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ABSTRACT

We apply the idea of chaotic synchronization to a communication system which
consists of three coupled digital phase locked loops. The chaotic carrier is generated
in a subsystem of two coupled loops. The receiver is driven by a chaotic signal, but
is stable in the sense of having only negative Liapunov exponents. We study such
systems both numerically and experimentally. We verify numerically that the receiver
does synchronize with the transmitter if the stable loops in the transmitter and receiver
are identical. In the experimental system each loop consists of a sample-and-hold, level
shifter and voltage controlled oscillator. Experimentally we observe synchronization
between the stable subsets of loops.

1. Introduction

The concept of synchronized chaos was introduced recently by Pecora and
Carroll1. Theyshowed how two systems linked bya chaotic signal synchronize with
each other. One potential application of this concept is to the problem of secure
communications. The idea is to have two remote systems linked by the same chaotic
signal and still synchronized with each other. In a recent paper2 this possibility was
explored numerically in a system ofcoupled Digital Phase Locked Loops (DPLL's).
Using two coupled loops as a transmitter ofa chaotic signal, we showed how a third
loop can synchronize with one of the transmitter elements.

Analog and digital PLL's are electronic devices used in a variety of communi
cation applications suchas modulation and demodulation, noise reduction and also
as synchronization devices to lock the phase ofa receiver to that ofa transmitter3.
In a single DPLL the phase difference between transmitterand receiver is described
by a circle map when the input is a sinusoidal signal with a constant amplitude
and frequency4'5. Circle maps have been studied extensively in the past. They

' Permanent address: Electrical Engineering Department, San Jose State Uni
versity, San Jose, CA 95192.



present tongues of periodic cycles, quasiperiodic behavior and chaos6. For two cou
pled DPLL's we also observed a complicated behavior characterized by periodicity,
quasiperiodicity and chaos2.

In this paper we present numerical simulations and experimental results on
synchronization of DPLL's. Here, the DPLL's considered in our numerical calcula
tions have a slightly different feature from those ones studied in Ref. 2 and they
correspond more closely to the experimental system.

The paper is organized as follows: In section 2 we describe the system stud
ied and report our numerical results. Section 3 is dedicated to the study of the
experimental system, and the section 4 gives the conclusions.

2. Numerical Results

We will first give a brief description of a single, first-order, nonuniformly sam
pling DPLL, whose block diagram is shown in Fig. 1(a). It consists of a sample-and-
hold (SH) and a voltage controlled oscillator (VCO). During the operation, the SH
takes a discrete sample v(tk) of the incoming signal at the sampling time tk when
the VCO signals it to do so. The sampled value is used to control the sampling
frequency of the VCO according to a given function in such a way as to decrease the
phase difference between the incoming signal and the oscillator output. As a result,
for a range of parameters, there is a possibility of locked behavior when the oscil
lator frequency adjusts itself to the input frequency and locks to its phase, hence
sampling always at the same point on the input signal. Due to the nonlinearities
in the system, orbits with high period, quasiperiodic and chaotic behavior may also
appear in a single DPLL5.
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Fig. 1. Schematic representation of (a) a single DPLL and (b) communication system
consisting of three coupled DPLL's.



The communication system we study in this paper has a transmitter which
consists of twoself-synchronized DPLL's, where the input to one loop is the output
of the otherloop, and vice-versa. The receiver consists of a single loop and receives
its input from output of one of the loops in the transmitter, as shown schematically
in Fig. 1(b).

We initially discuss the dynamical properties of the coupled loops in the trans
mitter. In the experimental device studied in section 4 the outputs of the loops
are voltages, which have a triangular wave form, which are represented as v(t) =
Ah(<f>(t)) with

' 4<f>(t) if 0 <<£(<)< 1/4,
K<t>W) ={ -4^(<) +2 if 1/4 <<t>{t) <3/4,

,4<£(t)-4 if3/4 <<£(/)<!.
(1)

where <j>{t) = ft, with / the frequency, and 0 < t < 1/f. In Ref. 2 the output of
the VCO's were taken as sinusoidal, rather than triangular waves.

In this coupled loop system each time that one of the triangular wave signals
crosses v = 0 with a positive slope, the VCO sends a signal to the respective SH
and an input sample vj is taken from theVCO output of the other loop. The loop
i that samples switches its frequency to a new value according to

/s«/r+fcfo+»i//], (2)

where f° is the center frequency of the VCO, i.e., its frequency in the absence of
applied signal, b is the gain of the VCO and v°f* is an offset voltage that may be
added to the sampled value in order to bring the input signal to the appropriate
voltage range of operation in an experimental device.

In Fig. 2 we show a diagram that illustrates the dynamics of the systemof two
self-synchronized DPLL's with a waveform given by (1). The signals in the figure
represent the time varying output of the VCO's. In our simulations we evolve the
system according to the algorithm given in Ref. 2.

VC011 i
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Fig. 2. Schematic representation of the dynamics of two coupled DPLL's.



The coupled system is described by four variables, that is, the frequencies and
the phases of the two loops. However, the system state changes only at the sampling
instants. As a result, the dynamics lies in the union of two three-dimensional linear
subspaces, which have <t>i =0 (mod 1) or fa = 0 (mod 1).

There are eight parameters in the coupled system. For each loop we have
the amplitudes Aj, the gains &,-, the center frequencies ff and the offset voltages
v?// \ye can normalize the parameters in the following way. The equations that
determine the dynamical evolution of the loops are

/{ = SI + 6i \MK<h) + •?"! (*x = 0), (3.a)

A = fl + M^iMfc)+<,s\ (** = °)- (3-6)

Dividing Eq. (3) by /£ + b2V%ff we obtain

7i = r +SiMW. t4-0)

% = 1+ B2h(<M, (4.6)

where

r- R f fJ +W D hA> (4c)

Thus there are three dimensionless fundamental parameters in the system, which
are the two normalized gains B\ and Bi and the normalized center frequency f° of
one of the two loops, say loop 1. Since the frequencies of these discrete time systems
are positively defined, we must have from Eqs. (4) that B\ < f° and Bi < 1, since
ft(«€[-l,ll.

By varying these three parameters we observe numerically in the system of two
coupled loops, regular, quasiperiodic and chaotic behavior2'7.

We show in Fig. 3 a bifurcation diagram for <t>i versus B = Bi = Bi with
f° = 1 on the surface of section fa = 0. Contrary to the case of sinusoidaloutput2
where the route to chaos is via period doubling, here we observe that the bifurcation
sequence is truncated, and beyond the period two orbit a complex entrance into
chaos is observed. We have studied the complete phase diagram of the coupled loops,
which is situated in a tri-dimensional space, and the results of our investigations
will be reported elsewhere7.

Now we discuss the synchronization to a chaotic signal produced by the coupled
DPLL's2. The synchronization is obtained by transmitting a variable of the chaotic
driving system (the transmitter) to be a corresponding variable of the response
system (the receiver) while the driving system remains unperturbed. A necessary
condition for the system to follow the master system is that it have only negative
Liapunov exponents.

We apply such ideas to the communication system shown in Fig. 1(b). We
observe numerically that if loops 1 and 3 are completely identical, then the syn-
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Fig. 3. Bifurcation diagram for <f>i(fa = 0) as as a function of B = B\ = B% with

n = i.

chronization between them is observed in certain regions of the parameter space,
even when the transmitter is chaotic. In this situation, the outputs of loops 1 and
3 are exactly the same. This may occur when the Liapunov exponents associated
with loops 1 and 3 are negative, and positive for loop 28. However, even when
these conditions are satisfied, the synchronization between loops 1 and 3 may not
be observed due to the presence of more than one basin of attraction, or to other
factors. If the parameters of loops 1 and 3 are not identical, the synchronization
between them is degraded2.

3. Experimental System

In this section we show the results of chaotic synchronization obtained exper
imentally for our coupled DPLL's. The experimental circuit for a single DPLL,
shown in Fig. 4, is composed of two main parts: (1) the sampler and associated
support circuitry and (2) the VCO and associated circuitry. For the sampler a
National Semiconductor LF398 Monolithic Sample and Hold circuit is used. An
0.001 /xF polystyrene capacitor is used for its low dielectric loss properties as the
hold capacitor. The sample time is set by a 74LS123 retriggerable monostable mul
tivibrator. The pulse width of the multivibrator is set with Rext = 20 k£l and
Cext = 680 pF which gives a predicted pulse duration of about 6.7 fjLS9 and a mea
sured pulse duration of about 6.0 fis. The maximum frequency of the input signal is
about 4.0 kHz. Therefore, our sampling duration is about 1.2% of the signal period
in the worst case and less than 1% on average. Hence, our sampling error should
be much less than 1%.

For the VCO a National Semiconductor LM566C Voltage Controlled Oscillator
integrated circuit is used. The frequency of the VCO is given approximately by the
formula10
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Fig. 4. Block diagram of the experimental implementation of the nonuniformly sam
pling first order DPLL.

_2.4(V+-t;5)
1 RxdV+ ' (5)

where V+ = 5V, v$ is the control voltage input (the voltage on pin 5 minus the
voltage on pin 1 of the integrated circuit), Ri = 10 kfi and C\ = 0.022 /xF.

Due to the relatively loose tolerances of R\ and C\ and the temperature de
pendence of these components, equation (5) is useful primarily for design purposes.
The center frequency and gain of such a DPLL, which obeys / = f° + 6v, with v
being referenced to zero, were obtained from a linear least squares fit of the data5,
and it was found that f° = 5259.1 Hz and 6= 1217.4 Hz/V for the voltage range
we use. The output of the VCO has an amplitude of 0.9 V and a D.C. ofiset of -0.9
V. To use this VCO in a DPLL it is necessary to add a DC ofiset voltage either
to the input signal to the sampler or to the output signal of the sampler so that
the input signal to the VCO will be in the proper voltage range. The operational
amplifier circuit shownin Fig. 4 is used to adjust the offset voltage. A hard limiter
LM311 with a reference of -0.9 V was included at the triangle wave output of the
VCO to cause sampling at the zero crossing, as opposed to sampling at the peak,
as in the case of the circuit studied in Ref. 5.

We studied the synchronization to a chaotic signal in an experimental system
consisting of such DPLL's coupled according to Fig. 1(b). As predicted in our nu-
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Fig. 5. (a) Temporal evolution of the output voltages of VCO 1 and VCO 3 (in
volts) for the parameters values vg = 0.819V in loops 1 and 3 and t>s = 1.062Vin
loop 2. (b) Output voltage of VCO 1 versus the output voltage of VCO 3 for the
same parameter values.

merical simulations, we observe in the experimentaldevice a parameterregion where
synchronization in the chaotic regime is obtained. We illustrate this by showing in
Fig. 5(a) the time evolution of the output voltage of loop 1 and the corresponding
quantity for loop 3. The figure shows that the two loops are synchronized. This
can also be seen by plotting the output of loop 1 versus the output of loop 3, as
shown in Fig. 5(b).

4. Conclusions

We studied the synchronization to a chaotic signal in a system of coupled
DPLL's both numerically and experimentally. We have shown that the receiver
does synchronize with the chaotic transmitter in a certain region of the parameter



space. This indicates that DPLL devices may be useful for secure coinmunication
applications. Presently we are working on modulation techniques for the transmis
sion of information.
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