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ABSTRACT

In this paper we study the long-time dynamics of a discretization of the sine-Gordon

equation. We numerically investigate the system's approach to equipartition of energy when

the initial energy is confined to one or a small set of Fourier modes. We find that there

is a correspondence between the onset of chaos in the system, as evidenced by a sharp

rise in the largest Lyapunov exponent, and a transition from a low energy regime in which

energy does not spread appreciably among the modes to a high energy regime in which the

system rapidly approaches equipartition. For low frequency initial conditions, the critical

parameter for this transition is the scaled energy E' = (L/N)2E. Using a generalization

of the traditional Chirikov resonance overlap calculation on a three mode subset of the full

system, we predict the onset of chaos and the transition to equipartition.

1Current address: Department of Mathematics, The OhioState University, Columbus, Ohio 43210.
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1. Introduction

There is currently considerable interest in understanding the dynamical behavior of

systems with many degrees of freedom. One question is whether the intrinsic stochasticity

which appears in two degrees of freedom [1] tends to increasingly fill the phase space volume

as the number of degrees of freedom increase. For example, it is well known that most of the

phase space of two coupled nonlinear pendula may be chaotic, but it is not known whether

this is generic when the number of coupled pendula is large. A related question is the extent of

chaos in a nonintegrable discretization of an integrable nonlinear partial differential equation.

Is there an identifiable transition between the behavior at coarse discretization (i.e. chaos in

few degrees of freedom) and at fine discretization (integrability in the continuum limit). We

are currently investigating this latter question in the context of a particular discretization

of the sine-Gordon equation.

One of the earliest attempts to observe the behavior of a discretized nonlinear partial

differential equation was made by Fermi, Pasta, and Ulam [2], who numerically examined

the system

*.• = (*.+! + xi-i ~ 2*,-) + /?[(*;+! ~ *,)3 - (** " *,-i)3]. (1)

This corresponds to a set of equimass particles connected by nonlinear springs and is a spatial

discretization of the equation

^-a?[i+nrij=0- (2)
The original result with 64 particles indicated that at low energy equipartition was not

obtained among the oscillators, but rather a beat phenomenon existed with regular approx

imate recurrences of initial conditions. This result, contrary to the original expectation of
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equipartition, stimulated a number of investigations [3-5]. It was found that transitions

could occur with increasing energy from apparently regular to apparently irregular motion.

These observations are consistent with the understanding of coupled systems of a few dimen

sions in which such transitions occur when resonances between degrees of freedom overlap

in the action space [1]. In fact, Izrailev and Chirikov [5], using a normal mode expansion,

developed an analytic overlap criterion which, in the few cases tested, appeared to roughly

predict the numerical results.

More recently, Livi et al and Pettini and Landolfi have published a series of numerical

studies of the FPU system [6-8]. They studied the statistical properties of the spatial Fourier

expansion of the system (1) with periodic boundary conditions by introducing the spectral

entropy,
N/2

h(t) = -Y,Pn(t)^Pn(t), (3)
n=l

where pn(t) = Enj^t- E{ is the fractional harmonic energy in the nth Fourier mode, and N

is the total number of modes. To eliminate the dependence on N of h(t), they define the

normalized quantity

The quantity 7? is bounded between zero and one, with zero corresponding to exact equipar

tition of energy.

The authors study the behavior of rj given an initial condition in which a small number

of lowfrequency (long wavelength) modes are equally excited. As they vary TV and the total

energy of excitation, E, they find that 77 is approximately a function of a single variable,

the energy density e= E/N. The quantity r? decays over some characteristic time scale, tr,



until it reaches a minimum value that is determined by the fluctuations of the energy of each

mode around the equipartitioned state. Additionally, they calculate the maximum Lyapunov

exponent, which is again a function of the energy density e. They find that there is a critical

value of e at which the behavior of both A and 77 change, and that above this energy density

that the scaling of A with e can be explained using a random matrix approximation of the

dynamics, which indicates that the phase space is strongly chaotic above the critical energy.

In this article we consider a similar dynamical system: a chain of linearly coupled

pendula, which corresponds to a discretization of the sine-Gordon equation. Because of

its usefulness in modelling physical systems, particularly in condensed matter physics [9], as

well as its inherent mathematical interest [10], the sine-Gordon equation has been extensively

studied, and is well known to be exactly solvable in terms of its fundamental soliton modes

[11]. The discretization discussed here does not preserve the integrability of the system, and

the motion of the discrete system is generically chaotic. It does present a natural physical

model of the sine-Gordon equation, and a practical model system for studying the dynamics

of high-dimensional Hamiltonian systems. The focus of this work is in understanding how

the interaction of the Fourier modes of the system leads to chaotic motion and subsequent

equipartion of energy.

In Section 2 we present the basic formulation of the discrete problem. In addition to the

spatial discretization, a further discretization in time leads to a system of coupled standard

maps. In addition to the intrinsic interest of this system of coupled maps, the mapping

approximation allows one to greatly increase computational speed so that long times and

large numbers of oscillators can be explored. If the mapping frequency is large compared to



all natural frequencies of the oscillator chain, then the dynamics is indistinguishable from

the continuous time system over short times. For lower mapping frequencies, resonances

between the mapping frequency and the normal mode frequencies can lead to parametric

instabilities [12].

Section 3 presents numerical results on the system's approach to equilibrium and the

behavior of the spectral entropy as the system's energy, length and number of oscillators are

varied. We find for long wavelength initial conditions that there is a gradual transition from

apparently regular motion at low energies to strongly chaotic motion at high energies, and

that rj is not a simple function of the energy density E/N as it is in the FPU problem, but

that it is a function ofEL2/N2. We also find that there is a rapid increase in the maximum

Lyapunov exponent at the transition energy. In contrast, we find that short wavelength

initial conditions exhibit a very sharp transition from apparently regular motion at low

energy to strongly stochastic motion at high energy.

In Section 4, we present a calculation of the onset of resonance overlap in a three-mode

truncation of the system. We expect that the existence of overlap will lead to strong chaotic

motion in the system, resulting in the system's evolution toward equipartition of energy.

The results of this calculation are then compared to the numerical results on equipartion of

the full system.



2. Basic Formulation

The one-dimensional unperturbed sine-Gordon equation is

^«-<£** + sm^ = 0, (5)

where the time and space coordinates have been normalized to make the characteristic veloc

ity and the pendulum frequency equal to unity, and all physical quantities are dimensionless.

The space coordinate is discretized through the substitutions

*(*,<)—>*,.(*) i = l,2...JV-l,

, , ,* [^iW-»iW] +[»i-iW-»iW] (6)*„{*,*) —> (SSp '

We consider a spatial domain of length £, with fixed ends, such that <f>0 = <j>N = 0. The

spacing between oscillators, Ax, is L/N. With the change of notation </>j =q^ fy =pjy the

Hamiltonian for the discretized system can be written

H(q,p) =£ ip? +£I"(l - cos9i) +£ U,.^, (7)

where the coupling matrix A^ is given by

A" (Ax^ ' (8)

and where 6^ is the Kronicker ^-function.

This Hamiltonian has the following physical interpretation: the first two terms corre

spond to N —1 pendula, and the last term represents harmonic coupling between nearest

neighbors. The parameter T is a generaUzed linear frequency of the pendula. Taking T = 1

corresponds to the discretized sine-Gordon equation.
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Since the linear part of this Hamiltonian (the first and third terms of (7)) is exactly-

solvable, it is useful to analyze the problem in terms of the normal modes of the harmonic

springs. The eigenvectors of the linear system may be written as

2 . irir
eir = ~-7= sin -—-.

y/N N (9)

Note that the eigenvectors are orthonormal, ^Ii-i1 ei>et« = ^rai *& we^ as symmetric, etr =

eri. We also define a new set of variables, (it, v), such that (q,p) can be represented as

N-l N-l

r=l r=l

In terms of (it, v) the Hamiltonian becomes

N-l

H(u,v) = J2
r=l

Vl 1Wr
2 ^ r 2

N-l

+r2E
N-l

E
r=l

1 - cos £ ureir
t*=l L

(10)

H0 + Hv (11)

This describes a system of N —1 harmonic oscillators, of frequencies ojx ... wN, coupled

through the cosines. Since the number of oscillators is finite, the spectrum is discrete, with

the (dimensionless) frequencies given by

2 . 7rr 2N . irr
wr = H— sm ^77 = ~T~ Sin —rr,

r Ax 2JV L 2N

with the maximum and minimum frequencies being

"'max "wV—1 —

2N_
L ' wnun v*/l — - *

IT

L

(12)

(13)

When the problem is formulated in the (it,w) variables, it is natural to think of the

linear system as the fundamental system, and the nonlinearity as a perturbation. However,

we have not assumed that Hx <C H0. In fact, there are three main regimes. For strong
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springs, i.e. for u^ > T, Hx < #0. For weak springs, w^ < T, and Hx » #0. We will

mostly be concerned with the intermediate range w^ < V < u^, where Hx ~ H0.

The discretization has converted the infinite dimensional system described by a partial

differential equation to a 2(N —1) dimensional system described by a set of coupled ordinary

differential equations. A further discretization in time converts the system to a symplectic

mapping. Physically, this is equivalent to pulsing gravity with period T. The discretization

has the effect of adding an explicit time dependence to the Hamiltonian, so that energy is no

longer conserved. The Hamiltonian (11) is modified by multiplying Hx by an infinite series

of delta functions to obtain

ffi =r2 (E [• -cos (t>'e*)]) (£ *(*/r -"»)) • (")
The equations of motion are then

«, = o„ (15a)

v, =-uiu. - T2 ( J 6(t/T -m) )X) et,sin (eVO
\m=-oo / »=1 ^r=1 /

(15b)

The delta functions allow (15) to be integrated by using the boundary conditions at

t = mT:

u's-u8 = 0,

»=} /N-i \ (16)«:-». =-r2T 2] eltfsin (^ £ ureirj .
Here the primed [unprimed] variables denote quantities just after [before] a gravity pulse.

The physical interpretation of (16) is that the positions are unchanged by the gravity pulse



and the momenta undergo an instantaneous change. The dynamics then evolveaccording to

the area preserving map

u8 = u8cosu8T + —
iV~1 'N-l

t,,-r2r£e,-,sin £uPe
•=i ^r=1

r *zj /N-i \
v'a = -u8u8smu8T + v8 - T2T \ e,-,sin £ ureir )

i=i Vr=1 /.

smu8T, (17a)

coster. (17b)

If the mapping period T is small, the mapping (17) well approximates the solution to the

continuous system. For example, though the energy is no longer conserved, it will now

oscillate around a constant value, which is indicative of an underlying constant of the motion.

Iterating this mapping allows us to investigate the long time behavior of the discrete sine-

Gordon system.

3. Numerical Results on the Approach to Equilibrium

In this section we present numerical results on how the approach to equilibrium changes

as the important system parameters are varied. The typical initial conditions to be studied

are excitations of a single linear mode described by (ur,ur). For convenience in specifying

the initial energy, we choose the particular phase for which ur(0) = 0 and vr(0) = y/2E. We

will concentrate primarily on initial excitations of the fundamental linear mode r = 1. Note

that the frequencies are ordered as Wj < w2 ... < w^_i, so that a reference to mode r as a

"low mode" or "low frequency mode" implies that r <^ N.

The calculations were performed on a CRAY-2 supercomputer. Parameters include a

timestep for the mapping (17) of T = 0.1 and 106 iterations of the map for a total integration

time of t = 105. As a check that the discreteness in time is not influencing the system's



behavior, certain initial conditions were integrated using a timestep of T = 0.01; these show

the same behavior as the trials with T = 0.1.

Because of the nature of the nonlinearity, the system length L, which can be trivially

scaled away in the FPU problem, is an important parameter in the discrete sine-Gordon

problem. When performing numerical studies of the FPU problem, one is free to arbitrarily

choose an oscillator spacing of unity, so that N/L = 1 (see, for example, [2,6-8]). For the

discrete sine-Gordon system, the choice of L is intimately connected with the strength of the

nonlinearity, and thus directly affects the behavior of the system. Because of this, N and L

must be treated as independent parameters in the discrete sine-Gordon system.

The behavior of the energy distribution among the modes is madequantitativeby means

of the spectral entropy introduced by Livi et al [6-8]:

N-l

h(t) = -Y,Pn(t)^Pn(t). (18)
n=l

Here pn(t) is the fractional harmonic energy in mode n,

Pn =E^' E"= ^""+ uWn)' (19)
Because we are considering a chain with fixed ends, we have defined the sum in (18) over the

N-l modes, instead of the N/2 frequencies as in [6-8]. With this definition, the normalized

quantity rj is

wthhmax = ]n(N-l).

Consider thesetof parameters N = 65 and L = 32, withmode 1initially excited. Figure

1shows thebehavior of rj(i) for three different initial energies. For low energies 77(f) oscillates
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around a constant value. At intermediate energies, r)(t) is a slowly decreasing function of

time. At high energy rj(t) falls rapidly to an equilibrium value. This progression is typical

of low frequency initial excitations. At low energy, the energy remains confined among a

few low frequency modes, while at high energy all modes are quickly excited, although the

system never reaches exact equipartition, which would correspond to rj = 0. For the high

energy case, the equilibrium value of rj is greater than zero because the energy is distributed

about exact equipartition. It is possible to estimate what this equilibrium value of rj should

be by assuming that the dynamics is chaotic in the high energy regime.

This calculation, which assumes that the energies of the oscillators follow a Boltzmann

distribution, is performed in the appendix, with the result

Afc„„ = 0.423 In jj—j. (21)

Here Ak is the number of initially excited modes. For N = 65 and AA; = 1 (the parameters

of (1)) this formula predicts rj^ = 0.102, which is shown as the dashed line in Figure lc.

This prediction agrees very well with observed equilibrium value of 77, and indicates that the

equilibrium state of the system in this regime is chaotic.

In the low energy regime, the terminal value 77 ^ can be estimated by

_ln((JV-l)/Am)
V°° ~ In ((N - 1)/Ak) • yU)

This estimate assumes that the energy is shared equally among a small number of modes Am.

This is shown as the dashed Une in Figure la for Am = 2. The value of Am = 2 was chosen

because it was most representative of the the exponential fall off of the frequency spectrum

seen in Figure 2b. The assumption of equally shared energy is too simplistic, however, since
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the modes are continually exchanging energy. The oscillation of 77 between the values of 1

and 0.80 in Figure la indicates that the energy remains confined to a few modes, as seen in

the snapshots of the power spectrum in Figure 2. For comparison, snapshots of the spectrum

of the system in the chaotic regime are shown in Figure 3.

It is possible that the trajectory is not regular in the low energy regime, and that the

curve in Figure la will eventually begin to drop. It is impossible to prove numerically that

a given trajectory is not chaotic if the level of chaos is very low. However, numerical tests

show that the curve in Figure la does not fall, and the energy remains confined in a few

modes, even if iterated for a time of t = 106. Thus, we make the following hypotheses. For

sufficiently small energy, the trajectorywill be regular, and rj(t) willoscillate between 1 and

a value which can be approximated by (22). For large energies, the trajectory is strongly

stochastic, and 77 quickly falls to its equilibrium value given by (21). In the intermediate

energy regime, rj(t) is a slowing decreasing function of the time, as seen in Figure lb. For

instance, if the integration time is increased by a factor of 10 to 106 for the case of Figure

lb, the equilibrium value of 77(f) shown in Figure 4 is obtained. This is in contrast to the

very low energy case of Figure la, which is unchanged over longer integration times.

With these considerations in mind, we address the behavior of the value of 77 as a

function of the energy at a long but fixed time. We find numerically that

V(E) =/ (sj^j . (23)
that is, 77 is a function, not of the energy E, or of the energy density E/N, as in the FPU

problem, but of the scaled energy EL2JN2. We therefore introduce the scaled Hamiltonian

7"2 NZ± r7,2 ,.21 r2p2 w-1 r /N-l \i

*' =̂ =£ f+«^ +^E -»^l (24)
12



Here vr and u>r have been rescaled by L/N, so that now cjr = 2sin(7rr/2iV), which results

in a rescaling ofthe time byN/L. This rescaling ofthe time is important, since the value of

rj(t) for intermediate energies is a function of the integration time. Note that all the times

and energies presented in the figures in this section are these scaled times and energies.

Integrating the scaled Hamiltonian for a variety of parameters yields the universal curve

shown in Figure 5. The abscissa of this figure is the value of the scaled Hamiltonian, which

we call the scaled energy, and denote by E'. The result is truly remarkable in that the curve

is seemingly independent of the "nonlinearity" parameter LT/N, which varies from 7.53

(= 128/17) to 0.124 (= 32/129) in Figure 5. The figure shows the transition (at E' ~ 10)

between the low energy state where the initial condition is stable (or is unstable only on

very long timescales) to the high energy regime where the system quickly relaxes to a nearly

equipartitioned state. There is a spread in the curves at a fixed low scaled energy that can be

understood from (22). At low energy, a number of modes are sharing energy in an essentially

regular fashion. As N increases, the number of modes sharing energy (denoted by Am in

(22)) also increases, so 77^ becomes smaller as N increases.

The corresponding maximum Lyapunov exponents are shown in Figure 6 for the same

parameter values as the data in Figure 5. The exponent is calculated using the standard

method [1]. The minimum Lyapunov exponent that can be measured numerically is a func

tion of the time of integration. For the parameters used here, this minimum is < 5 x 10~5,

which is seen in Figure 6 as the "long time" exponent at low energy. An examination of the

time dependence of the exponent reveals that it is still falling according to \(t) oc t in these

cases, and the finite final value of A is due to the finite integration time. As the energy of
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the system is increased, the Lyapunov exponent rises quickly at E' ~ 10, which is the tran

sition energy between the low and high energy regimes. This correspondence suggests that

a transition from regular to chaotic dynamics is responsible for the decrease in the timescale

necessary for equipartition.

The behavior of 77 shown in Figure 5 is typical of all low frequency initial conditions.

For example, initial excitations of mode 2, or a combination of modes 1 and 3, all He on the

same universal curve.

The situation for initial excitations of high frequency modes is somewhat different.

There is a general tendency for high modes to need more energy to reach equipartition. The

behavior of r)(E') for an initial condition of mode 29 (JV = 65 and L = 32) is shown in Figure

7. There are two important differences between this figure and Figure 5. The first is that

the transition to evolution toward equipartition occurs at a much higher energy than for the

low modes. The second is that the transition is much more abrupt for the high modes than

for the low modes. There is a sudden jump from the regime where 77 = 1 to the regime where

77 quickly reaches its equilibrium value of 77 ^ Both of these features are generic for high

frequency initial excitations. This is in contrast to the range of transition energies for low

modes, for which the system gradually moves from an apparently regular regime (Figure la)

to an intermediate state where the decay toward equilibrium occurs very slowly, as typified

in Figure lb.

The sudden jump from 77 = 1 to 77 = 77^ in Figure 7 is evidence that below the transition

energy the oscillations of mode 29 are indeed regular. This transition is further investigated

in the high frequency case in Figure 8, in which the time needed for the system to reach
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77 = 0.5 is plotted versus energy. From the figure the delay time appears to approach infinity

at the transition energy of E' ~ 80. This implies that the motion below this energy is indeed

regular.

One interpretation of the difference in the results is that the local phase space in the

neighborhood of the low frequency modes has a different geometric character from that of

the high frequency modes. In the portion of phase space occupied by the low modes, we

postulate that the phase space is mainly stochastic. However the local resonances generated

by the nonlinear interaction may either overlap, causing strong stochasticity, or not overlap,

in which case the weaker Arnold diffusion applies. In contrast, we postulate that the initial

condition corresponding to the high frequency modes lie in a portion of the phase space that

is primarily regular, until the energy becomes large. The probability of an initial condition

lying in a stochastic layer, and the overlap that leads to strong stochasticity, occur nearly

simultaneously. We investigate the mechanism for the low frequency mode transition in the

next section.

4. Resonance Overlap

In the previous section we numerically examined the behavior of initial conditions where

the energy was initially concentrated in a single linear mode. This mode quickly excited a

small number nearby modes, and spread the energy among them, as shown in Figure 2,

which shows the energy spectrum after approximately one tenth of the period of the initially

excited mode. Once the driven modes have appreciable energy, there exists the possibility of

resonances and resonance overlap between the modes. The interaction of these modes can
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be understood in terms of an approximate Hamiltonian, which can be used to predict the

onset of chaos.

The calculation in this section is based on the hypothesis that the interaction of the

initially excited modes must be chaotic in order for the system to diffuse through the phase

space. Given an initial condition where only a few modes have appreciable energy, if the

motion of these modes is regular, then the energy should not spread to other modes. If

their motion is chaotic, however, then the energy can be transported throughout the system.

In order to estimate where this transition takes place we examine the interaction of the

resonances that arise among the relevant interacting modes. The overlap calculation has

two steps. The first is to determine which modes interact, since some modes are coupled

strongly, some weakly. We derive the Hamiltonian that determines, for a given excitation,

which modes are relevant to the dynamics. This Hamiltonian determines which modes

interact, and how strongly.

The motion of a set of coupled oscillators is not necessarily chaotic, however. Once the

form of the coupling of the modes is known, the second step of the calculation is to determine

whether and how the modes resonate with each other. It is this resonance between the modes

that may result in chaotic motion. Once the existence of chaotic motion is confirmed, it is

necessary to determine the extent of the chaos. We use a simple extension of the two-

dimensional Chirikov overlap criterion [1] to estimate the extent of the chaotic motion in

a three-mode approximation of the full dynamics. We expect that the transition to rapid

equipartition in the full system (as seen in Figure 5) will coincide with the transition to

large-scale chaos in the three-mode dynamics.
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Using the scaled Hamiltonian (24), and assuming that only one mode, with mode num

ber a (a integer), is excited, the sum over the eigenmodes can be split into a large and a

small piece:
N-l N-l

J2 ureir =uaeia + ^2 ur>eir" (25)
r=l

r'^aal

This allows Hx to be written as

N-l

ff. ="2£ 1 - cos ( fNua sin — + (26)
»=i

where we have set a —LT/N and fN = y/2/N for notational convenience.

Keeping only the dominant mode, mode a, and expanding the cosine in (26) in terms

of Bessel functions,
oo

cos(2 sin 9) = J0(z) + 2 >J^2k{z)cos 2&z,
Jb=l

sin(2sin0) =2^2,J2k_l(z)sm(2k- 1)0,

yields

,2 i , ,2„,2Ht_ Va +<Ua

Using the relations,

N-l

+<*2E
t=i L

N-l

Jb=l

1- 4) (/jV«a) - 2S J2Jb(/^a) COS
fc=l

cos -W = NSr- 1 + cos 7rr

TV
t=i

where 6r = 6rmNi where m is an even integer, and

^) +EJ2fcW = l,
k=i

leads to

2kma

iV

H' =
v2 4- u)2u2

1- 4) (/jVtlJ ~2^ J2* (//V«o) <*2Jfca
fc=l

17
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This is the Hamiltonian for a single mode. The primary nonlinearity is contained in the term

^o(/jvwa); *ne l33* term is unimportant because the delta function will generally be satisfied

only for large values of fc, for which the Bessel functions are small. For example, if a = 2 and

N = 65, then the only terms in this sum which are nonzero are when k = 65m, m integer.

Retaining two modes in the above procedure results in the interaction Hamiltonian for

two modes (labelled by a and b):

H = ^r~+—2—
+ a2N 1 ~ Jo(fNua)JoifNUb)

oo

-2 5Z MfNUa)MfNUb){fika-k>b +tka+k>b)
k,k'=2

oo

Jfc,*'=l

This Hamiltonian describes the interaction of any two modes a and 6. The strength of

this interaction is determined by the order of the Bessel functions that couple the modes in

question. The couphng terms are ordered according to the sum of the orders of the Bessel

fuctions in each term. For example the term ^(/^J^iC/w^fe) *s a fourth order term, and

^6(/jvVa)^9(/^vufc) is a 15*^ order term. The former corresponds to strong couphng of the

modes, while in the latter case the modes would be weakly coupled. The terms are ordered

in this way because Jk(z) ~ zk/k\2k for small z. Since thesums in theHamiltonian (32) run

to k = oo, each mode is coupled to every other mode, but each mode is strongly coupled to

only a few modes.

In order to apply this Hamiltonian to the full problem, consider an initial condition of

the form used in section 3, where a single mode is excited, for example mode a. This mode

18
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will then drive other modes, with the strength of the driving determined by the two-mode

Hamiltonian (32). The most strongly driven mode will be the one whose interaction with

the driving mode is given by the lowest order coupling term. This will be the term in the

last sum of (32) when k' = 1, which leads to the selection rules

N-l
b = 3a, 0 < a <

3

t «*r o W-l 2N m>>b = 2N - 3a, < a < , (33J
3 3

2N
b = 3a - 2N, — < a < N.

Given an initial excitation of mode a, mode 6, as given by (33), will be the most strongly

driven mode.

For example, if the initially excited mode is the fundamental mode a = 1, then the

most strongly driven mode is b = 3, as seen in Figure 2b, in which only the odd modes are

excited. In this case the Hamiltonian which describes the interaction of modes 1 and 3 is

_ v\ + v\ u2u2 + u2u2
H~^— + 2

+ a2N 1- JoifsU^JoiffjUg) (34)

oo

-2^(-l)*Jat(/w«1)J/k(/w«,)
Jfc=l

The factor (—l)k comes from the contribution of the sum over even fc's in (32). In practice,

only the k —1 term of this sum is needed to accurately approximate the Hamiltonian.

Using the expansion techiniques described above, it is possible to calculate the interac

tion of an arbitrary number of modes. Unfortunately, the expanded coupling terms become

very complicated when more than two terms are involved. However, the form of (32) indi

cates how the selection rules can be generalized when more than two modes are important.

19



For example, for 3 modes, the interaction terms will have the form

Jl(fNUa)Jm(fNUb)Jn(fNUc){>la±mb±nc' (35)

For more than three modes, the general interaction term will be of the form (35), with one

Bessel function for each mode, and with the appropriate delta function relating the mode

numbers. For any given number of interacting modes, the most important coupling terms

will of course be the lowest order terms.

The second step of the overlap calculation is to determine whether the interaction of

the modes results in chaotic motion; this requires examining the resonances between the

modes. In order to examine the resonances it is necessary to transform the system to the

action-angle variables (1,0) of the unperturbed Hamiltonian (see, for example [1]). While

it is possible to do this starting from an expanded form such as (32), it is more convenient

to transform the unexpanded scaled Hamiltonian (24) to action-angle variables. Once the

Hamiltonian is in action-angle form, the selection rules (33) can be used to pick out the

important interactions.

In the regime of interest, where the generalized linear frequency, T, of the pendula

is large compared to the smallest Fourier frequency, it necessary to explicitly include the

quadratic part of the cosines in the linear part of the Hamiltonian H0 before transforming

to action-angle variables. Thus, we write the scaled Hamiltonian as

N-l r
Vl . , o ovU?

JV-l p

*' =£ t+(^+q2)t +q2E (36)
r=l *=i
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With the notation ft2. = u2 + a2, (J, 0) are given by

ur =^2Jr/ftrsin0r,

Vr = ^ft^COsfl,..

Using the transformation (37) in (36) yields

W=£ nr/P+c?£ [l -h^h _cos (̂ ^T^sin^Y

(37)

(38)

We first examine the resonances between two modes. As in the derivation of the two-

mode Hamiltonian (32), we retain two terms in the sum over r in (38) and expand the

cosines.

JV-l

J2 cos (et.aV2Ia/ftosin0a +e,-^Vft6sin0fe)
N-i

=E
i=l L

MX*) +2E J»(*fa)cos 2fc*«

x \Jo(X*) +2E •»»(•*»)cos 2W,
t'=i

Jfe.fc'sO

xJ2*+1(Xa)sin(2*' + l)*6

(39)

where A"lr = eiry/2Ir/Clr. Using this expansion in (38) yields the Hamiltonian for the two-
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mode system,

H' =nja +nbib-a2I°s'm29° Q2lbSin29b
N-l

+*2E

ft„ ft
oo

1- (Jo(XJ +2£ J2k{Xia) cos 2k9aJ

x(4>(*ft) +2Y, Jvc(Xib) cos 2*'04 1 (40)
t'=i

+4$] J»fl(Xi.)sin(2* + l)«.
Jt,fc'=0

xJ2kl+1(Xib)sm(2k' + l)9b

This form of the Hamiltonian does not contain exphcit information about which modes will

interact; instead it describes the interaction of resonances between the modes. It is impor

tant to note that (40) is completely equivlent to (32). The expansion used to derive (32)

was designed to exhibit the strength of the couphng between different modes. In contrast,

the expansion in action-angle variables used to derive (40) was chosen to make the reso

nances between the modes explicit. The information about the strength of the interaction is

contained in (40); it is implicit in the sum over the eigenvectors that are contained in Xia.

It would be possible to further expand this Hamiltonian to obtain the delta-function rela

tionships embodied in (35). In practice, this is not necessary; since we already know which

modes will interact (from (35)), we can choose the mode numbers a and 6 as appropriate.

In particular, for low frequency modes, the proper choice is 6 = 3a.

The general form of the resonance condition is m9a = n9h; as can be seen from the form

of (40), a resonance is possible only if both m and n are even or odd. In practice, the 1:1

resonance is the only first order resonance that exists for the low-mode interactions. This is
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because ftr = y/u)2 -f a2 is dominated by a2, which is independent of mode number, so that

the frequencies of the low frequency modes are nearly equal.

The position and size of the resonaces can be calculated using the method of averaging

[1]. To examine the system near the 1:1 resonance, first transform to fast and slow variables:

(41)

6, = B„ Ib = /,.

Averaging over 0j leads to

N-l

+<*2E l-2Y,Jk(Xia)Jk(Xib)cosei
i=i L Jfe=i

For simplicity we have expressed this Hamiltonian in the original actions, Ia and J6, instead

of the slow and fast actions. The phase space of the Hamiltonian (42) is illustrated for two

values of the fast action in Figure 9. The phase space contains a large island at 98 = w

which persists from low energies (E' ~ 2 in Figure 9a) to high energies (Ef ~ 150) in

Figure 9c). At intermediate energies there are several islands, as seen in Figure 9b for

E' ~ 20. The positions of all these island may be easily calculated from dH'/dI8 = 0 and

dH'/d98 = 0. At very high energies the 1:1 resonance disappears; this is the limit where the

pendula are rotating rapidly and their angles are undergoing large excursions. In this case,

the assumption that the pendulum frequency is dominated by its linear part is no longer

valid, and the low-frequencymodes no longer have nearly the same frequency.

The averaged system can be compared to a surface of section mapping of the exact

two degree of freedom system (40). A section taken at 9a = 0 is shown in Figure 10 for
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approximately the same energies as seen in Figure 9a-b. (At the very high energies of

Figure 9c, the entire phase space is chaotic.) At low and intermediate energies, the agreement

between the averaged phase space, shown in Figure 9, and this surface of section is quite

good. The surface of section is of interest because it illustrates the mechanism for chaos

in the two-mode system. The chaos does not grow out of the separatrix motion, as in the

standard map; instead there is a higher order interaction near the elliptic fixed point at

98 = 7T which causes an orbit near the elliptic fixed point to break up. This behavior is

typical of intrinsically degenerate systems [1]. Numerical results indicate that the chaos

results from a 1:1 resonance between the period of the orbits around the fixed point and the

period at which the trajectory intersects the surface of section.

Rather than performing the analysis of this higher order resonance, we introduce a third

mode and examine the multiple first order resonances which are present. Modes a, 3a and

5a will be the primary interacting modes; this is easily deduced from the general interaction

term (35). The strongest resonances between these modes are the two 1:1 resonances between

modes a and 3a and between modes a and 5a.

The procedure for expanding the Hamiltonian in the three mode case is the same as in

the two mode case: three terms are retained in the cosine in the last term of (38), which

is then expanded using (27). Expressing the resulting Hamiltonian in the slow and fast

variables near the two 1:1 resonances,

*. = «* - 8„ 4, = /., (43)

6S ~ 6a< ha = 4»
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and averaging over fy, we obtain the averaged Hamiltonian for the three mode system,

jv-ir

+<*2 E l1 - Jo(Xia)J0(Xii3a)J0(XitSl,)
*=i L

oo

- 2Jo(Xi,ia) Y, MXJMXu.) cos M.
fc=l

oo

- 2J0(Xit3a) £ Jk(Xia)Jk(Xii5a) cos M.
it=l

Since 9f does not appear in this Hamiltonian, If = Ia + J3a + I5a is a constant of the motion.

The topology of mode overlap when three modes are present is quite different than the

usual two-dimensional topology, and is shown in Figure 11. In this case the resonant surfaces

are two dimensional, and generically intersect. Figure 11 shows this intersection inside the

energy surface, which is denoted by E. For the specific problem at hand, the energy surface

can be adequately approximated by the surface If = constant. This is possible since the

frequencies of the modes are approximately equal, so that

H' ~ na/„ + n^ + fi5<,/5a ~ ajf. (45)

Since the resonances intersect, there is no obvious overlap criterion in this space, as in

two dimensions. As before, however, each resonance will be surrounded by an island, which

will give the resonant curves a finite width in the energy shell. These areas will overlap;

inside this overlapped region the motion will be strongly chaotic. Since the energy shell

is bounded, this overlapped area will occupy some fraction of the available action space.

We propose to use the fraction of the action space in which this strong overlap occurs as a

measure of the global stochasticity of the system.

25



The position and size of the islands can again be calculated by averaging. If the Hamil

tonian (44) is averaged over one angle, for example 9a, then the corresponding action, I9,

will be a constant of the motion. Then the position of the resonance and the size of the

surrounding island (which is in the direction of the remaining action, I8 in this case) can

be calculated from the resulting one dimensional Hamiltonian. The position and size of the

second resonance can be calculated in the same manner.

Figure 12 shows the (I8, 1^) plane for a value of If corresponding to E' —20. Since the

original actions, Ja, 73a, and I5a are all non-negative, the space is bounded as the triangle in

Figure 12 with I8 + Ia < If. Within this spaceare the two resonance curves that correspond

to the 1:1 resonances between modes a and 3a and modes a and 5a, shown as the dashed

lines. The width of each island extends from I = 0 to the solid fine in the figure. As can

be seen, the resonant curves cross, and the islands overlap, with the region of overlap in the

lower lefthand part of the figure. It is then a simple matter to calculate the fraction of the

action space that is overlapped. In Figure 12, the fraction of the available space in which

strong overlap occurs is ~ 30%.

The overlapped fraction as a function of the scaled energy E' is shown in Figure 13

for the same set of parameters as Figure 5. There is a rough correspondence between the

energy for the onset of significant overlap and the onset of rapid equipartition in Figure

5. This suggests that the main hypothesis of this chapter is true—that the onset of rapid

equipartition is correlated to the onset of global chaos in the relevant modes. When the

overlapped region is small, the dominant mechanism for diffusion is slow Arnold diffusion

along the resonances. This corresponds to the slow diffusion regime where n(t) is a slowly
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falling function of time. When the overlapped region is significant, however, the diffusion is

rapid, and the system rapidly approaches equilibrium.

There are some other notable features of Figure 13. In the cases where N > L, the

fraction of overlap begins to fall at high energy. This is because the system is leaving the

regime where the pendulum frequency dominates the springs, so the island size falls, as

was seen in Figure 9c. This occurs at lower energies when N > L because of the way the

Hamiltonian has been scaled; smaller LJN corresponds to stronger springs. At high enough

energy, the overlap fraction eventually falls for all values of N and L. A second feature

is that the overlap fraction increases more quickly at low E' for large N. This is because

the frequency difference between the modes is inversely proportional to iV, so it is easier to

resonate at lower energy as N get larger.

There is one important difference between the information contained in the overlap

scaling presented in Figure 13 and the scaling of n presented in Figure 5. The overlapped

fraction describes the relative size of the chaotic region, but does not give direct information

about the rate of diffusion through that region. While it is true for a given L and N that a

larger region of overlap corresponds to stronger chaos and faster diffusion, there is no way

to compare the relative diffusion rates for different values of N based on the size of the

overlapped region.

On the other hand, Figure 5 contains exphcit time information. Each different set of

parameters is integrated for the same length of time (relative to the scaled energy E'), and at

the end of the integration n is calculated. This scaling of the integration time with N and L

is an important aspect of Figure 5. We should emphasis that this is a completely numerical
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result; there is no theoretical reason why this time scaling should yield the universal curve

seen in Figure 5.

For comparison, the time scaling can be taken out of Figure 5, and the results are

shown in Figure 14. This figure was produced by integrating the unsealed Hamiltonian (11)

for an equal amount of time for each set of parameters. From this figure it can be seen that

without the time rescaling, the large values of N move toward equipartition more rapidly

than low values of N. This is in agreement with the scaling of the size of the overlapped

region. The large N values have large overlap at lower energy, and can therefore move toward

equipartition at a lower energy. Thus it is clear that some detailed information about the

diffusion rate is necessary to completely understand the scaling behind Figure 5.

5. Conclusions and Discussion

We have been concerned with the dynamics of a discretization of the sine-Gordon equa

tion in space and time. The spatial discretization transforms the equation into a set of cou

pled pendula, and the further discretization in time gives a set of coupled standard maps.

We investigated the conditions under which the energy in this system will be distributed in a

statistical manner by studying the evolution of the system in which the energy was confined

initially to one or a few Fourier modes.

In section 3 we numerically investigated the stability of initial conditions in which a

single Fourier mode of the system was excited. For low frequency initial conditions, we found

that the discrete sine-Gordon system undergoes a transition, with the critical parameter

being the scaled energy E' = (L/N)2E, from a regime where such initial conditions are
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stable, and the energy is spread among only a few modes, to a regime where the energy

is spread throughout the entire system with an apparently statistical distribution. As this

transition takes place there is a concurrent transition in the value of the maximum Lyapunov

exponent from a near-zero value to a non-zero one. This correspondence indicates that the

onset of rapid equipartition is related to the onset of large scale chaotic motion in the system.

For low frequency initial conditions, three important regimes have been studied. At

high energy there is a rapid approach to equihbrium and the maximum Lyapunov exponent

is large. At low energy, the system stays near its initial configuration. It is unknown whether

the dynamics in this regime are regular or chaotic, but numerical evidence indicates that it

is regular. In the low energy regime, the modes are still coupled, and there is an exchange

of energy among a few strongly coupled modes. At intermediate energies, the system slowly

relaxes to the equipartitioned state. In this regime the dynamics are chaotic, but more

weakly chaotic than the high energy dynamics, and the diffusion is correspondingly slower.

For high frequency modes, the transition between strongly chaotic and regular motion

is very sharp as the energy is varied. There is no intermediate regime where the diffusion

is slow. Instead, the system is characterized near the transition by a delay time for the

approach to equihbrium. As the transition is approached from above, numerical evidence

indicates that this delay time apparently approaches infinity. This implies that the motion

below the transition energy is regular.

Unlike systems with two degrees of freedom, whose phase space can be viewed in a two

dimensional surface of section, direct visualization of the phase space for large-dimensional

systems is difficult. However, it is possible to think schematically about the topology of the
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space. In particular, the phase space contains many resonance surfaces, which generically

intersect in more than two degrees of freedom. Chaos in the system is generated along

the resonance curves, so these curves are really resonant bands with finite thickness. This

thickness depends on the nonlinearity parameter, which is related to the energy in the

system. The rate of diffusion along resonances is generally much slower than the rate across

resonances. Thus, when the bands are narrow, and therefore not significantly overlapped,

the diffusion is very slow. When the bands are large, their area of overlap is significant, and

the diffusion through the phase space is much faster. The fast diffusion due to resonance

overlap appears to be responsible for the rapid approach to equilibrium at large energies.

This hypothesis was tested using a resonance overlap calculation developed in section

4. The method is a generalization of the usual two-degree-of-freedom overlap calculation,

which provides a way of estimating when isolating KAM tori are destroyed, so that global

diffusion is possible. In systems with more than two degrees of freedom, global diffusion

around invariant tori is possible because the resonance surfaces generically intersect. The

generalized overlap criterion proposed here is a method to estimate when fast diffusion is

significant in a system with three degrees of freedom. For the type initial conditions where

all the energy is confined to a single linear mode, the nonlinearity rapidly spreads the energy

to a few strongly interacting modes. Choosing the three most strongly interacting modes

results in a three-mode approximation of the relevant dynamics of the system on short time

scales. In the regime where the pendulum motion dominates, when L >> 1, the low-frequency

modes have approximately the same frequency, so a set of 1:1 resonances exists among the

interacting modes. The position and width of each resonant band are individually calculated
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using the method of averaging. The relative area of the overlap of these resonant bands is

then used as a predictor of fast diffusion in the system.

The general agreement between the overlap calculation and the transition to equipar

tition is fairly good. The fraction of the action space occupied by strong overlap becomes

significant at approximately the same energy that the rapid approach to equilibrium sets in.
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Appendix

In this appendix we estimate the long time value of rj(t) for a fully stochastic Hamil

tonian system. Consider a system of weakly coupled harmonic oscillators described by the

Hamiltonian

N-l

H=Y.wJi + Hl{I,e). (A.46)
1=1

If the number of oscillators is large and the dynamics is ergodic, the energy distribution of

the oscillators is described by the Boltzmann distribution

/,- ae-**7'. (A.47)

Here /,-d/,- is the fraction of the oscillators lying between energy E{ = ujiIi and energy

E} + dE{ = wt(7$- + dl{). The average energy is then

(E) = J— = -, (A.48)
/ e-MtdlidOi P

and the total energy of the system is just ET = N{E). The distribution of energies about

(E) described by (A.47) determines the equilibrium value of 77.

Defining the equilibrium value of h(t) to be the integral over the orbit, then, because

the orbit is assumed to be ergodic, h^ can be written in terms of the distribution function

N-i [ (»iIi/ET)\R(u>iIi/ET)e-**'idIi
>>oo = £ l 7 . (A.49)

/ e-W'dli1=1

The integrals are easily performed, yielding

h00 = kiN-(l-C), (A.50)
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where C = 0.577... is Euler's constant. Using this value in equation (18) gives an estimate

of the equilibrium value of 77:

Afc<;„, = 0.423 In ^-p (A.51)

since h(0) = In Ak when Ak modes are initially equally excited.
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Figure Captions

Figure 1. The time dependence of n(t) for three different energies with N = 65 and L = 32.

a) E' = 2. b) E' = 8. c) E' = 32.

Figure 2. Snapshots of the spectrum for N = 65, L = 32 and E' = 2, with an initial

excitation of mode 1. Note how the energy oscillates among a small number of low

frequency modes, a) t = 1. b) t = 105.

Figure 3. Snapshots of the spectrum for N = 65, L = 32 and E' = 24, again with an initial

excitation of mode 1. In this case the energy spread throughout the system, a) t = 1.

b) t = 105.

Figure 4. 77(t) in the chaotic region for JV = 65, L = 32 and E' = 8 integrated for time

* = 106.

Figure 5. The universal curve for n(Ef).

Figure 6. The energy dependence of X(E') for the same parameter range as Figure 5.

Figure 7. The energy dependence o£n(E') when mode 29 is initially excited (JV = 65). Note

the sharp transition from 77 = 1 to 77 = 77^ at E' ~ 80.
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Figure 8. The time necessary for n(t) to fall to 0.5. Note that the curve appears to asymptote

at E' ~ 80.

Figure 9. The phase space of the two-mode system averaged near the 1:1 resonance. JV = 65,

L = 32. a) If = 5, Ef ~ 2. b) If = 50, E' ~ 20. c) If = 500, E' ~ 150.

Figure 10. A two-dimensional surface of section of the two-mode system taken at 9f = 0.

JV = 65, L = 32. a) E' = 2. b) E' = 14.

Figure 11. A schematic representation of the action space of a generic three-degree-of-

freedom Hamiltonian system.

Figure 12. The resonance curves for the averaged three-mode system and their associated

island widths. The position of the resonances is shown by dashed lines, and the island

widths by solid lines. The region of strong overlap is the region in the lower left hand

corner bounded by solid lines.

Figure 13. The fraction of the action space which is strongly overlapped as a function of E'

for the same set of parameters as Figure 5.

Figure 14. The behavior of rj(E') when the time of integration is not scaled with N/L.
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