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Abstract

We develop a framework for designing and evaluating the complexity of mecha
nisms that allocate resources in a distributed setting. This framework is applicable
to economics and distributed computing. We discuss several mechanisms and describe
the construction of efficient price based mechanisms, which exploit the structure in the
problem. For the case of one resource our mechanism is the fastest known distributed
algorithm for the problem. For two resources this is the only known method which ex
ploits the structure of the problem and is the most efficient serial or parallel algorithm
known. We conjecture that this is also true for price mechanisms for more than two
resources, and propose a method for constructing them.
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1 Introduction

In this paper we consider the problem of allocating resources among a large group of agents
in a distributed setting. We provide a framework for studying such mechanisms, which we
use to evaluate several different ones. Our goal is to design efficient mechanisms that can
compute reasonable allocations rapidly in a distributed setting.

The design of mechanisms for the allocation of scarce resources among a large group
of agents has been a fundamental topic in modern economics [AH60, Hur73, HM85]. This
problem is also of great importance in distributed computing, where resources may refer to
CPU time, network bandwidth, and data storage. In fact much recent work has involved
the application of economic ideas to problems in distributed computing. (See e.g. [FNY88,
Hub88, IK88, KS89, San85, San88, She90].)

The formal study of 'efficiency' for different mechanisms was instituted by Reiter and Hur-
wicz [Hur86b, MR74] and has produced a vast literature on optimal mechanisms. However,
most of these analyses consider mechanisms which find optimal or Pareto efficient allocations
at equilibrium [Hur77]. The incorporation of dynamic elements has also been attempted in
a limited manner [MR87]. However, the time required to actually find a good (or optimal)
allocation has not previously been studied. Also, the complexity of a mechanism has been
defined as the number of messages required at equilibrium, not the computational effort or
total number of messages required overall. We believe that the total time and effort required
to compute an allocation should be considered when designing mechanisms, because these
directly determine how well they function.

Furthermore, most of the work in this field has implicitly assumed unlimited computa
tional ability by the agents, who are assumed to exactly solve difficult optimization problems
instantaneously. This viewpoint is certainly unrealistic and has recently been questioned;
typically, agents in an economy are not infinitely wise nor is the designer of the mechanism.
Such limitations have been referred to as 'bounded rationality.'[Sim86, RW91]

Several approaches have attempted account for the decision maker's bounded rationality.
Simon [Sim86] considers 'satisficing' mechanisms, where mechanisms must perform in an
informally defined satisfactory manner. Mount and Reiter[MR90] consider the design of
mechanisms when the participants are infinite dimensional generalizations of finite automata.

In this paper we consider a very natural model of 'finite rationality'. We model the par
ticipants as 'computers' where each one has finite 'speed of computation.' For our definition
of 'computer' we use the recent idea of 'computation over the real numbers' as discussed in
[BSS88, Meg83, Blu89]. Our 'computers' can manipulate real numbers and do the follow
ing operations in unit time: addition, subtraction, multiplication, division, and comparison.
This model of computation is both elegant and useful analytically. It is also, perhaps, a bet-



ter model of the way modern computers work and numerical analysis. Nonetheless, most of
our discussion and results are also vahd in standard models of computation, such as Turing
machines, with only slight modifications.

We consider the problem of constructing mechanisms which compute allocations that are
guaranteed to be good, but not perfect,in a reasonable amount of time. The most important
aspect of these mechanisms is that they scale well with the number of agents. That is, even
if the number of agents is very large our mechanism still operates in a reasonable amount of
time1.

Previous results on such mechanisms are scarce. The case of a single resource has been
well studied, and several efficient algorithms for it exist [IK88, Hoc]. For multiple resources
Nemirovsky and Yudin [NY83] provide the framework for constructing such mechanisms,
but only explicitly consider the single resource case. In [Fri92] we describe the construction
of a mechanism for a generalization of the multi-resource allocation problem.

In the next section we formally define our model and some measures of complexity and
efficiency for mechanisms. We then consider quantitity based mechanisms. These are often
denoted primal algorithms. We describe two different such mechanisms. These are only
discussed briefly as they have been well treated elsewhere [Fri92, NY83]. However, neither
of these mechanisms satisfies our definition of efficiency. This is a standard problem with
primal algorithms as they do not appear amenable to distributed implementation.

Our main focus is on price-based mechanisms and the construction of efficient mecha
nisms using prices. These can be interpreted as finite versions of primal-dual algorithms.
These mechanisms are naturally implemented in a distributed system, as primal-dual algo
rithms typically distribute well. For example Arrow and Hurwics use a primal dual method
for constructing descentralized mechanisms in [AH60]. Also, by taking advantage of the
structure inherent in resource allocation problems, they are very efficient2. For example the
price mechanism for a single resource is the most efficient distributed algorithm of which we
are aware.. For 2 resources it is the only algorithm we know of which exploits the structure
of this problem and is the most efficient serial or parallel algorithm known to us. For more
than two resources we conjecture that the same is true.

Finally, we note that the mechanisms here can be seen as extensions of a theory of
'global' optimization expounded in [Fri92] which is based on the work of Nemirovsky and

1Similar ideas can be found in Marschak [Mar86]. Heexplicitlyconsiders the running time ofa mechanism,
but allows agents to use infinite computation.

2The formal description of mechanisms reflects the interplay between the theory of mechanisms and that
of mathematical programming. In fact many of the mechanisms found in the economics literature have their
inception in mathematical programming, and currently many algorithms for mathematical programming are
using ideas from economics for their inspiration. Our work is no exception.



Yudin [NY83] and recommended in [Son85]. This should be contrasted with the standary
asymptotic results in nonlinear programming. In those results, convergence is only guaran
teed in a small neighborhood of the solution. Also, the asymptotic theory relies very strongly
on the analytic properties of the functions being optimized. Global results are only based
on convexity propeties of the functions. Convergence results are global and guarantee the
(approximate) solution of the problem will be found in a specified finite time.

The specific results of this paper is that the global theory can be applied to problems
with special structure, in order to reduce the number of computations required to find a
solution.

This paper is structured as follows. In section two we define a model of complexity
for resource allocation, both with and without a center. Then chapter three constructs
two quantity based mechanisms, which are modeled after known methods of optimization.
Neither of these mechanisms are efficient, so we are led to the construction of new, price
based, mechanisms in section four. In the first part of this section we construct a price
mechanism for a single resource. Much of this part is meant to be pedagogical, but none the
less this mechanism is a significant improvement over known algorithms for the distributed
allocation of a single resource. In the second part we construct a price based mechanism for
two resources and propose a similar construction for any number of resources. The proofs for
this part are quite involved, so we provide a sketch in the appendix. Section five describes
the extension of our mechanisms to the important case of externalities and the final section
contains our conclusions.

2 Model

We consider the problem of allocating r resources among n agents. The basic data of an
economy is the environment or set of utifity functions for the agents. This is denoted by
U = (Uu t/i,..., Un) E U, where U is the set of possible environments. We will assume that
U = Ui X U2 x ••• x Un where each U,- is the set of all C2 nondecreasing concave (utifity)
functions U{ : ftr -• 9£+ with |g^| < 1, and Ui(0) = 0. Note that as Ut is concave, the
condition that |—f\ < 1 is quite mild and is essentially a normalization.

As is typical, we assume that Ui is private information; it is only known to agent i.
However, we assume a much stronger form of privacy than is typical. We assume that, in
some sense, utility function i is not known to agent i. The basic idea is that an agent consists
of two parts: 'heart' and 'head.' The head does all the thinking, and the heart does the
evaluating. Thus the head is a computer and the heart is a utifity function oracle. Given



a bundle of goods a:,- the head can ask the heart for £/,(#,) and any local information about
Ui(xi), such as it's derivatives. However, each query requires a constant amount of time.
This procedure is an attempt to model the information that an agent has about her utility
function and to avoid the 'smuggling' of information and computation that can occur if the
agent is 'aware ' of her entire utility function. This also seems realistic as an agent typically
can only know how much she likes a specific bundle and what she would like more of.

For ease of exposition we will assume that there is 1 unit of each resource. The set of
feasible allocations is

F={x =(*„...,*„) \xi £&r, £>?' =1}.

These restrictions are easily relaxed at the cost of additional notation.
We will consider both central mechanisms and distributed mechanisms. Central mech

anism are very common in economics. For example the standard Walrasion tattonement
process consists of a center shouting prices to a large group of agents. Central mechanisms
can also arise in distributed computing, when many agents of are sharing a single large re
source. However, center-less mechanisms are often more relevant for distributed computing.
This models a large collection of processors (such as workstations or personal computers)
interconnected on a large network. We will see that any of the central mechanisms we design
are easily implemented in a distributed setting with a negligible loss of efficiency.

2.1 Central Mechanisms

We will assume that there are many agents interacting with a computaionally powerful
center. Thus we assume that the 'center' has computing speed proportional to the number
of agents, and each agent has unit speed of computing. The center communicates with the
agents by broadcasting a single real number to all the agents simultaneously. The agents
can respond by each one sending a single real number to the center, (see figure 1.)

We will define a mechanism as a vector of computer programs (or algorithms)

m = (mi,..., mn, mc) € Mi x ••• x Mn x Mc

whereeachm,- represents a program that computer i follows. Let x(m, U) = (i(wii, Ui),..., x(m„,£/„))
be the output of mechanism m in environment U. (We will only consider the case of mech
anisms which have feasible outcomes x(m, U) 6 F.)

Define the error of mechanism m in environment U to be

e(m, U) = \U(x(m, U)) - U(xm(U), U)\



where

x*(U) = argmaxa;€Ft/(a;)

So e(m, U) is the error of 771 on U. Now define the error of a mechanism to be

e(m) = max e(m, U).
t/eU

We are interested in parametrized families of mechanisms, {m€,n,r}, where mc,n,r is an
mechanism that for n agents and r resources has e(mc,n,r) < e for all U £ U.

Our mechanism must perform 3 different actions: computation, communication, and
utility function evaluation. We represent the time required for each of these operations
symbolically. Let X be the amount of time required for a single (real number) computation
by an agent and X/n for the center, J be the time for the communication of a number, and
U the time required for a single query of a utility function. Note that the agents and the
center can each perform a single action simultaneously.

Now denoting the complexity of a mechanism to be the time required by that mechanism
to compute an allocation. We will compare the asymptotic behavior of complexities by
considering this time

r(me'n'r) = C?(G(e,n,r))

where G(-) is a (symbolic) function containing -X", J, C/'s such that

T(mc'n'r) = /cG(e,n,r)

for some constant k and all e,n,r.
Thus we can compare different mechanisms by comparing their complexities. As in stan

dard complexity theory of parallel computing [Lei91], an algorithm will be deemed 'efficient'
if it is bounded by a polynomial in r, logn, and log(l/e). This models the assumption that
there are a reasonable number of resources, a very large number of agents, and that the
mechanism is at least (globally) linearly convergent.

2.2 Distributed Mechanisms

As we will see later, distributed mechanisms can easily duplicate central mechanisms with
only a slight loss of efficiency. In a distributed mechanism there is no center. We imagine
that each agent can do one computation in time X. We also assume that the agents are
connected on a network. Thus there is a graph G = (V,E) where each vertex corresponds
to an agent V = {1,2,... ,n} and each edge connects two agents {i,j) G E. However, we



require that the graph not have too many edges, thus preventing everyone from talking to
everyone else, which would be unrealistic. A useful (and non-restrictive) assumption is that
each agent is connected to a small number of other agents independent of n.

For concreteness we will assume that the agents are connected via a Butterly network3.
(See figure 2.) In a butterfly network each agent is connected to four other agents in an
array that (somewhat) resembles a butterfly. On a Butterfly network many distributed
comutations can be performed rapidly. For example sums of numbers and matrix operations
can be performed in (3(log k) time, where k is the number of real numbers involved in the
computation [Lei91],

Now note that any central mechanism can be implemented as a distributed mechanism
by simply designating some agent to act as the center. However, typically this would increase
the complexity by a factor of 0(n) as the agent computes more slowly than the center could
thus making any efficient central mechanism into an inneficient distributed one.

However, this can be avoided by exploiting the power of distributed computations by
the network. All of the mechanisms which we describe can be implemented in a distributed
manner. In all of these mechanisms the complexity is increased by a factor of log n in the
number computations on information exchanges. This does not effect the efficiency of any
of the mechanisms.

'Actually any expander graph would suffice. See [Lei91].



3 Quantity Mechanisms

In this section we describe two quantity based, or direct, mechanisms. These are mechanisms
which operate on the allocation space. These mechanisms have the nice property that (after
a period of 'initialization') the intermediate allocation is always feasible. Therefore if the
mechanism must be terminated before completion, it still supplies a feasible (and reasonably
good) allocation.

Neither of these mechanisms, however, satisfy our definition of efficiency. The first one,
which we call the Ellipsoid mechanism, fails as it does not distribute well, and uses very
little of the agents' computing power. The second, Mirror Descent, fails because of it's poor
dependence on e; it converges sublinearly.

We present these mechanisms mainly for comparison, and history, as these appear to
be the only mechanisms with finite complexity in the literature. Both are based on the
work of Nemirovsky and Yudin [NY83], and are presented here with slight modifications and
simplifications enabled by the structure of the resource allocation problem.

3.1 The Ellipsoid Mechanism

Like the ellipsoid method4 the ellipsoid mechanism constructs a sequence of ellipsoids of
decreasing volume that converge on to the optimal solution.

In this mechanism the center constructs an ellipsoid containing the optimal solution and
a possible allocation which is at the center of the ellipsoid. If this allocation is infeasible then
the center computes a seperating hyperplane for the feasibility constraints at this point. If
this point is feasible then the center communicates this allocation to the agents. The agents
then reply with their utility value and gradient at the point, reflecting their satisfaction
and local tradeoffs at that point. The center then computes a new smaller ellipsoid that is
guaranteed to contain all allocations better than the current one. The process is repeated
a sufficient number of times to guarantee that the final allocation is e-accurate. This is
formalized as follows.

Center's Program — m£'n,r(ellipsoid)

4Theellipsoid method wasdeveloped by Nemirovsky and Yudin [NY83] based on an idea of Levin [Lev65].
It is most well known from its use by Khachian [Kha79] to prove the polynomiality of linear programming.
However, its original purpose was for convex programming. While it is useful theoretically for LP it does
not seem to be of practical value; however, it may actually be useful for convex programming.[EK83]



1. Let x = (|, |,..., \) and

2. Let iV = |4(rn)2log ^|, uout =oo, and xoul =0.

3. Repeat N times.

(a) If x e F

i. then

A. For all i: transmit x,- to agent i.

B. For all i: receive a = Vt/^x,) and w,- = U(xi) from agent i.

C. Let u = E"=i ««•

D. If w < uout then uout = tz and xout = x.

ii. else choose any violated inequality in F (this is of the form &x < b) and let
c = c.

(b) Calculate
n2 2 (Bc)(i?c)t

n2-ll n + 1 ct£c J
, 1 Be

X = x

10

n + 1 VJBc

(c) Let £ = £' and x = x'.

4. Output xout and vout.

Agent's Program — m)^' (ellipsoid)

1. Receive x,.

2. Transmit VC/t(x,) and ^(x,-).

3. Repeat.



It is apparent that the agents do no computation in this mechanism. Their only use
is to provide function and gradient values. The center is constantly recomputing the cur
rent ellipsoid. This is done a total of 4(rn)2log(rn/e) times, thus providing a impassable
barrier to reducing the complexity significantly. Whereas we could have reduced the com
plexity somewhat by involving the agents in the computation of the new ellipsoid, there is
no way to reduce the dependence of the complexity from n to log n. Thus, even with these
modifications, the ellipsoid mechanism is not efficient.

Theorem 1 The Ellipsoid mechanism5 has complexity

T(mc'n'r(ellipsoid)) =0(r3n2log(rn/e)[X(l +I^il/l) +/ +[/])
rn

Proof: The proof is ommitted for brevity. It is a straightforward application of the proof in
[NY83] where the convergence of the ellipsoid method is shown. •

3.2 The Mirror Descent Mechanism

The mirror descent mechanism is based Nemirovsky and Yudin's method of mirror descent6.
Mirror descent is the natural generalization of gradient descent to general metric spaces.

5Note that the above mechanism requires the computation of a square root which is not one of our
elementary operations. This can be computed approximately by a binary search, and the update formula
for M\m' slightly modified to accept this approximation. This is the reason for the (1 + °PT^Uc) term in
the complexity. We have ommitted this as the modification is straightforward, but involved. The interested
reader should see [PS82][pp.182-5].

6The method of mirror descent mechanism is described in [NY83]. The construction and analysis of the
algorithm is quite sophisticated and intricate. We refer the interested reader to Nemirovsky and Yudin's
book [NY83], and provide only a sketch here. First we describe the motivation behind the Mirror Descent
algorithm, and then describe its specialization to resouce allocation.

Consider the convex program:
min/(x) s.t. x £ G

where f(x) is a convex function and G is a convex region of the finite dimensional metric space (Readers
unfamiliar with the general theory of metric spaces should consult [DS66].) E = $R" with metric ||-|| where

i

and note that the dual of E is E* = &£, with metric IH^.

11



This is necessary for resource allocation as the complexity of gradient descent depends both
on the size of the feasible region and the Lipschitz constant of the utility function both of
which depend strongly on the chosen metric.

Gradient methods have been commonly used for resource allocation and optimization in
general. The idea that convergence rates depend on the metric chosen is also well known.
The use of variable metrics was used by Oren and Luenberger [OL74] to improve convergence
for certain nonlinear programs.

For resource allocation we choose the metric

Ml, =£ W'l

for which the diameter of the feasible region is contained in a ball of radius r and the

Now define a sublinear function on E* by

VUy-{\¥& IWIr<l
W~\U\\r-\ Plr>l

where r = (log(n)/16e). and consider the continuous trajectory in the dual space defined by

where <f>(t) € E*. Since V(^) is a function on E* then V'(<f>) is an element of E. If we let

x(t) = V(4>(t)Y

and choose

V.(<j>) = V(4>)- <<i>\xm>

where xm is the optimal solution and < <j>\x > is the natural pairing of E and E*. We can show that V+(4>)
acts as a Lyapunov function since

dV*{*{i)) =<-Vff'(V(rf(*)))|V(*(0) - ** >=<-VV(VWt)))\*(i)) - ** >
<U(x*)-U(x(t))<0

and

dt

when x(t) = x*. Since Vm(<f>) is bounded below on E* the trajectory is guaranteed to converge to the optimal
solution.

Now the Mirror Descent algorithm is the discretization the above argument which approximates the
trajectory of the differential equation.

12
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Lipschitz constant of U is less than 1. Then the main action of this algorithm occurs in the
dual space jE*. At each iteration the agents provide VC/,(xf) and, as this is an element of
E*, take a small step in this direction. The center's role is to compute the step size p. This
computation only requires that the center compute the norms of different objects which are
sent to him from the agents.

Center's Program — m£,n,r(descent)

1. Set <j> = 0, a = -f-oo, 6 = 0, and <f>i = 0.

2. Continue

(a) Compute (|M|r)r+1.

(b) For all i: transmit (||<£||r)r+1 to agent i.
(c) For all i: receive xj from agent t.

(d) For all i: transmit Wx*^ for all j to agent i.

(e) For all i: receive x,-, u, = C/,(x), and gi = V£/,(xi) from agent i.

(f) Compute / = Halloo, u = ?7(x), and a = min[a,u].

(g) Compute \\x\\v

(h) For all i: transmit ||x||j, and / to agent i.

(i) If g = 0 then goto 3.

(j) Let 6 = e + (u-a)/l.

(k) For all i: receive C, from agent i.

(1) Compute 6= 6/U .
(m) Compute p = 8/(2t) and 7 = 8p/2.

(n) For all i: transmit p to agent i.

(o) Let 6 = b+ 7.

(p) For all i: receive <£,, <^[, and ^[-1 from agent i.

(q) Compute V = V(4>) - WL-

(r) If V > —b then goto 3, otherwise increment i and goto 2.

3. Output a.

13



Agent's Program — mj,n,r(descent)

1. Set fa = 0.

2. Repeat.

(a

(b

(c

(d

(e

(i

(g

(n

(•

(j

(k

(1

(m

(*

(o

(P

(q

(r

Receive (||̂ ||T)r+1 from the center.

Compute x,- = (U\\T)T+1^
Transmit x,- to the center.

Receive Hx-7^ for all j from the center.

Compute x[ = "^if *' if Hx-^Hj > 1otherwise set xr{ = max(0,xf).

Let fij = +1 if xf > xf, otherwise let /if = —1.

Transmit Ui(xi) and (7,- = VZ7,(x,).

Receive /.

Let & = #//.

Let 0 = & -f- /f(x,).

Transmit £,-.

Receive c-

Let C. = C.7 |C
Transmit £,-.

Receive p.

Let <^,- = <^t- —pQ and

Transmit ^>,.

Go to 2.

14



Theorem 2 The Mirror Descent mechanism' has complexity

r(m«"(nwO) =0(r3^[X(l +!2ilZl) +I+U])
rn

Proof: The mechanism is a straightforward application of Nemirovsky and Yudin's method
of mirror descent [NY83]. The complexity is computed by noting that the algorithm must
terminate in G(r2 °5y*') iterations by the theorem in [NY83] and the following facts. The
radius of F in the one norm is r and the Lipschitz constant of U(') is less than 1 in the
infinity norm as we assume that C7j(«) has Lipscliitz constant less than 1. Noting that each
iteration requires 0(r) queries to the oracles, and a similar number of comunnication steps,
completes the analysis. •

The number of steps is 0( °s2rn) and this cannot be improved. Thus the poor convergence
(sublinear) of this mechanism cannot be avoided8.

7Note that as in the ellipsoid mechanism, we are required to take a root of a real number. This occurs
in steps a and p. Once again we may use a binary search to compute this to enough accuracy that the
algorithm will not be significantly effected.

8Nemirovsky and Yudin have computed lower bounds for the number of iterations required for optimizing
general convex functions [NY83]. It is interesting to note that Mirror Descent is optimal (of least complexity)
when n is large, and the ellipsoid method is nearly optimal for high accuracy computations, in their frame
work. Thus the only reason we are able to improve on these mechanisms is the special structure inherent in
resource allocation problems.

15



4 Price Mechanisms

The idea of a price mechanism is based on the idea of a Walrasian tatonnement process.
This process (described in detail in [Var78]) is based on the idea of a center announcing a
sequence of prices, and agents picking a consumption bundle that maximizes Ui(xi) —p •x,-.
This process continues until a feasible allocation is reached.

The importance of this process is demonstrated by Hurwicz [Hur86a]. He shows that
this process defines an optimal mechanism, in the sense of having the minimal message
space of any static mechanism which implements a pareto optimal allocation. However, this
mechanism is not stable [Sca60]. A modification of it based on the Global Newton Method'
[Sma76] is stable, but requires a larger message space. These mechanisms assume agents
can provide their exact optimal consumption bundle for a given set of prices. Thus agents
are able to instantly compute the optimum of a difficult optimization problem, while any
such computation requires an arbitrarily large number of computational steps. The issue
of accuracy and computation ability of agents in this situation has been neglected in the
literature.

In this section we show how to construct finite 'computational' mechanisms based on the
Walrasian mechanism. These mechanisms are very efficient and naturally distributed.

4.1 One Resource

In this section we present a price based algorithm for allocating a single resource. The
algorithm we present is not the simplest possible, but it is the one most amenable to gener
alization. Most of the ideas in its construction are extendable to the multi-resource problem.
Thus, our goal here is to provide a basis for constructing other price based mechanisms.

This mechanism operates in two stages. In the first stage the center announces a price
and the agents compute a resource utilization that approximately maximizes £/,(x,) —px{ to
a given accuracy. Using this information the center computes a new price and the process
continues until the center has found a price p that approximately minimizes U(x) —pJ2ixi-

However, the current allocation may not be feasible for two reasons. First, even if the
price was the correct price p*, the resulting allocation might not be feasible if the agent's
utility function was flat at this price, and his marginal utifity constant, thus allowing for
a wide choice of possible consumption choices all with the same net utility, (see figure 3.)
Another problem is that the price p may be arbitrarily far from p* due to inter-agent effects.

This problem is remedied in stage 2. Basically, the center asks the agents for their
largest arid smallest consumption choices that are reasonably good, given the price p, which
the agents compute approximately. By noting that a feasible allocation must occur for some

16



x with the consumption by each agent in the interval between these two points, we see that
some convex combination of these points must give a feasible allocation. This combination
x is then used as the allocation. While this allocation may be arbitrarily different from the
optimal allocation (||x —x*|| may be quite large) it is still an accurate one in the sense of
\U(xm) —U(x)\. convexcombination of two other good allocations and convexcombinations
preserve the accuracy of solutions.

Note the interplay between the agents and the center. Essentially the center is computing
a good approximate allocation by asking question of the agents, who are computing approx
imate answers. Thus there are two levels of computation and two levels of approximation.

Center's Program — m^'"'1(price)
Stage 1:

1. Let pi = 0, ph = 1, and e = e/Zn.

2. Repeat Nc = [log(l/e)"| times.

(a) Let pm = (pi +Ph)/2

(b) For all i: transmit pm + e/2 to agent i.

(c) For all i: receive If = Li(xf,pm + e/2) from agent i.

(d) For all i: transmit pm —e/2 to agent i.

(e) For all i: receive /" = Li(xJ ,pm -f e/2) from agent i.

(f) Compute I* = £,• if.
(g) If |/+ - /~| < e goto 'Stage 2'.

(h) Else if /+ > l~ let ph = pm.

(i) Else let pi = pm.

3. Continue

4. Letp = pm.

Stage 2:

1. For all i: transmit p to agent i.

2. For all i: receive xf from agent i.
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3. Compute s± = £3, xf-

4. Let a = (s+ - l)/(s+ - s~).

5. For all i: transmit a to agent i.

Agent's Program — m*'"'1(price)
Stage 1:

1. Receive p.

2. Let x/ = 0 and x/, = 1.

3. Let e' = e2.

4. Repeat iVa = [log(l/e')"| times.

(a) Let xm = (x/ + xh)/2

(b) Let um = U-(xm).

(c) If vm < p let x/ = xm.

(d) Else let x>, = xm.

5. Continue

6. Transmit Li(xmip) to the center.

7. Go to 1.

Stage 2:

1. Receive p from center.

2. Do for w = ±1.

(a) Let x/ = 0 and x/, = 1.

(b) Set l = Li(xi,i>).

(c) Repeat [log(e)] times.

i. Let xm = (x/ + xh)/2
ii. Let /m = L,(xm,73) and vm = U-(xm).
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iii. If |/m — /m| < e let x/ = xm if w = +1 otherwise let x/, = x,

iv. Else if vm < p then let x/ = xm.

v. Else let x/, = xm.

3. Continue

4. Transmit x± to center.

5. Receive a from center.

6. Compute x,- = ax* + (1 —a)xf. (This is the allocation to agent i).

Theorem 3 The 1 resource price mechanism m*'"'1(price) has complexity

T(m^) =0((log ^)2[X +I+U])
Proof: It is easy to see that stage 1 dominates stage 2. During stage 1 the center performs
log(l/e) iterations, and each iteration requires the computation of a sum, a few simple
computations, and two calls to the agents to compute their own optimization problem.
During these calls each agent performs log(l/e') iterations, and each iteration requires one
call to the oracle and several basic computations. This shows that the complexity is as
stated.

To prove that the algorithm computes a correct solution consider the Lagrangian

L(x,p) = J] Ui(xi) -P-(J2xi~ X)

and the function

F(p) = maxL(x,p).
X

By duality theory of convex programming [Roc70] we know that F(p) is a convex function
and if p* = minp F(p) then

x* = argmaxxL(x,p*).

Define x(p) = axgraax.xL(x^p) so x* = x(p*). The Lagrangian is separable in x and can be
written as L = ^t Li where

Li(xi,p) = Ui(xi)+p(xi - 1/n)
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so Xi(p) = argmaxx.L(x,,p).
Note that the Lipschitz constant of F(p) is

A(i,) =|^+E^^I=l(E-.-l)+0|<n.
Also note that

dF(p) _OL(x,p)
dp " dp |x=x(p)

by the envelope theorem.
Now we prove the theorem through two lemmas.

Lemma 1 Stage 1 computes a p such that

\m - F(P')\ < i

Proof: Notice that the agents simply perform a binary search for the x,- that satisfies U[(xi) =
p, which is the condition for optimality. Thus the xt- that the agent computes, which we
denote x(p) is within e' of the optimal x,(p) and this imphes that Ui(xi(p)) is within e' of

The center is performing binary search on F(p) using solutions that are guaranteed to be
accurate to e' in each coordinate and thus ne'-accurate in total using approximate gradients.
Note that as we only need the sign of the derivative this inaccuracy is not important except
when the computed derivative is close to zero. Thus, if the loop terminates normally then
we know that this has not occurred and the solution must be accurate to e. However, if at
some iteration the center finds a derivative that is close to zero it immediately halts. This is
correct since for this to occur the derivative at this point must be less than e. This imphes
that either pm is within e of p* or that all three, pm and p± are approximately equal. This
imphes that F(pm) is within e of the optimal solution no matter how far pm is from p*. For
example assume that p* > pm + e then

F(pm + e)<(l-e)F(pm) + eF(p*)

by convexity . Therefore

F(Pm + e) - F(Pm) < i(F{p") - F(Pm))

and since \F(pm + e) —F(pm)\ < e' we see that

0>F(p)-F(Pm)>-e'/eh>-e
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Lemma 2 Stage 2 computes an e-accurate, feasible solution.

Proof: In stage two the agents compute an approximation of xf and xj which are solutions
of

xf = argmaxx.(±Xi) s.t. L,(x,-,p) >X;(ict-,p) —e

that is accurate to e. Now if we can show that s+ > 1 and s~ < 1 then 0 < a < 1 and

the allocation x,- is a convex combination of xf. Now as \L(x±,p) —F(p)\ < 2ne we see
that |Ir(x,p) —F(p)\ < 2ne as L(x,p) is concave in x and thus L(x^p) > minL(x±,p) by
concavity.

From this we immediately see that

\L(x,p) - F(p')\ = \L(x,p) - L(x',p')\ < 3ne

and as both x and x* are feasible this implies that

\U(x) - £/(x*)| < Zne < e

thus showing that the solution is sufficiently accurate.
Now we must show that s+ > 1 and s~ < 1. If the center in stage one never saw a small

derivative then \p —pm \ < e this imphes that

\L(x\p~)-F(x',p)\<ne

as the Lipschitz constant of L(x,p) is less than n. Now as L(x,p) < L(x(p),p) then this
imphes that x* is a e accurate solution to the agent's stage 2 problem. Thus xj < x* < xf
implying that s+ > 1 and s~ < 1.

However, if the center terminated stage 1 due to a small derivative then we know that
I—q | < e, but we also know that

Thus we see that \s(p)\ < e where s(p) = 52,x,(p). Now if we consider x' = x(p)/s(p) we
see that E.xJ = 1 and |xj - xt(p)\ < 2e. Thus \L(x',p) - L(x,p)\ < 2ne for e < 1/2, so
xj < x\ < xf, completing the proof of the lemma.o

Combining the two lemmas completes the proof of the theorem. •
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4.2 Two or More Resources

The basic idea for the construction of a price mechanism for two or more resources follows
the basic ideas of the mechanism for a single resource case. Stage 1 is the same as previously
with two differences. In stage 1 the center computes the derivative using finite differences of
two nearby prices. In higher dimensions this idea must be used to compute an approximation
of the gradient. This is much more difficult and we must settle for a randomized method
of computing an approximation that has only a small chance of failure [NY83]. The second
difference is that we must replace the simple bisection algorithm with a ellipsoidal algorithm
for convex programming. This is the same algorithm used for the eUipsoid mechanism, but
in this case it operates on the price space, which is much smaller than the entire space which
is necessary in that mechanism.

The construction of stage 2 is much more complicated than in the simple case. In one
dimension it is straightforword to construct two solutions who's convexhuU contain a feasible
solution. In higher dimensions this is much more difficult. For the case of two resources we
have constructed a method which solves this problem. We befieve that a generahzation of
the method should work for an arbitrary number of resources.

In the foUowing discussion we describe the construction of a price based mechanism for
two or more resources. As the proofs for stage 1 are not any simpler for two resources than
for the general case, we wiU give them for the case of an arbitrary number of resources.
However for stage 2 we specialize to the two resources case and only briefly comment on a
possible extension to cases with more resources at the end.

In stage 1 the mechanism computes a p that is e accurate for the minimum of F(p) using
e3-approximate solutions by the agents to evaluate F(p).

Stage 2 iteratively computes a set of solutions to

maxc*x s.t. \L(x,p) —L(x,p)\ < e

who's convex huU contain a feasible solution (approximately). This is done by repeatedly
constructing simplices which either contain a feasible solution or restrict the solution by
pushing a face of the simplex up towards the solution. (See figure 4.) This is continued until
either a feasible solution is found (by being contained in the convex huU of a simplex) or a
face of the simplex is close enough to a feasible solution that we can just 'round' the solution
to feasibility with only a small loss in accuracy.

This idea seems to generalize to the problem with an arbitrary number of resources.
Again in this case we can use simplices to confine a feasible solution to be 'trapped' by a
face of the simplex. Unfortunately this does not gurantee that a straightforward rounding
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wiU work. However, we befieve that by using several such simplices simultaneously we can
successfuUy 'trap' the feasible solution, to allow for a rounding step to succeed.

As the mechanism for two or more resources is significantly more involved than that for
one resource, we wiU describe the programs more descriptively and less formally than in the
previous sections.

Center's Program — mcc'n,r (price)
Stage 1:

1. Construct the eUipsoid x = (5, 5, •••,|) and B = Diag(-^, -^,..., -^)

2. Let e = e/4.

3. Repeat Nc = |4r2log(l/e)l times.

(a) Construct an approximate gradient at p by choosing p at random from the box
K={p\ \\p - p\\, <3T} where T=f {^ +^}_1 and p=f Now let

^ f(x + re,) - f(x)
c= l^ ; e«

where c,- is the unit vector in the i'th direction, r = 3^^ and a = 6/(r2 log(n/e)).
(b) Compute a new p and B using a finite precision variant of the eUipsoid method.

4. Continue

Stage 2: (For r = 2.)

1. Letcfc = (l,0)t,ci = (-I,0)t

2. For aU i: transmit q, and c/ to the agents.

3. For aU i: receive s/» and s/ from the agents, where 5 = £"=1 xt- £ 9R2.

4. Compute v such that v\si —Sh) = 0 and (0,1) •v = 1.

5. Let v = vj ||v||2-

6. If vfs/ < e then cm = (0, l)f.

7. Else if v*S{ > e then cm = (0, -l)f.
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8. Else Goto ROUND.

9. Let d —cm. (This wiU define the outward direction.)

10. Repeat 161og(l/e) times.

(a) For aU i: transmit Cm to aU agents.

(b) For all i: receive sm from aU agents.

(c) If 1 is in the convex huU of 5/, sm, $h then goto FOUND.

(d) Compute v such that v^(si —sm) = 0 and d*v = 1.

(e) Let v = v/ \\v\\2.

(f) If -e < vf(s/ - 1) < 0 then set sh = sm and goto ROUND.

(g) Else if vf($/ - 1) < 0 then ch = cm and goto CONT.

(h) Compute v such that v*(sh —sm) = 0 and d*v = 1.

(i) Let u = u/||i;||2.

(j) If -e < v*(sh - 1) < 0 then set 5/ = sm and goto ROUND,

(k) Else let q = cm.

(1) CONT: Let cm = {c, + ch)/ \\c, + ch\\r

11. ROUND: Compute 0 < A< 1 such that ||As/ + (1 - X)sh\\2 = ufs/.

12. Transmit A, u*5/, ci,Ch to aU agents.

13. STOP.

14. FOUND: Compute A/, Am, A/, such that A/5/ + Ani5m + A/,5/, = 1.

15. Transmit A/,Am,A/, and c^cm^Ch to all agents.

16. STOP.

Agent's Program — mj,n,r(price)
Stage 1:

1. Receive p.
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2. Construct the ellipsoid x,- = (|, |,..., |) and Bi = Diag(-^, ^,..., -^)

3. Repeat Nc = |"4r2log(n/e4)l times.

(a) Compute the gradient at x,.

(b) Compute a new x,- and B using the ellipsoid method for solving L,(x,,p).

4. Transmit lmax.

5. Go to 1.

Stage 2:

1. Receive c from center.

2. Construct the eUipsoid xf- = (i, |,..., \) and J3t- = Diag(-j;, ^,..., ^)

3. Repeat 7VC = |"4r2 log(n/e3)] times.

(a) If Li(xi,p) is sufficiently good then use v = c

(b) Else let v = VLf(x,-,p).

(c) Compute a new x, and B using v.

4. Transmit x,-.

5. Go to 1.

6. ROUND:

7. Receive A, v*s/, ci,Ch from the center.

8. Compute x, = (Ax,(c/) + (1 —A)xt-(c/,))/v*s/, where xt(c) is computed as in the above
loop.

9. STOP.

10. FOUND:

11. Receive A/,Am, A/, and ci^cm^Ch from the center.

12. Compute x,- = A/x,(c/) + Amxt(cm) -f A/»xt-(c/,).

25



13. STOP.

Theorem 4 For any 8 the two resource price mechanism mc,n,r(price) has complexity

T = 0((log(n/e))[X(l + log(n/e)) + J + U\og(n/e))

with probality greater than 1 —8.

Proof: The proof is given in the appendix.
For multiple resources the main ideas for the two resourcecaseeasily generalize. However,

we have not completed the construction and proof for stage 2 and leave this for future work.

Conjecture 1 The r resource price mechanism mc,n,r (price) has complexity

,2

n n

T=0((r3log(n/e))[X(l +?2liZi +- +r4 log(n/e)) +Ir2 +Ur2\og(n/e))

Proof (partial): The complexity is computed assuming that stage 1 dominates stage 2. The
correctness of stage 1 is shown in the proof for the two resource case. The construction
of stage 2 is a yet incomplete, However, we believe that a method similar to that for two
resources should work, o
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5 Resource Allocation with Externalities

In many instances the utifity an agent derives from a certain bundle of resources is dependent
on the resources used by the other agents. Two classic examples of this are poUution and
congestion. These are both negative externafities, as the increased total use of resources
reduces the agents derived utility.

Positive externalities are also possible. For example the usefulness of a communication
network may depend on the number of people using it, assuming that it is operating below
capacity. In this case if many people use the network then more people are reachable on
the network thus increasing its value, (see e.g. [OS81].) However, in this paper we wiU
only consider negative externalities, as they are the most common in resource allocation and
distributed computing.

To account for externalities, we modify our formulation slightly, and assume negative
externalities of a simple and common form. We aUow the utility functions to depend on
A= (A1,..., Ar) where Xj = £"=i x\. So

t/(x,A) =f>,-(x,,A)
t*=i

We require that U(x) is concave and monotonicaUy decreasing in A. Since A is a negative
externality, we can be less restrictive about the definition of A, by viewing it as just an
other variable subject to AJ > £"=1 xf, as the optimal solution wiU always occur when the
constraint is binding.

We can modify both the eUipsoid and descent mechanisms quite simply, to solve the
resource aUocation with externalities. We note that the transformation A = 1 — A aUows us

to rewrite

F' ={x |0<x, 0<A, J2xi +X' ^!}
»=i

and note that F' is equivalent to F with the addition of r new variables. Thus this new
problem is almost identical structuraUy to the problem without externalities, and a slight
modification of these mechanisms aUows them to solve the new problem with negligible loss
of efficiency.

The construction for an arbitrary (including Price) mechanisms is more complicated. Let
T(e,r,n) be the time required by an arbitrary efficient mechanism that solves the resource
allocation problem without externalities. Note that this time is unchanged if we solve the
generalized problem, but fix the externality effect to a certain level, say Ao < 1. Letting

V(X) = m&xU(x,X) | A = A0
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we can apply a modified version of the eUipsoid method to maximize V(X). (Note that V(«)
is convex.) This allows us to show.

Theorem 5 Let me,n,r be an efficient mechanism for allocating resources without externali
ties. Then there exists a related mechanism mJS,r which solves the problem with externalities
in

Texternaiuies(^r,n) = 0(rz log(l/e)(T(e, r, n) + r)).

where T(e,r,n) is the running time ofme,n,r.

Proof: There exists a modified version of the eUipsoid mechanism which can maximize
V(X) over {A | 0 < Xj < 1} using only <9(r2logl/e) iterations and 2r + 1 (9(e4)-accurate
function values of V(A) with only 0(r2) computations periteration. This is shown in [NY83].
AUowing the center to use the algorithm shows that

Texternaiities(m€£f) = r3 log(l/e)[T(e3, r,n) + r]

and since the mechanism is assumed to be efficient it must be linearly convergent. Therefore
the e4 in the complexity can be replaced by e as this can only changes the running time by
a multiplicative constant as log e3 = 3log e. •

Thus externalities do not increase the mechanism's dependence on n significantly or
decrease its convergence rate.

6 Conclusions

We have described a general framework for constructing and comparing mechanisms for
distributed resource aUocation under bounded rationality. This has implications for both
economics and optimization. ^

We have developed a strict computational model of resource aUocation with realistic
agents. This is in contrast to the large body of economic work where agents are given
unbounded computational ability. Also our measure of complexity is much more relevant
than the standard definitions of complexity as the size of message space. Using this model
we have stiU been able to design efficient mechanisms for resource allocation and compute
their efficiency.

Another major contribution of our work is explicitly considering mechanisms with a large
number of agents. Many of the mechanisms in the literature either implicitly or explicitly
apply to a very smaU group of agents, often two or three. In contrast, we are interested in
mechanisms that apply to large or very large groups of agents. For resource aUocation this
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is an important distinction, as allocating resources to a small group of agents is relatively
easy, and the differences between different mechanisms is probably unimportant.

Thus our major contribution to economic theory comes by raising these two issues, com
putation and number of agents, and developing a theory that highlights them, which can
also be used to develop mechanisms which solve the problem.???

For nonlinear programming, we have developed a rigorous theory of complexity for dis
tributed continous optimization. This is to be contrasted with the standard asymptotic
analysis used in nonlinear programming. Asymptotic analysis is only a very local concept
and does not give any precise information about global convegence rates. Also, asymptotic
analysis requires strong analyticity assumptions.

In contrast our complexity theory of 'global optimization' requires no assumptions other
than convexity and smoothness, and we believe that the smoothness assumptions can be
removed with a more detailed analysis. This new theory is motivated by the complex
ity theory of combinatorial optimization, studies by Nemirovsky and Yudin [NY83], work
by Hochbaum and Shanthikumar [HS90], and global methods in optimiztion by Shub and
Smale [SS92] based on the theory of computation over the real numbers [BSS88] and strong
polynomiality.

Our results on price mechanisms in this paper and previous results [Fri92] can be seen as
specific applications of this theory and preliminary results. These algorithms are probably
not competetive with modern methods used in nonlinear programming, as yet. However,
we believe that a global view of optimization may lead to a practicaUy useful method of
solving nonlinear optimization problems. We draw inspiration from the recent development
of interior point algorithms for linear programming.

In summary, this paper can be interpreted as both descriptive and proscriptive. The
descriptive aspect applies to the study of mechanisms and complexity in resource aUocation.
The proscriptive element applies to the theory of nonlinear programming, and is far more
speculative.
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A Proof of Theorem 4

In this appendix we give the proof of theorem 4. For stage 1 of the mechanism we give the
proof for an arbitrary number of resources as this is notationaUy cleaner and requires no
extra effort. For stage 2 we explicity consider the case of two resources. In this part of the
proof the argument requires this restriction. However, we believe that this should generalize
in a natural manner.

A.l Stage 1

First we describe the basic concepts required by the proof and set some of the notation.
Duality theory of convex programming [Lue84] allows us to rewrite the problem in the
foUowing manner. Define s(x) = £; xt- —1. Then let

L(x,p) = U(x) —p*s(x)

then define

F(p) = maxL(x,p)

which is a convex function of p and define x(p) to be the aUocation that achieves the maxi
mum.

Now the basic theory of convex duality says that the minimum over p of L(p) is equal to
the maximum of the aUocation problem. Also, if p* is the price that achieves the maximum
then x(p*) = x* is the optimal aUocation.

Using this we discover a natural distributed method for the aUocation problem. Define

Li(xi,p) = U(x) - p\xi - 1/n)

so that L(x,p) = £"=1 Li(xi,p). Define Fi(p) similarly. Then given a p we can aUow each
agent to solve his own

max Li(x,, p),
x;

then a central processor can solve the low dimensional problem of finding the minimum of

The first major difficulty which we must overcome is that of approximating gradients
with only information about the functional value of F(p). Deterministically this is very
difficult as the function can have many 'kinks' where the value of the gradient can change
abruply. However, if we choose the places to evaluate the function at random, then we can
get a useful approximation of the gradient with only a smaU number of query points.
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Lemma 3 The procedure for approximating gradients is e-accurate with probability greater
than 1 — a.

Proof: See [NY83]. o

Lemma 4 The ellipsoid method in stage one will fail with probability less than 8.

Proof: The probability of error at each iteration is less than a. As there are r2log(l/e)
iterations, the probability of having a failure at any stage during the entire process is less
than r2log(l/e)a = 8. o

Using the gradient computed by the method in the previous section, we can modify the
eUipsoid algorithm sfightly to stiU produce an e-accurate answer. An elementary description
of this can be found in [PS82].

Thus if we compute the values of F(p) to accuracy e3 then the eUipsoid method described
above computes an e-accurate solution p,x such that \F(p) —F(p*)\ < e and \L(x(p),p) —
L(x,p)\ < e. Thus stage one can compute an e-approximation p to the minimum of F(p)
and also an e-approximation to the actual value of F(p).

Thus we have shown:

Lemma 5 For any 8, stage 1 produces a p and x such that

\F(P) - F(p')\ < e

and

\L(x,p)-F(p)\<n?

and therefore
\F(p') - L(x,p)\ < 2e

for e < 1/2, with probability greater than 1 —8.

Proof: The first statement foUows from the argument above on the accuracy of the eUipsoid
method with the randomized algorithm for computing gradients. The second from the ac
curacy of the agent's own computation of x(p), and the third from combining the first two.
o
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A.2 Stage 2

In this section we construct a feasible solution as the convex combination of several e -

accurate solutions of

max ax s.t. x € G
X

where G = G\ x • • • x Gn and

Gi = {x | L(xi,p) - L(xi,p) < 4e}

This is computed using the eUipsoid method by the individual agents as the problem is
seperable into n independent pieces.

Theorem 6 The computation of

maxc*x; s.t. x,- (E Gi
X

to accuracy e2 can be accomplished in r2 log(r/2e3) iterations of the ellipsoid method.

Proof: Note that G,- must contain the hypersphere of radius e as the Lipschitz constant
of Lt(x,-,p) is less than 1. This hypersphere must contain a cube of side 2e/y/r and thus
has volume greater than (2e/-y/r)r. The eUisoid method requires r2log(l/(T/1/re) steps to
compute an e-accurate solution in a feasible convex region of volume V. o

Now we show that there exists a feasible solution in G. This wiU foUow from a sequence
a lemmas.

Lemma 6 Given p is ani2 accurate solution ofF(p), there exists a p' such that ||p —p'\\2 < e
and \\VF(p')\\2 < e.

Proof: Consider the path generated by

^ =VF(P(<)) s.t. p(0)=p
and let 7(x) represent the path of p(t) measured in arclength, then

F(?) - F(p') =£ VF(-t(x)yd-y =fo ||VF(7(*))M7
as this is just the line integral of VF. By assumption F(p) —F(p*) < e2. Thus the foUowing
must hold

ri
i2/ ||VF(7(.r))||2d7<

Jo
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as the integrand is non-negative.
Now assume that the theorem is false. This implies that for aU x < e we must have that

||VJP(7(x))||2 > e as the eucfidian distance ||7(0) —7(e)||2 is less than the distance aUong 7.
However, this imphes that

f ||VF(7(*))M7 >?
Jo

as

jf ||VF(7(z))||2<f7 <6nun F(7(z))
thus providing a contradiction and proving the theorem, o

However, the gradient of F is related to feasibility.

Lemma 7 The feasibility, s(p) —1 = WF(p).

Proof: This foUows from the weU know envelope theorem,

dF(p) dF(p)
dp dp

= s(p) - 1

o

Using this we show that a feasible solution exists for the above optimization problem.

Lemma 8 Given p is an e2 accurate solution ofF(p), there exists an x,- such that \L(xi,p)—
L(x,-,p)| < 4e and x,- is feasible.

Proof: From the previous lemma there exists a p' such that s(p') —1 < e then letting

x* = xJ(p/)/5J(p/) gives a x that is feasible and Noting that

Ik - *(P')ll2 ^ 2I

imphes that
\L(xi(p'),p')-L(xi,p)\<2e

by the Lipschitz constant of L,-. Now by the Lipschitz constant of Fi for changing p we know
that

\Fi{p) - FAjt)\ < €

Combining these inequalities produces the required result, o
Now that we have shown that a G contains at least one feasible solution we wiU describe

how to construct on of these.
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A.3 Constructing a Feasible Solution

The easiest way to understand the stage 2 algorithm is to consider the map

s : S1 -+ 9£r

defined by
Si(0) = argmax^. (cos 0, sin 0)tx1- s.t. x € G

and s($) = £tsf(0). Note that in the mechanism we work directly with c = (cos 0,sin 6)
instead of 0. For the purposes of the proof it is much clearer to work in 0 directly.

The mechanism works in the foUowing manner. The feasible point 1 must lie on one side
of the line between sj and s/,. We choose 0m such that sm is on the same side of the line
that 1 is. Now these three points create three possible regions in which 1 can lie. (See figure
4.) If the point lies in the convex huU of 5/,6/,,6m (region I) then we stop. Also if the point
hes close to one of the fines $/sm or s/,sm then we also stop. However if the point lies in one
of the remaining regions (regions II or III) then we choose the two points that define that
region to be our new 0/ and 0/, and continue the process.

In order to prove that the mechanism constructs a feasible solution we note that Stage 2
actuaUy performs a binary search in 0, and the only ways it can halt are:

1. A feasible solution x is found as the convex combination of 3 points x/,xm,x/,.

2. A solution x with U(x) —1 is the convex combination of two points x/,Xfc.

3. 0t-0h< 2tt/c.

In the first case the foUowing lemma shows that the convex combination of x/, xm, x/, that
gives a feasible solution that is e-accurate.

Lemma 9 Let u,v,w all satisfy \L(u,p) —F(p)\ < 4e (resp. v,w). Assume that x =
Xuu + Xvv + Xww with 0 < Au, A„, A„, and Xu + Xv + Xw = 1. Then \L(x,p) —F(p)\ < 4e.

Proof: By convexity of L we have that L(x,p) < max[Zr(u,p),L(v,p),L(w;,j5)]. However by
definition F(p) > L(x,p). o

From the previous lemma we see that for case 2 we can simply round the solution to
feasibility.

Lemma 10 In case two the allocation defined by xJ = x^/s^x) satisfies \L(x,p)—F(p)\ < 2e.
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Proof: Note that Xj is feasible. Also ||x'—x||2 <eas||s(x) —1||2 < e. Thus by the Lipschitz
continuity of L we get the desired result, o

Now we wiU show that case 3 is actuaUy equivalent to case 2 as |0/—0/,| < 27re implies that
there existsa solution x which is the convex combination of x(0/) and x(0/,) and ||s(x) —1||2 <
e.

Lemma 11 Assume that the center's stage 2 algorithm received the exact solutions s(0) at
each iteration. Then if |0/ —0&| < e then 1 must be within e of the line s/sjj"-

Proof: This foUows from elementary geometry and the fact that the feasible solution 1
must be contained in the region bounded by s~is~h by construction. Also we know that
c(0/)fs/ > c(0/)fl and c(0m)fsm > c(0m)*l as these (si,Sh) are the respective maxima of their
respective c's. Tins region forms a triangle with angle a = tt —e as e = |0/, —0/|. (See figure
5.)

Since we know that ||s/ —Sh\\2 < 2 the height of the triangle must be less than 2sin e/2
which is less than e. Thus as the point 1 is contained within this triangle, we see that the
distance from 1 to s~is~h must be less than e. o

However, the center does not recieve exact solutions from the agents. The solutions from
the agents are only accurate to e2. In fact the solutions s(0) can be arbitrarily far from the
true solutions s(0). However, as the next lemma shows, these solutions are actually close
to the real solution for a slightly different 0. Thus we can imagine that the values of 0 are
uncertain. However, this does not effect the binary search if these errors in 0 are less than e.

Lemma 12 Assume that |c(0)f(5-s(0))| < e2. Then there exists a 0' such that |0-0'| < 27re
and \\s - s(0')\\2 < e.

Proof: As |c(0)f(s - s(0))\ < e2 we see that there exists a0such that s- s(0)|| <e. Let
7(x) be the boundary of the feasible region with 7(0) = s(0) and 7(0) = s(0) and assume
that 7 is parametrized by arc length.

We wiU now show that there exists a0' such that |0' —0| <ewhile |s(0') —s(0)
Combining these inequalities produces the theorem.

First note that at 5(0) the normal to 7 must point in the direction defined by 0. Note
that

c(0)f(s(0) - s(j3)) = / tan(0(u) - 0)du < / 2/tt (0(u) - 0)du
Jo Jo

where x(p) is the smallest x such that 0(x) < fi.
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Now assume the lemma is false and all 0(x) for |x —x(0)| satisfy |0(x) —0| > e, therefore

c(0)f(s(0(x)) - s(0)) > e2

by the previous equation. However this contradicts the fact that s is e2-accurate proving the
lemma, o

Thus the algorithm works even with the inexact replies given by the agents. •

36



B List of Figures

1. A central mechanism

2. Agents organized on a Butterfly network.

3. Multiple allocations can result from the same price.

4. Finding a feasible solution - the regions generated by stage 2 for r = 2.

5. Trapping of a feasible solution by stage 2.
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Figure 1 : A Centi'al mechanism.

000 001 010 Oil 100 101 110 111

Agents

Figure 2 : Agents organized on a Butteifly network.
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Figure 3: Multiple allocations can result from a single price. Note
any allocation between x(low) and x(high) is of the same value to
consumer i.



Figure 4: Geometry of Stage 2 Algorithm
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Figure 5: Accuracy of stage 2.
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