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Abstract

We recast a recently developed adaptive stabilization algorithm for pure-feedback form non
linear systems into an error-based algorithm. This enlarges the subset of pure-feedback form
nonlinear systems that can be stabilized globally (with respect to the state of the system.)

1 Introduction

Several recent nonlinear adaptive control algorithms have focused on stabilization and tracking for
systems that can be described in pure-feedback form. The development of these algorithms were
initiated in [3] and have been refined in [4]. These schemes fall into the category of direct adaptive
control in that the parameter estimates are driven by the mismatch between the plant statesandthe
control objective (stabilization or tracking) for these states. These algorithms have not been cast
into anerror-based or indirect framework. By indirect adaptive control we mean that the parameter
estimates are driven by the mismatch between the plant statesand a dynamic estimateof the plant
states. For recent examples of this approach, see [2], [5] and [6]. An appealing feature of the indirect
approach is that parameterestimates that begin close to the actual parameter values remain close
to the actual parameter values. This feature can play an important role in the feasibility of the
adaptive control algorithm. For instance, consider the following academic example:

Xi = X2 + Bx\
*2 = a?3 (1)
x3 = u

This system is in pure-feedback form. For this system, the feasibility region of [3] is expressed as
a set T —Bx x Be where Bx is an open set in R3 and Be is an open set in R such that

|l + 0xi|>O VxeBx W€B0

We see that one possible feasibility region is given by Bx = R3 and Be = R+ so that the global
stabilization problem is possible. However, the direct algorithms of [3] and [4] cannot guarantee
that 0 remains in Be unless the initial state x(0) is sufficiently small. Reformulating the algorithm
of [3] as an error-based algorithm will eliminate the restriction on the size of the initial state.
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2 The Class of Systems and Feasibility Regions

For simplicity, we will consider single-input systems of the form

ii = BTfi{xux2)
*2 = 0Tf2(xi1x2ix3)

i (2)
«n-l = 0T/n-l(zi,...i3n)
*n = 0T[fn(x) + 9n(x)u]

Here 9 € Rp x {1} is the vector of unknown parameters augmented to allow for terms that are
independent of the nominal unknown parameters 9* € Rp. i.e.

9 =
9*

1

The vector gn € Rp+1 is smooth and the smooth vectors /, 6 Rp+1 are such that /,(0) = 0. Geo
metric conditions for transforming a general single-input nonlinear system into this form (locally)
generalize easily from the conditions in [l] and [3].

We demonstrate our algorithm by solving the adaptive stabilization problem. (As in [3], the
algorithm presented here naturally extends to the tracking and multi-input problems.) Our algo
rithm is most powerful when the feasibility region is global in the state x but (possibly) not global
in the parameter 9. Consequently, following [3], we make the following definition:

Definition 1 A feasibility region for the system (2) is any connected setT C Rp x {1} such that

\$T^\ > 0 for i=l,...,n-l
\0T9n(x)\ > 0

for all x€Rn and for all 9^T.

Remarks.

1. As noted in [3], the sets F are connected sets where the system is full-state linearizable.

2. It is important to note that feasibility regions are connected. For example, in the case that
p = 1 it may be true that the conditions of definition 1 are satisfied forallfl^Ox-fl}.
However T = (0 x {1})C is not a feasibility region.

We now restrict the augmented parameter vector 9 € Rp x {1} so that our algorithm remains
feasible. To do so, let {5}} be the collection of sets known to contain 9 and define Se = nSJ.
Further, let {?'} be the collection of feasibility regions such that Se C T* and define T = U^J.
(T is connected since 9 € J7*.)

Assumption 1 If T j- Rp x {1} then we assume:

L Ifp = 1 andT is unbounded, then clos(Se) C T

2. otherwise, Ss C B{re>) x {1} C £(2r/) x {1} C T where B^ C Rp is a ball of radius r
centered at some 9' € Rp.



Remark. We see that when the entire space Rp x {1} is not a feasibility region, we restrict the
possible values of the unknown parameter vector 9. la the case of one unknown parameter, we do
not necessarily restrict 9 to lie in a bounded set. For example, if T = R+ x {1} then it is sufficient
toknow that 9 € R+ x{1}. IfT = (0, +oo) x{1} then it issufficient to know that 9 6 [c, +oo) x{1}
for some e > 0.

If p = 1 and T is bounded or if p > 1, we restrict 9 to lie in a bounded set. For example, if
f = R+ x R+ x {1}, then we require 9 to lie in some ball such that a ball of twice the radius and
centered at the same point is contained in T. The reason for this will become clear in the stability
proof.

3 The Stabilization Algorithm

We recast the basic algorithm of [3] into an error-based algorithm.
Step 0. Define z\ = x\.
Step 1. The previous step gives

z1 = BTfl(xux2) (3)

Now define

Z2 = 9Tfi(xux2) (4)
where 9\ is an estimate of 9. Substituting (4) into (3) yields

ii = 22 + [0-£i]r/i(zi,S2)
= z2 + [9-91]Tw1(zllz2Ji) (5)

(We will demonstrate in the stability proof that assumption 1ensures this algorithm is feasible and
hence the inverse relation between Z2 and X2 is well-defined. We write w\ as a function of z\,z2 and
$i for completeness. When implementing this algorithm, it will be easier to employ this function
expressed in the original coordinates xi,X2-)

We choose the update law for 9\ to be driven by the mismatch between the state z\ and a
dynamic estimate of this state z\:

01 = (zi-zi)wi(zuz2Ji)

where a\ > 0.
Step 2. The previous step gives

*2 = 0[f£^/2(*l,*2,S3) +0[f£0T/l(*l,S2) +(*1 " Z1)w?(z1,Z2Jl)fl(xllX2)

Now define

= HW;eTh^uX2,xz) + 9Ti>l{zuz2A) +Xi{zuz2rziA) (7)

(8)

where 92 is an (independent) estimate of 9. Substituting (8) into (7) yields

z2 = z3 + [9 - 92\Tw2(zi1Z2iz3izu9u92) (9)



We choosethe update law for 92 to be driven by the mismatch between the state z2 and a dynamic
estimate of this state z2:

z2 = -ct2(z2 - z2) + z3
* - (10)

92 = (z2 - z2)w2(zi, z2lz3,zu9u 92)

where a2 > 0.
Step i: i=3,.. .,n-l. The previous step gives

* = %£---€i^m*u..-:*»i)^ ^ . ai)
+^*(*1,..m*S^...m*-2i01,...,0<-i) + X^^

Now define

*+i = ffj&-Ci2te^r/j(«i.-.*m).
+^'l6i(»l,...,2,-,il,...,Zf-j1tfl,...,»i_l) +Xi(»l..".«ii«l..",«i-l,«l.--.i*i-i)

(12)
where 0; is an (independent) estimate of 9. Substituting (12) into (11) yields

Zi = zi+i + [9- 9i]TWi(zu.. .,z;+i,*i,.. .,z,-i,0i,.. .,00 (13)

We choose the update law for 0,- to be driven by the mismatch between the state zt- and a dynamic
estimate of this state £,-:

Zi = -Cti(Zi - Zi) + zi+i

0* = (zi-Zi)Wi(zu...,zi+uzu...,Zi-.1,9u...,9i)

where a,- > 0.
Step n. The previous step gives

+tfT^„(zi,...,2n,«!,...,l„_2,«i,...,dn_i) +Xn(«l,...,«n,2l,-..,«n-l,9l,---,*n-l)
(15)

We choose the input
U= A-^-^Vn - X» - *l*l -... - knzn] (16)

where &,- are the coefficients of a Hurwitz polynomial and

and 9n is an (independent) estimate of9. (We will demonstrate in the stability proof that assump
tion 1 ensures the algorithm remains feasible and, hence, A-1 is well-defined.)

Substituting (16) into (15) yields

zn = -klZi - ... - knzn + [9- 9n]Twn(zu..., zn, zu..., £„_!,9U..., 9n) (18)

We choose the update law for 9n to bedriven by themismatch between thestate zn and a dynamic
estimate of this state zn:

zn = -ctn(zn - zn) - kizi - ... - knzn

#n = (zn-Zn)wn(zU...iZnyZU...,Zn-1JU...Jn)



where an > 0.

Step n+1. Consider the set Se and T of assumption 1. If.F = Rpx{l}, then 0,(0) can be
chosen anywhere in Rp x {1}. Otherwise, if p = 1 and T is unbounded then the projection of T
onto R has either a well-defined least upper bound or greatest lower bound, but not both. Denote
whichever is well-defined by p. Finally, let 0,(0) be that point in the closure of Se with the shortest
distance to (/?, 1) e Rx{1}. If T is bounded or p> 1then consider the ball B,r ^ associated with
Se as defined in assumption 1. Choose the initial state of the parameter estimates as

0,(0) = (20)

This, together with x(0) completely defines *(0). Now choose the initial state of the state estimates
such that z(0) = z(0).

Remarks.

1. It is clear that 0,iP+i(O) = 9p+i = 1. Consequently, updating 0,-,p+i is not necessary.

2. It follows from the algorithm and the above remark that the dimension of the dynamic
adaptive compensator is np + n. The n additional states are due to estimating the states
dynamically to construct an error-based identifier. These additional states are not found in
the algorithm of [3].

3. Because of the error-based scheme we are able to place the poles of the certainty equivalence
z dynamics arbitrarily with the Hurwitz polynomial coefficients fc,-.

4. Let f(x, 0) denote the drift vectorfield and g(x, 0)denote the input vectorfield both associated
with (2) and let h(x) = x\. It follows from the algorithm that if

0,- = 0, ^ = Zi for i = 1,..., n (21)

then

and

The condition (21) is an equilibrium point of the identifier, independent of the value of z.
Consequently, if (21) is satisfied at t = 0 then the the control implemented for t > 0 is an
exact linearizing control.

5. As seen in step n+1, the selection of the initial value of 0 is not arbitrary. It is selected to
ensure that the algorithm remains feasible.

4 Closed-loop Stability

In this section we prove the following theorem:

Theorem 4.1 (Adaptive Regulation) Under assumption 1, if the algorithm of section 3 is ap
plied to the system (2), the resulting closed loop system is such that

lim x = 0 (22)
t—*oo

for allx(0)e Rn



Proof. The algorithm of section 3 yields the following closed loop system:

ii = z2 + {9-9i)Twl

zn-\ =

Zn =

Z\ -

Zn + (9-9n-l)TWn-l
-kizi - ... - knzn + (0 - 9n)Twn
-<*l(Zl - Zi)+ Z2

-an-\{Zn-\ - Zn-l) + Zn
-Otn(zn - Zn) ~ kXZi - ... - knZn
(Zi - zx)wi

Zn-1

Zn

9 1 =

#n = (Zn - Zn)wn
0=0

We make the following linear coordinate change:

e ' I -I 0 0 z

z 0/00 z

4* 0 0/-/ Si
9 0 0 0/ 9

The dynamics of (23) in the new coordinates become:

e\ = —a\e\ —cffwi

en = -otnen - <t>nwn
01 = eiwi

4>n = enwn
z\ - z2 + aiei + e2

(23)

(24)

(25)

Zn-1 = Zn + ttn-lCn-l + e„

*n = -hzi - >>. - knzn + anen - kiei - ... - knen
0=0

We denote by Ak the controllable canonical form matrix corresponding to the Hurwitz polynomial

sn + kns71-1 + ... + k2s+ kx

We then choose P > 0 to satisfy
Aj[P + PAfc = -/ (26)

To prove stability, we choose the following Lyapunov function candidate:

V=M[i(ere +£ tf*)] +\iTPz +0T0 (27)
»'=1



The derivative of V along the trajectories of (25) is given by

n

V=ME -a«'€?) " ?* +^Me (28)
*=i

where M is a constant matrix independent of /z. It is obvious that 3p > 0 such that V" < 0 for all
e,z,<£, 0. This establishes the stability (i.s.L.) of the closed loop system.

We now focus on the dynamics of the identifier itself to verify that the proposed algorithm is
indeed feasible. The n identifier systems are given by

<§i = -ai€i - (ffwi
4>i = eittfi

: (29)

<?n = -a„e„ - 4>nV)n
<£n = enwn

Consider the Lyapunov function candidate for the ith system of (29):

Vi =\tf +tik) (30)
The derivative for VJ along the trajectories of the ith system of (29) is given by

Vi = -a,e? (31)

Since VJ- < 0 for all e,-, fa we can conclude that

Vi(t) < Vi(0) (32)

Since we have chosen i,(0) such that e,(0) = 0 we can then conclude that

ll*WII < ll*(0)ll (33)

We only need to consider the case when Jr^Rpx{l}. Ifp=l and T is unbounded, we have
chosen 0,(0) = (s, 1) Gclos(Se) for some seR. Define Et = (-00,5] x {1} and ET = [«, +00) x {1}
and let E denote the one set, E\ or Eri that is contained in T. (One and only one will satisfy this
condition since T is unbounded but not R x {1}.) We then have 0 € Se C E C T. The choice
of 0,(0), the definition of E, the fact that 0 € E and (33) imply 0,(t) € E for all <> 0. Since
E C ^ it follows that the proposed algorithm is feasible. For p > 1 or T bounded, we have chosen
0,(0) such that ||<fc(0)|| < r. Since we know that 06 Se C B^^ x {1} it follows from (33) that
9i(t) 6 £(2r,0') x {!} for all t > 0. Finally, since £(2r/) x {1} CT it follows that the proposed
algorithm is feasible.

We now demonstrate asymptotic stability of the state x. First, from (31) it follows that

AOO n

/ Ea«'et?<0° (34)
./o ^~?

Next, from the stability of the overall system (see (28)) it follows that e,- is bounded. With this we
are able to conclude that

lim e,- = 0 (35)



Then a simple application of the Bellman-Gronwall lemma to the dynamics of z shows that

Urn z = 0 (36)

From (35),(36) and (24) we conclude that

lim z = 0 (37)

Finally, from the algorithm of section 3, since /,(0) = 0 and from the definition of a feasibility
region, z is a global diffeomorphism of x without translation. Hence,

lim x = 0 (38)

D.

5 Conclusion

We have modified the nonlinear adaptive algorithm of [3] to produce anerror-based algorithm. This
allows global stabUizability for a larger subset of pure-feedback nonlinear systems. The algorithm
was demonstrated on the single-input stabilization problem but easily extends to the multi-input
and tracking problems.

References

[1] 0. Akhrif and G.L. Blankenship. Robust stabilization of feedback linearizable systems. In
Proceedings of the 27th Conference on Decision and Control, pages 1714-1719, December 1988.

[2] G. Campion and G. Bastin. Indirect adaptive state feedback control of linearly parametrized
nonlinear systems. Int. J. Adapt. Control Signal Proc., 4:345-358,1990.

[3] I. KaneUakopoulos, P. Kokotovic, and A.S. Morse. Systematic design of adaptive controllers for
feedback linearizable systems. IEEE Trans, on Automatic Control, 36(11), 1991.

[4] M. Krstic, I. KaneUakopoulos, and P.V. Kokotovic. Adaptive nonlinear control without over-
parametrization. Technical Report CCEC-91-1005, University of California, Santa Barbara,
1991. submitted to Systems and Control Letters.

[5] J.B. Pomet and L. Praly. Adaptive nonlinear regulation: equation error from the lyapunov
equation. In Proceedings of the 28th Conference on Decision and Control, pages 1008-1013,
December 1989.

[6] A.R. Teel, R.R. Kadiyala, P.V. Kokotovic, and S.S. Sastry. Indirect techniques for adaptive
input output Unearization of nonlinear systems. International Journal of Control, 53, No.
1:193-222,1991.


