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Preface

This is the second annual edition of the 290W report. This edition includes descrip
tions of projects completed during the Fall semester of 1990. These projects were com
pleted in the context of the graduate course "Special Issues in Semiconductor
Manufacturing". Three students have participated, and according to the course require
ments, these students worked with me on their projects during the last six weeks of the
semester. Although all of the three projects have something to do with lithography, they
are quite diverse, as they treat three very different subjects.

The first project, deals with the application of economic criteria towards the imple
mentation of viable control strategies in semiconductor manufacturing. This study was
motivated by the recent introduction of expensive wafer mapping machines that can be
used to monitor the quality of lithographic patterning. The cost of such a quality control
scheme dictates an optimum design, where metrology and analytical resources are allo
cated in a fashion that balances the cost of inspection with the expected loss due to
misprocessing. The approach taken in this project is based on classical work on the Eco
nomical Design of control charts,extended to cases were multiple process steps need to be
controlled using one finite pool of metrology and diagnostic resources.

The second project also deals with photolithography. The objective here is to define a
"run-by-run" supervisory control scheme, that, by means of feedback and feed-forward
adjustments, will reduce the variability of the critical dimensions of the developed pho
toresist patterns. In this report we show early experimental evidence that such a scheme is
possible. This is shown by means of an actual implementationof a feedback loop around
the spin/coat & bake equipment used in the Berkeley microfabrication laboratory. This
feedback loop operates using model-based, cumulative sum control charts of the resist
thickness andreflectance, andalsoon optically measured critical dimensions.

The third project focuses on the application of formal experimental design techniques
towards the derivation of novel models thatdescribe the dissolution of chemically ampli
fied resist Two suchmodelshavebeendeveloped, andthey have beenused to predict two
critical parameters of the final dissolution rate model. These models show excellent
agreement with the experimental results, and they aregoing to be used within existing pro
cess simulators.

It is my hope that these reports will be a useful addition to our understandingof semi
conductor manufacturing. My thanks go to Raymond, Sov and Nelson, the 290W students
whose work made this document possible.

Costas J. Spanos

January, 1991
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Economic Design of Control Charts

Raymond L, Chen

Due to the limited resources available for the implementation of a
statistical quality control program, as well as due to the loss of
profit caused by non-conforming products, it is logical and feasible
to design a control chart by economical considerations. This
design is carried out by optimizing the net income per unit time of a
process, taking into account the cost invested in the operation of the
control system. Numerical examples indicate that our theoretical
model and computer programs are applicable into modern wafer
production.

1.0 Introduction

In this report we will present a detailed analysis on economic design of the charts for
the statistical quality control of semiconductor wafer production. First, we will state our
motivation and present a simple background review, followed by a detailed derivation of
the formulas. Computations will be carriedout, followed by some numerical results and
conclusions. The computer programs, written in FORTRAN-77, are included and
explained in the Appendix.

1.1 Motivation

Modern wafer inspection systems can give incredible amount of detail. For example,
we can now inspect a patterned wafer after each patterning step and record the number,
location and size (down to about0.2 fim) ofdefects. The problem is that such systems are
very costly to acquire ($1-2 mil) and to maintain ($0.5mil/year). In addition, complete
mapping a single wafer takes about 30 minutes. In a mid-volume production facility that
produces 500 wafers/week, and each of them goes through ten patterning steps, we cannot
inspect every single wafer. In orderto balance the cost of inspection and the cost of faulty
production,we must do an"economic design" of the statistical control procedure.

In other words, we need to generate guidelines on how many wafers will be sampled
and how often, depending on the probabilitythat each patterningoperation has to go out of
control, and given the cost of producing faulty wafers.

EconomicDesignof ControlCharts January, 1991 EE290WF90
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1.2 Background

X control charts are widely used to establish and maintain the statistical control of a
production sequence. To design a control chart, one needs to know the sample size of
each group of measurements (n), andthe sampling frequency or, equivalently, the interval
between samples (h). Assuming that the production process generates defects whose
numbers are randomly distributed according to known mean and sigma, we also need to
determine the control limits of the chart defined as (n±kG).

Althoughin the waferinspection example thepractical sample sizen in one,due to the
relative long time to investigate a single wafer, all the formulas are derived in a general
way so that n could larger than one.

The cost to maintain a control chart of a process is mainly associated with the sam
pling, testing, investigating true out-of-control signals, possibly correcting the assignable
causes, as well asinvestigating the occasional false alarm signals thatoccurwhen the pro
cess is actually in control. In order to design the control chart from an economic view
point, one must optimize the total net incomeof the process. One must take into account
both the cost of maintaining the control charts and the loss due to the non-conforming
wafersthatare produced while the process is out of control.

Early in 1956, Duncan [1] proposed a simple production modelto design the X-chart.
Later, Goel et al. [2] used an algorithm to find the exact optimum solution of Duncan's
problem by computer, which is academically interesting, but might be practically
difficult Chiu et al. [3] developed a simple, approximate procedure to optimizing Dun
can's model. Finally, Montgomery [4] offered a simple FORTRAN program to solve the
problem based on these previous works.

A more historical review of the research done in the area of economic design of con
trol charts is presented by Montgomery [5], and we will not repeat it in this report.
Rather, based on Montgomery's review, we will develop our own model for the specific
situation in the waferproduction control system.

In ourmodel, however, we will add a total cost, constraint on maximizing theincome
in Duncan's original model. This is dictated by the fact that the resources we can apply
towards control are finite. Furthermore, since the total control cost is not a fixed but a
random number due to the randomness in the occurrence of the out-of-control status as
well as the randomness of the false alarms (type I error), we will treat the total control
demand as a random variable obeying some distribution inferred from the convolution of
Binomial and Poisson distributions.

We will not only derive a mathematical model, but we will also provide a practical
computerprogram, which will make the optimization problem numerically feasible.

Economic Design of Control Charts January, 1991 EE290W F90
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2.0 Methodology

The production, monitoring, and adjustment process may be thought of as a series of
repetitive cycles over time. Each cycle begins with the production process in the in-con-
trol state. By definition, when the production process is in control, the measured variable
is normally distributed with a mean \i and a standard deviation a. When the process goes
out of control, it is assumed that there is a single assignable cause, which takes the form of
a shift in the process mean from \i to \l+Sg or }i-6a, where 8 is known and a is
unchanged.

The process is monitored by an X-chart with center line \i and upper and lower control
limits |i±fc(o/V/i),where n is the sample size(which isequal toone inour case). Samples
are to be taken at intervals of h hours. After an out-of-control signal is produced by the
control chart monitoring system, an investigation of the alarm is carried out and possibly
an adjustment is made in order to bring the process back into the in-control state. Then a
new cycle begins.

Let T be the length of a cycle, and let E(T) be the expected length or the long-term
average length (mean length) of a cycle, and let E(P) be the expected net income (profit)
incurred during a cycle. Then the expected net income per unit time is:

P' £(T)

Our goal is to maximize E(Ap). This can be accomplished by standard optimization
techniques, given the maximum totalcontrol cost E(Cc) in one cycle. The objective is to
determine the optimized design parameters n, k, and h. Though n = 1 in our derivation,
we will still keep n in the notation for the future extension of our model.

In addition, since we have more thanone process, we will have to determine the values
of k and h for all of the processes (or "multiple photolithographic steps" in wafer
production). We will use the subscript i to distinguish among these steps. Wherever .
there is no i subscript, the equations and formulas are assumed to apply unaltered for all
the steps.

2.1 Expected Time of a Process Control Cycle

Each cycle consists of four periods: (1) the in-control period G, (2) the out-of-control
period Bp, (3) the time to take a sample and interpret the results, and (4) the time to find
the assignable cause and bring the process back to the controlled state. The total time of
(3) and (4) is called B'. Then total time the process is out-of-controlis B=Ba+B', and the
total cycle time is T=G+B.

The assignable cause of the shift is assumed to occur according to a Poisson process
with an intensity of Xoccurrences per hour. That is, if the length of the in-control period

Economic Designof ControlCharts January, 1991 EE290WF90
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is G, then the expected value of G, E(G) = l/X. Therefore, given the occurrence of the
assignable cause between the yth and (j+1 )st samples, the expected time of occurrence
within this sampling interval is given by:

J e" X(t-jh)dt
x- Jh l-d +U)e- (2-2)

jh

where jc=M, and

l-(l+;c)e~*
/(*) = —- (2-3)

x(l-e'x)

The number of samples Mp that isrequired in order to produce an out-of-control sig
nal, given that the process is actually out of control, is a geometric random variable with
mean E(M$) =l/(l-p). From this we conclude that the expected length of the out-of-con
trol period J5p is E(B^) =h/(l-p) -r. The time required to take a sample and interpret the
resultsis a constantg proportional to the sample size, so gn is the lengthof this segmentof
the control cycle. The time required to find the assignable cause following a true alarm
signal is a constantg'. So B'=gn+g' is a constant time. Therefore, the expected length
of a cycle is:

1 h

where the "power" of detecting an assignable cause (true alarm) is:

l-$ =®(rk+Sjn) +Q(-k-dJn)

»0(-fc+8V/i)

since usually O(-fc-SVrt) * 0, where:

z

O(z) = J§{z')dz' (2-6)
_oo

and ty(z)=(2%y1'2exp(-z2'/2) isthe density of the standard normal distribution.

Economic Designof Control Charts January, 1991 EE290W F90
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2.2 Control Cost of a ProcessCycle

The net income per unit time of operation in the in-control state is vq, and the net
income per unit time in the out-of-control state is vj. In other words, the loss per unit
time due to the production of non-conforming units is d=VQ-vi. The cost of taking sam
ples in one interval (h) is a+bn, where n is the sample size. The cost of finding an assign
able cause (true alarm) is c, and the cost of investigating a false alarm is c'.

Without loss of generality, we define the time of one sampling interval h as our "time
unit". Thus, the total sample number is a cycle is MT with E(MT) = E(T)/h. The total
number of samplings before the shift is MG with E(MG) = [E(G) - x\lh= [l/X - x]/h, and
the rest ofMT isMB = MT- MG with E(MB) =E(Mp)+E(B') =l/(l-$)+(gn+g')/h.

Let us use the average cycle time E(T) to replace T = MT h, and also use the average
time for the monitoring system (control chart) needed to detect a shift, i.e., hl(l-$), to
replace the actual time flp=Mp has our first approximation (more detailed analysis will be
included in our future plan). Namely, we will concentrate on the distribution for the num
ber of false alarms (type I error) to get ourestimation of total control cost, which is princi
pally a random variable whose distribution is decided by the distributions of random
variables 7, number of missed alarms (Mr-1) (type II error), and the number of false
alarms Ma (type I error). So we will replace Mp, MG and MT (or T) by their average
values.

By definition, we can only have one true alarm percycle. After that, an investigation
and correction follows, so that the assignable cause of the shift is fixed and a new cycle
starts. The probabilityof the process staying in control for a time period of G' is P(G') =
E(Mg)/E(Mt) = (1/X-x)/E(T). Here we imply that E(G') = E(G) - x. The probability of a
false alarmin a cycle T is thus given by:

Pa =ax(±-T)/E(T) (2-7)

where a=2&(-k) asthe type I error. The probability of giving Ma false alarms during the
entire cycle T is thus given by the binomial distribution:

« w MT] M„ MT-M„
rai^' M^atr-My^11-^ (2'8)

with the average E(Ma) = MTPa « E(MT)Pa = a(l/X-^)/h.

Economic Design of Control Charts January, 1991 EE290W F90
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So the "control cost" of a cycle with Ma false alarms and s single true alarm is given
by:

Cc - c'Ma+ c+ (a +bn)MT n-9)

with the long-run average value:

EiC^c'a(l/X-h\c+(a,bn^ (2-10)
c h h

We will use this average value as our initial estimation of the control cost. This cost
will also be used against the constraint that dictates that we have finite control resources.
After getting (k,h), it is straightforward to determine the Cc as a distribution of Ma.
More detailed work will be included in future plan.

2.3 Net Income Optimization

After defining all the parameters andvariables above,we know that the net income per
cycle T is given by: P =v0G + vx B - Cc =v0T - d B - Cc. Therefore, the expected net
income per cycle is given by:

E(P) =v0E(T)-dE(B)-E(Cc) (2-H)

where,

E(B) =JL^-x+gn+g' (2-12)

The expected net income perunit time E(AP) is found by dividing the E(P) by E(T) as
indicated in Eq.(2-1), hence:

EiAp) =§g =v0-£(L) (2-13)

where the average total cost and loss perunit time is:

Economic Design of Control Charts January, 1991 EE290W F90
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E(Cc) +dxE(B)

m =—W)— (2"14)

and the control cost per unit time is:

(l/X-t)

E(A )=̂ =— * +̂ (2"15>1 c E(T) E(T) h

Now our goal is to minimize E(L) under the constraint of EfAJ. Namely, after con
sidering also the number of total "steps" s running at the same time:

MiH (*, *, A,)W - Min {n, *, ht) X *Li>
i=l

s

- Min(nitki>hi) L Wd
/ = 1 '

under the constraint:

s E(Cc.)

^9 =I^9 =I^fy
i=i j =i l

= constant

(2-16a)

(2-16b)

The "worst case"control cost Wj{Ac) would be estimated from Eqs. (2-8) and (2-9)
afterwe have determined all (»,-, fy, h{) (with /ipl in our case). The detailed derivations
will be given in the next section.

2.4 Numerical Implementation

Using the standard formulation of the minimization problem, we have the equivalent
mathematical expression from whichto determine (&,-, ty 11=1,2,...,$):

SEiC^ +d^EiB.)
^-z %;.) (2-i7a)

I'al *

Economic Designof ControlCharts January, 1991 EE290WF90
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£(7V -1~dr -Vgini+gi= h***
i *i i

E{Cc.) = c .Mv--)
' ' */

+c.+ (a; + b{nt)
E(T;)

i ^ i i i' h:

/!,

^-Tifc-VW*/

under the constraint:

5 £(Cc.)
EjCAc) =£-—-L =constant

i=i '

Now we define:

£y<e) =EjtD-exEjtAc)

(2-17b)

(2-17c)

(2-17d)

(2-18)

(2-19)

where e is a dummy variable used here as a"Lagrangian multiplier". Therefore, our opti
mum equations are given by:

dEj{E)

~Bk7~

dEjie)

= 0

= 0

i=l,2,...„s (2-20)

Principally, we should be able to determine the (2y+l) unknowns (k(, hj) from the
(2s+l) equations depicted in (2-20)'s and (2-18). However, in order to obtain a clearer
"physical picture" of this model, as well as to make the numerical implementation feasi
ble, we will find the approximate solutionsto these equations. Towards this end, we will
assume the out-of-control time in a cycle is much smaller than the in-control time, i.e., we
will use:

E(T.) =£+£#.)=£ (2-21)

Economic Design of Control Charts January, 1991 EE290W F90
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in the denominators of the above equations. We will also consider that the testing (sam
pling) interval hi is much smallerthan the in-control time T, or, equivalentiy:

hence,

x.aXJi.**—— «1
i I I £(7\)

-x.

E-*P-
l-(l+x.)e

{-<-'')
l 1 l

And from Eqs. (2-17) and (2-19), we have:

s E(B.)
Ej^aEjiD-zxEj^Ac) =d-e)^c)+^d.^

i»i '

0-«)L
'ci'a.+ (ai+b.ni)

+ X.c:
i i

I»1L

+ IV,
/ = 1

*i
L V

n +p.>i

i-i»i
+(«,•»,•+*/)

Before we apply Eq. (2-20), let's recall Eqs. (2-5) and (2-6),

(-Jk+8vn)

1- P=0(- X: +57n) = J $(z)dz

-k

a=20(-fc) =2J<|>(z)dz

therefore,

Economic Design of Control Charts January, 1991
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dkgi|).^*...rt
da
— =-2<|)(-^) =-2<t)(/:)

Finally, we have the approximate resultsof Eq. (2-20) as:

2c{ Xd.h.

i Hi

(1"e) ht +~F?:y

(2-26)

(2-27)

(2-28)

The outcome of all this that we havede-coupled the 2s equations in Eqs. (2-27) and
(2-28) for different process steps. Hence, we can solve for the fys individually, by com
bining Eqs. (2-27) and (2-28):

[c/a.+ (a. +bin.^i-k.+b.fo =(l-p*)c/<|>(*.) (2-29)

or,

{l-[o(^/+8.^2}W.) («+*„)
-20(-^.) =

K-ki+*ifii>

where/=l,2,...,s. FromEq. (2-28), we also have:

*,=
lc.'ai+(ai +bin.)

0

where,

Economic Design of Control Charts

X.d.
i i

January, 1991

ci

(2-29)'

(2-30a)

EE290W F90



0 =Ui} L V riU (2-30b)
s

E1iAc)-y^X.ci
i=i

The computer programs in the Appendix will be based on Eq. (2-29) in order to first
determine £,-, and subsequently determine hi from Eq. (2-30). Finally Eq. (2-17) is used
to verify the total average control cost. In the current implementation, the programs solve
the optimization problem for s=2. It is quite straight-forward to extend our programs to
s>2 cases.

3.0 Examples and Results

In this chapter we present a few simple examples that demonstrate the application of
our model, with the help of the computer programsin the Appendix.

The programs need the following inputs:

• s = number of "multiple photolithographic steps". We will assume s=2 for the time
being, which could be any positive number in the future. Unit: none.

• a+bn = cost of the sample (sample size n=l in our case) for one sampling. Unit: $. for
a and $/sample for b.

• c = cost of investigating a true alarm. Unit: $.

• c' = cost of investigating a false alarm. Unit: $.

• d =rate of loss of income due to the out-of-control process. Unit: $/hour.

• l/X = average time for an assignable cause (of the out-of-control shift) to occurafterthe
cycle starts. Unit: hour.

• 8 =out-of-control shiftof the process from its "good" mean \l Unit: a, where a is the
standard deviation of the in-control process. This value is assumed to be known and
constant throughout this investigation.

• gn = time to take a sample and to interpret the results (of control chart). Again n=l in
our case. Unit: hour.

• g' = time to correct an assignable cause of shift after the investigation of a true alarm.
Unit: hour.

• Ej(AG) = the initial estimated average of the total control cost rate, which is (see Eq.
(2-35) constrained by a maximum value. Unit: $/hour.

The programs supply the following outputs:

Economic Designof Control Charts January, 1991 EE290WF90
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• k = the Control limit factor for the upper/lower limit of the control charts. No units.

• h = interval between samples, or the time for one sampling period, which equals the
time from the beginning of taking the current sample to the beginning of taking next
sample. Unit: hour.

• a = type I error, which is a function of k. No units.

• P= type II error, which is also a function of k (and 8 and n). No units.

• E(B) = averaged time of the out-of-control process in one cycle. The total average
cycle time E(T) is thus l/X + E(B). Unit: hour.

• E(AG) = the average control cost for individual step. See Eq. (2-15). Unit: $/hour.

• E(L) = the average production cost for one step. See Eq. (2-14). Unit: $/hour.

All the above input and output parameters (except s) are given for each of the s indi
vidual steps, even when the subscript i 0=1,2,... s) is omitted. The following two out
puts are the most important for all the steps:

• Ej(AG) = the average total control cost (for all the steps) of our design results, which is
given by Eqs. (2-17b), (2-17c) and (2-18). Comparing these equations with Eq. (2-
35), we know this output Ej(AG) is slightly smaller than the initial estimated average.
Unit: $/hour.

• Ej(L) = the average total production cost for all steps (control cost, plus loss due to pro
duction while out-of-control). This is the parameter that needs to be minimized. Unit:
$/hour.

Other programming details and the programsas well are included in the Appendix.

To demonstrate the numerical implementation and practicaluse of our model, we have
calculatedsome hypotheticalexamples. The resultsare plotted in Figs. 1 to 6 on the fol
lowing pages.

In Fig. 1, we plot the type-I errora=20(-£), which can be easily found in any normal
distribution table. Similarly, Fig. 2 shows the relationship between the sampling power
1-p andk (when 8=3), as shownin Eq. (2-25).

In Fig. 5 and Fig. 6 we show a typical procedure to determine the (ki, h-) and hence
the total production cost Ej{L), as shown in Eqs. (2-29), (2-31) and (2-17). The input
data are:

First, we use Eq. (2-29) to solve for k=l.6l as shown in Fig. 3, then, we have the
relationship between Ej(L) and the initial input totalcontrolcost constraint Ej{Ac) chang
ing from $l/hour to $100/hour. There is a lower limit for Ej(Ac) otherwise the fy might
be negative (see Eq. (2-30)), which is un-physical. This is because we have to invest
some initial amount in order to maintain the "statistical quality control" (SQC) process, or
the X-chart.

Economic Designof ControlCharts January, 1991 EE290WF90



-19-

Stepl Step 2

a $20 $20
b $10 $10
n 1 1

C $30 $30
c $50 $50
d $10Q/hour $200/hour
UK 50 hour 50 hour

g 0.5 hour 0.5 hour

8' 1 hour 1 hour
jn±8a M±3a M±3a

From the curvesin Fig. 4, we can seethatthe optimizedvalue forEj{Ac) = $16/hour,
which gives (£,-, h{) = (5.76 hour, 4.07 hour) and the total minimum production cost is
E7/LJ = $39/hour.

In Fig. 5, we use the same data except that now 8 s 8x= 82changes from 2.8 to 3.0.
We see the total optimized Ej(L) inversely proportional to 8, as when 8 increases, it is
easierto detect the out-of-control state, or the power 1-p increases.

Finally, in Fig. 6, we still use the same input data as for Figs. 3 & 4, except 1IX\
increases from 50 hours to 100 hours. By comparing Fig. 4 and Fig. 6, we see the
Ej(L) drops when the process stays in-control longer (lAi larger).

4.0 Conclusions

We have presenteda well defined economical model in designing the X-chart in statis
tical quality control (SQC) process. The model is best suited for modern quality control
inspection systemon wafer production withmultiple photolithographic steps.

We also demonstrated the feasibility of the numerical implementation of our theoreti
cal model. The computer programs offered in this report give a convenient approach to
determine thedesign parameters of theX-control charts, i.e., (kit fy), where i identifies the
different lithographic steps.

Future extensions of our model will help in creating more substantial and practical
applications in the field of Computer Aided Manufacturing.

Economic Design of Control Charts January, 1991 EE290W F90
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5.0 Future Plans

There aremany things in our model that we may improve in the future. Some of these
more detailed considerations are addressed below.

5.1 Out-of-control Time Period

The out-of-control time before atrue alarm is5p =M^h. When the process is out-of-
control, the probability of having (Afp-1) missing alarms before the true alarm at the end
of Mp'th interval is given by the binomial distribution

Afo-iP(Mp-l) =(l-p)P P" (Mp>l) (5-1)

The average number of missing alarms is 1/(1-p).

5.2 In-control Time Period

The total number of in-control sampling intervals is G' = MGh. Note that G' is
slightly smaller than G, the total in-control-time in acycle: E(G) = E(G')+x. The proba
bility that the process will stay in control until the end of the (MG+iyth interval is given
by the Poisson distribution:

P(MQ) =X'txp(-\'MGh) (5-2)

The average length of the in-control run is l/X' = l/X -1.

5.3 Modifications to P(Ma)

We canmodify Eqs. (2-7) & (2-8) by considering Eqs. (5-1) & (5-2):

rMj.-i-m0

£ P(MaMG)P(MG,MT)
Mq=o

rMj-\-mt

MT=i+m0

£ P(MJMG)-P(Mp).P(MG)
L MG =0

Economic Design of ControlCharts January, 1991
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where Ma =. Mj - MG - niQ with mg = gn+g' as a constant The last equation in Eq.
(5-3) comes from:

P(MT) =P(MG +Mq +m0) = £ P(AfG) .P(A#o) (5^
MG.Ma

where M^ +Ma s M^- /W0, and P(Af(;) and P(Afp) are given by Eqs. (5-1) & (5-2),
respectively. Similarly to Eq. (2-8), we have the binomial distribution:

P(MnMr)= - a a(l-a) G a (5"5)cc G> Mal(MG-Ma)l

hence we may obtain P(Mq) from Eq. (5-3).

Finally, concerning the determination of the extremum, we may inspect the 2nd order
derivatives of Erfz) = Ej(L) + Ej(Ac) with respect to (*,-, fy I z=l,2,...,s) and their
combinations. Only if all of those derivatives are not negative then we can formally say
that we have found the minimum value of Ej(L).

Also, we may generalize our computer programs for s > 2 to accommodate any posi
tive number of"photolithographic steps".
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6.0 Figures

FIGURE 1. Type I Error a = <D(-k)
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FIGURE 2. Power of Sampling with 8 =3.
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FIGURE 3. Solving for k (Eq. 2-29), 8 =3, (a +bn) / c' =0.6
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FIGURE 4. Total Production Cost versus Control Cost (Xi = ^2)
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FIGURE 5. Total Control Cost versus Shift 8.
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Appendix: Computer Programs
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Feedback Control

for a Photolithographic Workcell

Sovarong Leang

Our goal is to apply supervisory control on the definition of critical
dimensions during optical lithography. At this stage, only the feed
back control loop for the spin-coat and bake station has been
established. The methodology is based on the monitoring and
modeling the thickness and the reflectance of the photoresist
applied on oxide and silicon. The dependence of these parameters
on the process settings has been modeled empirically using statisti
cally designed experiments. The resulting models form the core of
the control algorithm, since they permit us to detect a change in the
process, and allow us to modify the process settings in order to
maintain control over the critical dimensions of the transferred pat
tern.

1.0 Introduction

In a typical CMOS process there are over 10 masks, and each one of the respective
photolithographic steps is subject to small changes which can be damaging to the final
product. Being able to controleachof the photo steps is crucial in a high yield production
environment. In the Berkeley Computer Aided Manufacturing group we are developinga
supervisory control system for a photolithographic workcell. This is accomplished by
using a monitoring schemethatmeasures the thickness andthe reflectance of the photore
sist after the deposition, bake and exposure of the photoresist layer. We then employ
models of the lithography equipment in order to establish a control system with feedback
and feed-forward control capabilities [1], [2] as shown in Fig.l.

Thus, if a wafer is misprocessedby the spin-coat equipment, we can remedy the prob
lem by establishing a feed-forward control loop, so thatthe settings of the exposure station
will be adjusted in order to compensate for the spin-coat problem. If the process change
turns out to be a permanent process drift, we can prevent problems on future wafers by
establishing permanent compensating correctionson the concerned machine.

In this paper, we describe in detail the feedback control methodology that is used to
control the spin-coat and bake station. A similar feedback control will be established for
the exposure and the develop stations in the near future.
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2.0 Monitoring Methodology

Most existing in-line monitoring schemes record only the thicknessof the photoresist
afterits application. Ourmethodology includes oneadditional parameter, the photoactive
compound concentration M in the resist. As indicated in the models within SAMPLE
[3] andPROLITH [4], M depends strongly on the baking time, bakingtemperature, expo
sure time, and other parameters as well. During development M determines the dissolu
tionrate and therefore the critical dimensions (CD) of the developed image. Although M
cannot be measured directly in-line, it can be inferred from the reflectance of the film.

Measuring reflectance is difficult, since it depends on the film thickness, the oxide
thickness, and the wavelength of the beam that measures it. The film reflectance is also
very sensitive to variations in the film thickness, because of the creation of interference
patterns within the transparent film. In order to decouple the resist reflectance from its
dependence on the thickness of the resist and of the underlying oxide layer, we developed
a novel measuring scheme [5]. According to this scheme, we must first identify the
wavelength that will result in the maximum measured reflectance. This wavelength is
determined by modeling the thin film as a finite combination of parallel plane sub-layers.
This set of sub-layers has a known refractiveindex and absorption coefficient. For the j-
thlayer, the complex reflection, r j.j, is given by:

0-i

exp (-2i4y) [(F-r.) - F. (1 -Fjrfi}
~ Fj [exp (-2/ty ][(Fj - rj) - (1 - Ffj) ]

where

F, = — 1J nQ +nj

is the classic Fresnel coefficient relative toair, nj is the complex index of refraction of the
j-th layer, ngis the refractive index of air, and

♦/ = TnJxJ

is the optical phase thickness of each layer. Also, x} is the thickness of the j-th layer, Xis
the wavelength of the light beam, and n-. is the real part of the refractive index of the j-th
layer. The apparentreflectance of the entire film, defined as the intensity ratio of the inci
dent and the reflected beams, is given by:

R — \r |2K ~ |r0|

where tq is the complex reflectance at the air-photoresist interface. Thus, starting from
the substrate interface, we calculate the complex refractive index rj from Eqs. 1, 2 and 3
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for each dielectric layer and resist sub-layer until we reach the photoresist surface. This
way,we finally obtainthe apparent reflectance of the entire film as given by equation 4. In
ourcase, we only have one layerof oxide betweenthe substrate and the photoresist.

In conclusion, the measured film reflectance depends on three parameters: (1) the
oxide thickness; (2) the resist thickness; and (3) the wavelength of the beam at which it is
measured. In order to make the reflectance measurement depend only on the photoactive
compound concentration, a wavelength is chosen that yields the maximum measured
reflectance. This way, the reflectance measurement is decoupled from its direct depen
dence on resist and oxide thickness.

In order to determine this optimum wavelength, we plot the maximum reflectance with
respect to resist thickness and wavelength at a fixed oxide thickness. Several such plots are
developed for a range of oxide thicknesses, as shown in Fig 2. For each oxide thickness,
the maximum reflectance is a linear function of resist thickness and wavelength. At this
point, the slope and the y-intercept of these functions is be calculated and tabulated versus
the respective oxide thickness. The theoretical wavelength at which the reflectance is
maximized can then be found from the measured resist thickness and the linear function

thatcorresponds to the measured oxide thickness. In summary, the monitoringmethodol
ogy consists of the following steps:

1. Solve for the theoretical maximum reflectance and generate the reflectance versus resist
thickness and wavelength plots for a rangeof oxide thickness.

2. Measure the oxide thickness beforewe applythe photoresist on the wafer.

3. Measure the film thickness after spin-coating the wafer.

4. Using the previouslydescribed reflectance plot forthe measured oxide thickness, calcu
late the wavelength at which we should measure.

5. Measure the reflectance at the prescribed wavelength, and also at two "bracketing"
wavelengths set at five nanometers above and below the theoretical maximum. The
true maximum reflectance is found by fitting a parabolic interpolation through the three
measured values.

This methodology depends on accurate measurements of the film reflectance.
Accurate and reliable measurements require however a longer scanning time of the
machine, which mightresult in inadvertent resist exposure. Through experimental analy
sis, we find that one full second is necessary for the measuring instrument to record an
accurate andreliablereflectance measurement. Fortunately, the received dose is such that
the resist is not being exposed.

3.0 Modeling Methodology

Empirical models of the spin-coat and bake equipment have been developed using a
two-level full factorial design of experiments with three centerpoint replications. The
inputs to the models are the process settings, which include the spin speed, the spin time,
the baking temperature, and the baking time of the wafer. The outputs of the models are
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the photoresist thickness and reflectance. Although empirical models do not add to our
physical understanding of the process, they are simple, and they are accurate over the
region covered by the experiments.

The models, obtained through step-wise regression, are linear to the estimated
coefficients. The reflectance model has ten terms, and the thickness model has six terms.
Each model has been analyzed through an Analysis of Variance (ANOVA) table, as
shown in Fig. 3. This analysis reveals the replication error of the machine, as well as the
prediction error of the model. The thickness model predicts the mean response of the
equipment with aone sigma prediction error of +/- 38 A on the average, while the actual
response of the equipment varies aroundits mean value with a one sigma replicationerror
of+/- 65 A. The F-distribution test shows that this model is highly significant, since the
probability that the residual explained by the model is practically zero. We draw this con
clusion by examining the ANOVA table, where we see that the probability of F(5,70) >
6516.0 is extremely small.

A scatterplot of the resist thickness values predicted by the model, versus the corre
sponding experimental values is given in Fig. 4a. A similar plot is given in Fig. 4b for the
reflectance model. These models arevery important for our feedback control strategy and
their role is described next

4.0 Feedback Control Methodology

Feedback correction is implemented when there is a significant process drift. A "drift"
is defined as a consistent process change that persists over a prolonged period of time.
Such a prolonged change is identified with the help of the Cumulative Student-t Statistic.
Here, we use a threshold of 2.0, at which point the level of confidence that the process has
indeed deviated from its past position is 95%. The Student-t statistic is given by:

n

t =
/=i

n

Var

Li = 1

where Yj is the predicted response from the model, and y\ is the actual response from
experiments for the i-th wafer [6]1.

Once we identify the process change, the model must be updated to reflect the present
process, which has drifted from its original operating point. The model is updated by
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changing its constant term to a new value, so that the sum of the squared residuals is
minimized. All the other terms of the model are kept the same, since the information
obtained from a single-recipe process only gives us one degree of freedom2. Once the
model has been updated, we solve for the new settings of the process using our updated
model. This is accomplished by minimizing the sum of the squared differences between
the process targets and the model predictions.

5.0 An Example of Feedback Control in the Berkeley Microfab

In this section we describe an actual experiment performed in the Berkeley Microfab-
rication Laboratory. Twelve wafers were coated with 1000A thermal oxide. We used the
flat of the wafer as the reference, and located four test points on the vertical and horizontal
axis of the wafer, at the same radius from the center. Each wafer was given a unique
number, so that we could follow the process precisely at each test area. The oxide was
then measured for each test area and recorded.

Next, we ran the twelve wafers as a batch through the spin-coat and bake equipment
with the following standardrecipe: The photoresist used was the positive resist KTI 820.
We used a spin speed of 4600 +/- 30 RPM, a spin time of 30 sec, a baking temperature of
120+/- 2°C, anda baking time of 60 sec. We then measured the thickness and the reflec
tance of each of the four test sites on each wafer, using the monitoring method described
above. Afterwards, the wafers were exposed in a GCA I-line stepper,and developed using
an MTI Omnichuck. Finally we optically measured the critical dimensions of the 2|im
resist lines on each wafer test cite.

Once the data was recorded, we filtered out any points that were significantly different
from the others. This was done by using a standard R-chart, as shown in Fig. 5. Data
which showed a rangethat was greater than the uppercontrol limit, set at the 95% level of
confidence, were examined in more detail. To lower the range of the measurements on
those wafers, the data point which lay the furthest away from the group was eliminated,
and a new R-chart was produced. This procedure was repeated until all outliers have been
eliminated. In some cases, when therewas n obvious outlier point, the data was kept, even
when the range of the measurements was higher than the upper control limit The average
response of each wafer was then calculated, and a control chart using the cumulative Stu
dent-t statistic was developed for the film thickness and its reflectance. These charts are
shown in Fig. 6, along with a Student-t statistic chart that was developed for the final
response, the critical dimension of the photoresist pattern.

1. At this point,thereader should notethatthiscontrol schemecanbe applied overa range of equipment
settings, since it effectively controls the residuals of the process response. These residuals can be calculated
as thedifference betweenthe process measurement andtheprediction of theequipmentmodel. This scheme
of "model-based S PC" wasoriginally introduced in [6]. Such a scheme is highlyappropriate fora supervi
sory controlenvironment, where the recipes areadjusted automatically andcontinuously in orderto accom
modateknown equipment changes.
2. After multipleprocess corrections, several degrees of freedom becomeavailable. Therefore, the re-eval
uation ofthe process modelcaninclude updated values forseveral of the model parameters, i addition to the
constantof the model. This issue will be addressed in the future and it is outside the scope of this report.
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In the second part of the experiment, we introduced some faults, in order to simulate a
process drift: the baking time was increased to 80 sec, and the spin time was increased to
90 sec. We ran an additional twelve wafers and we monitored them as before. The same
method of filtering out data outliers was used to reject 10 to 20% of all the data3. The
responses of these wafers were then analyzed using cumulative Student-t control charts.
As it can be seen in Fig. 6a, the thickness chart, by exceeding its 2.0 control limit, gener
ated an alarm on wafer #18.

In response to this alarm, in the third partof the experiment, we solved for the feed
back recipe using the models and the methodology described above. Since we introduced
the fault by changing some of the settings, we worked with recipe adjustments (i.e setting
corrections) rather than absolute values: In our experiment, the feedback correction rec
ommended a spin time reduction by 25 sec, and this resulted in a 65 sec absolute setting
for the feedback recipe. For the baking time, the feedback correctioncame out to -10 sec,
which resulted in a70 sec absolute setting in the feedback recipe.

Twelve wafers were then run after the correction was made. The average critical
dimension was observed to have changedback towardits old value, but it overshot it (Fig.
7a-7c). The reason was because the correction that the model predicted would be needed
to remedy the situation was quite drastic: a baking temperature of 105°C was recom
mended and used. That baking temperature was the lower limit of the temperature when
we designed our experiments to model the spin-coat and bake machine. Therefore, the
model would not be very accurate at such an extreme point The methodology proved
however that the critical dimensions can be brought back towards their old values, and
with a second iteration,we areconfident that we can get closer to our target. This experi
ment is currently under way and it will be reportedin the near future.

6.0 Conclusion

In conclusion, a feedback control methodology has been developed, and it has been
shown to correct inadvertent drifts in the critical dimension during optical lithography.
The precision of the feedback control depends however on the accuracy of the model
used. In some cases, more that one iterationmight be necessary. Although this method is
currently base on correcting long term drifts on the spin-cat & bake equipment, it can be
extended to a complete supervisory control scheme with feed-forward and feedback capa
bilities over a number of steps within a photolithographic workcell.
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3. This relativelyhighpercentage of outliers isaresult of ourmeasurement techniques andequipment. It is
expected, that as ourreflectance measuring techniques mature, andas we move into more automatedtesting
equipment, the percentage of the outliers will drop.

Feedback Control January, 1991 EE290W F90



.35

8.0 Figures
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Fig. 2b. Plot of Reflectance versus Resist Thickness and Wavelength
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0 Source l'df 2 Sum Sq. 3 Mean Sq. 4 F-Ratio 5 Sig.Lev.

1 Total(Corr) 75 le+08 1814605

2 Regression 5 le+08 27160721 6516.000

3 Residual . 70 291764 4168.060

4 Lack of Fit Vl2 247572 20630.988 27.080

5 Pure Error 58 44192.333 761.937

R-SQUARE - 0.9979 i Adjusted R-SQUARE - 0.9977

F(5,70) as large as 6516 is a very rare event ->
highly unlikely that all coefficients are zero.

F(12,53) as large as 27.08 is a very rare event ->
highly unlikely that model is correct.

Estimate of Pure Error from 17 groups of replicates,

Fig. 3a. Analysis ofVariance Table for the Thickness Model
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highly unlikely that all coefficients are zero.

F(5/41) as large as 16.87 is a very rare event »>
highly unlikely that model is correct.

Estimate of Pure Error from 13 groups of replicates,

Fig. 3b. Analysis ofVariance Table forthe Reflectance Model
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Modeling a Chemically Amplified Resist
with Factorial Experiments

Nelson Tarn

A complete model for an electron-beam exposed chemically ampli
fied resist, Shipley's SAL-601-ER7, was obtained by using factorial
experiments to study the effects of processing conditions on the dis
solution rate of the resist. The model consists of a two-parameter
non-linear function relating the dissolution rate to the absorbed
electron energy, and of two linear functions relating the two param
eters to the post-exposure bake temperature, time, and developer
concentration.

1.0 Introduction

The optimization of the resist process traditionally involves rinding the best dose for a
resist, from its dissolution rate as a function of exposure dose. With the advent of in-situ
dissolution rate measurement equipment, a methodology to characterize resist with a dis
solution rate model was developed [1], These models when used in SAMPLE [2], can let
the user investigate the trade-offs between exposure dose and development time efficiently
and accurately. In the case of electron beam lithography, dissolution rate models were
obtained for both positive and negative resists such as PMMA and Hitachi RD2000N [2],
[3] by combining development rate data with Monte Carlo simulation of electron energy
deposition. However, these models are not general enough to accommodate developer
concentration as one of the parameters. As a result, if a different developer concentration
is used, a new characterizationexperiment is needed.

Recently, a new class of highly sensitive resists promises to improve the performance
of lithography using the concept of chemical amplification. Upon exposure, acid mole
cules are generated, which subsequently act as catalysts in a thermal driven reaction to
change the resist dissolution rate. Several approaches to model these new resists have
been developed. Ferguson et al. used reaction kinetics to describe the exposure and the
post-exposure bake of these systems [4]. The disadvantage of this technique is that the
chemical reactions have to be characterized with Fourier Transform IR spectroscopy, and
the chemical changes of some resists are almost impossible to measure. Furthermore, the
model can only allow for optimization in exposure, post-exposure bake temperature, time,
and development time.
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Liu et al. used factorial experiments to study the effects of post-exposure bake tem
perature, time, and developer concentration on the resist sensitivity and contrast of elec
tron beam exposed resist [5]. That study however, did not provide dissolution rate models
for simulation, and thus had limited use in optimizing the resist processing.

In this paper, a novel approach to model an electron-beam exposed, chemically ampli
fied resist is described. A factorial experiment was performedto study the effects of post
exposure bake temperature, time, and developer concentration on the parameters of a dis
solution rate model. Simple models of the parameters were obtained through linear
regression. By using these parametermodels, the dissolution rates of the resist can be cal
culated for wide ranges of processing conditions. This way, we obtain a complete model
for the simulation and the optimization of the resist processing.

2.0 Experiment

2.1 Resist Preparation

The resist used in this study was Shipley's SAL-601-ER7 negative electron-beam
resist. We used 4 inch wafers spin-coated with resist at 4500 rpm for 45 seconds to a
thickness of about 0.6|im. The wafers were then soft-baked in an oven at 80°C for 30 sec.
Subsequently, the wafers were exposed with a pattern containing 12 2mm by 8mm rectan
gles on a Joel system at H.P. Labs in Palo Alto with 20 keV accelerating voltage and 0.25
A/cm2 current density. Each rectangle received adifferent exposures dose ranging from
0.3 to 3.5 C/cm . After post-exposure bake, the resists were developed in the Perkin
Elmer Development Rate Monitor (DRM®) as the dissolution rates of the exposed areas
were being measured. Average total development time was about 10 min. The developer
used was the MF-312 developer from Shipley, diluted with DI water, and the developer
temperature was set at 21°C for all the runs. The post-exposure bake conditions and the
developer concentration used are discussed in the next section.

2.2 Factorial Design

The experiments were conducted in two stages. The first stage of experiments fol
lowed a 2r factorial design, enhanced with 3 center point replications. This experiment
was used to estimate main and interaction effects of the factors and the experimental
error. Since the result from the first stageof experimentsindicatedsignificant curvature in
the parameter models, an augmented design [6] involving 6 "star" runs, in addition to 2
center points was completed. The order of the runs was randomized. The three factors
and their levels used in the two stages are listed in Table 1.
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TABLE 1.Factors and levels in the twostages of the designed factorial experiment

Level Bake Temperature Bake time DeveloperConcentration

-1.4 108°C 60 sec4 0.229N5
-1 110°C 75 sec 0.257N

Center 115°C 90 sec 0.297N6
+1 120°C 105 sec 0J51N

1.4 122°C 150sec7 0.370N

2.3 Dissolution Rate Data and Model

Before any meaningful presentation of the results can be given, adetailed description
of the dissolution rate model is needed. The dissolution rate model is a semi-empirical
function fitted to the dissolution rate versus absorbed energy data. These data were gener
ated by combining dissolution rate data from DRM® measurement and Monte Carlo simu
lation of absorbed energy. Since both sets of data are functions of depth in theresist, each
rate point can be associated with an absorbed energy by matching their locations in the
resist A typical dissolution rate versus absorbed energy is shown in Figure 1.

FIGURE 1. Dissolution rate versus absorbed energy of SAL-601 from run #5.
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4. The actual level for this time is -2.

5. The actual level of this concentration is -1.6.

6. The actual level of this concentration is -0.149.

7. The actual level of this time is 4.
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These data were then fitted to Equation (1) by minimizing the least square errorsof the
log of the dissolution rate.

r = 2f (EQ 1)

K>)

Of the four parameters in the above function, only R0 is obtained from physical
measurement. For negative resist, R0 is the dissolution rate of unexposed resist and it is
directly measured on the DRM®. E0 represents asensitivity indicator, pand a are param
eters which determine the contrast of the resist. In negative resists with no chemical
amplification, Pis usually found to be 1 and a is usuallybetween 2 to 10. Since the disso
lution rate data for chemically amplified resist were highly nonlinear, different values p
and a were tried in fitting the rate equation.

Although it would be possible to extract all four parameter values for each experimen
tal run, this would lead to an undetermined problem, as there will be multiple solutions for
the same least square residual. In order to have consistency in extracting the parameters
for the dissolution rate functions from all the runs,we set p to 1.5 anda to 31. Once p and
a were set, R0and E0 were extracted by minimizing the ratioof the predicted to the exper
imental sum of squares for the residuals and their dependence on the three processing
parameters were studied.

3.0 Results

3.1 First Experimental Stage and Linear Effects

The experimental average and the effects ofR0 and E^were calculated from the 23 fac
torial experiment using Yate's algorithm. These values are listed in Table 2.
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TABLE 2. Extracted R0, E0 and their effects.

Run T t C R0(A/sec) R0 Effect £0(J/cm3) E0 Effect Effect name

.1 - - - 11 294.8 253 218.6 AVG

2 + - - 81 -30.48 174 -76.3 T

3 - + - 86 -25.8 224 -21.3 t

4 + + - 61 -16.5 166 6.3 Tt

5 - - + 552 437.5 288 28.8 C

6 + - + 521 -19.7 202 -7.8 TC

7 - + + 525 -20.2 262 -2.8 tC

8 + + + 456 -2.5 180 -4.3 TtC

Standard Error = ±6.8 ±4.1

The standard errors for the effects were calculated from the estimate of the experimen
tal error obtained from the 5 center runs9. If effects within ±2a were considered signifi
cant, then for E0, only the main effects were significant However, for R0, only the three
factor interaction effects can be considered insignificant. In order to obtain a simpler
model for R0, several transformations were tried. Eventually, the square root transforma
tion was found to lead to a simpler model. This square root transformation was adopted
and the effects on^ are listed inTable 3. After the transformation, the significant effects
were found to be the bake temperature, bake time, developer concentration, and tempera
ture-time interaction.

TABLE 3. Effects of square root ofR0

Run T t C ^(A/sec)172 ^Effect Effect name

1 - - - 8.79 15.67 AVG

2 + - - 8.97 -0.87 T

3 - + - 9.25 -0.69 t

4 + + - 7.80 -0.63 Tt

5 - - + 23.49 13.95 C

6 ' + - + 22.83 -0.24 TC

7 - - + 22.91 -0.33 tC

8 + + + 21.35 0.19 TtC

Standard Error = ±0.26

8. Significanteffects are highlighted in bold face.
9. The data for the center runs are presentedin Table4.
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3.2 Second Experimental Stage and Quadratic Effects

By comparing the average values of both parameters to that of the center runs, it was
found that significant curvature existed. The second stage of the experiments was
designed to provide good estimates of higher order terms for the parameter models. The
results from the second stage of the experiments and all the center runs are listed in Table
4.

TABLE 4. Results from the second stage of the experiment and all the center runs.

Stage Run T t C jR~0(k/sec)m Avg. E0(J/cm3) Avg.

1 9 c c c 14.87 206

1 10 c c c 14.97 14.74 196 199

1 11 c c c 14.39 195

2 7 c c c 17.44 185

2 8 c c c 17.00 17.22 178 181.5

2 1 -1.4 c c 17.80 241

2 2 1.4 c c 16.43 157

2 3 c -2 c 18.52 202

2 4 c 4 c 16.49 161

2 5 c c -1.6 6.09 177

2 6 c c 1.4 28.09 209

Despite all efforts to keep the other non-significant processing parameters under con
trol, there was substantial discrepancy in JIT0 and E0 between the two stages. A linear
model forJiT, derived from the first stage of experiments was used to predict the result
from the second stage of experiments. The plots of residuals for that model are shown in
Figure 2 and aconstant shift was observed. Though not as obvious as the case for JJT0, the
plots of residuals for E0 (Figure 3) also displayed similar shift, but in the opposite
direction. In addition, residuals from the two stages of experiments had similar curvilin
ear relationships with the predicted E0, further illustrating the inadequacy of the linear
model.
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FIGURE 2. Plots of residuals for linear R0 model
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3.3 Effect between First and Second Experimental Stage

There were onlya few possible sources of variations in the processing that could have
contributed to this blocking effect. The most likely ones were aging of the resist and/or
the developer because of the uniformity of the shift in the observed R0ys. On the other
hand, since allbut two of theruns in the second stage had the same bake temperature, drift
in the oven temperature could also beresponsible for this discrepancy. More experiments
are needed to identify this blocking effect
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Fortunately, the overall experimental design was such, that despite the blocking effect,
significant quadratic models of the process can be derived. These are described next.

4.0 Quadratic Models for R0 and E0

4.1 Models

Based on the curvature check and the analysis of residual, it was concluded that qua
dratic models were required to describe^ and E0 accurately. Moreover, an extra linear
term was added to each model to account for the blocking effect. The coefficients for the
two models were then determined using least squares technique with all the runs
included. The models for JlT0and E0 are as follows:

JF0 = 15.9126-0.4537T-0.3069f+7.0858C-0.2794C2-0.31637'f +2.5197B (EQ2)

E0 = 207.2- 35.47+9.0rz-7.7f+13.3C- 19.25 (EQ3)

In the above equations, T, t, and C are normalized processing parameters with respect
to the levels used in the factorial experiments. B is the blocking effect parameter which
takes the values of either 0 or 1 corresponding to 1st and 2nd stage.

4.2 Analysis of the Residuals

Before the goodness of the fit can be determined,it is necessary to inspect the residuals
for the possible indications of model inadequacy. The residuals for the quadratic models
of Jr~0 and E0 were calculated and are plotted in Figure 4 and 5. For Jro, the plots of
residuals did not show any trend and the residuals appeared to be randomly distributed.
On the other hand, the plot of residuals versus the predicted values for EQ still shows a
slightcurvilinear trend. Moreover, therangeof theresiduals, on the orderof a fewpercent
of the predicted E0,was quite large.
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FIGURE 4. Plotsof residuals forjR0 quadratic model
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FIGURE 5.Plots of residuals for E0 quadratic model
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From the plots ofresiduals, we can see that the model for Jro is more accurate than
the model for E0. This difference in the accuracy ofthe models perhaps can be explained
by the fact that R0 is a physical parameter (dissolution rate ofunexposed resist), whereas
E0 isa parameter extracted with nonlinear regression. In the parameter extraction proce
dure for thedissolution rate model, the values of a and p hadno influence on the determi
nation ofR0. On the other hand, the best extracted value for E0 depended strongly on both
a and p. The unknown blocking effect could have also interfered with the assumption that
a and P were constant. Nonetheless, the resulting model still matched most of the runs,
and only in few of the cases was the discrepancy more than a few percent The final test
for the models was to inspect the correlations between the two residuals. Figure 6 shows
no evidence of such correlations.
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FIGURE 6. Plots of residual correlation.
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4.3 Analysis of Variance

Since the two models didnot show inadequacy, their goodness of fit can bedetermined
by the analysis ofvariance. InTable 5 and 6, the sums of squares for the observed, esti
mated and residuals of Jro and E0 are shown. The sums of squares for the residuals are
further broken down into a lack offit part and apure error part The ratio of the lack offit
topure error indicated whether the sum ofsquares for the residuals are caused by the lack
offitorpure error. In both cases, these ratios were very small suggesting there was norea
son tosuspect lack of fit To formally determined the significance level, the F-distribution
was used. Ratio for^ as great or greater than 0.23 can be expected about 96% of the
time. The larger experimental errors in the Eq data push confidence level even higher
(99% of the time).

TABLE 5. Analysis of variance for jR^dnin

source sum of squares degrees of freedom mean square

model

lack of fit

residual

pure error

5M = 5629.4

5L = 0.36

5*= 1.5

SE=l.l4

7

7

12

5

0.0514

0.125 ratio = 0.23

0.228

total ST = 5630.9 19
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TABLE 6. Analysis of variance for E0data

source sum of squares degrees of freedom mean square

model SM = 805070 6

lack of fit SL=194 8 24.3

residual S* = 990 13 76.2 ratio = 0.15

pure error SE = 196 5 159

total ST= 806060 19

5.0 Estimation of Confidence Interval for the Main Model

5.1 Variance of fitted^ and E0

Since direct calculation of the variance of the fitted parameters was very complicated,
an average variance was computed instead using Equation (4) [7]

p*V(S) =iyV(W =P—:
n **** n

(EQ4)

On the assumption that the model was adequate, an estimate of the errorvariance a2
for ^were

and for E,

2 Sr
s =

1.5

n-p 19-7
= 0.125

2
S =

990.2

n-p 19-6
= 162

(EQ5)

(EQ6)

Substituting the result from Equation (5) and (6) into Equation (4), we found
V(Jr~0) - O-046 and V(E0) = 24.1. The confidence limits for the two estimates can be eas
ily calculated from the student f-distribution with their respective degrees of freedom. For
example, an extra wafer (wafer #20) was included in the 2nd batch of wafer with post
exposure bake at 115°C for 60 sec and developer concentration of 0.27N. The observed
and estimated values from the quadratic models are compared in Table 7 along with the
95% confidence limits.
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TABLE 7. Comparison ofobserved and estimated JIT0 and EQ for wafer #20

Parameter

lR.
o

Eo

Observed

13.67

185

Quadratic model 95% Confidence limits

13.77 0.47

194 10.6

The results inTable 7 indicate there was good agreement between the estimated and
observed values. However, the credibility ofahypothesized pair ofvalues for (Jro, E0)y
with the joint confidence regions formed by the two limits, is questionable. In Figure 7 we
show the contours of the sum of squares surface calculated from the ratios ofestimated to
experimental dissolution rate values for wafer #20. The values ofthe surface were indica
tors of the goodness of fit of the rate model, and the smaller the value, the better is the fit
The point with coordinates [13.77,194] lies well within the region of the minimum value.
However, consider another point with coordinates [13.45, 188]; although it is within the
individual limits of the joint confidence region, it has alarger sum of squares ratio. As a
result, any estimated values should be checked by referring to the contours of sum of
squares.

FIGURE 7.Contours ofratio ofsum ofsquares surface, wafer #20.
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6.0 Conclusion

A complete model for Shipley's SAL-601-ER7 resist has been obtained by using a23
factorial experiment, later augmented with 6 "star" runs and 5 center runs in a Box-Wilson
fashion. The results of these experiments were used to study the effects of post-exposure
processing on the dissolution rate of the resist The model is a nonlinear dissolution rate
function characterized by two parameters Jro and E0. These two parameters are in turn
related to the post-exposure bake temperature, bake time, and developer concentration
through two linear functions, which were determined by linear regression. The experi
ments were conducted in two blocks. An unknown blocking effect was observed, which
had to be taken into account, by incorporating an extra blocking term in the linear models
for the dissolution rate parameters.

The overall dissolution model compares favorably with the experimental result within
the range of the processing parameter studied. These ranges are sufficiently large to
enable optimization of the resist processing, although future work should include experi
ments in order to determine the unknown blocking effect, and to further refine the model.
Finally, the robustness of the model should be tested by using it in the SAMPLE program.
This will be accomplished by simulating the thickness of the remaining resist versus the
exposure dose, and by comparing them to additional experimental readings.
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