

Step 9 (X(w), Y(u)) defines a point of the 1-D map /. Repeating
the algorithm from step 4 to step 8, adding At to to at
each loop, a series of data points {X*,Y£}p belonging to
the graph of the 1-D map / is obtained.

In the above algorithm, the 1-D map / is constructed without solving any tran
scendental equation and is a piecewise-smooth function4. We refer the reader to other
remarks of interest on this algorithm in Reference9.

5.2 Practical algorithms for studying the 1-D map /

Since a major interest of the approximate Poincare map is to find the periodic orbits
of (1), the derivation of an iterated map is of great interest. The following algorithm
performs the iteration of / on the basis of the series of data points {-Xj, Y*}p obtained
with the previous algorithm. Here the Poincare map to be iterated is considered as a
piecewise-affine function (the linear interpolation of the points {X1, YL1}) :

Step 1 Acquisition of the number of iterations (n).

Step 2 Given an abscissa z0, determine the index j such that :

X) <xo< X)+l

Step 3 Calculate the corresponding ordinate yo on the graph of / :

yo=f(xo))=^-^y^f-^>
Step 4 Repeat n times the algorithm from step 2 to step 3 with

£o = yo-
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Step 5 (xo,2/o) defines a point of the 1-D map fn. Repeating the
algorithm from step 2 to step 4, adding Ax to xo at each
loop, a series of data points {X£,Ypn}p belonging to the
graph of fn is derived.

In order to find the periodic orbits of the 1-D map fn(n > 1), calculate the distance
d£ = (Ypn - X%). Each time its sign changes {d%d%+1 < 0), the 1-D map fn has a fixed
point between (X™,Ypn) and (X£+1,Ypn+1). Then interpolate linearly the coordinates
(x,x) and the slope of fn at this point from the formula :

= (Y^x; - Y;x^)/((y^i - Ypn) - (x;+1 - x;))
d(r(x))idx ~ o?+1 - y?)(x;+1 - x;)

Using the inverse linear transformation4, transform this fixed point back into the original
coordinate system. Then it is possible to look for a corresponding periodic orbit in the
3-D system.

In some control parameter intervals, the 1-D Poincare map of the nonlinear system
(1) is unimodal. Geometricaly, this occurs when the image of the first maximum of
/» f(xmaxi), is less than the abscissa of the first minimum xmtni. In such a case, the
interval [0, xmtni] is invariant for / : /([0,xm,ni]) C [0,xm,ni]. Considering that most of
theorems established so far on one-dimensional unimodal maps / require the Schwarzian
derivative of / to be negative, a numerical computation of the Schwarzian derivative's
graph of / provides usefull information. The Schwarzian derivative of / at x, denoted
Sf(x), is defined by :

/'(*)
Then, given a point (X*,Y*) on the 1-D Poincare map's graph, calculate Sf(Xp) by
using the following approximations for /', /" and /'" :

' f'(xlp) =ffiffi

f"(X}) = 2 {Xhi-Xir+iXh-X^}

f"'(Xl) = 6 ^f2-n>1-2-/,(^p)(^p.f2-^-2)-|/,/(^p)((^p.f2-^)2-(^p-^-2)2)
(•^p+2~"^p) +\Xp—Xp_2)

For almost all parameter values of the Chua's equations (1), the Schwarzian derivative
is found to be positive in some small intervals of [0,6]. However, it still remains possible
to find invariant and unimodal intervals on the graph of / in which the Schwarzian
derivative is negative. But here, no general rules apply.
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6 Conclusion

Though the 1-D map / is an approximate model of Chua's circuit, it provides valuable
qualitative and qualitative results on the periodic orbits of the original model (1). An
in-depth study of / demonstrate the consistancy of our one-dimensionnal model.

We conjecture that the topography of the periodic orbits of the 1-D map in the
parameter space is identical to the topography of periodic orbits in the 3-D dynamical
system (1), but infinitesimaly shifted. This shift leads to discrepancies between the
approximate and the original model periodic orbits, most generally detected when the
period order is high.

27



Appendix A : Correspondence between the periodic
points of the 1-D Poincare map f and the periodic
orbits of the dynamical system (1)

Here, the 2-D Poincare map P we use to analyse the dynamics of the flow (1) is the
original 2-D map from which we derived the approximate map / in Section 2. Its domain
in the outer region Di with the appropriate coordinate system4 which reduces the vector
field to the real Jordan form is the plane W\ = {(x,y,z) : y = 0}. Fig. 10 shows the

x; P(X*,o)

Figure 10: The 2-D Poincare map P defined on the plane W\. X* is a fixed point of P.
The double-snake shadowed area (S) has been intentionaly enlarged.

image of the region {(x,z) : x < X(0)} through the mapping P (X(0) is the limit
beyond which a point on W\ crosses or not a boundary plane before beeing mapped on
W\ by P). On this graph the semi-infinite line OiVioo represents the intersection of W\
whith the 2-D unstable manifold in the redion Di. The image of X^Nioo through the
mapping P is the double spiral BiCi^ioo. Following the concepts presented in Section
2, the approximate 1-D map / is constructed on the semi-infinite line ON\oo : the image
of a point (x, 0) based on -^(OjiVioo, mapped by P on the union of the double spiral with
the segment OBi, through the flow / is the projection of P(x,0) on the semi-infinite
line ONioo. The rigorous definition of / is stated as follow :

/ : ONloo — ONloo
f(M) = P(M) I,

Since we use an approximate model to predict the behavior of the 3-D system, it is
essential for the reliability of any result derived from the model to have a good knowledge
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of the intrinsic errors it carries, independently of the external errors added to the model
through computer simulations. Here we restrict our attention to the periodic orbits of
both 1-D and 2-D Poincare maps, and particularly to the period-1 orbits. The same
reasoning as follow applies to limit cycles of higher period. We try to provide an answer
to the following question :

Is there a general equivalence relationship between the period-1 orbits of the
1-D map and the period-1 orbits of the 3-D system (1)?

First let us consider a fixed point X* of the 2-D Poincare map P. Due to the
attraction towards the unstable manifold in Di, the image of the segment SU(X*) (Fig.
10) on the boundary plane U\ under the flow is confined to a very small neighborhood U
of x = {tp\(X*, 0)}t>o HU\. This neighborhood is then returned by the flow in the central
region on the same boundary plane U\ : a small area U' (in case the flow intersects the
lower boundary plane U-\ we apply the invariant flip map x —> —x to the intersecting
orbits). Eventualy, the flow projects U' in an infinitesimal area Kcentered in X*. Since
the vector field is continuous, the image of SU(X*) segment under the 2-D Poincare map
P is necessarily a continuous curve. This curve included in V of course intersects the
points X* and P(X*,0) and lies in S (S is the "double-snake" shadowed area in Fig. 10).

In / approximation, under the asumption that the double-snake area on W\ is
squeezed into a thin line sitting infinitesimaly close to OiVioo, we consider that only
the x coordinate is relevant to the dynamics of P. Then the approximate 1-D map is
constructed on the semi-infinite line OiVioo- So in order to obtain an exact character
ization of a limit cycle of the 1-D map, we should at least have the following equality
: P(X*,0)x = X*. But there is no evidence for P(X*,0)x to be strictly equal to X*.
Rigorously, to obtain the equality, one of the two following properties would have to be
fulfilled :

P[SU(X*)] is a straight vertical segment (x constant), (6)
X* belongs to the double spiral BiCiAioo. (7)

We assume that the first assertion is almost never true. And concerning the latter, it
remains impossible, as far as we know, to derive a general property till the attractor of
Chua's cicuit does not lie on the double spiral BiCiAioo- See Reference 4 for a detailed
analysis of the geometric structure of attractors exhibited in (1).

Now let us consider a fixed point, x ( 6 ONioo) of the 1-D Poincare map. Then
/(x) = x. This means that P maps x into a point X lying on the double spiral BiCiAioo,
and which coordinates fill the equality :

s\x = X

Using the same reasoning as above, we come to the conclusion that at least one of the
assertions (6) and (7) have to be true for X to be a limit cycle of the 3-D system (1).
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Obviously there is not any rigorous general equivalence relationship between the
period-1 orbits of the 1-D map / and the period-1 orbits of the 2-D map P. However,
the existence of a fixed point in the approximated 1-D map / can still condition the
existence of a periodic orbit in the 3-D system with slightly different characteristics
(stability, initial conditions,...), and vice-versa. In the simulations performed so far, the
numerical differences between the two systems appear to be negligible for the periodic
orbits of low order. As a general rule the periodic orbits seem to be shifted in the
parameter space. Each time an irregularity is observed, the shift between the periodic
windows forbids any overlap. In such a case, no periodic orbit can be observed at the
same time in both the approximate and original dynamical systems.

As well as predicting the existence of the periodic orbits of Chua's circuit, an another
interresting feature of the 1-D map / is its ability to predict the stability of these periodic
orbits. The characteristic multiplier of a periodic orbit of / (the slope of the graph of
/ at the fixed point for a period-1 orbit) is almost equal to the greatest characteristic
multiplier (different from unity) of the corresponding periodic trajectory in the 3-D
system. An explanation of this property can be derived from the study of the 2-D
poincare map P. Defining P as follows :

P-.Wi —» Wi
(x,z) —• (P1(x,z),P2(x,z))

the stability of an hyperbolic fixed point X* of P is determined by the eigenvalues of
the linearized map DP(X*). Using Floquet theory8, these eigenvalues are known to be
equal to two of the three charateristic multipliers of the periodic trajectory. The other
multiplier, associated with pertubations along the periodic trajectory, is always equal to
unity. The linearized map is written as :

*p(*'2)=(tfe)
Due to the contraction of the flow toward {(x,y,z)/z = 0}, the variations of P along
z-axis can be considered almost equal to zero. Therefore the linearized map is rewriten
as follow:

Then the eigenvalues assotiated with the fixed point X* of P are almost equal to
-^(X^X*) and 0. Therefore, as a matter of fact, any periodic orbit of (1.1) has a
stable manifold whose dimension is at least equal to 1, due to the zero value of one of
the characteristic multipliers.

By construction, we have the following relationship between / and P :

f(x) = P1(x,Q)
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Then the charateristic exponent of a periodic point of the one-dimensional map is equal
to -^?-(x,0). We conclude that the slope of the one-dimensional Poincare map at a fixed
point (the product of the slope at the sequence points for period-n orbits, with n > 1)
is a good approximation of the greatest characteristic multiplier (^-(x,z) ~ ^"(s, 0))>
different from unity, of the periodic orbit.

Appendix B : Experimental results

a T

Initial conditions

CommentsX0 ^0 Z0

IB

7 2.085 1.81217 0.31545 -1.5214 (stable)
7.5 2.172 2.10315 0.0899 -3.0072 (stable)

8 2.25 2.10455 0.25515 -2.49746 (stable)
8.1629 2.255 1.65234 -0.20943 -2.7124 Period doubling bif.

8.3 2.3 1.65 -0.21 2.7

10.5 2.75

11.6926 3.45 1.47245 0.16502 -1.02651 (stable)
10.915409923 4.582 1.00 -0.29859 -1.44218 (stable)

11.05 5.055 1.69325 -0.102 -2.57302

11.136 5.602 1.71205 -0.092 -2.57302

n1

8 2.287 2.954 1.27713 -3.07322

9 2.482 2.08 -0.36775 -4.51385

10 2.702 -2.3053 -0.0934 3.70658

11 2.968 2.03315 0.1 -3.07322

12 3.28 1.65241 -0.12841 -2.67183

13.736 4.525 -1.53955 0.11236 2.2777 Saddle node bif.

13.715 4.615 1.93349 0.15572 -1.96968 (stable)
13.706 4.7 1.92344 1.15615 -1.9428 Pitchwork bif.

13 5.257 2.0541 0.14884 -1.86609

10.4 6.657 2.05482 0.21377 -2.23035

11.2 8.747 2.16255 0.16592 -1.70372

Table 1: The continuous deformation of IIo an(^ II1

Table 1 gives the coordinates of some periodic orbits on the (a, T) plane, used to inter
polate the bifurcation diagram of Chua's circuit presented in Section 4. For each point,
initial conditions based on the corresponding stable periodic trajectory are provided.
Rigorously, these initial conditions are included in an infinitesimal neighborhood of the
corresponding periodic trajectory, but not exactly on the trajectory itself.

All our values have been obtained using INSITE, a software toolkit for the analysis
of nonlinear dynamical systems.

31



Appendix C : CHUA 1-D Map User's Guide

CHUA 1-D Map program runs on PC, on top of both the graphical user interface toolkit
Menuet and MetaWindow Software Corporation's MetaWINDOW graphics product.

After starting the program, the user has access to any of the following functions by
clicking with the mouse on the appropriate menu button.

Parameters

Choose the values of Chua's circuit parameters a, /?, m0 and mi. To set the value of
a particular parameter, choose the Parameter option in the main menu and then select
the parameter to be modified by clicking on the appropriate dialogue box. Then enter
the parameter value by typing the desired number. Table 2 shows the default choices of
parameter values.

a 9.0

p 100/7
mo -8/7
772i -5/7

Table 2: Default parameters for dimensionless Chua's circuit.

Options
The user is prompted to enter the number of data points he wants to use to interpolate

the graphs of the one-dimensional map and its iteration. Here, he can also specify the
maximum number of iteration of the 1-D map / and the value of the return time step
(see Section 5). To enter new values, type the desired number in the dialog box. Table
3 shows the default choices of the option values.

Return time step
Max. number of iteration

Data point number for Plot
Data point number for Iterate

0.02

8

1000

1000

Table 3: Default option values.

Plot

Display the graph of the aproximate one-dimensionnal Poincare map / of Chua's
circuit and the graph of the Schwarzian derivative sign.

Iterate

The user is first prompted to enter a number of iteration i. Then the Iterate function
plot the graph of the i-th. iterate of the 1-D map /.
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Eigenvalues
The Eigenvalues function displays the five normalized eigenvalue parameters of

Chua's circuit, corresponding to the current set of parameters (a, /?, mo,mi).

Min/Max
The Min/Max function stores the coordinates of minimum and maximum values of

the 1-D map / in the file minmax.dat. The abscissa of the critical point a on the graph
of / is also stored. Data files include the parameters for the simulation as a header and
are written in ASCII format.

Fixed Point

The Fixed Point function localizes the fixed points of the latter plot of the 1-D map
(either the map / or its iterates). For each fixed point, the function returns the slope of
the map at this point and initial conditions based on the corresponding periodic orbit in
the original 3-D dynamical system. All the results are stored in the file fixpt.dat. Data
files include the parameters for the simulation as a header and are written in ASCII
format.

Save

The Save function prompts the user for the names of files in which to save data from
the latter simulation. Data files include the parameters for the simulation as a header
and are written in ASCII format. The file does not include the Schwarzian derivative

sign simulation.

Quit
The Quit button exits the program gracefully.

Appendix D : C- Code routines for the construction
of the 1-D map /.
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/**<

/**

/**

/**

/**

/**

/*♦

/**

/**

/**

/**

/**

/**

/**

/**

/**

/**

This program is designed to study an approximate one-dimensionnal map
of Chua's circuit : an original 2-D poincare map is reduced to a map on
on a line into itself under the standing assumption that the flow is
contracted into an infinitesimal neighborhood of the unstable manifold
of the outer regions.
The following functions compute :

-the derivation of this ID-map with explicit equations
-the calculation of the associated Schwarzian derivative's graph
-the iterations of this 1-D map
-the fixed points of any iteration of the 1-D map

Written by Marc Genot 05/20/1992
Copyright University of California

Version 1 - 05/20/1992

***/

**/

**/

**/

**/

**/

**/

**/
** /

**/

**/

**/

**/
** /

**/

**/
*♦ /

•**/

Iinclude <stdio.h>

iinclude <math.h>

•include <string.h>
•include "complex.c"
•include "util.c*

•define YES 1

•define NO 0

•define Dim 3

•define Tmax 10

•define pi 3.14159265
•define MAX_ITER 8

/** dimension of the peacewise-linear circuit **/
/** maximum return time **/

/** maximal iteration value of the ID poincare map **/

typedef struct{
double x,y;
)point_2D;

point_2D A0.B0;
it **/

long int M,IT_POINT;
double dT;

double PHY[2][2 J;
double alpha,beta,mO,ml;

void EIGENVALUES();
void INITIALISATIONS();
void MAP();

void FINDJMINMAXO;
void ITERATION!);
void SCHWARZIAN_DER();
void SEARCH_FIXE_POINTS();

Fundamental points A and B in the DO transformed un

affine connection map **/
dimensionless parameters of the Chua's circuit **/

double sigma0,sigmal,gamma0,gammal,k ; /** Normalized eigenvalues parameters **/
double Xlmin,Xlmax,X2min,X2max; /** minimum and maximum values of X(u) for u=u+ and
u=u- **/

main(int argc, char *argv[])
{

static char slOI) = { "poincare" ); /** name of the file's storage of points be
longing to the ID map **/

static char s20M = { "/net/ataraxia/bin/xgraph • ),- /** UNIX command line to
execute xgraph **/

static char si[10],s2[50];
int it,visu,schwcal,sfp,itr,simu,minmax,Interpol;

);

P)

r)

long re
double **X,**Xit,Xa,X0;
void yes_or_no();

if(argc != 3) <
printf("Usage: run <Nb of data points which define the map f>\n");
printf(" <Nb of data points which define the iterate maps>\n

printf("Note
printf("
exit(0);

}
H = atol(argvtlj);
IT_POINT = atol(argv[2]);
dT = 2.0*((double)Tmax)/((double) M);

X = dmatrix(0.1,0,M-l);
Xit = dmatrix(0,1,0,IT_P0INT-1);
printf("\n"),•
printf ("Display the maximun/minimum values of the lD_map?"),- yes_or_jio(&minmax

printf("Calculate the schwarzian lie's sign? •),- yes_or_no(&schwca

printf("Display graphs? •),- yes_or_no(&visu) ,-
if (visu==YES){

printf ("Interpolate/print { y = x ) line? •),-
yes_or_no(&interpol);

In case of a malfunction of the graphics, check the\n");
command line running 'xgraph' in the main routine.\n");

do{

EIGENVALUES();

INITIALISATIONS();

strcpy(sl.slO);

MAP(sl,X,&Xa.&X0,&nb);

if(minmax==YES) FIND_MINMAX(X,Xa);
if(visu==YES){

strcpy(s2,s20);
strcat(s2,sl);

if(Interpol==YES) strcat(s2," -t lD_poincare_map &");
else strcat(s2," -nl -p -t lD_poincare_jnap &");
system(s2);

)

if(schwcal==YES)(
SCHWARZIAN_DER("lie",X,nb);
if(visu==YES){

strcpy(s2,s20);
strcat(s2,"lie -nl -P -t Schwarzian_lie &•);
system(s2);

}

printf("Print out fixed points? "),- yes_or_no(&s

if(sfp==YES) SEARCH_FIXE_POINTS(X,Xit,Xa,X0,nb,l);
printf (" Iterate the ID poincare map? •); yes_or_no(&i

if(itr==YES){

do{

strcpy(si,slO),•
strcat(sl,"_i");
ITERATION(sl,X,Xit,&it);
if((visu==YES)&&(it!=l)){

strcpy(s2,s20);
strcat(s2,sl);

if(Interpol==YES) strcat(s2,* -t iterated_poincare_map &•)



1D_MAP.C 1992/8/27 12i28:13 Page: 2

U);

else strcat(s2," -nl -p -t iterated_poincare_map &•);
system(s2);

)
if(it!=l)(

printf(" Print out fixed points?...."); yes_or_no(&sfp);
if(sfp==YES) SEARCH_FIXE_POINTS(X,Xit,Xa,X0,nb,it);

)

printf(• Continue iteration? "); yes_or_no(&itr);
)while (itr==YES),•

)

printf("Continue simulation with other parameters? •);yes_or_no(&sim

printf("\n");
}while(simu==YES);

free_dmatrix(X,0,1,0,M-l);
free_dmatrix(Xit,0,1,0,IT_POINT);

printf(•
printf(•

printf("

ID poincare map in 'poincare' file.\n");
Last iteration of the ID poincare map in 'poincare_i' file.\n

Schwarzian lie's sign in 'lie' file.\n\n");

/** Return Yes or NO and store the answer in 'reply' adress. **/
/** By default the answer is NO. **/
void yes_or_no(reply)
int *reply;

{
char re;

printf(" [y or n] : ");
scanf(*%s",&re);

if (re=='y') *reply = YES;
else *reply = NO;

/** Acquisition of the dimensionless parameters of the Chua's circuit **/
/** Calculation of the associated normalized parameter eigenvalues **/
/** using the Laguerre's method. **/
void EIGENVALUES()

{

int i,j0,jl,polish;
double m,reO[Dim],imO[Dim],rel(Dim),iml(Dim),p0.pl;
fcomplex atDim+1), rootsO[Dim+U, rootsl[Dim+lJ;
void zrootsO;

n");

n");

n"),-

n");

printf("••••••••••••»•••••••••••••••••••••••••••••••••••••••••••••••••••••••••\

printf(•»» Enter the dimensionless parameters H\

printf("«» for Chua's cicuit «»\

printf("•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••l»«l«\

printf(• alpha = ");
scanf(*%If*,&alpha);
printf(• beta = ");
scanf ("%lf,&beta) ;
printf(• mO = ");
scanf("%lf,&m);

);

)

mO » m + 1;

printf("
scanf("%lf",&m);
ml n m + 1;

polish a 1;
for (j0°0;j0<»l;j0++){

m » (l.-j0)*m0+j0*ml;
a[0J.r = alpha*beta*m;
a[l).r = alpha*m+beta-alpha,-
a[2].r = alpha*m+l.;
a(3).r = 1.;

for(i=0;i<=Dim;i++) a(i).i=0.;
if (j0==0) zroots(a,Dim,rootsO,polish);
else zroots(a,Dim,rootsl,polish) ;
)

for (i=l;i<=3;i++)(
if (roots0li].i=a0.)(

pO o roots0[i].r;
JO = (i+l)%3;

>
if (rootsl[i].i==0.) {

pi = rootsl[i] .r;
jl = (i+l)%3;

)

ml ");

/** normalized eigenvalue parameters **/
gammaO = p0/fabs(roots0(j0] .i);
sigma0 * roots0[j0]-r/fabs(rootsO[jO] .i);
gamma1 s pi/fabs(rootsl [jl] .i) ,-
sigma1 » rootsl[jlj.r/fabs(rootsl[jl].i);
k = -pO/pl;
printf("\n (gammaO, sigmaO, gammal, sigmal ,k)=\n");
printf(" (%7.4f,%7.4f,%7.4f,%7.4f,%7.4f)\n\n",gammaO,sigmaO,gammal,sigmal,

/** Calculate the explicite value of the affine connextion map and the fundamental
*/

/** points' coordinates A0 and BO **/
void INITIALISATIONS()

(

double a,p0,Q0,Ql;

pO = sigma0+(k*(sigmaO*sigmaO+l.0)/gammaO);
Q0 = (sigmaO-gammaO)* (sigmaO-gammaOJ+l.O.-
Ql ° (sigmal-gammal)*(sigmal-gammal)-t-1.0;
a = (sigmal*sigmal+1.0)/(k*(sigma0*sigma0+l)*(k+1.0)*Ql*gammal);

/** calcul of the fondamental points' coordinates **/
AO.X = 1.0;
AO.y = pO;
BO.x = gammaO*(gammaO-sigmaO-pO)/Q0;

BO.y o gammaO*(1.0-p0*(sigmaO-gammaO))/Q0;

/** expression of the affine connextion map **/
PHYI0J[0] n -a*gammal*(k+1.0)*(QO+gammaO*(sigmaO-gammaO)*((1.0/k)+1.0));
PHY[0]ll] = a*gamma0*gammal*(k+1.0)*((1.0/k)+1.0);
PHY[1][0] = -a*gamma0*((1.0/k)+1.0)*(sigma0-gamma0)*(sigmal*(sigmal-gammal)+1.

)

-a*gammal*(k+1.0)*(sigmal-gammal)*(sigmaO*(sigmaO-gammaO)+l.0);
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PHYtlJ[1J = a*gammaO*((1.0/k)+1.0)*(Ql+gammal*(sigmal-gammal)*(k+1.0));
)

/** Derivation of the ID Poincare map. The points belonging to its graph are **/
/** stored in the array (2,M) X, and written in fname file. **/
void MAP(fname,X,xa,X0,nb)
char *fname;
double **X,*xa,*X0;
long *nb;

{

long i;
int double_loop = NO;
int monot_l,monot_2 = YES;
long p = 1;
double tO o 0.0;
double umax = 0.0;

double umin = 100.0;

double u,IRT_f(),**Xbuff;
void xy_calcul () ,print_roap() ,-
FILE *fp;

Xbuff « dmatrix(0,l,0,M-l);
X[0][0] = 0.; X[l][0] = 0.;

*X0 = sqrt (l+sigmal*sigmal)*exp(-sigmal* (pi+atan(sigmal))) ,-
while (t0<Tmax){

do(
tO += dT;

u = IRT_f(t0,l); /** evaluation of u+(l,t0) **/
if (t0>Tmax) break;

if(u<aumax) monot_l = NO;
}while ((u<=umax) && (u<=l)),- /** evaluation of the first return time to <

/

if (u>l) break;
xy_calcul(&X[0](p),&X(l][p],u,t0,*XO,l);
umax = u;

P++;

)

P--;

Xlmax=X(0][p];

*nb=p+l;
tO = 0.5; p = 0;
while (t0<Tmax){

do(

tO += dT;

u = IRT_f(t0,-l); /** evaluation of u_(l,t0) **/
if (tO>Tmax) break;
if(u>=umin) monot_2 = NO;

Jwhile ((u>=umin) && (u>=l)); /** evaluation of the first return time tO **

if (u<l) break;
xy_calcul(&Xbuff[0][p],&Xbuff[1][p],u,t0,*X0,-1);
if (p==0) X2max=Xbuff[0][p];
umin = u;

P++;

)
*xa = (Xlmax+Xbuff[0]Ip-l])/2.0;

for (i=0;i<=p-l;i++){
X(0)t*nb+i] =» Xbuff (0] (p-i-H;
X[l][*nb+iJ n xbuff(1](p-i-1);
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}
*nb = *nb+p;

if(monot_l " NO) printf (• WARNING : u+ is non monotonic\n") ,-
if(monot_2 == NO) printf(• WARNING s u- is non monotonic\n");
print_map(fname,X,*nb);
free_dmatrix(Xbuff,0,l,0,M-l);

/** Calculate the maximum and minimum values of the 1-D Poincare map. **/
/** The algorithm include a threatement of the discontinuities. **/
void FIND_MINMAX(X,xa)
double **X,xa;

{
double diff=0.0;

long p;
int sign,max_nb;

p = 0 ; max_nb a 0; sign = 1;
while(X[0J tp]<=Xlmax)(

while(sign*diff>=0){
P++;

if (X(0][p]>Xlmax) break;
diff=X[l][pJ-X[l](p-l];

)

if (X[0](p]>Xlmax) break;
if (fabs(diff)<=0.1)(

if (sign°«l){
printfC Coordinates of maximum *2d : Xu=%10.81f Yu=%10.81f\n"

++max_nb,X[0][p-l),X[l](p-11) ;
)

else printf(" Coordinates of minimum %2d : Xu=%10.81f Yu=%10.81f\n"

max_nb,X[0J[p-l],X[l][p-l]);

)

sign = -sign;

else diff=0.0;

)

printf("\n Coordinates of 'a' (u = 1) : Xa=%10.81f\n\n", xa);

P++;

diff = (X[l]tp]-X(l)[p-1]);
if (diff>0){

sign & 1;
max_nb++;

)
else sign = -1;
while(X[0][p]<X2max){

while(sign*diff>=0){
P++;

if (X[0](p]>=X2max) break;
diffBX[l][p]-X(l][p-H;
)

if (X[0] [p]>»X2max> break;
if (fabs(diff)<=0.1){

if (signal) (
printf(" Coordinates of maximum %2d : Xu=%10.81f Yu=%10.81f\n'

++max_nb,X[0J[p-l],X[l)[p-1]);
}

else printf(• Coordinates of minimum %2d : Xu=%10.81f Yu=%10.81f\n"



1D.MAP.C 1992/8/27

max_jib,X[0] [p-1] ,X(1) [p-lj) ;

12:28:13 Page: 4

sign = -sign;

else diff=0.0;

)

printf("\n");

/** Acquisition of an iteration's order, it, and iteration the 1-D Poincare map. **/

/** The points belonging to its graph are stored in the array (2,M) Xit, and **/

/** written in fname file. **/

void ITERATION(fname,X,Xit,it)
char *fname;

double **X,**Xit;

int *it;

(

void iterate();

♦it = 0;

printf(" How many iterations?
scanf("%d",it);

if ((*it<=0) II (*it>MAX_ITER)){

do{

printf(• Value must be in [l..%d]
scanf("%d".it);

)while((*it<=0) II (*it>=MAX_ITER)) ,-

if (*it>l) iterate(*it,X.Xit,fname);

: ");

",MAX_ITER)

/** evaluation of the non-iterated poincare map's schwarzian lie, **/
/** -1 and 1 values are returned in "name" for corresponding negative or **/
/** positive schwarzian lie respectively, assoiated whith X **/
void SCHWARZIAN_DER(name,X,nb)

char *name,- /* file which will contains the schwarzian lie sign

double **X;

long nb;
ap */

(

FILE *fp;
double Xp(2][5];
long j;
int i,schwarzian_appr();

fp = f open (name, "w") ,•
for (j=l;j<=5;j++){

Xp{0](j-l]=X[0](j];
Xp{l][j-l]=X[lJlj];

/* points which define the ID poincare map */
/* number of points which define the ID poincare m

while(j<nb){
if(fabs(Xp[l][4]-Xp[l)t3])>=0.1){

j += 3;
for (i=0;i<=3;i++){

Xp[0](i] = X[0][j+i-4];
Xp(l](i] = X[l][j+i-4];

)

)
else{

fprintf(fp,"%lf %d\n",XplO](2],schwarzian_appr(Xp));
for (i=0;i<=3;i++H

Xp[0][i] = Xp[0][i+1];
Xp[l][il = Xp(l]{i+1];

)

)

Xp[0][4] = X[0J[jJ; Xp[lJ[4) = X[lJ[jJ;

fclose(fp);

/** look for the fixed points of the (it)th iterated poincare map and **/
/** print out the coresponding points in the real dynamical system whith **/
/** the slope of the poincare map for each fixed point **/
void SEARCH_FIXE_POINTS(X,Xit,Xa,X0,nb.it)
double **X,**Xit,Xa,X0;
long nb;
int it;

{

double di,dj,ka,pl,ay,az,bz;
long i;
void analyse_fixe_point();

ka = (ml-m0)/ml;

pi = sigmal+(sigmal*sigmal+l.0)/(gammal*k) ;
ay = (gamma0*gamma0+gamma0+beta-alpha*ka-(1.0-ka)*(gammal*gammal+gammal+b

ta))/

(alpha* (gammal-gammaO)) ,-

az o (alpha*ka*gamma0+(1.0-ka)*gammaO*(gammal*gammal+gammal+beta)
-gammal*(gammaO*gammaO+gammaO+beta))/(alpha*(gammal-gammaO));

bz = -(gammaO*gammaO+gammaO+beta+alpha*gammaO*mO)/alpha;

printf("••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••M
n"),-

printf("«»
n");

printfCH
\n",it);

printf("•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••»*»
n");

X0)

n"),

Fixed point of the ID poincare map

(%d-ith iteration)

printf("«» X(0)=%10.81f «s\n"

printf(-1111111II llflllll IfllftllllllltllllltllMtllflMfilftlHOIf Itllff11(11

if (it==i)(

di = X[0](1]-X(1)[1];
for(i=2;i<nb-l;i++)(

dj = X[0JtU-XtlJ[i];
if((Xt0][i]>aXa)&&(X[0][i-l]<=Xa)){

printf(•»• Xa
•«\n");

)
if ((di*dj<=0)&&(fabs(X[0]ti]-X[0][i-1] )<=0.1)){

analyse_fixe_point(X[0][i-1],X[1)[i-1),x[0)[i],X(1][ij.ka.pl,ay
az.bz);

)
di=dj;

)

)
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di = Xit[0][OJ-Xit[l]tO);
for(i=l;i<IT_POINT-l;i++)(

dj = Xit[0][i]-Xit[l][i];
if((Xit[0][i]>=Xa)&&(XittO)[i-l]<=Xa)){

printf("«# Xa
l«\n");

)

>

if <(di*dj<=0)&&(fabs(X[0][i]-X(0] [i-1])<=0.1)){
analyse_fixe_point(Xit[0][i-l],Xit[l][i-l],Xit[OJ[i],

Xit[l]fi),ka,pl,ay,az,bz);

di=dj;

)

n");

)

printf (-••••••••••••*l«H«««H««ft«»»m»««»»«H*«ft#H««»««»«««««ftfH«HH«»ttH\

/** Calculation of the fixed point's parameters. **/
void analyse_fixe_point(xi,yi,xj,yj, ka,pi,ay,az,bz)
double xi,yi,xj.yj,ka.pl,ay,az.bz;
{

double slope,fix,zO,fp;

fp = (yi*xj-yj*xi)/((yi-yj)-(xi-xj));
fix = (yi*xj-yj*xi)/((yi-xi)-(yj-xj));
zO = -((az+ka)*sigmal-(bz+ka)*pl)*fix/(sigmal-pl)-ka;
slope = (yi-yj)/(xi-xj);
printf("»« X(u)=%10.81f Xo=(%8.61f %8.61f %8.61f) Slope=%9.4f ••\n",

fp,-(1.0-ka)*fix+ka,-(ay*sigmal-m0*pl)*fix/(sigmal-pl),z0, slope),

/** Iteration of the lD_map **/
void iterate(iter,X,Xit,fname)
int iter;

double **X,**Xit;
char *fname;

{

long p = 0;
int i;

double dX,Xc,Yc,which_x();
FILE *fp;

fp=fopen(fname,"w");

fprintf(fp,"%16.14f %16.14f\n",0.,0.),-
fprintf(fp,"%16.14 f %16.14f\n",X2max,X2max);
fprintf(fp,"\n");
fprintf(fp,"%16.14f %16.14f\n",0.,0.);
dX = X2max/IT_POINT;
Xc = dX;

while (Xc<=X2max){
Yc = which_x(Xc,X);

for (i=2;i<=iter;i++) Yc=which_jc(Yc,X) ;

/** Yc

/** Yc

Xit[0][p] = Xc;
Xit[l][p] = Yc;
P++;

if (Yc<=X2max) fprintf(fp."%16.14f %16.14f\n",Xc,Yc);
else(

fprintf(fp,-\n") ;

f(Xc)

fofo.-ofof(Xc) *

**/

** /

do{

XC += dX;

Yc = which_x(Xc,X); /** Yc = f(Xc)

for (i=2;i<=iter,-i++) Yc=whichjc(Yc,X); /** Yc = fofo. .ofof(Xc)

Xit[0][p] = Xc;
Xit[l](p] = Yc;

P++;

)while((Yc>X2max) && (Xc<=X2max));
}

Xc += dX;

fclose(fp);

/** Find the two points in the 1-D Poincare map (X) such that xi is included **/
/** between the abscissa components of this two points. **/
double which_jc(xi,X)
double xi,**X;

(

long i = 0;
double d,y;

y - xi;
if (xi<=X2max){

do(

d=xi-X[0)[i++];
}while(d>=0.0);

i--;

y = ((X[l][i]-X[l][i-l])*xi-X(l][i]*X[0][i-l]+X(l][i-l]*X[0][i])/
(X[0)(i]-X[0][i-1));

}

return(y);

/** Given a point Xp[][2J of the 1-D Poincare map, this function calculate **/
/** the Schwarzian derivative. Only the sign of the derivative is returned. **/
int schwarzian_appr(Xp)
double (*Xp)[5];

{

double fl,f2,f3,s,dTl,dT2,dT3,dT4;
int sch;

dTl = Xpt0][3]-Xp[0][2];
dT2 = Xp[0][2]-Xp[0J[lJ;
dT3 = Xp[0][4]-Xp(0][2];
dT4 = Xp[0][2]-Xp[0][0];
fl = (Xp[l][3]-Xp[l][l])/(dTl+dT2);
f2 = 2.0*(Xpll][3]+Xp[l][l] - 2.0*Xp[l][2] + fl*(dT2-dTl))/(dTl*dTl+dT2*dT2),
f3 = 6.0*(Xp[l][4J-Xp[l][0] + 0.5*f2*(dT4*dT4-dT3*dT3) - fl*(dT3+dT4))/

(dT3*dT3*dT3+dT4*dT4*dT4);
s = f3*fl-1.5*f2*f2;
if (s<=0) sch = -1;
if (s>0) sch = 1;
return(sch);

)

/** Calculate Xu and Yu corresponding to the values of u and t.
/** The parameter mode indicates weither u=u+ or u=u--
void xy_calcul(Xu,Yu,u,t,X0,mode)

**/

**/
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double *Xu,*Yu,u,t,X0;
int mode;
{

double pO,pl,rl,tetal,rXO;
point_2D X,Y,X1,Y1;

X.x = u*A0.x+(1.0-u)*B0.x;
X.y = u*A0.y+(1.0-u)*B0.y;
Y.x = mode*exp(sigmaO*t)*(cos(t)*X.x-sin(t)*X.y);
Y.y = mode*exp(sigmaO*t)*(sin(t)*X.x+cos(t)*X.y);

pO = sigmaO+k*(sigmaO*sigmaO+l)/gammaO;
pi = sigmal*(sigmal*sigmal+l)/(gammal*k);
Xl.X » PHY[0J[0]*(X.X-1.0)+PHY[0][1]*(X.y-pO)+l.0;
Xl.y = PHY[lJ[0]*(X.x-1.0)+PHY{l][l]*(X.y-p0)+pl;
Yl.x = PHY[0][0]*(Y.X-1.0)+PHY[0][1]*(Y.y-pO)+l.0;
Yl.y a PHY[l][0]*(Y.x-1.0)+PHY[l](l]*(Y.y-pO)+pl;
rl = sqrt(Yl.x*Yl.x+Yl.y*Yl.y);
tetal = atan(Yl.y/Yl.x);

♦Xu = sqrt(Xl.x*Xl.x+Xl.y*Xl.y)*exp(-sigmal*(pi+atan(Xl.y)));

if (Yl.y>=0.0)
if (Yl.x<=0.0) *Yu = rl*exp(sigmal*(-tetal));
else *Yu = rl*exp(sigmal*(pi-tetal)) ,-

else(

if (Yl.x<=0.0)(
rXO = XO*exp(sigmal*tetal);
if (rl<=rX0) *Yu = rl*exp(sigmal*(2*pi-tetal));
else{

printf(" Some points on the 'exit gate' hit LI line before they
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are mapped\n");

alculation\n");

cuit.\n\n");

)

)

else(

printf(• onto the Wl plan by the poincare map P. The ID-map's c

printf(" then requires solving transcendental equation.\n");
printf(" Choose another dimensionless parameters for Chua's cir

exit(0);

rXO = XO*exp(sigmal*(pi-tetal));
if (rl<=rX0) *Yu = rl*exp(sigmal*(pi-tetal));
else{

printf(" Some points on the 'exit gate' hit LI line before they

printf(" onto the Wl plan by the poincare map P. The ID-map's c

printf(• then requires solving transcendental equation.\n");
printf(' Choose another dimensionless parameters for Chua's cir

exit(0);

are mapped\n")

alculation\n");

cuit.\n\n"),-

}

)

)
if(*Yu<=X0){

do{

*Yu = *Yu * exp(sigmal*2.0*pi);
}while(*Yu <= X0);

**/

/** Calculation of u. The parameter mode indicates weither u=u+ or u=u-.

double IRT_f(t.mode)
double t;

int mode;

(

double div;

div = (exp(sigmaO*t)*(cos(t)*B0.x-sin(t)*B0.y)+exp(gamma0*t)*(1.0-B0.x)-mode)
/(exp(sigma0*t)*(cos(t)*(B0.x-1.0)-sin(t)*(B0.y-A0.y))+exp(gamma0*t)*(

.O-BO.x));
return(div);

)

/** Print X array in fname file **/
void print_map(fname,X,nb)
char *fname;

double **X;

long nb;

(

long i;
FILE *fp;

fp = fopen(fname, "w") ,-

for (i=0;i<=nb-l,i++) fprintf(fp,"%16.14f %16.14f\n",X[0][i],X[1][i])
fprintf(fp,"\n");
fprintf(fp,"%16.14f %16.14f\n".0.,0.);
fprintf(fp,"%16.14f %16.14f\n",X2max,X2max);
fclose(fp);

•define EPS 2.0e-12

•define MAXM 100

/** Given the degree m and the m+1 complex coefficients a[0..m] of the polynomial *
/

/** a[0)+.,+a[m](x..x), this routine successively calls laguer and finds all m *
/

/** complex roots in roots[l..m]. The logical variable polish should be input as *
/

/** TRUE(l).

/

void zroots(a,m,roots,polish)
fcomplex a(],roots[],*
int m,polish;
{

int jj.j.i;
fcomplex x,b,c,ad[MAXM] ;
void laguer{);

for (j=0;j<=m;j++) ad[j]0a[j];
for (j=m;j>=l;j —) (
x=Complex(0.0,0.0) ,•

laguer(ad,j,&x,EPS,0);
if (fabs(x.i) <= (2.0*EPS*fabs(x.r))) x.i=0.0;
rootslj]=x;
b=ad[j];
for (jj=j-l;jj>=0;jj-) (
c=ad(jj],-
ad[jj]=b;
b=Cadd(Cmul(x,b),c);

)

)

if (polish)
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for (j»l; j<=m,-j++)
laguer(a,m,&roots[j],EPS,1);

for (j=2;j<=m;j++) (
x=roots[j];
for (i=j-l;i>=l;i—) {
if (roots[i].r <= x.r) break;
roots[i+1]=roots[i];

)

roots{i+1]=x;
)

)

•undef EPS

Kundef MAXM

•define EPSS 2.e-14

•define MAXIT 100

/** Given the degree m and the m+1 complex coefficients a[0..m] of the polynomial **
/

/** a[0)+..+a[m](x..x), and given eps the desired fractionnel accuracy, and given **
/

/** a complex value x, this routine improves x by Laguerre's method until it con- **
/

/** verges to a root of the given polunomial. For normal use, polish should be **
/

/** input as FALSE(O). **
/

void laguer(a.m.x,eps,polish)
fcomplex a(],*x;
int m,polish;
double eps;
{

int j.iter;
double err,dxold,cdx,abx;
fcomplex sq,h,gp,gm,g2,g,b,d,dx,f,xl;
void nrerror() ;

dxold=Cabs(*x) ;

for (iter=l,-iter<=MAXIT;iter++) (
b=a[m];

err=Cabs(b);

d=f=Complex(0.0,0.0);
abx=Cabs(*x);

for (j=m-l;j>=0;j —) {
f=Cadd(Cmul(*x,f),d);
d=Cadd(Cmul(*x,d),b);
b=Cadd(Cmul(*x,b),a[j]);
err=Cabs(b)+abx*err;

)
err *= EPSS;

if (Cabs(b) <= err) return;
g=Cdiv(d,b);
g2=Cmul(g,g);

h=Csub(g2,RCmul(2.0,Cdiv(f,b)));
sq=Csqrt(RCmul((float) (m-1),Csub(RCmul((float) m,h),g2)));
gp=Cadd(g,sq);
gm=Csub(g,sq);
if (Cabs(gp) < Cabs(gm))gp=gm;
dx=Cdiv(Complex((float) m,0.0),gp);
xl=Csub(*x,dx) ;
if (x->r == xl.r && x->i == xl.i) return;

*x=xl;

cdXsCabs(dx);

if (iter > 6 && cdx >= dxold) return;
dxoldscdx;
if (!polish)
if (cdx <= eps*Cabs(*x)) return;

)

nrerror("Too many iterations in routine LAGUER"),
}

•undef EPSS

•undef MAXIT



Appendix E : The Amplitude Next Map of Chua's
circuit.

In this appendix, we briefly study the dynamics of another one-dimensional map, the
so-called Amplitude Next Map, uncorrelated with the map / presented in the previous
sections. The Amplitude Next Map has been first constructed and applied to the analysis
of the flow of a continuous-time dynamical system by Lorenz.

We make the observation that in Chua's circuit the maximum values of the time

waveform components of the trajectory partly condition the geometric structure of the
attractor : for example, at some critical values the trajectory accumulates on either a
double scroll or a Rossler-type attractor.

Figure 11: The construction of the Amplitude Next Map.

Denoting by Mn the ra-th relative maximum of a given time waveform component of
the trajectory (see Fig. 11), x(t) for the purpose of this appendix, the Amplitude Next
Map g is defined as follow :

g(Mn) = Mn+1 (8)

Fig. 12 shows different patterns of the one-dimensional map g of Chua's circuit, obtained
by fixing (/9,mo,rai) = (100/7, —8/7,-5/7) while varying a. Yet, in each non-periodic
case, the map is clearly multivalued and defined on the union of distinct intervals.
Therefore the derivation of results from the map g appears to be very uneasy and
would require a far more in-depth analysis though it is not guaranteed that any valuable
information on Chua's circuit would come out. For a stable periodic trajectory, the
graph of the corresponding Amplitude Next Map is composed of a finite number of
isolated points.

Eventually we provide here an algorithm for the construction of the Amplitude Next
Map applied to Chua's circuit :

Step 1 Enter the time waveform component x(t), y(t) or z(t) of the
trajectory to be analysed, with a set of parameter values.

Step 2 Given arbitrary initial conditions in any region of the piecewise-
linear vector field, initialize the linear system to be inte
grated.
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Figure 12: Some patterns of the Amplitude Next Map g : (a) corresponding to the
Rossler type attractor and (b) to the Double Scroll attractor in Chua's circuit.

Step 3 Integrate the linear system.
If the trajectory crosses a boundary plane, find the crossing
point and go to Step 2, with new initial conditions based on
a boundary plane.

Step 4 While performing Step 2 and Step 3, localize the relative
maximum values and store the data points (Mn,Mn+i).

Appendix F : C- Code routines for the construction
of the Amplitude Next Map g.
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This program is designed to study the one-dimensional Amplitude Next
Hap, F, defined as follow :

Xn+1 u F(Xn)

where Xn is the n-th mesured maximum of the time waveform of any
component x(t), y(t) or z(t) of the trajectory based at Xinit. Here
the dynamical system under study is Chua's circuit.

Version 1 - 07/20/1992

Author : Marc GENOT

Copyright : University of California

include <stdio.h>

include <math.h>

include •complex.c*
include •util.c*

define Dim 3

define STEP 0.01

double alpha, beta, mO, ml; /* circuit parameters */

/* argc=number of command-line arguments */
/* *argvf]=pointer to an array of character string */
main(int argc, char *argv[])

{

double x (),y ().z ();
static double (*dispatch[J) () = (x,y,z);
double xinit[Dim];

int option;
void SEQUENCEO;

if(argc != 4) {
printf('Usage: run <alpha> <beta> <option>\n');
printf(• For <option> enter a component of the trajectory\n*),
printf(• (0 <— x, 1 <-- y, 2 <-- z)\n');

exit(0);

)

alpha=atof(argv[l]);
beta=atof(argv(2]);
mO = -1.0/7.0;

ml = 2.0/7.0;

xinit[0] b 0.1;

xinit[1] = 0.1;
xinit{2] = 0.1;
option = atoi(argv[3J) ,-

SEQUENCE(•reference",dispatch[option),xinit, option);
printf('The Amplitude Next Map data are stored in file 'reference'An');

"*/

**/

**/

**/
** /

** /

**/

**/

**/

**/

**/

**/

>**/

/** For an arbitrary initial condition, this procedure determine the sequence of reg
ions **/

/*♦ i visited by the trajectory, and the corresponding time intervals dti.
**/

/** The initial region is return in 'initial_region' value and the successive time i
ntervals **/

/** in 'seq'
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void SEQUENCE(fname,coordinate,xinit,option)
char *fname;
double ('coordinate)() ;
double *xinit;

int option;
{

int region;
double di,dj,t,tmax = 0.0;
double xlast,xval,ccor_val,coor_last =
double xn = 0.0;

double a[Dlm+l];
fcomplex s(Dim];
fcomplex k[Dim);
FILE *fp;
void initialization);
double x(), y(), z(), find_crossing();

fp = fopen(fname,"w");

xlast = xinit(0);

if(xinit[0] > 1.0) region = 2;
else if(xinit(0) < -1.0) region = 0,-

else region = 1;
initialization(region,xinit,a,k,s);
do (

t+=STEP;

tmax+=STEP;

xval b x(t,a,k,s);

/** check to see if there is any crossing **/
if((xval-1.0)*(xlast-1.0) < 0.0 II (xval+1.0)*(xlast+1.0) < 0.0){

if(xval > 1.0) region = 2;
else if(xval < -1.0) region = 0;

else region = 1;
t = find_crossing(t,STEP,a,k,s);
if(xval>0.0) xinittO] = 1.0;
else xinit(0] » -1.0;
xinit[U » y(t.a.k.s);
xinit[2] = z(t,a,k,s) ,-
t = 0.0;

xval » xinit [0] ,-

initialization(region,xinit,a,k,s);
}

xlastsxval;

)while(tmax<1000.);

/* region of current trajectory */

0.0;

roots of cubic eq */
coefficient of solution */

tmaxsO.O;

do {

t+=STEP;

tmax+aSTEP;

xval b x(t,a,k,s);

coor_val e coordinate(t,a,k, s) ,-

/** check to see if there is any crossing **/
if((xval-l.O)Mxlast-l.O) < 0.0 11 (xval+1.0)*(xlast+1.0) < 0.0){

if(xval > 1.0) region = 2;
else if(xval < -1.0) region = 0;

else region = 1;

t a find_crossing(t,STEP,a,k, s) ,-
if(xval>0.0) xinit[0] = 1.0;
else xinit[0] = -1.0,-

xinit(l) » y(t,a,k,s);
xinit(2) = z(t,a,k,s) ,-
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t = 0.0;

xval b xinit[0];
coor_val = xinit[option];
initialization (region,xinit,a,k,s);
}

di = dj;
dj = coor_val - coor_last;
if ((di>0.0) && (di*dj<0.0))(

if (xn != 0.0) fprintf(fp,'%12.101f %12.101f\n',xn,coor_last);
xnBCoor_last;

)

coor_last=coor_val;
xlast=xval;

)while(tmax<2000.0);

fclose(fp);

void initialization(region,xinit,a,k,s)
int region;
double *xinit,*a;
fcomplex *k,*s;
{

double z0[Dim]; /* reexpress initial conditions */
void initabcdO, initial_condition(), findrootO, calc_coeff () ;

initabed(a,region);
initial_condition(zO,a,xinit);
findroot(a,s);

calc_coeff(k,s,a,z0);

/** initialize the variable for 3rd order differential equation **/
/** for different region 0, 1, and 2 of the piecewise nonlinear **/
/** resistor ♦*/

void initabcd(a,region)
double *a;

int region;

<

a[l]= alpha;
a[2] = -1.0*beta;

/** first check the what is the current region **/
if(regions=0) {

a[0] = -1.0*alpha*ml;
a[3] = alpha*(m0-ml);

>

else if(region==l) {
a[0) = -1.0*alpha*m0;
a(3) = 0.0;

}

else if(regionB=2) {
a[01 = -1.0*alpha*ml;
a[3J = alpha*(ml-m0);
)

else printf("Error in initabcdO\n");

/** use bisection method to find crossing
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double find_crossing(t,dt,a,k,s)
double t,dt,*a;

fcomplex *k,*s;
(

double xval, xmid, tmid, rtb, deltat, xacc;

/** specified root accuracy **/
xacc b I0e-15;

/** first determine what type of crossing **/
xval - x(t,a,k,s);

xmid b x(tmid = t-dt,a,k,s);

if ((xval-l)*(xmid-l) < 0.0) {
xval -b 1.0;

xmid -s 1.0;

rtb = xval < 0.0 ? (deltat=tmid-t,t)
do (

xmid = x(tmid = rtb+(deltat*=0.5>,a,k,s) - 1.0,-
if(xmid <= 0.0) rtb=tmid;

if(fabs(deltat) < xacc II xmid =b 0.0) return rtb;
}while(l);

)

else ( /** cross at x=-l **/
xval +b 1.0;
xmid +b 1.0;

rtb = xval < 0.0 ? (deltat=tmid-t,t) : (deltat=t-tmid,tmid);
do (

xmid = x(tmid = rtb+(deltat*=0.5),a,k,s) + 1.0;
if(xmid <b 0.0) rtb=tmid;
if(fabs(deltat) < xacc II xmid == 0.0) return rtb;
)while(l);

)

/** cross at x=l **/

(deltat=t-tmid,tmid);

/** calculate the initial conditions of Chua's circuit **/
/** with the appropriate coordinate basis **/
void initial_condition(zO,a,xinit)
double *z0,*a,*xinit;

(

/** calculate equivalent initial conditions **/
z0[0] » xinit(2);

z0[l] = a[2]*xinit(l];

z0[2] = a[2]*(xinit[0] - xinit[l] + xinit[2]);
)

/** Use Laguerre's method to calculate the roots of the caracteristic equation **/
void findroot(a,s)

double *a;

fcomplex *s;

{

int i;
int polish b i;
fcomplex coef f[Dinu-1] ,•
void zroots();

for(i=0,-i<BDim;i++) coeff[i].i = 0.0,-
coeff[0).r = a[2)*a[0J;
coeffdJ.r = -a(0]-a[l]-a[2];
coeff[2].r = 1.0-a(0];
coeff[3).r = 1.0;
zroots(coeff,Dim,s,polish);
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/** Calculate the coefficients, k[], explicitly **/
void calc_coeff(k,s,a,zO)
fcomplex *k,*s;
double *a,*zOj
{

fcomplex M[3][3]; /* the Alternant Matrix */
fcomplex cl, c2, c3, c4; /* temporary storages */

/* first check the type of roots */
cl = Cmul(Csub(3[0],s[l]),Csub(s[0],s[2])) ;
M[0][0] = Cdiv(Cmul(s[l],s[2]),cl);
C2.r = -1.0; c2.i = 0.0;

M[0][1] = Cdiv(Cmul(c2,Cadd(s[lJ,s[2])),cl);
c2.r = 1.0; c2.i = 0.0;
M[0][2] b Cdiv(c2,cl);

cl = Cmul(Csub(s[l],s[2J),Csub(s(lJ,s[0]));
M[1][0] » Cdiv(Cmul(s[0],s[2]),cl);
C2.r = -1.0; c2.i = 0.0;
M[l][l] b Cdiv(Cmul(c2,Cadd(s[0],s[2])),cl);
C2.r b 1.0; c2.i b 0.0;
M[l][2] = Cdiv(c2,cl);

cl » Cmul(Csub(s(2),s[0)),Csub(s[2],s[l)));
M[2][0] « Cdiv(Cmul(s[0),s[lJ),cl);
c2.r = -1.0; c2.i = 0.0;
M[2][1] = Cdiv(Cmul(c2,Cadd(s[0],s[l])),cl);
c2.r = 1.0; c2.i b 0.0;
M[2) [2] = Cdiv(c2,cl);

cl.r = z0[0]-a(3]/a[0]; cl.i = 0.0;
c2.r = Z0[1]; c2.i = 0.0;
c3.r = z0[2]; c3.i = 0.0;
k[0) = Cadd(Cadd(Cmul(cl,M[0] [0]) ,Cmul(c2,M[0)[1])),Croul(c3,M[0][2]));
k[l] = Cadd(Cadd(Cmul(cl,M[l] [0]) ,Cmul(c2,M[l][1])),Cmul(c3,M[l](2)));
k[2] = Cadd(Cadd(Cmul(cl,M[2)[0]),Cmul(c2,M[2][1])),Cmul(c3,M[2)[2]));

double x(t,a,k,s)
double t,*a;

fcomplex *k,*s;

(

fcomplex x, tempi, temp2, temp3;
fcomplex Cexp() ,-

tempi = Cadd(RCmul(l/a[2],Cmul(s[0],s[0])),RCroul(l/a[2],s[0])); tempi.r -= 1.0;

temp2 = Cadd(RCmul(l/a[2],Cmul(s(l],s[l])),RCmul(l/a[2),s[l])); temp2.r -= 1.0;

temp3 = Cadd{RCraul(l/a(2),Cmul(s[2J,s[2J)),RCmul(l/a[2],s[2))); temp3.r -= 1.0;

x = Cadd(Cadd(Cmul(templ,Cmul(k[OJ,Cexp(RCmul(t,s[0))))),
Cmul(temp2,Cmul(k(lJ,Cexp(RCmul(t,s[l]))))),
Cmul(temp3,Cmul(k[2],Cexp(RCmul(t,s[2J)))));

x.r = x.r - a[3]/a[0J;

return(x.r);

double y(t,a,k,s)
double t,*a;
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fcomplex *k,*s;
{

fcomplex y;
fcomplex Cexp();

y = Cadd(Cadd(Cmul(s[OJ,Cmul(k[0],Cexp(RCmul(t,s[0]))))
Cmul(s[lJ,Cmul(k[l],Cexp(RCmul(t,s[l]))))),
Cmul(s[2],Cmul(k[2),Cexp(RCmul(t,s[2])))));

y.r = y.r / a[2];
y.i = y.i / a[2];
return(y.r);

double z(t,a,k,s)
double t,*a;

fcomplex *k,*s;

(

fcomplex z;
fcomplex Cexp();

z = Cadd(Cadd(Cmul(k[0),Cexp(RCmul(t,s[0])>),
Cmul(k[l],Cexp(RCmul(t.s[l])))),
Cmul(k[2],Cexp(RCmul(t,s[2))))) ,-

z.r a z.r + a[3J/a[0];
return(z.r);

/** take the exponential of a complex number **/
fcomplex Cexp(x)
fcomplex x;
(

double ereal;
fcomplex result;

ereal b exp(x.r) ,-
result.r = ereal * cos(x.i);
result.! b ereal * sin(x.i);
return (result);

#define EPS 2.0e-12

♦define MAXM 100

/** Given the degree m and the m+1 complex coefficients a[0..mj of the polynomial *
/

/** a[0]+..+a[m](x..x), this routine successively calls laguer and finds all m *
/

/** complex roots in roots[l..m]. The logical variable polish should be input as *
/

/** TRUE(l). *

/

void zroots(a,m,roots,polish)
fcomplex a[],roots[];
int m,polish;
(

int jj,j,i;
fcomplex x,b,c,ad [MAXM] ;
void laguer();

for (j=0;j<=m;j++) adtj]=a[j];
for (JBm;j>=l;j—) {



A_N_MAP.C

x=Complex(0.0,0.0);
laguer(ad,j,&x,EPS,0) ;
if (fabs(x.i) <b (2.0*EPS*fabs(x.r))) x.i=0.0;
roots[j-IJbx;
b=ad[j];
for (jJBJ-l;jj>=0;jj—) {
c=ad[jj]f
ad[jj]=b;
b=Cadd(Cmul(x,b),c);

)

>

if (polish)
for (j=l;j<=m;j++)
laguer(a,m,6roots(j-l],EPS,1);

for (j=2;j<Bm,-j++) {
xsroots[j-lJ;
for (i=j-l;i>=l;i—) (
if (roots[i-1].r <= x.r) break;
roots[i]=roots[i-l];

>
roots[i)=X;

)

)

•undef EPS

•undef MAXM

•define EPSS 2.e-14

•define MAXIT 100
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/** Given the degree m and the m+1 complex coefficients a[0..m] of the polynomial **
/

/** a[0]+..+a[m](x..x), and given eps the desired fractionnel accuracy, and given **
/

/** a complex value x, this routine improves x by Laguerre's method until it con- **
/

/** verges to a root of the given polunomial. For normal use, polish should be **
/

/** input as FALSE(O). **
/

void laguer(a,m,x,eps,polish)
fcomplex a[),*x;
int m,polish;
double eps;

(

int j,iter;
double err,dxold,cdx,abx;

fcomplex sq,h,gp,gm,g2,g,b,d,dx,f,xl;
void nrerrorO ;

dxold=Cabs(*x) ,-

for (iter=l;iter<=MAXIT;iter++) {
b=a(m];

errsCabs(b);
d=f«=Complex(0.0/0.0) ;

abx=Cabs(*x) ;

for (j=m-l;j>=0;j—) {
f=Cadd(Cmul(*x,f),d);

d=Cadd(Cmul(*x,d),b);

b=Cadd(Cmul(*x,b),a[j]);
err=Cabs(b)+abx*err;

)

err *b EPSS;
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if (Cabs(b) <= err) return;
g=Cdiv(d,b);

g2=Cmul(g,g);
h=Csub(g2,RCmul(2.0,Cdiv(f,b)));
sq=Csqrt(RCmul((float) (m-1),Csub(RCmul((float) m,h),g2)))(
gp=Cadd(g,sq);
gm=Csub(g,sq);
if (Cabs(gp) < Cabs(gm))gp=gm;
dx=Cdiv(Complex((float) m,0.0),gp);
xl=Csub(*x,dx);

if (x->r bb xl.r && x->i b= xl.i) return;
*x=xl;
cdx=Cabs (dx) ,-

if (iter > 6 && cdx >= dxold) return;
dxoldacdx;

if (!polish)
if (cdx <a eps*Cabs(*x)) return;

)
nrerror("Too many iterations in routine LAGUER");
)

•undef EPSS

•undef MAXIT
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