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Abstract

Circuit simulation is a critical step in designing VLSI circuits and electronic pack

aging. The general-purpose circuit simulators such as SPICE and ASTAP have been the

bread and butter of circuit designers for over two decades. However, these simulators will

not be feasible when applied to large submicron systems and are not capable of simulating

lossy interconnects in multi-chip modules. In this dissertation, the research addressing to

these problems will be presented.

We introduce a stepwise equivalent conductance implicit integration technique,

which avoids the Newton-Raphson iterations required in SPICE or ASTAP when simulating

nonlinear circuits; therefore, a lot of computation can be saved. When focusing on digital

CMOS circuits, additional speedups can be achieved by the use of a specific event-driven

approach to take advantage of the piecewise linear waveforms. Finally, a new approach for

the transient simulation of lossy interconnect terminated in arbitrary nonlinear elements

will be presented. The approach is based on convolution simulation. By using the Pade

approximation of lines' characteristics, we derive a recursive convolution formulation, which

greatly reduces the computation used to perform convolution.

The experimental results are very encouraging. Our digital CMOS circuit simula

tor, SWEC, based on the proposed techniques outperforms Relax'2.3, iSPLICE3.0, XPsim,

and SPECS2 in both efficiency and accuracy on the simulation of digital CMOS circuits.

SWEC can produce results of the same accuracy as SPICE2 while being two to three order-

of-magnitudes faster. For the simulation of a circuit with 32 thousand MOS transistors,

we could achieve more than one order-of-magnitude speedups than iSPLICE3.0 and Re-
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lax2.3. SWEC, while giving accurate results, can be one to two orders-of-magnitude faster

than SPICE3.e on the simulation of lossy interconnects. We believe that the techniques

introduced in this thesis can make the multi-chip module simulation possible.
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Chapter 1

Introduction

1.1 The Circuit Simulation Problem.

Computer simulation is used in a variety of different fields to predict the behavior

of physical systems whenever it is inappropriate, or too expensive, to build the actual sys

tem to observe its behavior. In electrical engineering, circuit simulation is used routinely in

the design of integrated circuits (IC) to verify circuit correctness and to obtain detailed tim

ing information before an expensive and time-consuming fabrication process is performed.

Moreover, circuit simulation results can be used to guide the circuit optimization process.

In fact, circuit simulation is one of the most heavily used computer-aided design (CAD)

tools in terms of CPU-time in the IC design cycle. The popularity of this simulation is

primarily due to its ability to provide precise electrical waveform information for circuits

containing complex devices and all associated parasitics.

Detailed circuit simulation has been used extensively for IC design since the early

1970s. However, the ever-increasing number of devices on a single silicon chip has led to



development of a number of higher-level simulation tools to cope with the complexity of the

problem. These tools include behavior simulators, register-transfer-level (RTL) simulators,

gate-level logic simulators, and more recently, switch-level simulators [1], These programs

have been used to verify circuit functionality and to obtain first-order timing characteristics.

However, there is still a significant gap between a functioning circuit and a circuit which

meets all the design specifications - particularly in the case of high-performance custom

integrated circuits. In fact, circuit simulation is the only tool which provides enough detailed

information to ensure that the simulated circuits will meet specifications over a wide range

of operating conditions. Furthermore, the lossy interconnect effects in high-speed Very

Large Scale Integrated (VLSI) chips even point out the need for circuit simulation.

At the present time, the most popular circuit simulator tool is the SPICE2 pro

gram [2]. There are many thousands of copies of this program in use, as well as a number

of versions of "alphabet-SPICE" (e.g. HSPICE, PSPICE, IGSPICE) being marketed com

mercially. All of these programs offer a wide variety of analyses including DC analysis,

time-domain transient analysis, AC analysis, noise analysis and distortion analysis. Of

these, the time-domain transient analysis, which solves the time-domain waveforms of each

output node voltage and each output branch current, is the most often used and the most

computationally expensive in terms of CPU-time. This analysis has always been considered

a crucial step in digital VLSI circuit designs. Its results can be used to verify the func

tionality and the detailed timing performance of simulated circuits and also can be used to

guide the circuit optimization process. In this dissertation, we will focus on time-domain

transient analysis.



1.2 Motivation and Goals.

The SPICE2 program [2] has been the bread and butter of industry and university

researchers in circuit design for over two decades. It was originally designed to simulate

circuits containing up to hundreds of transistors. However, the continuing improvements

of IC technology have made the device feature sizes decreased and the chip sizes increased

continuously. With this trend, circuit designers have to design very dense chips. Each

chip will have millions of transistors. SPICE2 will be infeasible to simulate circuits of this

size. Therefore, the development of fast and accurate simulation methods for VLSI circuits

continues to be an important area of research and is one of the goals of this research.

Also, with the trend, it is anticipated that in the near future, the time delay and the

speed performance of VLSI systems will be primarily determined by interconnections rather

than by device limitations [3]. Therefore, the design of a reliable network for communication

and fast computers requires the use of numerical simulation tools that implement models to

consider the problems encountered in propagating high-speed signals on lossy interconnects,

such as (1) crosstalk, (2) reflections incurred by discontinuity, (3) rise-time slowdown due

to dispersion, and (4) dielectric-loss, over a wide frequency range. Fast pulses in excited

lines can generate transients via coupling to neighboring lines; these transients can trigger

logic gates and other devices, resulting in corrupted data transmission. Circuit designers

may also have to ensure that the receiving devices switch on the first incidence of signals.

Sometimes it may take the signal voltage several trips back and forth on the transmission

lines to turn on the receiving devices, resulting in extra delays, which cannot be estimated

by the widely-used first order Elmore delay model.



Improvements in process technology have also made it possible to bond many

silicon chips to a common silicon substrate and connect them by thin film interconnects

running over the surface of the substrate. With the rapid increase in clock rate and the

interconnect lengths of these multi-chip modules (MCMs), electrical length of interconnects

can become a significant fraction of the signal wavelength. Consequently, the conventional

lumped-impedance interconnect model is no longer adequate. Instead, a distributed trans

mission line model should be used.

The fundamental difficulty encountered in integrating transmission line simulation

into a transient circuit simulator arises because circuits containing nonlinear devices or time-

dependent characteristics must be characterized in the time domain while transmission lines

with loss, dispersion, or discontinuities are best characterized in the frequency domain.

Hence, we need an approach that can handle the two domains at the same time. Currently,

there is no generally accepted and efficient approach for the transient simulation of lossy

interconnects. This is the second goal of this research.

Therefore, an efficient simulation method for VLSI circuits and an approach for

simulating lossy interconnects are the two goals of research in this dissertation.

1.3 Contribution.

In order to avoid the Newton-Raphson iterations used in SPICE2's implicit mul-

tistep integration of nonlinear circuits, we proposed the Stepwise Equivalent Conductance

integration algorithm based on the use of a stepwise equivalent conductance model of a

nonlinear resistive device [4, 5], We proved that a nonlinear circuit can be transformed into



a linear circuit composed of time-varying conductors, and that for the integration of a time-

varying circuit within one time step, an effective constant conductance can be determined

for each time-varying conductor with a second order of accuracy l. The implicit integra

tion of the equivalent linear time-invariant circuit does not require solving any nonlinear

equation. This technique, when applicable, is consistent, absolutely stable, and convergent.

When applying the integration algorithm to digital CMOS circuits, we demon

strated that additional speedups in the simulation can be achieved by taking advantage of

the fact that voltage waveforms can be modeled to a good approximation as piecewise-linear

functions. A specific event-driven approach employing this piecewise-linear waveform prop

erty is proposed. The StepWise Equivalent Conductance digital CMOS timing simulator,

SWEC, has been implemented based on the above proposed techniques. Comparisons have

been made with Itelax2.3[6], iSPLICE3.0[7], XPsim[8], and SPECS2[9] on a large number

of circuit examples. The results indicate that SWEC, while accurate, exhibits far better

efficiency [10].

Moreover, a new approach for transient simulation, of lossy interconnects termi

nated in arbitrary nonlinear elements is also proposed. The approach is based on convolu

tion simulation. By using the Pade approximations of each line's characteristics or of each

multiconductor lines' modal functions, we derive a recursive convolution formulation, which

greatly reduces the computation used to perform convolutions. The approach can handle

frequency-varying effects, such as skin effects, and general coupling situations. A large cir

cuit can be decomposed into subcircuits by making a cut on every line and the integration

1The local truncation error for integration is of the cubic order of the time step used.



of each subcircuit can be performed independently. Furthermore, we analyzed the errors

introduced by Pade approximations and developed a scheme to determine the necessary

order for an approximation. We have incorporated the proposed technique in SWEC. The

comparisons with SPICE3.e [11] indicate that SWEC can be one to two orders-of-magnitude

faster.

In summary, we will present the following three topics in this dissertation:

1. the Stepwise Equivalent Conductance implicit integration technique,

2. the Piecewise-Linear Waveform event-driven simulation

3. the lossy interconnect simulation based on the Recursive Convolution Formula

tion

1.4 Organization

Chapter 2 gives the background of transient circuit simulation. The chapter also

reviews the previous work addressing the issues of time efficiency vs. accuracy by simplifying

the numerical algorithms or by using simpler device models and the previous work on the

lossy interconnect simulation. After indicating the strong and weak points of the approaches,

we explain how a simulation approach will benefit from the strong points, which leads to

the pursuit of this research.

Chapter 3 presents the Stepwise Equivalent Conductance implicit integration tech

nique. We will give a proof for the correctness of the transformation from a nonlinear circuit

to a linear time-varying circuit. We will determine the effective constant conductance of

the time-varying conductors for the integration during a time step and then discuss the



choice of time steps for integration. The errors introduced by the transformations will be

analyzed.

In chapter 4, the StepWise Equivalent Conductance digital CMOS circuit sim

ulator SWEC will be presented. We will introduce SWEC's circuit partition technique,

the piecewise-linear waveform approximation, and the event driven approach that employs

digital CMOS circuits' piecewise-linear waveform property. Experimental results of SWEC

along with comparisons with SPICE, iSPLICE3.0, Relax2.3, XPsim, and SPECS2 programs

will be shown.

In chapter 5, we present our lossy interconnect simulation algorithm. The algo

rithm is based on two techniques: Pade approximation and Recursive Convolution Formu

lation. These techniques will be introduced. We will analyze the errors introduced by Pade

approximations and develop a scheme to determine the necessary order for an approxima

tion. The comparisons of our approach with SPICE3.e [11] will be shown.

Chapter 6 suggests possible future work. The transient simulation of lossy inter

connects modeled by scattering parameters will be presented. The scattering parameter

model is the key to handle very general coupling geometry and non-uniform lines.

Finally, in chapter 7, conclusions of this research are presented.



Chapter 2

Background and Review of

Previous Work.

2.1 The Direct Approach of SPICE2.

2.1.1 Linear Multistep Numerical Integration.

The KCL nodal equations for the simulated circuit will be of the form

F(V{t)) + CV(t) = Is(t), (2.1)

where V(t) is the node voltage vector, T{-) is a vector function of V(t) with its i-th

entry representing the total current flowing out of node i through resistive devices, C is

the constant capacitance matrix, and ls(t) is the vector for inputs (represented as current

sources). Independent voltage sources can be considered by the Norton equivalent models

and be represented as current sources. The Modified nodal analysis can be used to consider

circuits with Hnear inductors, nonlinear capacitors, and nonlinear inductors. The circuit



equation will still be a first order differential equation as that of Eq.(2.1). For that case,

the variable V(i) will include the inductor branch currents or the charges of nonlinear

capacitors, and the matrix C will be a combination of the inductance matrix and the

capacitance matrix.

The transient circuit simulation amounts to the numerical integration of the initial-

value problem specified by Eq.(2.1). The initial value (or V(0)) is the DC solution of the

circuit. SPICE2 uses the linear multi-step (LMS) method to perform the integration step

by step. It assumes the following equation will hold

N N

V(tn+i) = X>V(*„ " ih) +h £ &V(*n " &)> (2.2)
i=0 »'=-l

where h is the time step. If V(Z) is a Ar-th degree polynomial of the time t then the a and

the P of Eq.(2.2) can be determined to give the exact solution of V(*n+i) and we say the

method is a Ar-th order method. The V(/) of Eq.(2.1) is replaced by Eq.(2.2); therefore,

from the values of V(t) and V{t) at previous time points, V(Jn+i) can be solved. The whole

simulation is given by a series of thses steps.

If the (3-\ of Eq.(2.2) is not equal to zero, then the integration method is called an

implicit integration method because the unknown variable V(/n+i) appears in the function

!F(') term and CV(.) term. If T is nonlinear, then the implicit integration for each time

step involves solving a system of nonlinear equations. Computationally expensive Newton

Raphson iterations are generally needed to find the solutions. For each Newton iteration,

a Jacobian matrix, which involves evaluating device models, needs to be determined and a

linear system of equations needs to be solved.

On the other hand, if /?_i is zero, it is called the explicit integration approach; then
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solving V(t„+i) at most takes one inversion of the C matrix because the unknown variable

V(tn+i) appears only in the CV(.) term. However, the explicit method has poor stability:

the numerical errors will explode if larger time steps are used. Therefore, the explicit method

can not handle stiff circuits. Stability and circuit's stiffness will be explained in the next

subsection. Because of this stability consideration, SPICE2 employs the computationally

expensive implicit integration approach. SPICE2 has been proved to be very reliable and

stable; however, it becomes impractical to simulate large circuits.

2.1.2 Properties of Numerical Integration.

In this subsection, we are going to introduce the issues to be considered for nu

merical integration methods. These properties are essential to guarantee the correctness of

the integration results and are used as the guide lines to differentiate a better integration

method from another. When we present our new integration approach in chapter 3, we will

also examine these properties of our approach.

Existence and Uniqueness of Solutions.

Most numerical methods for solving Eq.(2.1) subject to the initial condition V(0) =

Vo assume the solution to this initial-value problem exists and is well defined for all times

t > 0. In the event that the solution does not exist or is pathological, most numerical

methods would still produce a set of numbers, which of course is meaningless. Therefore,

in order for us to have confidence on the simulation results, it is important to derive some

criteria on the simulated circuits to guarantee the existence and the uniqueness of a solution

in the general case.
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The Peano existence theorem shows that the continuityof V(0 (or C~l[ ls(0~"

F(V(t)) ]) is a sufficient condition to guarantee the existence of a solution around t = 0

[12]. Clearly, if C is singular or ^F(') is not continuous for some intervals of interest, the

solution may not exist.

The Peano's theorem is a local theorem, since it only proves the existence of a

solution over some nonzero time interval centered about the initial time. To guarantee the

existence of a solution over the whole simulation time, much more severe conditions must be

imposed on C"x[ Is(t)-F(V[t)) ], as shown by Wintner's Global Existence Theorem

below

Wintner's Global Existence Theorem: // there exists a piecewise-continuous

function L(t) defined for the t over the whole sinudation tune such that

|| C-l(F(V) - ^(V)) ||< 1(0 || V - V" || (2.3)

for all t in the simulation time (this is called a global Lipschitz condition), then Eq.(2.1)

has a unique solution. [13].

Wintner's global existence theorem proves both the existence and the uniqueness

of a solution. However, the conditions required by the theorem are rather strong. Roughly

speaking, these conditions prevent the functions ;F(V(/)) and V(t) Vi from growing too

rapidly. As a result, the simulated circuit cannot have fast switching inputs and all its

devices should be modeled by smooth i-v curves. It must be emphasized that the above

two theorems provide only sufficient conditions. Hence, even if the circuit does not satisfy

Wintner's global existence theorem, the solution may still exist.
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Local Truncation Errors and Consistence.

The error introduced by one integration step is called the local truncation error

(LTE). As the time step h gets smaller, the LTE will vary as a degree of h. If the linear

multi-step method is of the fc-th order, then its LTE will be of 0(/ifc+1), which means that

the method preserves the k-t\\ order of accuracy. Given an error bound on the LTE, the

desired time step h can be determined. If the integration method has a larger /:, then we

are allowed to use a larger time step h to meet the error criterion and get better efficiency.

A numerical integration method is said to be consistent if as h approaches zero,

the ratio ^^ will vanish, where LTE is the method's local truncation errors. For a noncon-

sistence method, no matter how small the integration time steps are used, nonzero global

errors will always exist. Therefore, consistence is a desired property for the integration

method.

Stability and Convergence.

To keep the accuracy requirement, we have to use small time steps. This means

for a simulation, many steps of solving the difference equations introduced by numerical

integrations will be needed. Thus, as a practical matter, it is important that these solutions

should not be too sensitive to small errors in the computations (for example, roundoff

errors). This sensitivity to errors is related to what is called the stability of the integration

method. Numerical errors will be introduced by each integration step. These errors will

die out, as simulation proceeds, for a stable integration method. However, for an unstable

method, previous errors will magnify later errors; eventually, the global errors will blow up
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to infinity.

Basically, the solution of each integration is a linear combination of exponential

terms. The exponents of those terms are function of the time step /i, the numerical method

used, and the poles of the simulated circuit. To obtain stable simulation results, the ex

ponents should be on the left half of the complex plane. We consider the case where the

circuit has only left-half-plane poles. A numerical integration method is said to be stable if

there exists a nonzero interval of time steps around h = 0 such that the exponents can be

situated on the left half of the complex plane. To be more specific, to verify the stability of

a method, let us consider the test equation

x = Aar, ar(0) = 1, (2.4)

where Ais a left-half-plane complex constant and represents the pole of the system modeled

by Eq.(2.4). The region of the product Xh that lets the exponents be situated on the left

half of the complex plane is called the region of stability for the numerical method. If the

region of stability includes the origin, then the method is stable.

The stability of a multistep method only guarantees that the local truncation and

round-off errors are not amplified and remain bounded for a sufficiently small step size.

It is important for us to derive a criterion to guarantee that the global error will tend to

zero as h —> 0, which is defined as the convergence. It has been proved that every stable

and consistent multistep method is convergent [14]. Conversely, every convergent multistep

method is stable.
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Stiffness and Absolute Stability.

For the sake of efficiency, the time step selection for integration will be based on

the activity of the simulated circuit. We want to use large time steps for the situation when

the circuit's node voltages do not change considerably. However, the stability property may

not hold for some integration methods because the large time steps used cause the Xh values

to be outside the method's region of stability.

It is possible that a circuit may have several poles (A) and some of them differ in

many orders of magnitude. These circuits are called stiff. A simple example of stiffness is

the case of a fast initial "transient" in the solution, which dies quickly, followed by a slower

"steady-state" solution. To handle this type of behavior, it is natural to use small time

steps in the transient portion to accurately follow the solution and then to increase the

step size for the remainder of the solution. However, the strategy may lead to instability

for the integration method, especially for explicit integration methods. For example, let us

consider a circuit with two poles Ai = -1.0 and A2 = -1.0e6. The transient associated with

A2 will approach its steady state very fast. After that, the circuit will have only minimum

activity because Ai is small. In this situation, we want to increase the time step h. However,

since A2 is very large, any increase on h will make A2/1 go beyond an integration method's

region of stability. Since the efficiency is one of the major concerns when we choose an

integration method, we would like to have its region of stability cover as large the left half

of the complex plane as possible. A numerical integration method which has its region of

stability cover the whole left half of complex plane is said to have the absolute stability.

It has been proved by Dahlquist [13] that no multistep method that exceeds order 2
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has absolute stability. Moreover, no explicit integration method can have absolute stability.

Since the absolute stability is rather strong, for practical purpose, we relax the region of

stability by a small strip left of the imaginary axis except origin. This kind of stability is

called stiff stability. Because most circuits do not have poles with large imaginary parts,

the stiff stability criterion can be adequate. However, again no explicit method has the

stiff stability. Due to the stability consideration, SPICE2 uses stiffly stable and absolutely

stable integration methods. Hence, when integrating nonlinear circuits, solving a system of

nonlinear equations cannot be avoided.

However, compared with explicit algorithms, the extra computation does not really

improve the solution's accuracy. One needs to go through the pain of Newton Raphson

iterations in the implicit algorithms mainly to achieve stability. This makes one wonder

if there is really no easy way of obtaining stability while retaining accuracy, and that is the

motivation of our research on developing a new numerical integration approach.

2.2 Work on Improving Efficiency.

The overall goal in circuit simulation is to generate the solution as efficiently as

possible while providing the desired level of accuracy. To improve the efficiency of circuit

simulations, two types of approaches have been proposed previously. One is to simplify the

numerical algorithms and the other is to simplify the device models. In this section, we will

survey the work in these two categories. The pros and cons of each type of approach will

be shown.
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2.2.1 Simplify the Numerical Algorithms.

Previously, the direct approach of SPICE2 was modified to avoid the large number

of Newton iterations, to maximize time steps used, or to exploit circuit's latency and mul-

tirate behavior. These approaches include (1) the Relaxation Approach, (2) the Waveform

Relaxation Approach, (3) the Semi-Implicit Integration Approach, (4) the Exponential In

tegration, and (5) the Asymptotic Waveform Evaluation Method. These are described in

the following subsubsections.

Relaxation Approach:

A large circuit is usually very sparse: every node is only connected to a small num

ber of neighbor nodes. For the direct approach of SPICE2, all the node voltages are solved

simultaneously. Even though a sparse linear equation solver is employed, the complexity

is still superlinear. Once the number of nodes are large, the approach will become very

computation-intensive. The relaxation approach [15] tries to exploit the circuit's sparsity

to speed up the solving process. The relaxation approach, instead of solving all the system

variables at once, only solves one of them each time by assuming the rest are correct so

lutions. Then, it iterates on this step over all variables until the solution of each variable

converges. The approach can be used to solve the linear system of equations within each

Newton Raphson loop or directly applied to solve the system of nonlinear equations.

The efficiency of the relaxation approach is determined by the speed of conver

gence, which heavily depends on the coupling between nodes. When simulating tightly

coupled circuits (e.g. circuits with strong negative feedbacks), it takes a lot of computation



17

for the solutions to converge. If the circuit simulation program is intended for the simula

tion of MOS digital circuits, then it is possible to make use of the weak coupling between

the gate node of a MOS transistor and the drain node (or the source node) to achieve faster

convergence. Examples of relaxation-based simulators are the family of SPLICE [7] [16]

[17].

Waveform Relaxation Approach:

The circuit simulators employing the direct method use a single common time step

to integrate the whole circuit; the step size is, therefore, determined by the activity of the

fastest changing part of the circuit. However, for a large circuit at one time point, it is

common that only a small portion of the circuit has activity and the rest does not (being

latent). As a result, many variables are solved using time steps which are much smaller

than necessary to compute their solutions accurately. Waveform relaxation simulators try

to improve the efficiency by exploiting the circuit's latency, which refers to the situation

when most node voltages stay the same from one integration to another.

The waveform relaxation approach [18, 19] solves a node voltage waveform for

the whole simulation time by assuming the waveforms of its neighboring nodes are as pre-

solved. Then, it iterates on this process until the waveform of each node converges. When

solving the waveform at one node, it can use variable time steps to achieve the maximum

efficiency because the waveforms on neighboring nodes are known. The reduction in run time

is accomplished by computing fewer solution points for each waveform, thereby reducing

the total number of model evaluations, and by avoiding the direct sparse-matrix solution.

However, the tradeoff exists only for loosely coupled nodes; otherwise, the approach takes



18

a long time to converge. Circuit partitions become very important. Strongly connected

nodes should be grouped into one solving process. Furthermore, the ordering of the solving

processes is also important. Take an inverter chain as an example. The first few iterations

will be obsolete if the ordering starts on the last inverter and goes backward. However,

there will be no wastage of computation if the ordering starts on the first inverter and goes

forward.

The approach is very suitable for simulating digital MOS circuits because of the

weak coupling between the gate node of a MOS transistor and the drain node (or the source

node). Examples of waveform-relaxation based simulators are Relax2.1 [6] and IDSIM2 [20]

(the Partial Waveform Convergence [21]).

Semi-Implicit Integration Approach:

To avoid being trapped in the lengthy iteration process, the semi-implicit integra

tion method has been proposed and applied in the simulators of MOTIS [22] and Event-EMU

[23]. They conjectured that there exists a small enough time step to obtain the solution

in exactly one Newton iteration. The nonlinear devices of a circuit are linearized using

the node voltages at the previous time point and then the linearized circuit is integrated.

However, to maintain the desired accuracy in most cases very small time steps need to be

used, and that unfortunately degrades the efficiency.

Exponential Integration Approach:

The solution of an initial-value linear differential equation is a linear combination

of exponential functions. Therefore, if the solution V(t) of Eq.(2.1) between two time
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points is approximated by an exponential function of t instead of a polynomial employed by

the linear multistep method then it is possible to use larger integration time steps, hence

improving the efficiency. Based on this observation, the exponential integration approach

was proposed in [8] and implemented in the MOS simulator XPsim. The voltage waveforms

produced by the approach are piecewise exponentials. The node voltage at a new time point

tn+i is equal to its previous value v(tn) multiplied by eA/l, where Acan be determined by

matching the circuit's asymptotic solution at /„. The authors of [8] have proved that for a

first order exponential integration method, its local truncation error LTE at tn is equal to

v(tfn)4j-^£. On the other hand, the LTE of a similar first order linear multistep method is

equal to v(tn)^. Since v(tn)^ will not change as fast as v{tn), larger time steps can be

used in the exponential approach.

However, the approach is neither absolutely stable nor stiffly stable. The efficiency

will be impaired when simulating stiff circuits.

Asymptotic Waveform Evaluation Method:

For the SPICE direct approach, when simulating linear RLC networks, even though

the waveform at the network's internal nodes are not important, the approach still needs

to solve all of them at each time point because the waveforms are the internal states of the

RLC network. As the network size increases, there will be too many internal nodes and the

computations to perform each integration will be infeasibly large. However, linear system

theory tells us that if we treat the whole RLC network as a linear system and the external

nodes as the terminals of the system then the convolution of the inputs and the impulse

response of the system can be used to determine the waveforms at the system's output
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nodes. Then, we don't need to solve the waveforms at the internal nodes and can save a lot

of computation. This idea motivates the asymptotic waveform evaluation method of [24].

The timing analyzer AWEsim [25] wasimplemented basedon the asymptotic wave

form evaluation method. AWEsim assumes that step inputs are applied at the input nodes

of the RLC network. Therefore, the transfer function of the output (or outputs) of the

network can be determined. The transfer function is then expanded into a Maclaurin se

ries of a, the Laplace transform variable, around 5 = 0. The first order Elmore delay of

the output will be the first moment of the series. An approximated time domain output

waveform can also be determined by matching the truncated transfer function. This ap

proach can outperform SPICE by two to three orders of magnitude in speed. However, its

efficiency will be impaired if nonlinear terminals exist in the circuit. The authors of [24]

suggest using effective linear resistors to represent those nonlinear terminals; however, the

accuracy degrades. Also, the approach suffers from the stability problem when the poles of

the approximated transfer function are located on the right half of the complex plane. This

becomes a phenomenon if the network is not very lossy.

2.2.2 Simplify the Device Models.

The approaches of approximating the i-v characteristics of nonlinear devices by

piecewise-linear curves or stepwise-constant curves to avoid solving nonlinear equations

have been proposed. The increase in efficiency is due to

1. avoiding solving a system of linear equations in each Newton Raphason iteration,
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Figure 2.1: The Piecewise Linear Approximation of Nonlinear i-v Characteristic.

2. avoiding the model evaluation of nonlinear devices, which involves many floating

point calculations.

These are described in this subsection.

Effective Linear Conductance Model:

The effective linear conductance model has been used in the timing analyzers

Crystal [26], TV [27], and Rsim [28]. For the whole transition, these timing analyzers

replace every MOS transistor by an effective conductor and use the RC-tree [29] approach

to estimate first order timing information of the analyzed MOS circuit. Analog waveform

information cannot be obtained from this type of analysis, which means that these methods

cannot ensure that a circuit meets specifications. Furthermore, there is no mathematically

rigorous way of determining the effective conductance. For the simulation that demands

high accuracy, this type of approach is not adequate.
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Piecewise-Linear Device Model:

The application of the Newton-Raphson algorithm to solve the nonlinear equations

introduced in each integration step would require the evaluation of a Jacobian matrix at

each iteration. This is usually a time-consuming procedure. It is possible to avoid evaluating

the Jacobian if we approximate the i-v curve of each nonlinear device by piecewise-linear

segments as shown in Fig. 2.1. The Katzenelson algorithm has been proposed to perform

this piecewise-linear version of numerical integration [30]. If the i-v curve of each nonlinear

device is approximated by only one linear segment, then each integration step of Eq.(2.1)

will be brought down to solve just a system of linear equations

AV = b, (2.5)

where the solution V is the node voltage at the new time point. It is because the approxi

mated circuit is linear. For the situation where the approximation of each nonlinear device

has more than one piecewise-linear segment, the space of V can be partitioned into hyper-

cubes such that inside each hypercube every nonlinear characteristic is approximated by one

linear segment. The integration step will then require solving a series of linear equations

below

A'V^b' i = 0,l,...,n. (2.6)

The index i represents the i-th hypercube, which contains the solution V*. The matrix

A1 and the column vector b1 depend on the linear segment of each device specified in the

hypercube i. V° is equal to the V at the previous time point and the final Vn is the

solution of V at the new time point. Based on the Katzenelson algorithm, the trajectory
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Figure 2.2: The Stepwise Constant Approximation of Nonlinear i-v Characteristic.

from V° to Vn can be determined and the A' and the b* when crossing the boundary of

two hypercubes can be updated. The piecewise-linear simulator PLATO was implemented

based on the above approach [31].

This piecewise-linear integration will lose its efficiency if for each integration the

trajectory needs to go through many hypercubes. Since the system of linear equations given

in Eq.(2.6) needs to be solved for each hypercube, the computation will be comparable with

the Newton-Raphson algorithm. Another weakness of this type of approach is that it is

no longer consistent because the local truncation error will not vanish even when a very

small integration time step is used. Its accuracy has been restricted by the piecewise-linear

approximation of the i-v curve.
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Stepwise Constant Device Model:

If the simulated circuit does not not have floating capacitors1 or inductors then it

is possible to perform the simulation without solving any system of equations by approx

imating the i-v characteristic of each device by a stepwise constant function as shown in

Fig. 2.2. In other words, the i-v characteristics are represented by the constant current

level ik for each voltage range Vk < v < ujt+i, for k = 0,1, ...,?i. The approximation can be

made with a small number of segments (less accurately but more efficiently) or with a large

number of segments (vice versa).

Devices with stepwise constant i-v characteristics have stepwise constant branch

currents in time. These currents combine via KCL to force stepwise constant currents

flowing into all the grounded capacitors. Therefore, by KVL all the node voltages (or the

branch voltages) will be piecewise linear in time. Since the branch voltage of each device

is piecewise linear, we can predict the time when the branch current will change from one

level to another. The whole simulation is driven by these predicted event times. One event

is associated with a device. Events are stored in a priority queue. The event at the top of

the queue will be deleted and processed. Each event process has two steps: (1) update the

branch current of the device whose branch voltage crosses different segments of its stepwise

constant i-v curve, and (2) predict the next event time for the device and insert this event

back to the queue.

This approach was proposed in [9] and implemented as a circuit simulator SPECS2.

Since no system of linear or nonlinear equations need to be solved, the approach is efficient.

*A floating capacitor is a capacitor with neither terminal connected to the ground node.
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The approach gives the flexibility to vary the tradeoff between accuracy and efficiency on a

branch-by-branch basis. However, the approach can only be applied to a very small class of

circuits because no floating capacitors and inductors are allowed in the simulated circuits.

Furthermore, the accuracy is restricted by the stepwise constant approximation. From our

observation, its efficiency degrades very quickly if more voltage segments are used on the

device approximation to keep the desired accuracy.

Electrical Logic Model:

The application of the explicit forward Euler method to integrate Eq.(2.1), say

from tn to tn+i, yields

^(V(tn)) +CV('n-|-')"V"n) =I3«,,), (2.7)
IIn

or,

V(tn+1) = V(in) + hnC-l[U(tn) - ^(V(/„))], (2.8)

where hn = tn+i - tn.

When there are no floating capacitors in the circuit, the capacitance matrix C and

its inverse C~l are diagonal matrices. Therefore, Eq.(2.8) turns out to be:

Vj{tn+l) = Vj{tn) + hnC-j[isj(tn) - /;(V(*n))], (2.9)

where Vj(tn) is the voltage at node j at in, Cjj is the grounded capacitance at node j,

/i(V(tn)) is the current leaving node j at tn through devices, and isj(tn) is the current

flowing into node j at tn from power supplies.
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From Eq.(2.9), we can compute the time for node j to make a transition from

Snow to Spjext, as follows:

h — ^hi\^Next ~ SNow) /9 in\
n"--(»^n)-/i(V(«„)))- l - '

It is easy to compute Eq.(2.10) because every term is scalar. The electrical logic model

simulation [32] introduced the idea of dividing the voltage range into discrete states, e.g.

OV, 0.5V, 1.0V,... The Snow and S/vext in Eq.(2.10) are examples for that. The whole

simulation is driven by the event times, the time points when a node voltage changes from

one state to the next adjacent state. The event process has three steps:

1. Update the voltage at node j to the next state.

2. Evaluate the fj(V) using the new vj.

3. Compute the transition time for node j using Eq.(2.10) and schedule node j

again to the time equal to the current time plus this transition time. Node j will

be processed again at that time.

The electrical logic model carries many similarities to the stepwise constant model

introduced in the previous subsubsection. Both treat a device as a stepwise current source,

both use the event processes to drive the simulation, and both are weak in handling floating

capacitors and inductors. One difference is that the events for the stepwise constant model

are associated with devices, while the events for the electrical logic model are associated

with nodes. Furthermore, for the stepwise constant model, the voltage segment for a device

to keep a current level is determined before running the simulation but that for the electrical

logic model is determined during the simulation. Because of this difference, the electrical
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logic model should preserve better efficiency. Both of them, however, experience problems

with accuracy and sometimes stability because of their explicit integration approach.

2.3 Previous Lossy Interconnect Simulation Work.

The fundamental difficulty encountered in integrating transmission line simulation

into a transient circuit simulator arises because circuits containing nonlinear devices or time-

dependent characteristics must be characterized in the time domain while transmission lines

with loss, dispersion, or discontinuities are best characterized in the frequency domain. To

cope with this difficulty, four types of approaches have been proposed in the literature. One

uses a network of lumped elements and segments of ideal transmission line to approximate

the frequency response of each lossy transmission line or each lossy multiconductor sys

tem [33]. The approximated circuit models are suitable for existing general-purpose circuit

simulators. However, the drawback of this type of approach is that the amount of com

putation increases for the simulation because a large number of extra nodes and elements

are introduced [11]. The second type of approach adopts the convolution technique. For

each integration, the outputs of linear lossy multiconductor lines are the convolutions of

the inputs with the impulse responses (Green's function) of the multiconductor lines. The

multiconductor lines are treated as a linear N-Port system. The difficulty of this type of

approach lies in how to determine the impulse responses of an arbitrary multiconductor line

system. People used the inverse Fast Fourier transformation technique [34], the numerical

inverse Laplace transformation technique [35], inverse Fourier transformation of frequency-

domain scattering parameters [36] [37], and even the explicit analytical approach[ll] to
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determine the impulse response. However, the convolution simulations suffer from a com

mon drawback: the convolution operation needs to extend over the entire past history. The

computation time required at any time point t is then proportional to t; therefore, the

convolutions at large time points will be very time-consuming. Furthermore, the inverse

Fourier transformations of [34], [36], and [37] will suffer from either the aliasing effects or

that too many frequency points are needed for the transformations to avoid aliasing.

To avoid the time-consuming convolution integrations, the state-based approach

[38] and the waveform relaxation based approach [33][39] have been proposed. The state-

based approach utilizes information about the internal states of a transmission line at a

given time to solve the states for the next time point. The voltage and the current at the

sample points are kept as the states of the line. The voltages and the currents are assumed

to be piecewise-linear between adjacent sample points. Based on this assumption, the state

variables can be determined by using integrations on space, hence avoiding convolutions.

However, the efficiency of the approach will degrade for the simulation with many sharp

edges in the line's waveforms. The samples will be chosen densely in the regions where

waveforms are fast-varying. Typically, for the simulation containing a pulse with the rise

time of 100 pico seconds and having the voltage resolution of 0.5 Volts, around 20 sample

points per inch of the line are required 2. If the rise time is smaller or the voltage resolution

is more accurate than 0.5 Volts, we need even more sample points, which will increase the

computation used to perform the simulation. The waveform relaxation based approach

The signal travels at the speed of 5e-3 inch per picosecond, or in other words 200 pico seconds per inch.
A full ramping-up, from 0 to 5 Volts, takes 100 pico seconds; therefore, with the 0.5 Volt resolution, we need
0.1 samples per pico-second. The number of required samples per inch is equal to 200 pico seconds per inch
times 0.1 samples per pico-second, which is 20 samples.
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solves the line's equations in the frequency domain and uses the FFT to transform the

results back and forth between the two domains for each iteration. Hence, time domain

convolutions are avoided by performing multiplications in the frequency domain. Again,

this type of approach is not suitable for handling fast-varying signals. For the simulation

containing a 100-pico-second-rise-time pulse and having the simulation time of 100 nano

seconds, each FFT needs to process around one hundred thousands data points in order to

avoid the aliasing effects. In summary, we think in order to solve the simulation involving

fast-varying signals we need to focus our efforts on developing fast convolution integration

algorithms.
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Chapter 3

Stepwise Equivalent Conductance

Circuit Simulation.

In this chapter, we present our Stepwise Equivalent Conductance circuit simulation

method, which treats every nonlinear resistance device as a 2-terminal linear time-varying

conductor. We show that implicit integration can be efficiently applied to this type of circuit

under a given error criterion. No nonlinear equations need to be solved. The technique is

proved to be consistent, absolutely stable, and convergent. Furthermore, we demonstrate

that a second order of accuracy is achieved by solving a system of linear equations for each

integration step.

The Stepwise Equivalent Conductance circuit simulation makes the following two

assumptions regarding the simulated circuits:

• Every node in the circuit has nonzero capacitance to ground. In fact, this assumption

does not place any restriction on the simulated circuit because practically every node
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in a real circuit has nonzero parasitic capacitance to ground.

• Every nonlinear device in the circuit has a unique current path. Examples of these

kinds of devices are MOS, JFET, and diodes.

The chapter is organized as follows. In section 3.1, we introduce the transformation

from a nonlinear circuit to an equivalent circuit composed of 2-terminal linear time-varying

conductors and discuss the exactness of the solution of the linear time-varying circuit un

der the "smooth" i-v characteristic assumption. In section 3.2, an accurate and efficient

algorithm to integrate the linear time-varying circuit is introduced. The accuracy and the

convergence of the algorithm are analyzed. In section 3.3, we discuss the choice of time

steps for integration.

3.1 Equivalent Linear Time-Varying Circuit Transforma

tion.

3.1.1 Circuit Equations.

For the sake of simplicity, we start with the assumption that there are no inductors

in the simulated circuit and that all the capacitors are constant. We extend the discussion

to circuits with linear inductors, nonlinear capacitors, and nonlinear inductors in Appendix

A by using modified nodal analysis. The KCL nodal equations for the simulated circuit will

be of the form

^(V(0) + CV(/) = Is(f), (3.1)
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where V(t) is the node voltage vector, T(-) is a vector function of V(t) with its i-th entry

representing the total current flowing out of node i through resistive devices, C is the con

stant capacitance matrix, and Is(2) is the vector of inputs (represented as current sources).

Independent voltage sources can be considered by the modified nodal analysis as well. Since

every node is assumed to have nonzero grounded capacitance, C is diagonally dominant. If

T is nonlinear, then the implicit integration of Eq.(3.1) for each time step involves solving

a system of nonlinear equations. Computationally expensive Newton Itaphson iterations

are generally needed to find the solutions.

The unique current path assumption of nonlinear devices implies that the simu

lated circuit can be treated as an equivalent circuit with 2-terminal resistive elements only.

To be more specific, the i-v characteristic of every nonlinear device at each time point can be

characterized by its instantaneous equivalent conductance G(t) defined as the ratio of I and

V across the two terminals of the current path evaluated at that time instant1. Therefore,

during the entire simulation process, we are simulating a circuit composed of only linear

time-varying conductors and linear time-invariant elements.

Then, Eq.(3.1) can be transformed into the equation below:

G(/)V(/) + CV(7) = Is(0. (3.2)

Here, G(t) represents the instantaneous equivalent conductance matrix for every branch in

the circuit at time t. G(t) will satisfy the following relation

G(t)V(t) = F(V(t)) (3.3)

for every time t.

1G(t) is set to zero if V(l) = 0. The situation where I(t) ^ 0 when V(t) = 0 is practically impossible.
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Instead of solving for the V(i) of Eq.(3.1) directly, the Stepwise Equivalent Con

ductance circuit simulation solves for the V(i) of Eq.(3.2) and uses it as the solution for

Eq.(3.1). An efficient implicit integration scheme for Eq.(3.2) is developed, and no nonlinear

equations need to be solved. The integration scheme will be introduced in section 3.2.

The question remaining is whether the solution of Eq.(3.2) will be equal to that

of Eq.(3.1).

3.1.2 Exactness of the Transformation.

If we know G(t) beforehand, then the uniqueness of the solution of Eq.(3.1)2

implies that the solution of Eq.(3.2) will be the same as the solution of Eq.(3.1). However,

during the process of solving Eq.(3.2), for every time t, we only know the function G up to

t and have no idea of G after that. Will we end up with a different solution due to the lack

of information on G? To answer this question, we state the following theorem.

Theorem 1 If F(-) and Is(-) of Eq.(S.l) are continuously differentiate

then the solution of Eq.(3.2) will be exactly the same as that of Eq.(B.l).

Proof: We prove this by contradiction. Denote the solution of Eq.(3.1) by Vi(i) and the

solution of Eq.(3.2) by V2(0- ^ they are not the same then there exists a time to such that

Vi and V2 coincide at to but depart from each other afterwards, i.e. there exists a positive

integer k such that v{°(*0) = V^fo) V i < k and v[k){t0) £ V{2k){t0), where v{°(<o)

denotes the i-th derivative of Vi(/.) evaluated at to.

2The sufficient condition of the uniqueness of the solution of Eq.(3.1) is that V is Lipschitz continuous
at every time t.
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We know, from Eq.(3.1),

v^*) = c-H-^vuo) + h(t)) (3.4)

and from Eq.(3.2) and Eq.(3.3)

v2w = c-1(-c?(0v2(0+'is(0)

= C-^-F^W + Ut)). (3.5)

Note, the inverse of C exists because C is diagonally dominant as mentioned

before. From successive differentiations of V\{t) we have that VJ (to) is a function of

V}°(t0) and Is(i)(<0) for i < k. Similarly, V2fc,(/0) is the same function of V20(*0) and

Is(,)(*o) for i < k. Since vj'tyo) = V^Uo) V i < fc, we find that v[k)(t0) is equal to

V2 (<o)> which contradicts that to is a departing point for Vi(/) and V2(J). •

Theorem 1 tells us that for the numerical integration of Eq.(3.2) although we do

not know the function G after the current time /., we do know the time derivatives of G

at t up to the infinite order and thus can uniquely determine G for a small time interval

beyond t. This can in turn be used to determine V for that small interval 3. The sufficient

condition of theorem 1 is that T of Eq.(3.1) be continuously differentiable, which seems

rather restrictive because it excludes piecewise continuous i-v characteristics. To relax this

restriction for the purpose of numerical integration we

• use small time steps only when any piecewise characteristic in the circuit undergoes

two different operating regions, and

3For the integration from tn to in+i, we only know /"(Vfi)) is equal to G(t)V(t) up to t„. The above
proves that ^r(V(f)) will be equal to G(t)V(t) from tn to tn+\ once they coincide with each other up to tn.
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• use an absolutely stable integration scheme.

Then, even though the sufficient condition is not satisfied strictly, the numerical solution of

Eq.(3.2) can still yield very good accuracy 4.

3.2 The Stepwise Equivalent Conductance Integration Al

gorithm.

For the integration of each time step, we assume that the equivalent conductances

of the time-varying conductors remain constant during the time step. Therefore, for the

calculation purpose, we are dealing only with linear constant circuit elements. The constant

value assumed for each time-varying conductor can be determined to yield the necessary

accuracy5.

Using Taylor's series expansion of G(t) at / = /„, we obtain from Eq.(3.2)

[G(tn) +G(tn)(t - tn) +̂ G(tn)(t -tn)2 +-- .]V(/) +CV(t) =Is(<). (3.6)

Let

lin = tn+i - /„. (3.7)

We show that for t € [<m*n+i] Eq.(3.6) can be approximated by

£V(/.) + CV(/.) = Is(0, (3.8)

4It must be emphasized that the above theorem provides only sufficient conditions. Hence, even if the
circuit does not satisfy the continuous differentiability condition, the exactness of the transformation may
still hold.

5At first glance, our approach may seem similar to Crystal [26] since both exploit the idea of using
effective conductances. For the whole transition, Crystal replaces every MOS transistor by an effective
conductor to estimate the timing information. There is no integration in Crystal. Whereas, our approach
is trying to determine the effective conductances which can summarize the total electrical effects during a
time step. Furthermore, the goal of our approach is to determine the complete transient characteristics.
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with Q = G(tn) + fyG(tn). To solve V(tn+i) from a given V(*n) an error is introduced

which is proven in Appendix B to be

-C"1G(tn)V(in)(^) - C-lG(tn)(C-lG(tn)V(tn) +V(t„))(y|). (3.9)

By using the trapezoidal rule of integration, we obtain

vn+i =[Q +i-cj-^i-cvn +cvn +iSn+1). (3.10)

This leads to the total local truncation error for the integration from tn to tn+i of the order

0(h3). The method is therefore consistent with respect to the local truncation error, and

since we know that the integration scheme, the trapezoidal rule, is absolutely stable, we

have demonstrated the convergence of the algorithm.

3.3 Time Step Selection.

The local truncation error for each integration will be equal to the error given

in Eq.(3.9) plus the error introduced from the trapezoidal rule approximation of V(tn+i).

Therefore, given the error criterion on the local truncation error at /.„, we can solve for the

necessary time step hn exactly. A variable time step integration scheme can be implemented.

However, Eq.(3.9) is very complicated. Determining hn involves several matrix operations.

It would be impractical to perform the matrix operations at every time point. Therefore,

we introduce a simpler scheme of choosing hn. By using two parameters, a voltage error

AV and a relative error c, we can derive the following: For each conductance G, and for

each node voltage Vj, if hn meets the constraints imposed on Eq.(3.11), then the norm of
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the error introduced in Eq.(3.9) will be less than §AV, which is derived in Appendix C.

nGi(tn)hn..
(<•)

and,

hnVjMK&V Vj. (C) (3.11)

The advantage of this is that the computation of determining a time step meeting

all the constraints in Eq.(3.11) is linear in terms of nodes or devices in the circuit, while

the computation needed to solve Eq.(3.9) is of the cubic order.

This concludes the introduction of our Stepwise Equivalent Conductance circuit

simulation technique. As the first application of the technique, a digital CMOS circuit

simulator SWEC was implemented, which will be discussed in the next chapter.



38

Chapter 4

SWEC: A Stepwise Equivalent

Conductance CMOS Circuit

Simulator.

When applying the Stepwise Equivalent Conductance Circuit Simulation Tech

nique to digital CMOS circuits, we demonstrate that additional speedups can be achieved

by the use of a specific event-driven approach to take advantage of the piecewise linear wave

forms. Most of the time the voltage waveforms of the outputs from CMOS gates behave

like straight line segments. We will show how to make use of this property in the timing

simulation in this chapter. The program, called SWEC, has been implemented, and has

proven to be accurate and efficient on a large number of circuit examples. The comparisons

of results with Relax2.3[6], iSPLICE3.0[7, 17], XPsim[8], and SPECS2[9] will be given in

this chapter.
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The chapter is organized as follows. Section 4.1 gives an introduction to SWEC.

In section 4.2, we discuss SWEC's MOS Electrical models and the time step selection for it.

Section 4.3 presents our piecewise linear waveform approximation. In section 4.4, we discuss

SWEC's event-driven mechanism, which exploits the piecewise linear voltage waveform

property, in detail. In section 4.5, we present experimental results of SWEC along with

comparisons with SPICE, iSPLICE3.0, Relax2.3, XPsim, and SPECS2 programs.

4.1 Introduction.

As an application, a timing simulator for digital CMOS VLSI circuits, SWEC, has

been implemented based on the concepts introduced in chapter 3 and [4, 10]. To further

speed up the simulation, SWEC first decomposes the circuit into weakly coupled subcircuits

and applies the Stepwise Equivalent Conductance technique to each of the subcircuits. In

addition, SWEC exploits another special property of CMOS circuits, that is, the voltage

waveform can be modeled with piecewise-linear segments connected between regions with

smooth curves. Thus, the voltage waveforms of the outputs from CMOS gates behave like

straight line segments most of the time. Because of this property, larger time steps can be

used. To handle feedback inside the circuits and to further exploit the latency and multirate

behavior of MOS circuits, a special event driven mechanism based on the piecewise linearity

of waveforms has also been developed and built into SWEC. We have developed an algorithm

to determine the break points of the piecewise-linear voltage waveforms under the desired

accuracy requirements.
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4.2 MOS Electrical Models and Time Step Selection of SWEC.

The analytical expression for the G(t) of a MOS transistor is given by the conven

tional formula:

G(t) = 0*(2*(VGS.-Vik)-VDs)\t if VGS-Vth>VDS>0,

G(t) =(3*{VGS~Vth)2\t if VDS>VGS-Vth>0,
VDS

<?(*) = 0.0, if VGS<Vth, (4.1)

where Vth, the threshold voltage, is a function of V$b> Fig. 4.1 shows the electrical model

of a MOS transistor. Between the drain node and the source node there is a time varying

conductor with the conductance G{i). The voltage at the gate node is represented by the

voltage sources VGt. The grounded capacitors, Cp and Cs, represent the side-wall and

bottom junction grounded capacitances at the drain and the source nodes, respectively. CG

is the gate oxide capacitance and wiring capacitance. CGd and CGs represent the gate-

to-drain and gate-to-source overlap capacitances, respectively. Note that they are lumped

with CG at the gate node Gt as an approximate total capacitance looking at that node.

Since in general CG is much larger than CGs or C'cd, turning CGs or CGd into grounded

capacitors is a reasonable simplification when looking at the gate node. However, this is not

true when looking at the source or drain node because Co is comparable with CGd, and

Cs is comparable with CGs- We account for this by introducing the two voltage sources

VGt representing the effects coming from the gate node.

In this way, the determination of the gate voltage does not depend on the voltage at

the source node or the voltage at the drain node as long as there is no other charge transfer
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path (resistor, capacitor, transistor channel) connected between them. Furthermore, if the

gate voltage is evaluated prior to the evaluation of the voltages of the source node and the

drain node then VGt can be treated as a constant voltage source in determining the voltages

of the source node and the drain node. If we can keep this ordering correct during the

simulation, then solving the voltage at the gate node can be separated from solving them

at the source and the drain nodes, and no iterations are needed between the two solving

processes. Our event-driven approach is based on this idea and will be discussed in section

4.4.

Since there is no direct charge transfer path between the gate node and the con

ducting channel of the transistor (one-way circuits), we are able to perform circuit parti

tioning [40]. Prior to simulation, the circuit is partioned into subcircuits. They are tightly

coupled groups of nodes connected by a charge transfer path. Each subcircuit is integrated

with its own time step to take advantage of the time latency existing in the circuit. The

integration of each subcircuit employs the stepwise equivalent conductance technique. For

a subcircuit, the time steps are determined according to the slopes at inputs and the value

of the equivalent conductance of each transistor before integration.

The conductance of each transistor used for the integration from tn to tn + hn is

£„, which is equal to G(tn) + ^fG(tn). The expressions are as follows:

Gn =G{tn) +^{3*(2VGS-VDS)\tn if VGS-Vth>VDS>0,

Qn =G(tn) +̂ (3 *(2VgS~ Vlh VGS)\tn if VDs>VGS-Vth>0,
* YDS

£„ = 0.0 if VGS<Vth. (4.2)

For the sake of efficiency, we neglect those terms associated with ^Vth in deriv-
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ing G(t) of Eq.(4.2). For the situation that Vqs > Vgs —K/i> the term associated with

VdSqv ' gy~ iS ^so neglected because after the differentiation, we will have the result

—VDs(Vr,$~Vth)2, which is considered to be small due to Vqs > Vgs —Vth- In Appendix D,

we demonstrate that, for a CMOS inverter, the term Vds( v<3§~V{h )2 is negligible compared

with the rest terms of G(t).

By making use of the piecewise linearity and from Eq.(3.11), we find that the time

step selection of SWEC for each subcircuit is

hn =MIN(^—,e }(.Vas~ V,M ,L), Vi. V? (4.3)

where i is the index of the transistors which are ON and j is the index of nodes. The • . ,

term inside the MIN function conies directly from Eq.(3.11c); the other term function is

due to the consideration of Eq.(3.11b). The G(tn) of Eq.(3.11b) can be derived from the

differentiation of Eq.(4.1). Eq.(3.11a) is not considered in Eq.(4.3) because the node voltage

waveform is piecewise linear. Hence the second derivative for any node voltage vanishes.

4.3 Piecewise Linear Approximation of Waveforms.

After each integration of a subcircuit, a piecewise linear approximation is applied

to the output waveform of the subcircuit. This piecewise linear waveform can then be fed

to the fanouts of the subcircuit as one of their inputs. Thus, during the simulation the

input and the output waveforms of every subcircuit are piecewise linear. When scanning

the data points of the original waveform, the piecewise linear approximation tries to skip

as many points as possible as long as those skipped points stay on an approximated line

segment. Those points which are not skipped are kept as the break points of the piecewise
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linear curve. The break points of a piecewise linear curve are the data points at which the

curve changes slope.

To determine which points can be skipped, we have developed a local error cri

terion. The original waveform is assumed to be fed into a CMOS inverter as the input.

The corresponding output waveform can be determined. Then, the errors on the output of

the inverter are monitored when piecewise linear approximations are applied to the original

waveform. The approximation algorithm searches for a piecewise linear approximation of

the original waveform with errors within a pre-specified error bound and thus obtains as

few break points as necessary. The tighter the error bound, the more points of the original

waveform will be left as break points.

The details of the algorithm are as follows. For every point on the waveform, we

calculate the worst possible relative error on the inverter's output when the extrapolation

from the two preceding data points is used, instead, as the input. As shown in Fig. 4.2,

(U,Vi) is the point being considered currently and (/j,t),) is the extrapolated point from

(tt-2* Vi-2) and (£,•_!, v,-_i) at t{. We check all the possible relative errors1 on the inverter's

output at U when the line segment from (*,_i, u,_i) to (<«*, t>«) is used as the input. If the

worst relative error violates a given local error bound, then the immediately preceding point,

which is (t»-i,Wt_i) in Fig. 4.2, should be kept as a break point. If not, the immediately

preceding point can be skipped. When the local error criterion is violated, the waveform

has a relatively large slope change around the immediately preceding point, and so it should

be kept as a break point. The situation is shown pictorially in Fig. 4.2.

Since the inverter can be in different operating regions and the effect of the approximation on its input
may be different, we need to consider all the possible situations.
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Figure 4.2: Piecewise-Linear Waveform Approximation.

Hence, the piecewise linear approximation algorithm we developed for SWEC is

basedon examining every three consecutive samples, say (*,-2, t>i-2)» (U-\t vi-\), ana" (U,V{):

if

\vi - »,.-! - {U - *,-i )^-'"^-2| >2e', (4.4)
ti-l - U-2

then (tt_i,vt_i) is kept as a breakpoint. Otherwise, (*,-_i,Vi-i) is not a breakpoint. The

next triplet to be examined is: (*,-_i, t'i-i), (<i, v;)» and (i,+i, t't+i).

The €7 is the constant controlling the tolerable percentage errors. The number

2 in Eq.(4.4) is the average voltage value of Vas - Vth during a transition. The detailed

derivation of Eq.(4.4) is given in Appendix E.

In [4], an example is given. Seven breakpoints out of 228 data points of the glitch

output of a NAND gate were picked by our algorithm. Then, the piecewise-linear waveform

was fed into an inverter. Again, eight breakpoints out of 169 data points were picked from

the output of the inverter. Both piecewise-linear waveforms show a very good match with
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the SPICE results.

4.4 The Event-Driven approach of SWEC.

SWEC uses an event-driven mechanism to handle feedback loops in large circuits

and further exploit the latency of MOS circuits. The time instants at which each individual

subcircuit is to be evaluated are termed event times for the subcircuit. Thus an event is

a prediction of the time when integration should take place for the time step between the

previous event time and the current event time. Events are predicted, stored, and scheduled

on an event queue as in [23, 32, 9]. The prediction is based on the information at the input

slopes and the conductances of MOS transistors in the subcircuit given by Eq.(4.3). After

the integration of a subcircuit, the slope of its output may or may not change according to

the piecewise linear waveform approximation introduced in section 4.3. If the slope changes,

then the events associated with its fanout subcircuits will be incorrect because they were

based on the previous slope. It is thus necessary to delete existing events for the fanouts

and reschedule them by using the new slope for Eq.(4.3).

The whole simulation can be viewed as a series of event processes. Processing the

event at the head of the queue involves the following steps:

1. Integrate the subcircuit for the time step between the subcircuit's previous event

time and the current time.

2. Use the piecewise linear waveform approximation to check if the output slope

has changed; if yes, delete the events of all the fanouts and reschedule them.

3. Calculate the time step of the subcircuit and insert an event associated with
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the subcircuit into the queue with the event time being equal to the sum of the

current time and the time step.

The procedure works for circuits with feedback loops and can be justified as follows.

Let us consider the circuit given in Fig. 4.3, which has two subcircuits, A and B, and a

feedback loop. The output of A, called x, is fed to B and the output of B, called y, is fed

back to A. The next event time (or the next integrating time point) of A is determined by

choosing the minimum of the two predictions (time step criterion):

• when x will change slope,

• when the voltage change of any node in A goes beyond a A!;.

The derivation of the hn given in Eq.(4.3) satisfies the above criterion for small AV and e.

We discuss it in Appendix D. Therefore, for the integration of A. say from tn to 2n+i, the

slope of x will not change, which guarantees that y is correct from tn to tn+\. This implies

that the integration result for x is correct because y is as predicted. Even though, after the

integration, x may change slope beyond /n+i, causing y to change slope, the correctness of

the results up to tn+i still holds. By induction, the results of our approach are correct for

the entire simulation.

The hn satisfying the criterion given above for circuits with feedback loops will

be greater than zero because of the time latency in the circuits. The output slope of a

subcircuit does not change immediately after any of its input changes slope. However, it is

possible that a negative feedback loop will have very small or even zero time latency. In the

negative feedback case, the subcircuits along the loop should be collapsed into one bigger
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subcircuit A subcircuit B

Figure 4.3: A circuit with a feedback loop.

subcircuit. The collapsing steps will uot happen very often for digital circuits because the

feedback loops inside digital circuits, such as those for flip-flop latches, are usually positive.

Event rescheduling using conventional means based on voltage level [23] [7] is

computationally expensive. In SWEC the overhead is very small because the waveforms

are assumed to be piecewise-linear. A subcircuit's fanouts need to be rescheduled only when

its output waveform changes slopes. Since the piecewise linear output waveforms of digital

MOS circuits seldom change slopes, relatively few reschedulings are necessary. If the output

waveform from a subcircuit is a straight line segment then no event rescheduling will be

needed for all its fanout subcircuits because the first prediction on the output waveform is

true for all the time instances. Additionally, to avoid large computational overhead in event

rescheduling, SWEC uses a very simple mechanism for calculating the updated event time.

Only the second term inside the MIN of Eq.(4.3) needs to be reevaluated.



Simulator CPU time Period % error

SPICE 470 s 4.52 ns 0%

SWEC 0.6 s 4.52 ns 0%

iSPLICE3.0 1.7 s 4.52 ns 0%

Relax2.3 1.2 s 4.52 ns 0%

SPECS2 1.7 s 4.35 ns 3.7%

XPsim 1.8 s oo ns 100%
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Table 4.1: CPU times for a Ring Oscillator.

4.5 Experimental Results for SWEC.

We compared the performance of SWEC with the simulators SPICE, SPECS2,

iSPLICE3.0, XPsim, and Relax2.3. Note that SPECS2 and XPsim use the explicit inte

gration approach. The others use the implicit integration approach. The current version

of SWEC uses the SPICE level one process technology. To make fair comparisons, we used

the same device models and the same capacitance models for all the simulators. Unless

otherwise mentioned all the simulations are performed on a DEC station 3100.

4.5.1 Ring Oscillator with 7 inverters.

The first test circuit was a ring oscillator made of an inverter chain of 7 inverters.

The summary of accuracy and CPU times is listed in Table 4.1. The Period column lists the

period of the waveform obtained from each simulator. The % error refers to that compared

with the SPICE results. We did not observe any oscillation on the result of XPsim, so we

have tabulated the error as 100%.



Simulator CPU time

SPICE 184 s

SWEC 7.6 s

iSPLICE3.0 95 s

Relax2.3 18.3 s

SPECS2 159 s

XPsim 141s
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Table 4.2: CPU times for 8-bit Ripple Carry Adder.

4.5.2 8-bit Ripple Carry Adder.

We built an 8-bit ripple carry adder with about 442 MOS transistors. We applied

8 diflferent input vectors and monitored the carry-out waveform of the adder. In the worst

case, the carry would propagate from the carry-in through the whole adder to the carry

out. In this way, the errors would be accumulated so we could tell the performance of each

simulator. The waveforms from the simulators are depicted in Fig 4.4. The solid line is the

result of SPICE, which is assumed to be the correct result. We found that the results of

SWEC, XPsim, iSPLICE and Relax2.3 completely overlapped the SPICE result. The result

of SPECS2 had a slight error as shown. Table 4.2 lists the summary of the CPU times.

4.5.3 16-bit Multipliers.

We simulated two 16-bit multipliers of different designs with about 7200 transis

tors and 6700 transistors, respectively. We denote the multiplier with 7200 transistors as

MULT7200 and the one with 6700 transistors as MULT6700. 12 input vectors were used on

the simulations of the two multipliers. Part of the multipliers was made of pass gate logic,

i

which means certain subcircuits would have quite a few transistors. The largest subcircuit

has 24 transistors and 10 nodes.
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Simulator CPU time

SPICE 10231s

SWEC 146 s

iSPLICE3.0 8780 s

Relax2.3 268 s

XPsim 2165 s

SPECS2 1092 s
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Table 4.3: CPU times 16-bit MultipliedMULT7200).

Fig. 4.5 shows the waveforms of the 32nd bit output (the most significant bit)

from different simulators for the simulations of MULT7200. We found that the results from

SWEC, iSPLICE3.0, and Relax2.3 overlapped. The SPICE result (the solid line) convinced

us that all of them were correct. We did not do the whole simulation on SPICE. The

simulation terminated at the 150ns. The CPU time for this simulation was 10,231s on a

DEC station 5000, which is 1.5 times faster than the machine on which we ran the others

except SPECS2. The simulation for SPECS2 was performed on an IBM RS/6000. The

corresponding CPU time was measured on the IBM RS/6000, which is about 2.5 times

faster than DEC stations 3100. Table 4.3 gives the summary of the CPU times.

Fig 4.6 shows the waveform of the 18th bit output from our SWEC, SPICE3 and

iSPLICE3.0 for the simulations of MULT6700. Relax2.3 has convergence problem when

simulating the circuit so we did not include its result here. We observed that the waveforms

from the three simulators coincide together. Table 4.4 gives the summary of the CPU times

on a DEC station 5000/125.
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Figure 4.5: 16-bit Multiplier(MULT7200).

Simulator CPU time

SPICE3 53532 s

SWEC 240 s

iSPLICE3.0 560 s

Table 4.4: CPU times 16-bit Multiplier(MULT6700).
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Simulator CPU time

SPICE 2.02 s

SWEC 0.2 s

iSPLICE3.0 0.8 s

Relax2.3 0.5 s

SPECS2 2.3 s

XPsim 5.1s

Table 4.5: CPU times for a Stiff Circuit.

4.5.4 A Stiff Circuit.
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To evaluate the stiff stability, we simulated a stiff circuit on all simulators. The

circuit was an output pad with 14 transistors and 8 very small resistors, each connected

with very small node capacitors. The time constants associated with those resistors were

about two to three orders smaller than the input rise or fall time. The waveforms from the

simulators are depicted on Fig. 4.7. Table 4.5 summarizes the CPU times.

Since SWEC is absolutely stable, the time step selection for SWEC is based on

the accuracy consideration alone. From the simulation results, we found that SWEC was

indeed both accurate and efficient. The 0.2s CPU time is the minimum computation for

SWEC which is used to build the look-up table for device evaluation routines. We did not

observe the expected numerical blow-ups in the results of SPECS2 and XPsim. We believed

that the minimum time steps were used for most of the simulation to assure stability. In

fact, the CPU times were more than an order of magnitude larger than the other implicit

methods.
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Simulator CPU time

SWEC 1,200 s

1SPLICE3.0 11,394 s

Relax2.3 56,480 s

Table 4.6: CPU times for a Micro-Processor.
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4.5.5 Micro-Processor.

We simulated a large circuit, which is a part of a micro-processor built in industry,

on SWEC, Relax2.3 and SPLICE3.0. The circuit has about 11,300 nodes and 32,000 MOS

transistors. The input has six vectors. The biggest subcircuit of the circuit is composed

of about 131 nodes. Therefore, it is considered to be a difficult case for timing simulation.

Fig. 4.8 and Fig. 4.9 show the waveform comparisons for two different nodes. The results

from the three simulators coincided. The consumed CPU times on a DEC station 5000/125

are summarized in Table 4.6. We observed that iSPLICE3.0 was about five times faster

than Relax2.3 and SWEC, however, was about 10 times faster than iSPLICE3.0. SPICE3

could not finish the simulation of this circuit successfully due to memory allocation errors

so we did not include its results here.

The above experimental results show that our Stepwise Equivalent Conductance

implicit integration and piecewise-linear event-driven simulation are very efficient, stable,

and accurate. For the simulations of the multipliers and the micro-processor, SWEC used

about only 10% of the sizes of memory used by Relax2.3 or by SPLICE3.0.
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Chapter 5

Transient Simulation of Lossy

Interconnects Based on the

Recursive Convolution

Formulation

A new approach for transient simulation of lossy interconnects terminated in ar

bitrary nonlinear elements will be presented in this chapter. The approach is based on

convolution simulation. By making use of the Pade approximation (or the reduced moment

method), we can determine the impulse response of an arbitrary transfer function. Fur

thermore, by employing the particular form of the impulse response, we develop a recursive

convolution formulation, which greatly reduces the computations used to perform convolu

tion integrations. The approach can handle frequency-varying effects, such as skin effects,
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and general coupling situations. To handle general coupling situations, a fitted polynomial

decoupling approach is presented. We give mathematical analyses of the errors introduced

by the Pade approximation and propose a scheme to determine the necessary order of the

approximation.

We have incorporated the proposed approach into the Stepwise Equivalent Con

ductance timing simulator, SWEC, for digital CMOS circuits. Hence, Newton Raphson

iterations are not needed for the implicit integration of a circuit even with lossy lines ter

minated in nonlinear elements. The comparisons with SPICE3.e [11] indicate that SWEC,

which gives accurate results, can be one to two orders-of-magnitude faster.

The Pade approximation has been used in the literatures [24], [41], [42], and [43]

for the delay estimation of linear RLC networks. The transfer function of the output (or

outputs) of the network is expanded into a Maclaurin series of s, the Laplace transform

variable, around 5 = 0. The series is then truncated to a necessary order. The first

order Elmore delay will be the first moment of the series. An approximated time domain

output waveform can also be determined by matching the truncated transfer function. Our

approach is different from their approaches in the following two aspects:

1. In our approach, the transfer function is expanded into a series of J around

s = oo to consider the correct initial condition and the high frequency responses.

2. In the above moment matching approaches, the transfer functions of the outputs

of a distributed network will have an infinite number of poles (an infinite number

of natural frequencies), whereas the transfer functions that are approximated by

the Pade approximations in our approach have only very few poles located on
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the left half of the s plane.

The first point will be explained in more detail when we analyze the errors introduced by

the Pade approximation in section 5.5. The second point will be discussed in section 5.1.

This chapter is organized as follows. In section 5.1, we give a brief introduction to

the background of convolution simulation. Section 5.2 describes our Pade approximations

and recursive convolution formulation. In section 5.3, the approach for the transient sim

ulation of lossy coupled lines will be presented. Section 5.4 describes the implementation

of our lossy interconnect simulation approach into the Stepwise Equivalent Conductance

Timing Simulator, SWEC. In section 5.5, we analyze the approximation errors. In section

5.6, we present the experimental results along with comparisons with SPICE3.e [11].

5.1 Background of Convolution Simulation.

5.1.1 Convolution Simulation of Simple RLGC-Mnes.

The Telegrapher Equations for a RLGC-lme are:

£-«$+*> <«>
The transmission line as shown in Fig. 5.1 stretches from 0 to / on the x coordinate,

where / is the length of the line; v(x,t) is the voltage at point x at time t; i(ar,0 is the

current in the +x direction at point x at time t. The boundary conditions for Eq.(5.1) and

Eq.(5.2) are:

»(<M)=5»i(<), v(l,t)=V2(t) (5.3)
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' 4- 4-
Figure 5.1: A transmission line.

*(0,0 = *i(0. i(l,t)=-i2(t) (5.4)

In this notation, we use the usual 2-port Convention that both i\(t) and i2(t) have positive

reference direction flowing into the line. By taking the Laplace transforms on Eq.(5.1) and

Eq.(5.2), we get

??- =-(sL +R)I (5.5)

£ =-(5C +G)F, (5.6)

or

^ =(sL +R)($C +G)V (5.7)
<?l =(sL +R)(sC +G)I, (5.8)

where V and I denote V(x,s) and I(x,s), the Laplace transformations of v(x,t) and i(x,t).

The solution of Eq.(5.7) and Eq.(5.8) will be of the general form below:

V(x, s) = Ki(s)eXx + K2(s)e-Xx (5.9)

/(*, a) = A'3(s)eAx + K4(s)e-Xx, (5.10)
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where A = \(s) = \/{sL + R)(sC + G). After A'i, #2, Kz, and K\ are expressed in terms

of Vi, V2> A» and -^j the Laplace transforms of vi, V2, *i, and z'2, respectively, we get

where

/1

h

= %w

,AJ_i.e-Ai

•C"

-2

-2

WO =
fsC + G

Vi

^2

(5.11)

(5.12)

We call e~xWl and lb(5) the exponential propagation function and the characteristic ad

mittance function of the line, respectively, which are transcendental functions with finite

number of poles.

Each entry of the 2x2 admittance matrix on the right hand side of Eq.(5.11) has

an infinite number of poles, the s such that ex^1 = e~A^s^, which makes it difficult to

approximate any entry of that matrix by a finite degree Pade rational function. Papers [41]

and [43] expand the entries around s = 0 to perform the delay and waveform estimation.

We believe this will incur inaccuracy in their results.

To overcome this difficulty, Eq.(5.11) is rearranged [11] to get the following form:

YQVl - /, = e-x\YQV2 + h)

Y0V2-I2 = e-xl(YoVl+I1),

(5.13)

(5.14)

where the Yq and the e~xl have no poles on the right half of the s plane; therefore, we

can apply the Pade approximation to these two frequency-domain functions, which will be

introduced in section 5.2.

The inverse Laplace transforms of Eq.(5.13) and Eq.(5.14) lead to the following
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equations for the transmission line in the time domain:

vi(t) * hi(t) - h(t) = v2(t) * h3(t) + i2(t) * h2(t) (5.15)

v2(t) * /ii(t) - i2(t) = V!(t) * h3(t) + h(t) * h2(t), (5.16)

where * stands for the convolution operator, and the impulse response functions

^(t)s£-1 {%(*)} (5-17)

h2(t) = C-l{c-xW} (5.18)

h3(t) = C-1{Yo(s)e-x^s)l} (5.19)

In [11], the authors derived the analytical solutions of hi(t), h2(t), and h3(t) explicitly1.

At each time point, the integration of a circuit with RLGC-Wnes will involve the

convolution of Eq.(5.15) and Eq.(5.16) for each line, where the ui, V2, z'i, and %2 at that

time point are the only unknown variables to be determined. The circuit equations are

composed of two parts: one specified by the KCL equations for each node of the circuit,

and the other specified by each line's Eq.(5.15) and Eq.(5.16). The modified nodal analysis

is used, whose variables include node voltages, and the i\ and %2 of each line.

Since the convolution integration is time-consuming, we develop our special recur

sive convolution formulation in section 5.2.

5.1.2 Convolution Simulation of Lossy Coupled Lines.

The Telegrapher Equations for a lossy multiconductor system of N lines are:

g--(L| +«) (5.20)
1Note that Yo(s) stretches to s = oo and is not periodic; therefore, it is difficult to solve h\(t) by using

inverse Fourier transform.
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other devices

_ = _(C_ + Gv) (5.21)

The multiconductor lines as shown in Fig. 5.2 stretch from 0 to / on the x coordinate, where

/ is the length of the lines; each entry of the column vector v(i, t) gives the voltage of a line

at point x at time t. Similarly, each entry of the vector i(x,<) gives the current of a line in

the +x direction at point x at time t. L and C are the symmetric inductance and capac

itance matrices, respectively, of the multiconductor system; their off diagonal components

represent the couplings between lines. R and G are diagonal matrices representing loss in

the lines.

The boundary conditions for Eq.(5.20) and Eq.(5.21) are:

v(0,0 = va(0, v(M) = v2(t) (5.22)

i(<M) = ii(*)i i(U)=-i2(t) (5.23)
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By taking the Laplace transforms of Eq.(5.20) and Eq.(5.21), we get

U =-(sL +R)\ (5.24)
g =-(sC+G)V. (5.25)

From the above, we obtain the partial differential equations for V and I.

d2V

8x2
= ZYV (5.26)

S=™' (5-27)
where V and I denote V(x,s) and 1(2, s), the Laplace transformations of v(a:,2) and i(a?,t),

respectively. We designate

Z = sL + R (5.28)

y = sC + G. (5.29)

Note that in general ZY are not equal to YZ even though the matrices R L G C are all

symmetric.

Let us consider the eigenvalue problem below:

detiilU - ZY} = 0, (5.30)

where U is an identity matrix. There will be N eigenvalues 7^,m = l.JV with the asso

ciated eigenvectors sm,m = l.JV. Let r be the diagonal matrix {71,727* •*i7Ar}» which

characterizes the wave propagation, and let Sv be the square matrix with the eigenvec

tors sm in the m-th columns. Note Jf and Sv are matrix functions of s. Let E(x, s) be

the diagonal matrix {exp(—7ix),exp(-72x),« • -,exp(-7^vx)}, which is called the modal

function.
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Then, the solutions for Eq.(5.26) can be written in terms of the linear combinations

of the forward and backward modal functions as

V(*,a) = S„(*)JS(ar, j)K!(*) + Sv(s)E(x,s)-lK2{s) (5.31)

By substituting V(x,s) into Eq.(5.24), we have

!(*,«) = Si(s)E(xy 3)^(3) - Si(3)E(x13r1K2(3), (5.32)

where

s{(3) = z'lsv(s)r(3). (5.33)

After Ki and K2 are expressed in terms of Vi, V2, Ii, and I2, the Laplace

transforms of vi, V2, ii, and 12, respectively, we get

II
= y

Vi

I2 v2

Si E1 Sv Si E?Sv

S% Eq Sv Si Ex Sv

where Ex and EQ are diagonal matrices:

Vi

v2

-2
E? = diagonal{-7^7—7^ — 77}, m = 1..N.

exp(7m/)-ea;p(-7m/)

The decoupling technique (or eigenanalysis) above helps us to determine the ad

mittance matrix, y, of the iV-port system. The inverse Laplace transform of Eq.(5.34)leads

to the following equation for the multiconductor lines in the time domain:

12

= c~l{y}*
vi

v2

(5.34)

(5.35)

(5.36)

(5.37)
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Therefore, at each time point, the integration of a circuit, with multiconductor lines will

involve the convolution of Eq.(5.37) for the multiconductor lines, where the vi, V2, h, and

i2 at that time instance are the only unknown variables to be determined by using the

modified nodal analysis.

The determination of the inverse Laplace transform of y is far from straight for

ward because of two reasons:

1. Since each entry of the matrices Si, Sv~l, Ely and EQ in Eq.(5.34) cannot be

expressed as a closed form of s, it is impossible to obtain the inverse Laplace

transforms of the matrices analytically.

2. Since each entry of the matrix y is a transcendental function of s having an

infinite number of poles, it is impossible to obtain the inverse Laplace transform

of any entry by making use of the inverse Fast Fourier transform.

In contrast, if coupling exists only between adjacent lines and all lines are identical

and equally spaced as assumed in [11], 5; and S„-1 will be constant matrices, and each 7m

will be a linear function of s. Under these assumptions, the authors of [44, 45] derived the

analytical solution for the inverse Laplace transform of y explicitly.

The approach of [46] developed the scattering parameter technique to evaluate the

function values of y for s over the whole spectrum and applied the inverse Fast Fourier

transform on the data to obtain £~l{y}. In order to achieve desired accuracy, tremendous

amount of data needs to be evaluated, which makes the approach impractical.

In our approach, by employing the Pade approximation, we deriveC~x{y} without

going through inverse Fourier transforms. We rearrange Eq.(5.34) to avoid the problem of
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infinite-number-of-poles. These will be discussed in.section 5.3, after the introduction of

the Pade approximation in the next subsection.

5.2 Recursive Convolution Simulation of simple RLGC-lines.

5.2.1 The Pade approximations of YQ(s) and e~A^/.

Y0(3) =
fsC + G

sL + R

•Ft i + gy
V +fr

(5.38)

1-ttG

where y is used to denote 1. J %y can be expanded into a Maclaurin series of y around

y = 0, or s = oo. Therefore,

1 + 7*2/ o i
x —R~ ~ l + m*y + m*V + •••+ mkyK +

where the fc-th moment is

dk
i+£y
i+

wi* =
A:!

(5.39)

(5.40)

The differentiation of Eq.(5.40) can be evaluated exactly by using symbolic differentiations.

Let us focus for now on the case that the first 2n - 1 moments of w~ftv are
V l+T*

matched to a Pade approximation with both the numerator polynomial and the denominator

polynomial of the same degree n, that is

i+rjy „ anyn + Qn-iy""1 + •••+ a\y + l
^J 1+zV ~ b*yn +^n-it/71"1 +•••+bxy +1 (5.41)
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The reason for that the numerator polynomial and the denominator polynomial are of the

same degree is as y —• oo, the value of J fy approaches to a finite nonzero number, J^,

which also leads to the constraint that g- =y^-

6t- can be computed by solving Eq.(5.42) below

1 ~ T? ml m2 '" ™n-lbn

*

bn mn

bn-l TO71+I

t>n-2 = — ^n+2

6l ™2n-l

mi m,2 7713 m*

7722 Tn3 m4 "ln+1

win-i rnn mn+1 ••• m2n-2

Then, at- can be computed according to

ai

C2

0 0

mi 1 0

7712 TU\ 1 • • •

T713 W2 mi 1

mn_2 mn_3 mrt_4 • • • 1

— 1After considering y —J, we have

!sC + G

bi

b2
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bn-l

+

}'o(s) =
sL + R

^Cany71 +an-if' +•••+ fliy +1
£ 6n?/n + 6n_1^-1 +... + 6iy + l

'C sn + ai^""1 + a23n~2 •- •+ aw
I sn + 615n-! + 623n"2 • • • + bn

mi

m2

m3

mn_i

(5.42)

(5.43)

(5.44)

Let P(s) denote sn + 6isn_1 +625n"2 •••+ &„ and Q(s) denote sn + ai5n-1 +a2sn""2 ••-+an.



Eq.(5.44) is then decomposed by applying the Heaviside's theorem,

Q(s)
Y0(s)

P(s)

S5-^'

where p(s are the roots of P(s) = 0, and

Qi =
Q(Pi)-P(Pi)

P(pi)
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(5.45)

(5.46)

The Pade approximation helps us to find the inverse Laplace transform of ¥b(s),

CMO = C-l{YQ{3)} « \TW) + £<fceM), (5.47)
»=i

where S(t) is the Dirac function. The derivation of our recursive convolution formulation is

based on this particular form and will be introduced in the next subsection.

The Pade approximation of e~A^' is similar.

\(3) = yf(sL +R)(sC +G)

= 3\TlC + s\/TC (i+>+S»-1
= as/W +ss/W^ +^r^-l)

z'=l

(5.48)

The moments mt- can be found out by iteratively applying symbolic differentiations on

V(1 +7;2/)(l +%y) witn respect to y, that is

mk =

<*V(i+gy)(i+fy)
dyk

From Eq.(5.48) and by letting a,- denote -\/ZCm,+i, we have

mi+l>-A(*)/ = ^sVLC^-rn.VLClJZZi-^1^1^

(5.49)

(5.50)
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Let

Ei=17f=i+x:§ (5-si)
t=l

01 = oti

fa = i(2a2 +ai/?i) =i(ai,2a2)(/?i,l)

(33 = -(ai,2a2,3a3)(/?2,/?i,l)

fa = i(Qi,2a2,---,^fcK/?fc-i,^_2, ••-,!) (5.52)

Eq.(5.51) is then approximated by a Pade approximation,

sn + <nsn-1 + ais"-2 + • •• + a„
3n + bisn~l + bis"-2 + ••• + &„

i=l 5 p»

Here, f* is equal to e™i^LCie-\/GRi ^y matching the point at 3=02.

Therefore,

e-\(s)l _e-ssfLCle-mx<JWl(l +£ -^-). (5.54)

The time domain effect of e~*5V '̂ is the constant delay of y/LCl. The inverse Laplace

transform of 1+ Ya=i "£r iS the f°rm that we mentioned, a Dirac function plus the sum of

n exponential functions oft, based on which we derive our recursive convolution formulation.

The n here may be different from that of Eq.(5.41) for Yq(s).
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The Pade approximation of Yo(s)e~x^1 can be computed by multiplying Eq.(5.45)

and Eq.(5.54). Since -^- -^b- = ~zfr(z^z: "" 7r^)> the pjs of the multiplication result are
9 J/% 9 Jf^ J/% J/£ 9 J/% 9 J/^

composed ofthe p\s for Yq(s) and those for e~^*)'. The leading delay term is still e~ay^LCl.

5.2.2 Recursive Convolution Formulation.

Let us look at the convolution integration below at time tn+\

Jf'n+l
' vi{r)lii{tn+i -T)dr
o

= \Jj J**' t*(r)[f>eW<'-+»-T> +6(tn+1 -r)]dr
7^i(Wi)+ y§E/n+1 qMT)*i{t*+l-T)dT (5.55)

Since

I

/n+19»vi(r)ep,(tn+1"T)</r
Jo

= / "<7,vi(r)ep'̂ +1~T^/r + / n+1 ftv1(r)ePi('»+,-T)dr
Jo Jtn

f UqiVi{T)ePi{tn-T)dr + / n+1 ftw1(r)ew('"+I-T)dr (5.56)
./o Vt„

— fiPiUn+X-tn)
= e

we have the recursive relation to obtain Jj{n+I qf,*i;i(r)cw^n+,~T^rfr if we have computed

Jo" ft»i(r)ep,'̂ B~r)rfr, which is true because the convolution v\ */ii(*n) is evaluated before

tn+i. Therefore, the convolution integration does not need to expand over all the past

history.

By using the Trapezoidal rule for the integration of Eq.(5.56), we have

f U+1 qiVi(r)ePi^n+l-T)dT
Jo

= *»•*» fj qiVi(r)e^'T^dT +y<7lM*n)e"/l« +*,(*n+1)], (5.57)
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where hn = tn+i - tn. Therefore, the only unknown variable left when we compute v\ *

fti(<n+i) is vi(tn+i)> which will be determined after we integrate the differential circuit

equations from tn to tn+i .

Let us look at the convolution i2 * h2 of Eq.(5.15), where h2(t) is £~1{e~A^/}.

Because of the y/LCl delay introduced by the leading term e~ay^^1 of Eq.(5.54),

i2(t) * h2(t)\t=tn+i

= e-miy/L°l ftn+l i2(r - v/IC/)[f?I-ep'(tn+1-T) +6(tn+l - r)]dr (5.58)

The recursive formulation to compute Eq.(5.58) follows a similar procedure as that of

computing v\ * /*i(*n+i), where v\(t) is replaced by i2(t —\fLCi). i2(tn —y/LCl) and

i2(tn+i —VLCl) are determined by employing interpolations between previous i2 points.

If tn+i —VLCl is less than *„, then both i2(tn - \/LCl) and i2(tn+\ —VLCl) can be de

termined before the integration from tn to tn+i\ otherwise, i2(tn+i - VLCl) is represented

as an interpolating point between i2{tn) and 12(^+1)? and ^2(^+1) is left as an unknown

variable to be determined through the integration. A queue is implemented to store the

previous i2 data. The data points preceding tn - \JLC\ can be deleted from the queue.

As we mentioned in the last subsection Vo(<s)e~A^^ has the same form as e~A^5^,

the convolution of v2 * /13 of Eq.(5.15) can be computed similarly as we compute i2 * h2i

where i2 is replaced by v2.

Therefore, we can compute the three convolutions of Eq.(5.15) recursively. Ac

cording to the same discussion, the recursive convolution of Eq.(5.16) follows.
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5.2.3 Frequency Varying Lines.

Besides RLGC-Wnes, our proposed approach can handle a frequency varying line

as long as the line's Yo(3) and e~x^1 can be defined or measured. For example, to consider

skin effects, the Yq(s) and A(s) of a line can be modeled by [47]

™~h+£+w (5-59)
X(s) =y/sC{R +sL +Ky/s) (5.60)

When the information of Eq.(5.59) and Eq.(5.60) are given, we can proceed with our ap

proach: symbolic differentiations on Eq.(5.59) and Eq.(5.60) to get the moments, Pade

approximations, Heaviside's decompositions, and recursive convolutions.

If the equations of a line's Yq{s) and e~x^1 are not available, we can measure them

from experiments and then use polynomials to fit the measured data.

5.3 Recursive Convolution Simulation of Lossy Coupled Lines.

5.3.1 Computing Time-Domain Response Using Pade Approximation and

Polynomial Fit.

Since each entry of the admittance matrix of Eq.(5.34) is a transcendental function

with an infinite number of poles. We rearrange Eq.(5.34) in the following form:

5,-Sw-lVi - Ii = SiE(l)Sv~xV2 + 5,-£?(/)Sr1l2 (5.61)

SiSv-lV2 - I2 = SiEWSv-'Vi + 5,-JE?(/)5rlIi, (5.62)
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where3 5,-, E(l), and Sv-1 have finite numbers of poles, which will be in the left half of

the 3 plane; therefore, we can apply the Pade approximation to the entries of these three

frequency-domain matrices.

The A?-th order Pade approximation of 5,-, E(l), or Sv~l will match the original

matrix at k + 1 different s near s = oo; therefore, to determine the Pade approximations of

S{, £(/), and St,-1 we only need to evaluate them at k + 1 different large s points. From

the k + 1 points, a fitted polynomial for each entry of the matrices can be determined4. A

Pade approximation is then applied to the polynomial. The whole procedure is as follows.

Let y denote J. Then,

{sL + R)(sC + G)

= s2(L + yR)(C + yG)

= 32K(y), (5.63)

where the matrix K(y) denotes the product of L + yR and C + yG. For each y, we can

diagonalize it5 as '

K(y) = Sv(y)A2(y)Sv(yr1. (5.64)

And, similar to Eq.(5.33) Si(y) can be computed according to

Si(y) = (L + yR)-lSv(y)A(y). (5.65)

The fitted polynomial around y = 0 will be the fitted polynomial around 3 = oo.

Hence, the first 5,-, E(l), and 5V_1 point to be computed should be at y = 0. The rest A:

3The E(l) is the modal function £(/,s) of Eq.(5.12) and Eq.(5.13).
4Here, we made the assumption that the eigenvectors will be continuous with respect to s. This assump

tion is true for multiconductor line systems and will be discussed in Appendix G.
bK(y) is diagonalizable, which will be shown in Appendix G.
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points will be at the y equal to the multiples of a fraction of the smallest entry of j!(0).

Practically, the smallest entry of yl(0) is a small enough value within the neighborhood

of y = 0. We construct polynomials to fit the set of (y,Si{y)) points, and, similarly, for

(y,yi2(y)) and (y, 5t,"1(j/)) points. All the entries of 5,-, A2 and Sv~l will be k-th. degree

polynomials of y. We can perform SiSv~l by using polynomial arithmetics (polynomial

multiplication and addition). Each entry of the product SiSv~l will be a 2/:-th degree

polynomial of y (or \). To perform the 5,-£(/)5w"1 and SiE(l)Sfl of Eq.(5.61) and

Eq.(5.62), we need to first solve the diagonal matrix E(l).

The m-th diagonal entry of A will be of the form67:

Am = \/co +cry +'-- +ckyk

= m0 + miy + m2y2 H + mkyk -\ , (5.66)

where the z-th moment is

m{ = J&L. (5.67)

The differentiation of Eq.(5.67) can be evaluated exactly by using symbolic differentiations.

In Eq.(5.63) s2 has been extracted out front, so

= m0s + mi + m2y+ •••+ mkyk~l + mk+iyk + ••• (5.68)

By letting at- denote -m,+1/, we have the m-th entry of E(l)

C-Tfm(*)' = e-sm0le-m\le£°!j -m;+iV

6Note that each entry of A2 is a fc-th degree polynomial of y.
The entries of A2(0) (the Co of Eq.(5.66)) will be positive. This property is important because the Am

of Eq.(5.66) will be expanded around y = 0. If c<j is not positive, we can not perform this expansion. We
will show the property in Appendix G.



79

Let

eESi^ =l+f;AV. (5.70)
i=l

The /?'s can be determined as before given in Eq.(5.52).

After truncating the summation of Eq.(5.70) to the Ar-th term, we have

therefore, each diagonal entry of E{1) will be a k-th degree polynomial of y (or £) times an

exponential function.

We are able to perform S,\E(/)SV_1 and SjJ5(/)S,_1 by using polynomial mul

tiplications and additions. Unlike 5» or S,,"1, there are exponential terms in E(l). The

polynomials multiplied by different exponential terms cannot be added together. Therefore,

each entry of SiE^Sy"1 or S,-B(/)5,'"1 will be a sum of N exponential-times-polynomial

terms. Each exponential is associated with one of the N modes. The polynomials are then

approximated by Pade approximations. After the approximation, each entry of 5,\E(/)5W"1

and SiE(l)Srx will be of the form below

£e-srnoU)lKj{l +J2-^V (5.72)

where (j) is the index of the j-th mode, mo(j) is the mo of the j-th mode, and Kj is a

constant. The time domain effect of e~am°Wl is the constant delay of mo(j)l. The inverse

Laplace transform of 14- 5Z?=i 3lp-h\ ls °f tne f°rm tnat we mentioned in section 5.2, a

Dirac function plus the sum of n exponential functions of t.
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5.3.2 Recursive Convolution of Multiconductor Lines.

The i-th entry of the convolution of £~1{5t-5w""1} *v is equal to

N

'EC-HSiS^ijtVj, (5.73)

where v can be either vi as for Eq.(5.61) or v2 as for Eq.(5.62). The subscript ij is to

denote the the ij-th. entry of the matrix and the subscript j is to denote the j-th entry of

the vector. Since every entry of Crx {SiSv~x} is of the same form, a Dirac function plus

the sum of n exponential functions of t, let us only consider the ij-th one, denoted by h(t).

At time tn+i the convolution integration

Vj(t) * /*(*)!<=<„+, = / Vj{T)h(tn+i -r)dr
Jo

= r,+' »;(r)A'£>e*<^-T> +6(tn+l - r))dr

= Kv1(tn+1) +A' JT /",,+1 w(r)e*<'"+»-T>dr, (5.74)

where K is the leading constant of h(t), can be computed recursively following the discussion

of section 5.2.2.

For the convolution of C~l{SiE(l)Sv~l}ij*Vj, since C~l{SiE(l)Sv~x}ij is a sum

mation of N similar terms as described in Eq.(5.72), let us consider only one of them,

denoted by h(t).

Because of the m^l delay introduced by the exponential term of Eq.(5.72)

Vj(t) * h(t)\tsztn+}

= Kj /'n+1 vj(t - roo/)[f>e»<'»+«-T> +6(tn+l - r)]dr (5.75)

The recursive formulation to compute Eq.(5.75) follows a similar procedure as that of

Eq.(5.58).
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The computation of the convolution £""1{5t\B(/)S,~1} * i is the same as that of

£~1{5t\B(/)Sv"1}*v; therefore, wecan compute the convolutions of Eq.(5.61) and Eq.(5.62)

recursively.

5.3.3 Frequency-Varying Coupled Lines.

To consider the frequency-varying effects, the R L G C matrices of the lossy

multiconductor lines will be R(s) L(s) G(s) C(s), functions of frequency. In this case,

when we evaluate the K(y) matrix of Eq.(5.63), we need to use the R L G C evaluated

at the frequency s = -. The rest follows exactly the same derivations as discussed in

subsection 5.3.1. For frequency-varying simple lines, the approach introduced in subsection

5.2.3 is preferred because that approach has better numerical stability. The moments of the

suggested model can be evaluated exactly using symbolic differentiations, which guarantees

all the poles will be on the left half of the s plane.

5.4 Implementation in a Stepwise Equivalent Conductance

Circuit Simulator.

In chapter 3, we have discussed that nonlinear circuits can be treated as linear

circuits composed of time-varying conductors, and for the integration of a time step, say

from tn to tn+i, the time-varying conductances can be replaced by their middle values

within (tn, tn+i) interval to achieve a second order of accuracy. The middle conductance

is equal to the conductance at tn plus tnJtl~trx times the time derivative of the conductance

at tn. After the substitutions of the effective constant conductances, the original nonlinear
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circuit is transformed into a linear time-invariant circuit; therefore, the implicit integration

does not involve solving any nonlinear equation.

When simulating nonlinear circuits with lossy multiconductor transmission lines,

we employ the same technique. The nonlinear circuit is treated as a linear time-varying

circuit. For each implicit integration, we replace every time-varying conductor by a time-

invariant conductor of its effective conductance; therefore, we end up integrating a linear

circuit with transmission lines. A modified nodal analysis is used to solve the voltage at each

node and the current of each line. We have incorporated the transmission line simulation

into SWEC [4, 5]. In section 5.6, we will show the experimental results.

5.4.1 Circuit Partition.

In previous simulation works, very often transmission lines were either neglected

or modeled as lump RLC elements when accuracy was traded for efficiency. By using

our approach, which considers the transmission line, we gain another advantage in circuit

partitioning. Furthermore, we can achieve a considerable speedup on the overall simulation.

A circuit can be partitioned at the transmission lines; therefore, a large circuit can be

decomposed into small subcircuits.

Let us consider the situation that the node 1 and the node 2 of Eq.(5.15) or

Eq.(5.16) belong to different subcircuits. Then, Eq.(5.15) is the convolution equation which

will be considered when we integrate the subcircuit containing node 1, and Eq.(5.16) will

be considered when the subcircuit containing node 2 is integrated. Because of the y/LCl

delay introduced by h2(t) and ^(t), the subcircuit containing node 1 can be integrated,

say from its tn to its tn+i, independently from the subcircuit containing node 2 if the
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subcircuit containing node 2 has already been evaluated beyond <n+i —VLCl, which means

v2(tn+i —VLCl) and i2(tn+i —VLCl) were available. It is similar to the subcircuit containing

node 2. In order to do the integration on each subcircuit independently, we need to place

the upper bound, VLCl, on the time steps of the two subcircuits. Therefore, whenever we

make a cut on a transmission line, we place the upper bound of the line's VLCl value on

the time steps of the two subcircuits connected by the line. This technique is applicable to

both digital and analog circuits, including MOS and bipolar circuits. Since some lines would

have very small VLCl values, causing very small time steps and degrading the efficiency,

we should avoid making cuts on those lines.

Similarly, we can partition the circuit on each multiconductor lines and integrate

the subcircuit containing the group of nodes in side 1 of Eq.(5.61) or Eq.(5.62) independently

of the the subcircuit containing the group of nodes in side 2. The upper bound of the time

steps placed on the two subcircuits will be the smallest modal frequency of A(0).

5.5 Error Analysis of the Pade Approximation.

In this section, we are going to analyze the errors introduced by these approxima

tions and to determine the necessary order for the approximations.

Let us consider a frequency domain function H(s) which has no poles on the right

half plane or at 3 = 0. H(s) represents any transfer function, such as Yo(s). It can be

expanded into a series of J around 3 = oo, which is

H(s) = mo + mi- + m2-^ + hmjt-^ + mk+i-k-r^ + mk+2-kz2 H (5.76)

Let Hp(s) be the Pade approximation of H(s) which, when expanded into a series of \,
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matches the m{s of H(s) up to mk. This means

Hp(s) = m0 +mi- +m2-2 H h"^fc— +mi+i"nT +mi+2Tf2 "• (5-77)

We say Hp(s) is a &-th orderapproximation of H(s) at 3 = oo8. Let £(3) be the difference

of the two, which is the frequency domain approximation error. So

E(s) = H(3)-HP(s)

= (mk+i - m'^)-^ +{mk+2 - ^-+2)^+2 +**' (5.78)

Let

h(t) = C-*{H(s)} (5.79)

hp(t) = C-l{HP(3)} (5.80)

e(t) = ZTl{£(*)} = h(t) - hP(t) (5.81)

From the initial value theorem and Eq.(5.78),

Urn e{t) = lim sE(s) = 0 (5.82)

Furthermore, since the Laplace transform of the i-th derivative of e(t), e^(t), is s{E(s), we

have

lime(,)(0 =allm<)5'+1^(s) =0 Vi= 1..&- 1. (5.83)

Therefore, around t = 0, hp(t) matches h(t) up to the k - 1-th derivative. This property is

important to assure the accuracy when hp{t) is used to evaluate the convolution integration

Note that for our convolution approach, k should be an odd number. The degree of the numerator
polynomial and that of the denominator polynomial are both equal to ^p-.
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which originally involves h(t). Let us consider how we compute the convolution integration

h*v(tn): (1) h(t) is flipped around t = 0 and, then, shifted to tn, and (2) we integrate from

t = 0 to t = tn the values of v(t) times the flipped and shifted h. Hence, the values of h

around t = 0 are crucial; therefore, hp(t) should match h(t) around t = 0 in order to achieve

accurate convolution results. Since the first k derivatives of e(t) vanished at t = 0, we can

expect that hp(t) matches h(t) for an interval beyond t = 0. As k increases, the interval will

increase. If the simulation time falls into this interval, no error on the convolution results

will be introduced by the Pade approximation. If the simulation time is small, a small k

will guarantee the accuracy when Pade approximations are applied to the transfer function.

Hence, the necessary order for the approximation depends on the simulation time.

The above discussion justifies our approach to expand 11(3) into a series of ~

around 3 = oo instead of a series of s around 3 = 0. The Pade approximation Hp(s) should

match the - series in order to achieve accurate convolution results. This is different from the
3

work in [24], [41], and [42], which is based on the expansion at 3 = 0. In order to highlight

this point further, in the next section, we will also show the simulation results based on

the Pade approximations of the s expansions of Yq(s) and e""A '̂ in the convolutions. Note

that there is no need to approx H(s) over the whole spectrum. The correct approximation

of H(s) around 3 = 0 will guarantee the correct steady state result of the approximate

impulse response; however, we will never use that part of the impulse response during the

simulation.

Since the Hp(s) in our Pade approximation also matches the original H(s) at
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3 = 0, from9 the final value theorem we have

lim e(t) = lim sE(s) = 0 (5.84)
t-+oo s—*0

Urn [* e(r)dT =Km s^^-= 0. (5.85)

Eq.(5.84) and Eq.(5.85) will have the effects that the absolute value of e(t) will not increase

very fast beyond the initial zero interval, which is important for the situation where we

cannot afford to pursue higher order approximations.

Even though H(s) does not have poles in the right half plane or the origin, the

Pade approximation may lead to right half plane poles. In that case we need to increase

the order of the approximation. Pade approximations do not guarantee all the poles will be

on the left half of the s plane; however, as the approximation becomes accurate, the poles

will be pushed to the left half plane. The other fact in determining the necessary order for

a Pade approximation is that the maximum errors in the time domain, i.e. h(t) —hp(t),

should be less than a pre-specified error bound. After neglecting higher order terms, we

have

E(s) * (mfc+, - m'M)-^, (5.86)

and,

tke(t) « {mk+l - ml+i)^j- (5.87)

Therefore, the absolute value of e(t) is a monotonic function of t, which will have its

maximum |(mjt+i - rnk+1)-j^-\ at Ts, the ending simulation time. We want it to be less

Refer the paragraph before Eq.(5.42).
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than an upper bound, say e, that is

(mjHi-<H)fr<€ (5-88)

We need to increase the order k until the condition of Eq.(5.39) is satisfied.

Forour convolution approach, there are two €*3, one for the approximation of Yo(s)

and one for that of e"A^s^. Those two e's can be tuned to achieve the best trade-off between

accuracy and efficiency.

Singhal and Vlach have developed the error analysis for their numerical inverse

Laplace transform approach based on the Pade approximation of est around 5 = 0 [48].

Our error analysis shows the expansion of H(s) around s = oo will guarantee the correct

convolution results, which is the major difference.

5.6 Experimental Results.

5.6.1 Lossy Simple Lines.

We compared the simulation results of SWEC with the results of SPICE3.e, which

implemented the work of [11]. [11] solves the inverse Laplace transforms of Yo(s) and e""*M

analytically; therefore, we can assume the simulation results of SPICE3.e is correct. Since

SPICE3.e can not allow leakage conductances, G is set to zero for all the examples. The

first test circuit is a RLGC-Yme driven by a CMOS inverter and terminated in a capacitor.

Fig. 5.3 shows the result at the near end. The first two rows of Table 1 summarize the CPU

times for the case with 3 input vectors and that with 24 input vectors. The 24-vector case

simply repeats the 3-vector case eight times. The CPU time increase for SWEC to finish



Experiment SPICE3.e SWEC

INV with 3 vec. 2.7 s 0.3 s

INV with 24 vec. 79.5 s 1.2 s

NAND 4.0 s 0.4 s
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Table 5.1: CPU times for Single Line Simulations.

the two was four times, while 30 times for SPICE3.e. Fig. 5.4 shows the far end result of

the 24-vector case. The waveforms from the two simulators at larger simulation times were

departing from each other, which confirms the discussion of the previous section. We did not

observe much accuracy degradation although the simulation time increased dramatically.

A fifth order Pade approximation was used for the simulation.

The second circuit was a line driven by a CMOS 2 input NAND gate. The inputs

to the NAND gate were used to create a glitch on purpose at the output; therefore, we

could observe more transient information. Fig. 5.5 shows the result at the near end. The

third row of Table 1 summarizes the CPU times.

To highlight that the expansions of Yq(s) and e"x^1 into series of s are not appro

priate for simulation, we also implement a similar simulation program as SWEC except it

uses the s expansions rather than J. We simulated the inverter circuit using this simulator.

Fig. 5.6 shows the near end result, which, in comparison with Fig. 5.3, does not contain

any high frequency information.

5.6.2 Lossy Coupled Lines.

We compared the simulation results of SWEC with the results of SPICE3.e, which

implemented the work of [11]. Since SPICE3.e can only consider the multiconductor lines

(1) whose couplings exist only between adjacent lines, (2) which are identical and equally
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spaced, and (3) which have no leakage conductances, the simulated circuit is picked accord

ing to these assumptions. The simulated circuit, shown in Fig. 5.7, has multiconductor four

lines, whose parameters are:

R =

G =

0.3 0 0

0 0.3 0 0

0 0 0.3 0

0 0 0.3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

c =

9e - 9 5.4e - 9 0

L =
5.4e - 9 9e - 9 5.4e - 9

5.4e - 9 9e - 9 5.4e - 9

5.4e - 9 9e - 9

3.5e - 13 -3e - 14

-3e - 14 3.5e - 13 -3e - 14
. (5.89)

-3e - 14 3.5e - 13 -3e - 14

0 0 -3e-14 3.5e-13

Fig. 5.8 shows the result at node 5 and Fig. 5.9 shows the results at node 11. The

rings on Fig. 5.9 are caused by the crosstalk, since node 3 has been kept to 5 volts all the

time, the waveform at node 11 would be zero all the time if there is no coupling. There are

about 0.1V slight differences between the waveforms of SWEC and those of SPICE3.e. It is

because SWEC uses table-look-up MOS models and 0.1V is the table's voltage resolution

10. For the simulation, there are three input vectors at node 2 and node 4, respectively. The

first row of Table 2 summarizes the CPU times for this simulation. The simulations were

run on a DEC station 5000. SWEC is about 25 times faster. For the same circuit, we also

ran the simulation which has 24 input vectors. The speed gain of SWEC was even more

significant, about 150 times, because the convolution integrations of SPICE3.e expanded

10The CPU times of SWEC in Table 1 and Table 2 include those spent on building MOS model tables.
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Figure 5.7: A test circuit.

No. of vec. SPICE3.e SWEC

3 207 s 8.2 s

24 9110 s 60.4 s
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13

Table 5.2: CPU times for Coupled Line Simulations.

over all the past history.

The experimental results are very encouraging. We can achieve one to two order-

of-magnitude speed gain compared with SPICE3.e.



95

Node 5
Volts

secx 10"'

0.00 10.00 20.00 30.00 40.00 50.00

Figure 5.8: The Waveform at Node 5.
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Chapter 6

Future Work: Recursive

Convolution Simulation of

Arbitrary Distributed Networks

The multiconductor Telegrapher equation model introduced in subsection 5.1.2

is not adequate to model general distributed networks, such as nonuniform lines or lines

connected in arbitrary three-dimensional geometry. The assumptions introduced by the

Telegrapher model are that all the lines of the multiconductor system should be of equal

length and the R L G C parameters should be uniform over the lines. These two as

sumptions restrict the model from handling the general interconnects of today's high speed

microelectronic systems. Tape automated bonding (TAB) and tapered etches on chip carri

ers are example of nonuniform lines. In addition, the implementation of thin-film multilayer

interconnects has caused the emergence of irregular geometries such as vias and multilevel
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crossing metallic signal strips in orthogonal multilayer configurations. These general con

figurations and irregularities have created difficulties for the Telegrapher model. We may

need to use many Telegrapher multiconductor systems to model the interconnects1 between

a small number of terminals, which makes the simulation impractical.

To handle nonuniform lines, previously [49] has proposed the approach of decom

posing the nonuniform multiconductor system into many sections and treating each section

as a uniform multiconductor system. Convolution simulation is then applied to each uni

form multiconductor section. However, to maintain the desired accuracy a large number of

sections may be needed for long lines, which increase the computations. Furthermore, this

approach still cannot handle interconnect with general configurations.

In [37], the scattering parameter model was used to model an arbitrary distributed

network. The network is treated as a black box because the internal nodes of the network

are hidden from the simulation. The terminals of the box are the nodes of the network con

nected with other nonlinear devices. To characterize the network, the network is assumed to

be terminated in its characteristic impedance; therefore, the scattering parameters can fully

characterize the electrical behavior of the distributed network. The scattering parameters

represent the transfer function of the reflected voltage waves (outputs) versus the incident

voltage waves (inputs) of the black box. Convolution can be employed to determine the

outputs given the information on the inputs. For the purpose of simulation, to compen

sate the effects of the added characteristic impedance, in between each terminal and the

characteristic impedance, an impedance of the negative impedance value is assumed to be

*A section of parallel lines can be treated as a multiconductor system.
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connected in series. This approach offers good computational efficiency because the internal

electrical information of the network is not evaluated. Usually, the number of internal nodes

of a network is much larger than the number of its external nodes.

We propose to apply the recursive convolution to the above scattering parameter

approach and employ the Pade approximation to synthesize the scattering parameters.

Therefore, (1) the recursive convolution technique can be used to greatly speed up the

simulation, (2) there is no need to estimate the scattering parameters and the characteristic

impedance over the whole spectrum, and (3) FFT is not needed.

This chapter is organized as follows. In section 6.1, we introduce the concept of

scattering parameters. In section 6.2, we introduce the convolution simulation using the

scattering parameter models. In section 6.3, we present our recursive convolution simulation

with scattering parameters.

6.1 Introduction of the Scattering Parameter Model.

The frequency-domain scattering parameters S(w) of a transmission line system

describe the relative amplitude and phase of the forward and backward traveling waves, at

each port and at each frequency. The transmission line system shown in Fig. 6.1 has the

characteristic impedance Zm. The distributed network of the figure represent interconnects

of general configurations and with irregularities. Here V* and Vj~ are the forward and

backward traveling waves, respectively, at the jth port. The scattering parameter is the

ratio ofthe backward traveling wave to the forward traveling wave Sij(w) =Vf(w)/V^(w)

[50].
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Then, each frequency-domain scattering parameter can be determined by Sij(w) =

V{(w)/Vj(w) with all ports except port j terminated in Zm, where V{(w) is the voltage at

port i. Let port j be connected to a sinusoidal-wave voltage generator Vj(w).

The scattering parameters S(w) can also be determined by performing the short-

circuit admittance measurement. That is

S(w) = (Ym(w) + Yo(w)r\Ym(w) - Yo(tiO), (6-1)

where Ym(w) is the characteristic admittance and Yq(w) is the short-circuit admittance.

We will use S{j(t) to denote the time-domain scattering parameter, which is the

inverse Fourier transform of Sij(w).

6.2 Simulation with Scattering Parameters.

Let us consider the iV-port distributed network of Fig. 6.2 with ports terminated in

Thevenin equivalent sources each with characteristic impedance Zm. Thus, the scattering

parameter given in the previous section can fully characterize the network in the figure.

Therefore,

VM = J2 I 9ij(t - r)cj(r)rfi

N

= l>i(0*ei(0. (6.2)

where gij(t) is the inverse Fourier transform of the Green's function Gij(w) where

1 + Sij(w)
Gij(u>) = 2~*

Sjj(w)
2 ' / = J

2 , *#i (6.3)
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Following the approach in [34] and [37], the effect of the characteristic impedance

is removed by inserting a series impedance —Zm at each termination so that a virtual short

circuit is created between the load and the distributed network as shown in Fig. 6.3. Hence,

we have one extra branch equation for each port i

v((t) = et(0 - ii(t)ZT (6.4)

Beside the original nodal equations of the circuit, for each port i, we create two

extra variables e,-(t) and *,-(*). Since we also have two extra equations Eq.(6.2) and Eq.(6.4)

for each port, it is possible to solve all the variables at each integration step.

6.3 Recursive Convolution Simulation with Scattering Pa

rameter Models.

In [37], the authors used FFT to derive gij(t) from Gij(w). Since Gij(w) expands

to very high frequency, windowing the spectrum is necessary, which will introduce errors.

Furthermore, they need to measure the scattering parameters over the whole spectrum of

interest before performing FFT, which is a difficult job. Their approach also suffers from

the quadratic complexity of the convolution simulation.
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To cope with the first two difficulties of [37], we propose employing the Pade ap

proximation to derive gij(t), hence avoiding performing FFT and measuring a large number

of scattering parameter data. From a few measured data of Gij(w) at high frequency, a

fitted complex polynomial can be determined. Then, the Pade approximation can be ap

plied to the polynomial to solve for gij(t). gij(t) will assume the particular form, a Dirac

function plus a sum of exponential functions. Therefore, recursive convolution can be used

to save computations. The method is similar to that described in Chapter 5.
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Chapter 7

Conclusions.

Electrical transient analysis programsare very important CAD tools for improving

the operating speed, reducing the silicon area and power consumption, and detecting the

possibility of timing errors in a digital system. The direct approach simulators such as

SPICE and ASTAP have been the bread and butter of circuit designers for over two decades.

However, these simulators will not be feasible when applied to large submicron systems and

are not capable of simulating lossy interconnects in multi-chip modules. Although many

modified versions have been introduced to improve those programs' efficiency and usability,

there is a sore need for a different approach to handle large and tightly coupled VLSI

circuits.

In this dissertation we have accomplished the following: (1) to improve the effi

ciency for the simulation of tightly coupled circuits, we presented the Stepwise Equivalent

Conductance implicit integration; (2) to further speed up the simulation of CMOS digital

circuits, we presented the Piecewise-Linear Waveform Event-Driven simulation; and (3) to
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solve the simulation of lossy interconnects, we presented the Recursive Convolution simu

lation based on the Pade approximation. The Stepwise Equivalent Conductance implicit

integration avoids solving nonlinear equations in the implicit integration of nonlinear cir

cuits. Computationally expensive Newton Raphson iterations are not needed. Therefore,

we can achieve efficiency and stability at the same time. The piecewise linearity on volt

age waveforms are exploited by our event-driven approach to decrease the number of event

rescheduling, to maximize the integration time steps, and to handle the feedbacks in the

circuits. Our recursive convolution approach avoids the difficulty of expanding the convolu

tion integration over the whole past history and speeds up the simulation. The approach is

by means of the Pade approximation of transcendental functions in the frequency domain;

therefore, it can handle very general coupling situations and frequency varying lines. We

also proposed the approach of applying the recursive convolution to arbitrary distributed

networks modeled by the scattering parameters.

The experimental results are very encouraging. Our digital CMOS timing sim

ulator, SWEC, based on these techniques outperforms Relax2.3, SPLICE3.0, XPsim, and

SPECS2 in both efficiency and accuracy. For the simulation of the circuit with 31 thousand

transistors, we could achieve one to two orders-of-magnitude speedups than SPLICE3.0

and Relax2.3. SWEC, while giving accurate results, can be one to two orders-of-magnitude

faster than SPICE3.e on the simulation of lossy interconnects. We believe that these tech

niques can make the multi-chip module simulation possible.
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Appendix A

Circuits with Inductors, Nonlinear

Capacitors and Nonlinear

Inductors.

If there are linear inductors in the simulated circuit, we can use either the state

equations or the modified nodal equations. For the later the circuit equation will be of the

form below

F(X(t)) + HX(t) = Is(t). (A.1)

Eq.(A.l) is composed of the nodal equation for each node, which is the Eq.(3.1) mentioned

earlier, and the inductor equation for each inductor, which specifies that the voltage drop

across the inductor is equal to the inductance of the inductor times the time derivative of

the current through the inductor. The variable X is composed of the node voltages and the

currents through the inductors.
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Eq.(A.l) can also be transformed into a linear time-varying circuit equation

A(t)X(t) + HX(t) = ls(t). (A.2)

A(t) is composed of the instantaneous equivalent conductance matrix at time t and subma-

trices with their entries being equal to 1, 0, or -1 to specify the inductor equations. A(t)

satisfies the relation below

A(t)X(t) =*(X(0). (A.3)

Eq.(A.2) is of the same form as Eq.(3.2). Therefore, all the discussions regarding

Eq.(3.2) in this paper can directly be extended to Eq.(A.2). The sufficient condition of

the exactness of the transformation from Eq.(A.l) to Eq.(A.2) is that T is continuously

differentiate.

If there are nonlinear capacitors or nonlinear inductors in the simulated circuit,

then the charge of each nonlinear capacitor or the flux of each nonlinear inductor can be

thought of as a time-varying function. The charges or the fluxes will also be considered as

variables. Their time derivatives will be either the branch currents through the nonlinear

capacitors or the voltage differences across the nonlinear inductors. The circuit equations

will still be of the same form as Eq.(3.2). Therefore, the discussions in this paper can also

be extended to cover these kinds of circuits.
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Appendix B

Approximation Errors.

In this Appendix, the numerical error introduced from tn to *n+i by using the

solution of Eq.(3.8) as the approximated solution of Eq.(3.2) will be derived. Let us denote

this approximation error rn. Then, the local truncation error for the integration of Eq.(3.2)

from tn to tn+\ will be the sum of rn and the error introduced by the integration scheme

that we use to integrate Eq.(3.8) for the time step.

Let us rewrite Eq.(3.2) below:

G{t)V(t) + CV(t) = Is(t). (B.l)

Given V(in), we are trying to solve for V(in+i) of Eq.(B.l).

The G(t) can be expanded into Taylor series around the neighborhood of tn:

(G(tn) +G(tn)(t - tn) +±G(tn)(t - tn)2 +••.)V(t) +CV(t) =I8(*). (B.2)

Let us consider the first two terms of the Taylor series,

(G(tn) + G(tn)(t - tn))V'(t) + CV'(*) = I8(*), (B.3)



109

with V'(in) = V(tn). Then, V(tn+i) will be the approximated solution of V(tn+i). We

use a column vector r* to denote the errors, i.e. r,J = V(tn+i) —V(tn+i).

To solve V'(tn+i) of Eq.(B.3), we further approximate Eq.(B.3) by the following

equation:

gvn(t) + cvn(t) = 1.(0, (B.4)

with Q= G{tn) + b£G{tn), where hn = tn+i -<„, and VW(*B) =V'(*„) =V(*B). V"(*n+i)

is then the approximated solution of V'(Jn+i), and let us denote the errors due to this by

r2 = V'(tn+1)-V"(tn+1).

Then,

Tn = T* + Tl (B.5)

B.l The analysis of r^.

The solutions for V'(f) for Eq.(B.3) are composed of two parts: one is the homo

geneous solution with Is(*) = 0, denoted by V'cit), and the other is the zero initial state

solution, denoted by V^(0, where Vi(in) = 0. Therefore, V'(*) = V{.(*) +V',(*)- Similarly,

V(t),V(i) = V»c(0 + V\(t).

By setting ls(t) = 0 in Eq.(B.3), we get

(G(tn) + G(tn)(t - tn))V'c(t) + CV'c(t) = 0 (B.6)

Eq.(B.6) can be solved exactly with the solution

y'cW =e-C"^G^<t-^+2^f '̂»^*-««)2)v0, (B.7)
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where V° = V£(*n) = V"c(*n). Hence,

V'c(tn+l) =e-C-^GMkn+iGdMyO (B>8)

On the other hand, by setting Is(2) = 0 in Eq.(B.4), we get

V"c(t) =e-C'̂ e-'rOv0. (B.9)

Hence,

Vc(*n+i) =e-C~lghnV°. (B.10)

Byusing the fact Q= G(*n)+^-G(*n), we have Vc{tn+i) = Vc(fn+1). Therefore,

t% is not caused by the zero input solution part.

Let us next look at the situation with V° = 0. By subtracting Eq.(B.4) from

Eq.(B.3), we get

G(tn)(Vm(t) - v\(0) +c(v«t) - v\(t)) =G(tn)(!±v\(t) - (t - *«)v:w),

or

G(tn)e(t) +Ce(t) =G(tn)(!±V\(t) - (t - *„)VL(0K (B.ll)

where e(t) = V'm(t) - V\(t).

Vj,(i) and V"»(t) on the right hand side of Eq.(B.ll) can be expanded into Taylor

series around tn. By neglecting the higher order terms and by using the fact Vm(tn) =

V'\(*n) = 0, we have

G(tn)e(t) +Ce(t) =6?(*n)(y (* - *n)V\(tn) - (t - tn)2V'M(tn)). (B.12)
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By replacing t of Eq.(B.3) with tny we get V'*(tn) = C-lIs(tB) because V'm(t)

is the solution of Eq.(21) with Vm(tn) = 0. Similarly, by replacing the t of Eq.(B.4)

with *n, we get V\(*n) = C-lU(tn). Hence, VtftB) = V\(*n). Note, Cr1^) =

C"1G(<n)V(/n) + V(*n). We can use either expression for V'm(tn) depending on which

information is available.

Therefore,

G(tn)e(t) +Ce(t) =GMC-'lsMi^it - tn) - {t - tn)2). (B.13)

We can use the Laplace transform method to solve for e(tn+i), which is given by the

convolution integral,

e(*n+i) =

rtn+hn e-C-lGitn)ltn+hn-*)C-lQMC-lUMfe^ _^ )_(, _tn)2)d^ (B#14)
Jtn *

Since h is small, C_1G(tn)(<n + h —s) is approximately a zero matrix, during the

integral interval, e~^ G(tn)(tn+h-a) w ^ tjie identity matrix. Therefore,

e(tn +hn) = r^C^G^nJC^Is^K^-tn)-^-^)2)^

=C-'GMC-hsM^). (B.15)

Because r^ = e(tn + /in),

r„2 =C-1G(tn)C-1Is(*„)(^)>

or

=C-,G(*1.)(C->G(*I.)V(«m) +V(J„))(-^). (B.16)
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B.2 The analysis of t\.

Subtracting Eq.(B.3) from Eq.(B.2), we get:

(G(<n) +G{tn)(t - tn))e'(t) +Ce\t) =-(iG(tw)(t - tn)2 +••-)V(t), (B.17)

where e'(J) = V(t) - V'(f), and e'(tn) = 0. e'(i) represents the error introduced by using

V'(t) as the solution of V(t). We next solve for e'(in + hn).

Eq.(B.17) is of the form of Eq.(B.3) with Is(i) equal to

-(!&(*«)(*-iB)2 +'--)V(0. (B.18)

As mentioned in the previous subappendix, we can solve the equations below

0e"(t) +Ce"(0 =-(±G(tB)(l - tn)2 +•. -)V(«), (B.19)

with 9 = G(tn) + fyGitn) and e"(*„) = 0, and use e"(*n + hn) as the approximated

solution for e'(/n + hn). This approximation will introduce a r2 type of error as explained

in the previous subappendix. However, when we calculate Eq.(B.18) with t = tn, we have

zero currents. This means that e;.(<n) = e"m(tn) = 0 because both are equal to C_1Is(tn).

Therefore, we need to consider the second order terms for the Taylor expansions of e'(t)

and e"(t), respectively. In this way, we will have G(tn)(fy(t - <n)2e"*(tn) - (*n)3e«(*n))

on the right hand side of Eq.(B.12). Since the power of (t - tn) is one more than that of

Eq.(B.12), we get the r2 type of error by using e"(<n+1) as e'(i„+i) is of the order of o(/i4),

which is much smaller than the r2 derived previously. In fact, later in this subappendix, we

will show t£ is also of o(/i3), so we can neglect the o(h4) errors. Therefore, we will assume

that no error is introduced by using e"(tn+i) as e'(tn+i).
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From Taylor's expansion of V(i) in Eq.(B.19) around tn and neglecting the higher

order terms, we have

0e"(t) +Ce"(t) =-{t~*n)2G(tn)V(tn). (B.20)

Again, we can use the Laplace transform method to solve for e"(£n+i), which is

e"(*n +h) =fU+h e-C^g^+h^C-1G(tn)V(tn)(--(S~0tn)2)ds. (B.21)
Jtn *

Since /in is a very small number, during the integral interval, e~^ »('«+'l~a) « i.

Therefore,

e(tn +h) = / C^GfaJVfaX-^ *n) )ds

=ClG(tn)V(tn)(^). (B.22)

Hence,

r^C^GCUVlUt-^). (B.23)

Combining the r2 derived previously, we have

Tn = r^+r2

= -C^GfinJVCtnX^J-C^Gt^KC^G^M^J+V^JK^I). (B.24)
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Appendix C

Time Step Constraints.

In this Appendix, the upper bound on the infinity norm of Eq.(3.9) under the

constraints of hn on Eq.(3.11) is derived. The infinity norm of a column vector is the

largest absolute value of the entries of the vector. Since the column vector of Eq.(3.9)

represents the approximation errors on the node voltages, the infinity norm of Eq.(3.9) can

give the measure of the the error introduced.

To make the notations simple, we follow the notations used in the previous Ap

pendix. The column vector of Eq.(3.9) is denoted by rn, which is equal to r,J + r2. We will

first derive the upper bound on || rn || under Eq.(3.11), and then the upper bound on || r2 ||

under Eq.(3.11). Then, || rn ||<|| rn \\ + || r2 ||. We will show that the upper bound on

|| rn || is approximately §AV.

For the purpose of the derivation, the following two theorems have been developed.

Theorem 2 //

(l^^l)<< Vdevice i, (C.l)



115

then

|| (AjG(tn))G(*n)-' ||< t (C.2)

Proof: Since

1 =|| G^GM-1 ||<|| G(t„) IHI G(tn)-1 ||, (C.3)

and G(tn) is diagonally dominant,

1 <|| GM-1 ||, (C.4)
2rf„„_

where dmax represents the largest diagonal element of G(tn). Note that

II G(tn) ||oo= MAXifc |(G(*n))ol) < 2dmax. (C.5)
3-1

Therefore,

|| (hlG(tn))G{tn)-1 \\<\\ h\G{tn) OH G(tn)-1 ||< €2rfmaar-J— <€. (C.6)

Theorem 3 //

(l^rl)-£ Vdevicei' (°-7)
JAen

|| (hnG(tn))G(tn)-1 \\< € (C.8)
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The proof for Theorem 3 is similar to that of Theorem 2, so the details are omitted.

Ilr'n = yc-»d(«.)v(t.)(§) ii
= || cr'd(t,)o(<-)-«G(f.)v(«,)(§) ||
* || 6(«.)0(*,,r»C-»G(f.)V(*.)(^) || (C.9)

Since the matrix C is diagonally dominant and so is C""1, the error introduced on the norm

by commuting C~x is small. Note that if C is a diagonal matrix, then the commutation of

C_1 in Eq.(C.9) will not introduce any approximation.

Under the constraints of Eq.(3.11), we have

|| ri|| * || G(tn)G(inr1C-1G«n)V(tn)(^) ||
< || &G(tn)G(tn)-1 HII hnC-'GMVdn) \\

< ^WhnC-'Gitnmt^W

* £ II />nV(*n) II

< \*y (c.io)

In Eq.(C.lO), we use the approximation || V(*B) ||«|| C"lG(tn)V(tn) ||. If in Eq.(3.2)

Is(*n) = 0, then there will be no approximation introduced. For the case where Is(*n) f^ 0,

if AV is very small, the approximation incurred will be very small.

On the other hand,

11*2 II = WC-'GitnKC-'GitnWiU +Vitnm^W
= || C-'GdnWtnr'GitnKhnC^GitnMtn) +A«V(tB))(y|) ||
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hi« || G(tn)G(tn)-1C-1G(in)(/lnC-1G(<n)V(tn) +hnV(tn))(^) || (C.ll)

Again, the approximate commutation of the matrix C_1 is used in Eq.(C.ll).

Under the constraints of Eq.(ll), we have

ill *

<

<

<

<

< e

GitnMtnr'C-'GVnKhnC-^tnmtn) +hnV(tn))(^) ||
12

hn*nG{tn)G(tn)-1 IHI hnC~lG(tn) \\\\ hnC~lG(tn)V(tn) +hnV(tn) \\

^G{tn)G(tnr' IHI hnC-lG(tn) || (|| hnClG(tn)V(tn) II +II *»V(iB)
^G^Gitn)-1 IHI hnC-'GM || (|| /lnV(*n) || +|| hnV(tn) ||)
hn
12

-l,GMG^n)-1 IHI hnC-lG(tn) \\ {AV + AV)

hnC~lG(tn) || £—

AV

6
(C.12)

In Eq.(C.12), the approximation || V{tn) ||«|| C""lG(*n)V(*„) || is used again. For the

last two lines of Eq.(C12), the reason why || hnC~lG(tn) \\ €^- < €&¥- is because

|| hnC"1G(tn) ||< 1, which is the basic requirement for the integration time step hn,

otherwise hn can not be kept to the first order accuracy.

Combining Eq.(C12) and Eq.(C.lO),

rl II + II rl

AV AV

AV
= €• (C.13)
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Appendix D

Time Steps Selection for an

Inverter.

Our event driven approach works for circuits with feedback loops because of the

assumption that the integration time step selected according to Eq.(4.3) for each subcircuit

will guarantee that the subcircuit's fanouts will not change slopes within the time step (time

step criterion). Therefore, a loop of event rescheduling can be avoided, which is explained

in section 4.4.

In this Appendix, we show that the time step criterion will hold for a CMOS

inverter if its time steps are selected according to Eq.(4.3). Since inverters are the most

basic CMOS gates, we assume the validity of Eq.(4.3) applies to all CMOS gates.

First assume that the inverter is in a pull-down situation and its pMOS is almost

OFF. Therefore, the pMOS part can be neglected. (We will remove this restriction later in

this Appendix.) We have an RC equivalent circuit as in Fig. D.l. Cl is the capacitive load
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at the output node of the inverter, and R is the reciprocal of the equivalent conductance of

the nMOS.

The input voltage to the inverter, denoted by V;, is equal to Vqs of the nMOS,

and the output voltage, denoted by V0 will be equal to Vds of the nMOS. Since the input

waveform is piecewise linear and given, we know the breakpoints beforehand. Therefore, at

every time point, the input can be looked at as a straight line with a slope a.

There will be no constraint on the time step if the nMOS stays OFF. The next

time point will be the earlier one between the following breakpoint and the time when the

nMOS is turned ON. Hence, for the constraints on time steps, we only analyze the following

two cases:

Case (i): VDS > VGs - Vth > 0

In this case, Ids = P{Vgs - VtB)2. And,

dVj(t) _ dVGs _ d ( .
ir- — = Jt{Vcs - Vih) -a- (D-1}

Let, at the time tn,

Vqs - Vth = V?, V0(tn) = V0°, Gn = G°. (D.2)

Then, at the time tn + h, Vqs - Vth = VJ° + ah. The true output change during this time

step h, AV0(in, tn + h) is

1 rhAV0(tn,tn +h) =— I 0(at +V?):
Cl Jo

=̂(V-o2/i +a^2 +y^3). (D.3)a2

dt



Input slope a

\ / O
^
v3

R=l/G(t)

This part of the circuit is

neglected.

Vo

<L

Figure D.l: Equivalent Circuit for the Inverter.
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Eq.(D.3) is a polynomial in ffi. Assume

ah

where € is the local error bound. Then we get1
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< €, (D.4)

AV0(*n, tn +h)*s -£r(y?2h +aV?h2). (D.5)

Based on Eq.(4.2),

Gn =G° +̂ ^y^fesli, =~(^°2 +VJ°aA). (D.6)
Let V0 be the estimated output after time step h calculated using the backward

Euler integration, which is

CrV°

V° =<drc-L- (D-7)
Then,

AK,n =K- V? =-jfcjfcV* *^K», (D.8)

where the approximation holds for

CL

And, under this approximation,

< c. (D.9)

AV0n =!^V0° =£-{hVf +V?ah2). (D.10)

Eq.(D.9) can be further approximated to be

G°h

CL
<*, (D.ll)

^ote the neglected third term is associted with the ddotG(t) of Eq.(3.11), which means Eq.(3.11b)
implies Eq.(3.11a) for a CMOS inverter.
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because the second term of Eq.(D.6) is the difference between Qn and G°, and compared

with the first term, it is very small when the condition of Eq.(D.4) holds.

From Eq.(D.5) and Eq.(D.lO),we seethat AV0(*n, tn+h) is equal to AV0n provided

that Eq.(D.4) and Eq.(D.ll) hold. Therefore, the % local error will be less than € if

/*<^-€, /*<§§*. (D.12)

Case (ii): VGS - Vth >VDS>0

In this case, Ids = 0(2(Vgs~ V^Vds-Vds2)' The equivalent conductance, G(t),

of the nMOS at the time t is

G(t) =^|( =P(2(Vcs - Vth) - VDS)\t. (D.13)
Vds

Assume that Vds is linear with a constant slope during the estimated time step. (The

feasibility of this assumption will be checked later.) Then, G(t) will be a linear function of

t since both Vqs and Vds are linear. Let G(t) —G° + 7(2 - Jn), where G° is the equivalent

conductance at tn being equal to /?(2^° - V0°) , and 7 = ^ = P(2^- - ^Xjus.) evaluated

at tn. Given the output voltage at *n, say Vo0, we have at tn + h

V0(tn + h) = V?e-(GOh+Wc<-. (D.14)

According to Eq.(4.2) Qn is equal to G° + ^j-. Hence, by setting this value to be

the conductance of the resistor of Fig. D.l, the output voltage at tn + h will be

v0 = v?e-£i^+^ = vy-lCk+W/c^ (D 15)

which is exactly the same as Eq.(D.14).
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Now we need to check the validity of the assumption made regarding Vds- We

assumed that Vds is linear during this time step h. The change of the output voltage during

the time step h is

AV. =V?(l - e-(°°l>+W°>-) *V°(^-(G°h +|ft2)), (D.16)

under the condition

-^{G°h +̂ h2)<e. (D.17)

We need to have AV0 linear in terms of h. From Eq.(D.lG), we know this is true only if

1h2

&**• (ai8)
By using the condition of Eq.(D.18), Eq.(D.17) can be simplified to

h<<§§. (D.19)

Eq.(D.18) is therefore

•ga2g W-O < 2S
7 P(2a-^\tn) ~ <*

h<2e— =2e ^ x[ dV ;,\ < 2e^-. (D.20)

The above is true because Vo0 >0, and ^f2 <0 (opposite sign with a).

From equations (D.12), (D.19), and (D.20), we have the following constraints on

the time step hn for an inverter circuit with the pMOS being OFF

An-£G(U

and

hn<2*VaS~Vik\tn, (D.21)
\a\
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which applies to both situations: Vds > Vqs ~ Vth > 0 and Vqs - Vth > Vds > 0. If hn

fulfills the inequalities in Eq.(D.21), then the % local error is less than e.

If the pMOS is not OFF then it will have its own time step constraint of the same

form as Eq.(D.21). Hence, it is reasonable to assume the next time step to be such an h

which satisfies the Eq.(D.21) for the nMOS and the Eq.(D.21) for the pMOS.

We get the piecewise linearity on the output waveforms and on the MOS I-V

characteristic by controlling the sizes of time steps. The only assumption required is the

piecewise linearity on the input waveforms.

Eq.(D.21) is the time step constraint for one inverter or the constraint associted

with the node connected to only one device. For general circuit configurations, Eq.(D.21)

will be generalized to be Eq.(4.3).
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Appendix E

Piecewise-Linear Waveform

Approximation Algorithm.

Fig. E.la shows the output points for a typical simulation which preserves the

approximate piecewise linearity. However, in order to exploit this linearity in our simulation

approach, the waveform should be transformed to that shown in Fig. E.lb which has

its break points specified explicitly and is linear between adjacent break points. In this

Appendix, we will elaborate the procedure of determining those break points.

The piecewise linear approximation of a signal at the inputs of a gate causes errors

at its output. We first choose what is a tolerable error bound at the output and then, we

determine the breakpoints of an input waveform, such that the error at the output does not

exceed the chosen bound.

Let {xn} = {(tniVn)} be the ordered samples of the original waveforms. Our goal

is to find such a subset of {xn} that after the input is replaced with piecewise linear curve
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t

(a) (b)

Figure E.l: Simulation Waveforms.

with the chosen subset as breakpoints, the output of the inverter will be accurate with the

chosen error bound. For the sake of simplicity, we only consider local errors. In the worst

case, the global error will be an accumulated effect of all the local errors. We define the

term %local error at tn as ^^afoffl'"^ where AV0(*n) is the true output change from

tn-\ to tn if no approximation has been applied. A*V0(/n) is the output change from tn-\

to tn by using {a:,-})!"""1, and, the extrapolated xn from xn-2 and xn-\, as inputs. We call

the % local error bound €, and assume it is a known value, set up explicitly.

In MOS circuits, it is convenient to define two threshold voltages: the high threshold

voltage, V$, being 80% of Vdd and the low threshold voltage, Vt£, being 20% of Vdd. An

input signal which is above the Vtn* can almost fully turn ON every nMOS transistor, and

turn OFF every pMOS transistor. An input signal which is below the Vfa can fully turn ON

the pMOS transistor but turn OFF the nMOS transistor. Hence, we only need to represent

waveforms very accurately between these two threshold voltages. For a sequence of {xn}
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Figure E.2: Piecewise-Linear Approximation.

above Vtn* or below V^, we only pick the starting point, the ending point, and the extreme

point, which is the point with the largest voltage if {xn} is above Vt% or the point with

the smallest voltage if {xn} is below Vfc, as the breakpoints. A sequence of {xn} between

those threshold voltages can drive a MOS transistor in the saturated region or in the active

region depending on which among Vqs - Vth and Vds of that transistor is larger.

(i) VDS > VGS -Vth>0:

Let us consider again Eq.(D.5):

AV0*^r(V?2h +aV?h2). (E.l)
Cl

Note that V? denotes Vqs - Vtn evaluated at tn-\. AV0 is the output change between

£n_i and tn, and a is the slope of the input signal from tn-\ to tn. Suppose that a is

approximated by some value a. The % local error introduced by this approximation by
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using Eq.(E.l) will be

\AV0(tn)-AV0(tn)\ __ \ah-ah\

Am:) - ~~vr~' ( }

Since V? is at most about 4 Volts and at least above 0 Volt, we use the average, 2 Volts, to

represent it.

The difference between ah and ah is exactly the same as the difference between vn

and vn, which follows from the definition of a slope and is depicted in Fig. E.2. Therefore,

whenever lVn~Vwl > c? i.e. the x„ based on the extrapolation of xn-2 and xn-i is no longer

accurate enough, we choose a breakpoint xn-i = (tn-iyVn-\).

(ii) VGS - Vth >VDS>0:

We look again at Eq.(D.16):

AV0«^(G*°/i +̂ /i2). (E.3)
Cl 2

7 is ^ from *n_i to t„, which is equal to 0{2^^- - Vds) from tn-\ to *„, and G° =

/3(2VP - V0°). The discrepancy in a will introduce errors in 7. The approximated value of

7 is denoted by 7. The % local error by using Eq.(E.3) will be

|AV0(tn) - AV0(*n)| I7A-7&I
AV0(*n) 2G°

\ah —ah\
V? + (Vf> - Vo0)
\ah —ah\

V?
(E.4)

The % local error is smaller than that of Eq.(E.2), which means the constraint of Eq.(E.2)

is tighter. Hence, whenever \Vn~Vn\ > e, we pick a breakpoint zn_i = (tn-\,vn-\). This
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expression is independent of the type of transistor that {xn} is driving and can be extended

to a general CMOS gate.

Let us consider a general CMOS gate, with a given a sequence of samples {xn}

having values between Vt£ and V^. Our algorithm starts at the beginning of the sequence

and examines consecutive three samples. Let 2,-2 >a?{-.i, and X{ be the three samples we

are checking now. If

\vi - «,., - («,- - <.--i)"i-'~l*~a I>2c, (E.5)
H-\ - *t-2

then Xi_i is kept as a breakpoint, and in the next step we examine the samples: x,_i, a;,-,

and a?,+i. Otherwise, a:,_i is not a breakpoint. The next triplet to be examined is: ar,_i,

£,-, and X{+\.

Therefore, we have a linear complexity and a real time1 algorithm to determine

the break points. For every three points we check the condition specified in Eq.(E.5) (or

Eq.(4.4)) to determine whether the middle point is a break point.

xThis means that we don't need to gather all the data points before we proceed our algorithm.
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Appendix F

Remarks on Recursive

Convolution Formulation.

Professor Omar Wing of Columbia University recently pointed out that the recur

sive convolution formulation was proposed in [51] in 1975. The authors of [51] observed that

if a system's time domain unit step response behaves like an exponential function, with the

asymptotic waveform, then it is possible to approximate that unit step response by one or

two exponential terms, which will be its primary and second primary components; then,

later the convolution can be performed recursively.

Their approach would fail if the exponents are complex (the unit step response

is no longer asymptotic), and have no control of the errors introduced by the exponential

fitting. It may have been the reason why after 17 years their work was still not applied to

solve any practical problem.

The contributions of our work are as follows:
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1. We combine the recursive convolution formulation (independent of their work)

and the Pade approximation to solve the lossy transmission line simulation. The

approach does not matter if the poles of the Pade approximation are complex or

not and no approximation is introduced from the frequency domain Pade rational

polynomial to its time domain exponential impulse response.

2. We develop the error analysis for the Pade approximation, which is very impor

tant.



Appendix G

Remarks on Computing

Time-Domain Response of Lossy

Multiconductor Line System.
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G.l The eigenvector matrix Sv(s) is continuous.

It has been proved that if the eigenvalues are distinct then the eigenvectors asso

ciated to them will be continuous [52]. We assume that this distinct-eigenvalue property

holds for the interval of 5 that we are evaluating. This assumption is valid for most coupled

line systems except for the rare situation where the coupling across k lines is equal to the

coupling across j lines, for some k ^ j. This exceptional case happens only when there

exists hardly any coupling. In that case, the simple-line approach will be appropriate.

G.2 The K(y) of Eq.(5.63) is diagonalizable.
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K(y) = (L + yR)(C + yG). (G.l)

The matrices L + yR and C + yGy denoted by Z and V, respectively, are symmetric, hence

diagonalizable. Let us consider the following similarity transformation on K(y)

Z'iK{y)Zi

= Z-h{ZY)Z±

= Z2YZ2. (G.2)

Since K(y) is similar to Z*YZ* and the later is is symmetric, K(y) is always diagonaliz

able.

G.3 The entries of A2(0) will all be positive.

A2(0) are the eigenvalues ofthe product LC. Due to thepositive energy reasoning,

both L and C are positive definite [50]. Let us consider the similarity transformation on

LC below

L-*(LC)L2

= L2CL2. (G.3)

Since LtCL* will have all its eigenvalues positive, the entries of A2(0) will be positive.
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