
Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

TECHNIQUES FOR TEST GENERATION AND

VERIFICATION OF VLSI SEQUENTIAL CIRCUITS

by

Abhijit Ghosh

Memorandum No. UCB/ERL M91/73

3 September 1991

TECHNIQUES FOR TEST GENERATION AND

VERIFICATION OF VLSI SEQUENTIAL CIRCUITS

by

Abhijit Ghosh

Memorandum No. UCB/ERL M91/73

3 September 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

TECHNIQUES FOR TEST GENERATION AND

VERIFICATION OF VLSI SEQUENTIAL CIRCUITS

by

Abhijit Ghosh

Memorandum No. UCB/ERL M91/73

3 September 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

List of Tables

2.1 Statistics for example circuits 37
2.2 Test generation results for circuits 38
2.3 Time profiles for example circuits 38
2.4 Comparisons with STALLION and CONTEST 39
2.5 Number of clock cycles needed for testing 40
2.6 Test generation results for ISCAS sequential benchmarks 41

3.1 Statistics for example circuits 77
3.2 Test generation results for circuits 78
3.3 Time profiles for example circuits 78
3.4 Comparisons with STEED 79
3.5 Clock cycles needed for testing 79

4.1 Statistics for example circuits 102
4.2 Test generation results for circuits 103
4.3 Results of logic optimization 103

5.1 Comparison of implicit and explicit state techniques 129
5.2 Verification of machines using traversal 130
5.3 Verification of machines using enumeration-simulation 131
5.4 Comparison of times for verification 132

6.1 Example circuits 145
6.2 Synthesis results using FLAMES 148

7.1 Experimental results 172
7.2 Comparison with exact minimization 172
7.3 Comparison with exact function minimization 173

vui

CONTENTS v

8 CONCLUSIONS 175

8.1 Future Work 180

Bibliography 183

List of Figures

1.1 A typical synthesis pipeline 3

2.1 A general synchronous sequential circuit 13
2.2 An example State Transition Graph 14
2.3 STG of faulty machine 15
2.4 A machine illustrating problem with initialization 20
2.5 Cover enumeration example 27
2.6 ON and OFF-sets for NS lines of example machine 28
2.7 Justifying state A 30
2.8 Fault-free state justification 31
2.9 Justification algorithm 32
2.10 ON and OFF-set for PO of example machine 34

3.1 An example BTL description 47
3.2 An example circuit 52
3.3 An ALU and its model 54

3.4 List of primitives used in test generation 55
3.5 Main justification procedure 57
3.6 Procedure for justifying a state 59
3.7 Circuit to illustrate justification and differentiation 62
3.8 Circuit to illustrate indexed backtracking 65
3.9 Circuit illustrating conflict resolution 69
3.10 Procedure for state differentiation 73

4.1 An example STG 83
4.2 The STG of an implemented machine 84
4.3 Equivalent-SRF 85
4.4 Invalid-SRF 87

4.5 Isomorph-SRF 88
4.6 Complicated equivalent-SRF 89
4.7 Two-level cover of the FSM 90

4.8 An implementation of a sequential circuit 94
4.9 Partitioned logic blocks 95

vi

LIST OF FIGURES vii

5.1 Circuit illustrating explicit and implicit enumeration 108
5.2 Product machine 109

5.3 A cascade of two machines 112

5.4 STGs using explicit and implicit state enumeration 113
5.5 Main verification procedure using traversal 114
5.6 Procedure for traversing the STG of a machine 115
5.7 The STG of a product machine 117
5.8 Parts of the STG enumerated during traversal. » 118
5.9 Final STG after traversal 120

5.10 ON and OFF-sets of the PO and NS hnes of a machine 122

5.11 State Transition Graph enumeration algorithm 123
5.12 Example to illustrate STG enumeration 124
5.13 Machines illustrating difference between traversal and enumeration 125

6.1 Combinational logic block of a sequential circuit 138
6.2 Sequential circuit before retiming 139
6.3 Sequential circuit after retiming 140
6.4 Example State Transition Graph 141
6.5 FSM with an encoder-decoder 142

6.6 FSM decomposition types 144

7.1 PLA driving another PLA 151
7.2 Truth table of PLAx 152
7.3 Boolean relation for PLA\ 153
7.4 Representation of don't-cares 154
7.5 Main minimization procedure 156
7.6 Truth table for PLA2 157
7.7 Interconnected PLA network 158

7.8 Example Boolean relation 159
7.9 Truth table for PLA2 160
7.10 Interconnected PLA network 161

7.11 Function cover after Expand 162
7.12 Network after Expand 163
7.13 Function cover after Lredcover 165

7.14 Network after Expand-Irredcover 166
7.15 PLA\ after Expand and Irredcover 167
7.16 PLAi after Reduce 168
7.17 Cube-based specification of a Boolean relation 170

Contents

Acknowledgements i

Table of Contents iii

List of Figures vi

List of Tables viii

1 INTRODUCTION 1

1.1 IC Design Systems 2
1.2 Implementation Verification 5
1.3 Testing 6
1.4 Synthesis For Testability 8
1.5 Organization of this Dissertation 9

2 TEST GENERATION FOR SEQUENTIAL CIRCUITS 10
2.1 Preliminaries 11

2.2 Previous Work 18

2.3 Test Generation Strategy 20
2.4 Cover Extraction and Combinational Test Generation 25

2.5 Justification 28

2.6 State Differentiation 33

2.7 Identification of Redundant Faults 35

2.8 Test Generation Results Using STEED 37
2.9 Conclusions 42

3 SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS 44
3.1 Preliminaries 45

3.2 Previous Work 49

3.3 Global Strategy for Test Generation 50
3.4 State Justification 57

3.5 Indexed Backtracking 64
3.6 Conflict Resolution 68

3.6.1 Assembling the equations 69

m

iv CONTENTS

3.7 State Differentiation 72

3.8 Test Generation Results Using ELEKTRA 76
3.9 Conclusions 79

4 SEQUENTIAL SYNTHESIS FOR TESTABILITY 81
4.1 Preliminaries 82

4.1.1 Eliminating Sequential Redundancies Using Don't-Cares 88
4.2 Previous Work 91

4.3 Theoretical Results 92

4.3.1 An Unconditional Testability Theorem 93
4.3.2 Logic Partitioning 94

4.4 The Synthesis and Test Strategy 97
4.5 Detection of Invalid States 99

4.6 Detection of Equivalent States 101
4.7 Experimental Results 101
4.8 Conclusions 103

5 VERIFICATION OF SEQUENTIAL CIRCUITS 105
5.1 Preliminaries 107

5.2 Previous Work 110

5.3 Implicit State Transition Graph Traversal Ill
5.3.1 Incompletely-specified machines 119

5.4 Implicit State Transition Graph Enumeration 121
5.5 Experimental Results 129
5.6 Conclusions 132

6 SYNTHESIS OF SEQUENTIAL CIRCUITS 134
6.1 Previous Work 136

6.2 Optimizing Sequential Circuits 137
6.3 Results using FLAMES 145
6.4 Conclusions 148

7 HEURISTIC MINIMIZATION OF BOOLEAN RELATIONS 150

7.1 Definitions 153

7.2 Previous Work 155

7.3 Minimization algorithm 155
7.4 Network Formation 158
7.5 Expand 161
7.6 Irredcover 164

7.7 Reduce 166

7.8 Makesparse 168
7.9 Choosing an Initial Function 169
7.10 Experimental Results 171
7.11 Conclusions 174

Acknowledgments

I am grateful to my research advisor, Prof. A. Richard Newton, for his guidance,

inspiration, criticism, and constant support during my study at Berkeley. I am also grateful

to Prof. Srinivas Devadas of MET for providing similar guidance, impetus, direction, and

necessary criticism during my research.

I would like to thank Prof. Robert K. Brayton and Prof. Alberto Sangiovanni-

Vincentelli for many stimulating discussions on test generation, verification, and logic syn

thesis. Special thanks to Prof. Brayton for being on my qualifying examination and thesis

committees. I would also like to thank Prof. Jack Silver of the Mathematics Department for

being on my qualifying examination and thesis committees and for his helpful suggestions.

Being a part of the CAD-group at Berkeley has been a unique experience. Various

people have contributed in different ways to make this experience enjoyable and edifying.

I would like to thank my erstwhile colleagues Jeff Burns, George Jacob, Karti Mayaram,

Theo Kelessoglou, and Don Webber for answering many of my questions when I was a

newcomer in the group. Special thanks to all the unix-experts, namely, Wendell Baker,

Brad Krebs, Chuck Kring, and Rick Spicklemier for pulling me out of trouble many a

times. I would like to thank Pranav Ashar, Brian Lee, Bill Lin, Abdul Malik, Rajeev

Murgai, Brian O'Krafka, Alex Saldanha, Hamid Savoj, Ellen Sentovich, Narendra Shenoy,

K.J. Singh, Herve Touati, Yosinori Watanabe, and Greg Whitcomb for many interesting

discussions on a wide variety of topics. Special thanks to Rajeev Murgai for reading pre-

publication manuscripts. Hi-Keung Tony Ma has been very helpful both inside and outside

the department. In addition to giving me his software, fixing bugs for me, and his healthy

criticism, he has also been a great tennis and badminton partner. Thanks also to Wayne

Christopher, Andrea Casotto, Mark Beardslee, Chris Lennard, Jaijeet Roychowdhury, and

Lorraine Layer for their friendship. I would also like to thank Kia Cooper, Elise Mills,

and Flora Oviedo for their help with travel grants, mailings, and in general making my life

easier.

There are some wonderful people who have been instrumental in making my life,

especially in Berkeley, very pleasurable. I would like to thank them for what they have done

for me — David, Paul, and Laurent for being silly and for their interest in agriculture; Loma,

Salima, Eliane, and Romella for their friendship, support, and love; Roberto and the rest

of the gang for the parties in SF; Brinda for many entertaining and scintillating moments;

n

and Rhonda, Barbara, Micheline, Deborah, Cheryl, Ceri, Cynthia, Marilyn, Silvia, Sara,

Martha, Kathy, Claudia, Giovanna, Susanna, Babu, Noeman, Rabi, Smarajit, Prashanta,

Harald, Kinsuk, Kamal, Hitesh, Milind, Steve, James, Aditya, Ahmed, Joseph, Marco, and

the rest of the group for being such good friends. Special thanks to my host family, Bob

and Linda Mahley, for their help and their love.

I would like to thank my family, especially my parents and my uncle, for their mon

umental support, encouragement, and enthusiasm in the work that I was doing. Without

their help, this work might not have been possible.

This research was supported in part by the Defense Advanced Research Projects

Agency under contract JFBI90-073, Digital Equipment Corporation, and AT&T Bell Lab

oratories. Their support is gratefully acknowledged.

Techniques for Test Generation and Verification of VLSI
Sequential Circuits

Abhijit Ghosh

Ph.D. Department of Electrical Engineering
and Computer Science

Abstract

Very large-scale integrated circuits contain thousands ofcircuit components withina verysmall area.

The design of such circuits isa complicated andtime consuming process, and automatic design tools

are used wherever possible to help or complement the designer. In addition to performance, the

reliability of the manufactured product is of utmost importance. Testing is the process of ensuring

that there are no defects in the manufactured circuit. One of the key problems in testing is that

of automatic test pattern generation, especially for sequential circuits. Two new test generation

algorithms for sequential circuits havebeen developed as a part of this dissertation. The first one

uses novel ideas and heuristics for circuits described at the gate level. The second one uses and

exploits the properties of higher level descriptions, namely, Register-Transfer level descriptions, for

efficient test generation.

The design process involves the transformation of a design from one representation to

another or a transformation within the same representation, using automatic optimization tools. The

probability of introducing errors in a circuit during the design phase is high. Therefore, automatic

tools that verify that the current representationof a circuit is the same as the original representation

are needed. An algorithm for verification of sequentialcircuits described at the gate level has been

developed. This algorithm uses implicit enumeration of the input as well as the state space.

To ease the task of test generation, it is necessary to synthesize circuits to be fully and

easily testable, and these are the objectives of the synthesis for testability process. A new approach

to synthesis for testability for sequential circuits is presented. It uses logic partitioning and exploits

invalid and equivalent-state don't-cares to obtain a fully testable implementation of a circuit. An

associated problem is that of minimization of Boolean relations. An algorithm to obtain a minimal

implementation of a Boolean relation is presented. This algorithm uses well known testing tech

niques for logic optimization.

A
Prof. A. Richard Nejrton

Thesis Committee Chairman

Chapter 1

INTRODUCTION

Very Large Scale Integrated (VLSI) circuits are an integral part of any modern

electronic system. Such circuits contain from thousands to millions of transistors, diodes,

and other devices, resistors, capacitors, and interconnections within a very small area. The

design of such circuits is a complicated and time consuming process. Synthesis refers to

the process of (automatically) designing or re-designing a circuit from a specification of

the circuit. There are many sources of error that can produce an incorrectly functioning

circuit. One of them could be an error in the specification. Design verification is the

process of determining whether what the designer specified is what she/he wants. Once

the specification is verified, an implementation of the circuit is derived. The error that

produces an incorrectly functioning circuit could be in the design phase where either a

human designer or an automatic design tool makes an error (probably due to an undetected

bug). Implementation verificationis the processof determining whether the designed circuit

is the same as what was specified. Logic verification, which is a part of implementation

verification, is the process of verifying the equivalence of two logic-level circuits, usually

the optimized and the unoptimized ones. If an implementation of a design is correct and

there are no manufacturing defects, then the manufactured circuit should function as per

specifications. However, the manufacturing process may introduce defects in the circuit

(e.<?., short circuits, open circuits, missing transistors, etc.). Even though a circuit has no

manufacturing defects, it may become defective due to a variety of reasons (e.g., physical or

thermal stress, radiation, etc.) during the operation of the circuit. Productionverificationis

the process of verifying whether the manufactured circuit is the same as what was specified.

Testing, which is a part of production verification, is the process of determining whether a

2 CHAPTER 1. INTRODUCTION

fabricated circuit is defective, and if so, identifying the location of the defect.

VLSI circuits can be divided into two classes - combinational circuits (without

memory) and sequential circuits (with memory). Techniques for the automatic synthesis

and verification of both kinds of circuits have been under investigation for a long time. Until

recently, combinational circuits have received the bulk of researchers attention. Today, there

are techniques that can synthesize [15, 16, 57] and generate tests [60, 65, 84, 91, 94, 119]

for combinational circuits efficiently. There has been some effort in solving the sequential

logic synthesis and test problem using combinational techniques [56, 87, 89]. The focus of

this dissertation is the testing and logic verification of digital synchronous sequential logic,

and the relationship of these techniques to synthesis of such circuits.

With the advances in integrated circuit (IC) technology, the number of devices

that can be put on a chip has increased rapidly. This has greatly increased the complexity

of the synthesis, verification, and testing process. It is necessary to find new synthesis

strategies to synthesize circuits with minimal area, maximal performance, and improved

testability. Previous approaches are not effective for these large circuits for a variety of

reasons. However, without high-quality logic synthesis and verification tools, it might not

be possible to design, implement, and market a reliable product. In this chapter the major

issues involved in synthesis, verification, and testing are presented. In Section 1.1 a typical

synthesis system is described. Issues in design verification and testing are the topics of

Sections 1.2 and 1.3 respectively.

1.1 IC Design Systems

Synthesis involves a series of alternate mapping and optimization steps. These

steps in a typical synthesis process are shown in Figure 1.1. Starting with an idea about what

the designer wants, a behavioral description of the circuit in a high-level language like ELLA

[104], VHDL [113], or ISPS [12] is written. The first step in the synthesisprocess is to convert

the behavioral specification into a Register-Transfer level (RTL) description of the circuit.

This process could be as simple as mapping the behavioral specification to a Register-

Transfer level description. However, during the conversion process, in addition to mapping,

behavioral synthesis tools [41, 69,80, 111, 128,132,134] can be used to optimize the circuit

to use the minimum amount of hardware within the required performance constraints. The

design space is large and the tools explore various design trade-offs and try to produce

1.1. IC DESIGN SYSTEMS

Design
Verification

Behavioral
Verification

I

m V

P e

1 r

e i
m f
e

n

t

i

c

a

< Logic
Verification

a t
t i
i o

o n

n

Layout '
Verification

Production
Verification

Idea

Human Designer

I
Behavioral Specification

Figure 1.1: A typical synthesis pipeline

an optimal solution. It should be noted that the use of behavioral synthesis tools in the

industry is currently quite limited.

After a Register-Transfer level description has been obtained, it is mapped into

logic equations using mapping tools like BDSYN described in [122]. The next step is logic

4 CHAPTER 1. INTRODUCTION

synthesis, which is an optimization step. Typically, a Register-Transfer level description is

an interconnection of pre-defined modules like adders, multipliers, or finite state machines

that implement controllers. This description often has redundant logic, and the task of

logic synthesis tools [10,15,16, 40, 57] is to transform this descriptioninto a more optimal

description of the circuit in terms oflogic gates. The goal of logic optimization is to minimize

the area while meeting the performance constraints. Another objective is to improve the

testability of the circuit [45, 49].

The result of logic optimization is an optimized gate-level or logic-level description

of the circuit. The next step in the synthesis process is to produce a mask-level description

or a layout of the circuit in a given technology. Technology mapping [39, 82] refers to the

mapping of an arbitrary logic-leveldescription into an implementable logic network using a

set of gates from a standard library of gates. This process involves both mapping the logic

description into an implementable network, as well as optimizing the mapped description

in order to meet area and performance constraints. Module generators [55, 109] may be

used to produce a layout for each module in the design. Finally, the modules or gates are

placed and routed using placement and routing tools like [31, 33, 114, 121]. This is both

a mapping and an optimization phase that produces the final mask-level description of the

circuit. This description can be used to manufacture the final product.

In a typical design process, the designer might have to iterate over these steps

before an acceptable final circuit is produced. This is because constraints imposed on the

design are not satisfied in the first pass. Information from any level could be fed back

to a higher level to enable the tools working at that level to come to better decisions in

order to satisfy the design constraints. For example, a behavioral synthesis tool might

not know the cost of a module (in terms of area and performance) when it chooses the

module. After layout, the cost of the module can be accurately estimated and used by

the synthesis tools to make a better decision. The synthesis process can be made folly

automatic. However, designer intervention and insight is often necessary to produce high-

quality circuits. The synthesis process involves the solution of many optimization problems,

most of which axe conjectured to be intractable. Therefore, most tools use heuristics to

obtain close-to-optimum solutions.

1.2. IMPLEMENTATION VERIFICATION 5

1.2 Implementation Verification

During the design phase many descriptions of the same circuit axe produced. For

example, starting from the behavioral description of the circuit, the RTL description, the

logic-level description, and, finally, the mask-level description axe produced. In addition,

optimizationtools produce many alternate designs at the samelevel. If the steps of synthesis

are performed manually, there is always a high probability of introducing errors. Since bug-

free softwarecannot be guaranteed, there is alsoa chance that automatic synthesis tools will

produce an erroneous result for a particular circuit. Design errors might also be introduced

due to the misunderstanding and the resulting misuse of an automatic tool. Since the

probability of introducing errors is non-zero in both the automatic and the manual design

environment, it is necessary to verify, at each design step, that the resulting description and

the original description axe identical. Manual verification is not possible due to the size of

the circuits and due to the relatively high probability of error during verification. Reliable,

automatic, and independent verification tools axe necessary to ensure the correctness of the

final design.

As shown in Figure 1.1, verification tools can be used at various steps in the design

process. Design verification has relied mostly on simulation, though formal methods axe

slowly emerging [70]. The problem of verifying the equivalence of a behavioral description

and an RTL description (behavioral verification) has been the subject of extensive investi

gation (e.g., [4, 24, 42, 59]). Algorithms for verifying the equivalence of an RTL description

and a logic-level description for both combinational and sequential circuits are presented in

[46, 92]. Algorithms for verifying equivalence of alternate logic-level descriptions for circuits

(logic verification) axepresented in [36,46, 92, 94]. Algorithms for verifying the equivalence

of logic-level descriptions and layout (layout verification) can be found in [27, 29, 28], and

algorithms for verifying timing behavior can be found in [110].

A decision problem [61] is a problem that has a yes or a no answer. Some decision

problems form an equivalent class called non-deterministic polynomial-time complete (NP-

complete). The characteristic of these problems is that a solution to any problem can

be transformed into a solution to another problem in polynomial time. Also, no known

polynomial-time algorithm can solve any of the problems. In addition, these problems are

not provably intractable. Many optimization problems can be transformed into decision

problems, and the corresponding decision problem can be proved to be NP-complete (e.g.,

6 CHAPTER 1. INTRODUCTION

the Traveling Salesman Problem). There is another class of decision problems that axe not

NP-complete, but axe at least as hard as NP-complete problems. Such problems axe called

NP-haxd.

The logic verification problem can be stated in the following manner. Given two

circuits A and B, axe A and B identical, i.e., under all input conditions, do A and B

produce the same outputs, and if not, then under what conditions do A and B produce

different outputs ? This is a decision problem and can be proved to be NP-hard. Despite

its complexity, it is possible to verify a large class of practical circuits (e.g., [30, 36, 46, 94]).

In this dissertation, the problem of verification of logic-level sequential circuits is examined,

new approaches axe developed, and their merits and demerits axe evaluated in the light of

previous approaches.

1.3 Testing

Implementation verification ensures that the design process is error free. However,

manufacturing defects axe almost invariably introduced. No manufacturing process can

guarantee 100% yield, and therefore some manufactured circuits axe bound to have defects.

The types of defects depend on the technology. Across various technologies, the most

common types of defect during manufacturing axe short-circuits, open-circuits, open bonds,

open interconnections, bulk shorts, shorts due to scratches, shorts through dielectric, pin

shorts, cracks, and missing transistors [21]. Also, the larger the circuit in terms of area, the

greater the chances of it having a defect. It is necessary to separate the bad circuits from

the good ones after manufacture. From the point of view of economics, it has been shown

that the cost of detecting a faulty component is lowest before the component is packaged

and becomes a part of a larger system. Therefore testing is a very important aspect of any

VLSI manufacturing system.

There are two aspects to testing; one is fault detection and the other is fault

diagnosis. In fault detection only the presence of a fault is detected, but in diagnosis the

exact location of the fault has to be identified. The testing process involves the application

of test patterns to the circuit and comparing the response of the circuit with a pre-computed

expected response. Any discrepancy constitutes an error, the cause of which is said to be

a physical fault [21]. Such faults, for digital circuits, can be classified as logic or parametric

[21]. A logic fault is one which causes the logic function of the circuit element (elements) or

1.3. TESTING 7

aninput signal to be changed to some other function. Parametric faults alterthe magnitude

of a circuit parameter causing a change in some factor such as circuit speed, current, or

voltage levels. In this dissertation the focus is only on the detection of logic faults.

Testing must be performed throughout the life of a circuit, since faults may be

introduced in the circuit during assembly, storage, and service. The most commonly occur

ring faults during storage and service axe due to temperature, humidity, aging, vibration,

and voltage or current stress [21].

Generation of test patterns is a very important problem and has been under in

vestigation for along time [l, 60, 65, 84, 90, 95,108,119,123]. As shown in Figure 1.1, test

generation may be performed at various levels during the design process. The average case

complexity of test generation, the fault model, and the fault coverage obtained depends

on the representation used. An important issue is the fault model used in test generation.

Physical faults axeoften modeled as logic faults. By doing so, the problem of fault analysis

becomes a technology-independent logic problem. In addition, tests derived for logic faults

may be useful for physical faults whose effect on circuit behavior is not well understood

or too complex to be analyzed otherwise. The main requirement for the fault model is

that the model should be able to capture the change in functionality caused by most of

the commonly occurring physical defects in the circuit. The fault model used most often in

practice today is the singlestuck-at fault model, where a single gate input or output in the

circuit gets stuck at a 1 or 0 value.

Another important issue in test pattern generation is fault diagnosis. It is not

only important to identify the presence of a fault, but also to locate the fault and find a

reason for the fault. Fault location, which is one aspect of fault diagnosis, is used to debug

circuits and fix manufacturing errors. Tests for one fault can simultaneously detect other

faults in the circuit. Two faulty circuits might also have identical responses for a particular

test pattern. Therefore a test set has to be derived which not only identifies all the faults,

but can also help in locating the fault from the analysis of the response.

Tests axe applied to circuits using Automatic Test Equipment (ATE). This equip

ment is usually very expensive. The amount of time that each circuit requires for testing is

therefore very important. This time is determined by the amount of time required to apply

the test vectors and the time required to compare the data with the expected response.

Test generation for combinational circuits as well as sequential circuits is an NP-

hard problem [85]. There is no known polynomial-time algorithm that can be used to

8 CHAPTER 1. INTRODUCTION

generate tests for circuits. However, for a large class of circuits, it is possible to generate

tests efficiently using various heuristic search techniques.

The problem of test generation is intimately related to the problem of verification.

In fact, for both combinational and sequential circuits, the problem of test generation can

be formulated as a verification problem and vice versa. The test generation problem can

be converted into the problem of verifying whether the fault-free and faulty circuits axe

identical. If they axe not, the test pattern is the (sequence of) input vector(s) that differ

entiates the two circuits. On the other hand, the problem of verification can be converted

into finding a test for a fault, assuming one circuit is a true circuit and the other circuit is

a faulty circuit. If no tests can be found, the circuits axe identical.

In this dissertation, two new test generation algorithms axe presented. The first

one uses purely gate-levelinformation to generate tests for sequential circuits. Using better

techniques and heuristics, the algorithm can handle largercircuits than previous approaches.

The second algorithm uses RTL information for test generation and can be applied to circuits

that cannot be handled using a purely gate-level approach.

1.4 Synthesis For Testability

Generating tests for sequential circuits is a difficult problem. The algorithms that

will be presented in Chapters 2 and 3 provide means for handling large circuits. However,

some circuits have redundant faults, and while generating tests for such circuits, a significant

fraction of the test generation time could be spent in the identification of redundant faults.

The task of test generation will be greatly simplified if circuits axe synthesized to be fully

and easily testable.

It is well known that optimal logic synthesis can produce fully testable combina

tional circuits [13]. Similar results werederived for sequentialcircuits in [49]. These methods

rely on extracting a set of don't-care conditions for the circuit and using the don't-cares dur

ing logic optimization to derive a fully testable implementation of the circuit. The primary

issue in this approach to synthesis for testability is the efficient derivation of the don't-care

conditions. For sequential circuits, these don't-cares have been traditionally obtained from

the State Transition Graph [49]. Recently, State Transition Graph traversal techniques

based on Binary Decision Diagrams have been used to derive the set of don't-cares [87].

Another major issue is the exploitation of these don't-cares in logic synthesis. As has been

1.5. ORGANIZATION OF THIS DISSERTATION 9

shown in [18], traditional don't-cares cannot be used to capture all forms of incomplete

specification. The solution to this is the use of Boolean relations [18] in synthesis. In this

dissertation, both of these issues are addressed. An algorithm for efficient determination of

the don't-cares needed for synthesizing a fully testable machine is presented. In addition, a

logic partitioning scheme is outlined that can help in reducing the size of the don't-care set.

Also, a procedure that uses testing techniques for the minimization of Boolean relations is

presented.

1.5 Organization of this Dissertation

In Chapter 2, a test generation algorithm for sequential circuits specified at the gate

level is presented. This algorithm is extended to consider circuits described at the RT level

in Chapter 3. In Chapter 4, algorithms for synthesizing circuits to ensure full testability axe

presented. Chapter 5 deals with the verification of sequential circuits. Efficient algorithms

for traversal and enumeration of State Transition Graphs using techniques similar to those in

Chapter 2 axe presented. In Chapter 6, the use of compact STGs for synthesis is indicated.

In Chapter 7, the problem of minimization of Boolean Relations arising in synthesis for

testability is addressed. Conclusions axe presented in Chapter 8.

Chapter 2

TEST GENERATION FOR

SEQUENTIAL CIRCUITS

Test generation for sequential circuits has long been recognized as a difficult prob

lem [21, 75, 102]. In particular, unstructured, random, sequential digital designs axe very

difficult to test. The test generation problem is difficult mainly because the input space

that must be searched to obtain a test vector sequence is huge. Since most circuits have

a large number of inputs, it is not possible to enumerate the input space explicitly. The

structure of the circuit must be exploited to search the input space implicitly and reduce

the complexity of the search process for the expected cases. Another difficulty in circuits

without reset Hnes is the necessity of initializing the latches to a known value. One common

approach to improving the testability of the circuit is to add extra test points to improve

the controllability and observability of internal nodes of the circuit, thereby easing the task

of test generation (e.g., [135]). However, this method is not systematic and relies greatly on

the ingenuity of the designer. This approach also has its associated area and performance

penalty.

The problem of test generation for combinational circuits is NP-haxd. However, by

exploiting the structure of logic functions and using the power of modern computers, it is

possible to generate tests for most combinational circuits. Therefore, a popular approach to

solving the testability problem for sequential circuits has been the Scan Design methodology

[2, 56]. In this approach all the memory elements of the machine axe made scannable,

i.e., their values can be directly controlled and observed. The problem of sequential test

10

2.1. PRELIMINARIES 11

generation is thereby converted into the problem of combinational test generation. Though

this eases the task of test generation greatly, two major drawbacks of this approach axe the

associated area and performance penalties. The latches axe special Scan latches and axe

usually larger than normal non-scan latches. The increased area may lead to either degraded

performance or reduced circuit yield. The specific penalty that is most important is very

technology (e.g., CMOS or bipolar) and design style (e.g., static or dynamic) specific. Also,

for circuits with a large number of latches, the total time required to test the circuit using

Scan is large. Since tester time is costly, this translates into higher cost for the manufactured

product, often doubling the cost of a complex chip. Scan design also constrains the design

to be fully synchronous and free of critical races in the normal operation of the circuit. In

situations where there is a strict area and power budget, Scan design cannot be used. Even

though the problem of non-scan sequential test generation is difficult, there axe a large

number of circuits for which non-scan test generation can be quite effective. Therefore

adopting the Scan design methodology without investigating non-scan test generation may

incur unnecessary area and performance penalties.

The rest of this chapter is organized as follows. In Section 2.1, the problem of

test generation for non-scan sequential circuits is examined and some basic definitions axe

presented. In Section 2.2, previous work in this area is reviewed and their merits and

disadvantages axe pointed out. In Section 2.3, the overall test generation strategy is outlined.

Section 2.4 deals with cover extraction and combinational test generation. In Section 2.5, the

justification procedure is presented, followed by the differentiation procedure in Section 2.6.

Identification of redundant faults is the topic of Section 2.7. Finally, results using this

test pattern generation strategy axe presented in Section 2.8. Conclusions axe presented in

Section 2.9.

2.1 Preliminaries

A sequential circuit is a circuit with memory [83]. Such circuits axe capable of

storing information and performing some mathematical or logical operations upon the stored

information. A finite state machine is an abstract model describing the behavior of a

sequential circuit. Formally, a finite state machine M is defined as a 5-tuple [83]:

M = (I,S,0,t,y)

12 CHAPTER 2. TEST GENERATION FOR SEQUENTIAL CIRCUITS

where J is a finite, non-empty set of input symbols, 5 is a finite, non-empty set of states, O

is a finite, non-empty set of output symbols, 6 :T XS —* S is the next-state function, and 7

is the output function. For a Mealy machine [83], 7 : Zx S -*• O, whilefor a Moore machine

[83], 7 : S —• O. Note that a Mealy machine is more general than a Moore machine, and

any Moore machine can be converted into a Mealy machine with the same number of states

and state transitions. The algorithms described in this dissertation axe applicable to both

Mealy and Moore machines.

Sequential circuits axe often referred to as finite state machines, or simply ma

chines. A sequential circuit is said to be synchronous if the internal state of the machine

changes at specific instants of time as governed by a clock. A general synchronous sequential

circuit at the logic level is shown in Figure 2.1. It consists of a combinational logic block

and state registers (latches or flip-flops) that hold the state information. The combinational

logic block is an interconnection of gates that implements the mapping between the primary

input (PI) and present-state (PS), and primary output (PO) and next-state (NS). The be

havior of this circuit is often represented using a State Transition Table (STT) or a State

Transition Graph (STG) [83], as in Figure 2.2. The names synchronous sequential circuit,

finite state machine, and machine will be used interchangeably throughout this dissertation.

Most of the remaining definitions in this section axe taken from [49, 63, 83].

In general, a state is a symbol indicating the internal state of the machine. For

the circuit of Figure 2.1, a state is a bit vector of length equal to the number of memory

elements (latches or flip-flops) in the sequential circuit. Each state has a unique bit vector

representing that state, and this bit vector is known as the state code. The process of

assigning a code to each state is known as state assignment or state encoding. A state with

only Os and Is as bit values is called a minterm state. In general, a state could be a cube,

i.e., the values in the different bit positions may be 0, 1 or —(don't-care). A cube state

therefore represents a group of minterm states.

A state is said to cover another state if the value of each bit position in the first

state is either a —(don't-care) or is equal to the value of the corresponding bit position in

the second state. For example, state 110 is covered by state 11—. State 11— also covers state

111. State Transition Graph enumeration is the process of deriving the STG description

of a machine from its logic-level description. There axe various methods for doing this and

one such method will be presented in this chapter.

To illustrate the problem of test generation, consider a sequential circuit, like the

2.1. PRELIMINARIES

to

I
H

U
01

Combinational Logic

Latches

Presesnt States Next States

Clock

Figure 2.1: A general synchronous sequential circuit

to

f

13

one shown in Figure 2.1, whose STG is shown in Figure 2.2. Assume that the present-state

and the next-state lines axe neither directly controllable nor observable. The objective of

test generation is to find a sequence of vectors that when applied to the primary input, will

produce different responses in the correct and the faulty circuit. A fault often manifests its

effect by changing the STG of the machine. Consider a fault in the circuit that changes

the behavior of the circuit from that shown in Figure 2.2 to that shown in Figure 2.3. The

faulty STG is characterized by corrupted edges. An edge in the State Transition Graph is

said to be corrupted by a fault if a different output is asserted by the edge or the faulty

machine goes to a different next state. Therefore the effect of the fault can be propagated to

the primary outputs or next-state lines by the input vector corresponding to the corrupted

edge, with the present-state lines set to the fanin state of the edge. An input vector to the

combinational logic part of the faulty machine that excites and propagates the effect of the

fault either to the primary output or the next-state lines is called an excitation vector

for the fault. The present-state part of the excitation vector is the state whose fanout edge

is corrupted by the fault and is called the excitation state. In Figure 2.3, the corrupted

14 CHAPTER 2. TEST GENERATION FOR SEQUENTIAL CIRCUITS

Figure 2.2: An example State Transition Graph

edges are shown using dotted lines. The excitation states axe states A and C. Note that

the excitation vector is a combinational test for the fault.

Most sequential circuits have a starting state, the state to which the machine goes

upon power-up. Often, the machine can be set to this state very easily (for example, by

using a reset line). The starting state of the machine is called its reset state. All test

vector sequences axe applied with the machine starting in the reset state. For the machine

used in this example, state 1Z is the reset state. Throughout this dissertation the reset state

will be indicated by a shaded circle in the figures. All states in the machine reachable from

the reset state using an input sequence of any length, and the reset state are said to be

valid states.

Having determined the excitation state, the next step in test generation is to take

2.1. PRELIMINARIES

Excitation State C
J = 0,0
E = 1
Test = J + E = 0,0,l

Excitation State A

J = l
E = 0
D = l
Test = J + E + D = l,0,l

Figure 2.3: STG of faulty machine

15

the machine from the reset state to the excitation state. The process of finding an input

sequence which takes the machine from the reset state to the excitationstate is called state

justification. The corresponding input sequence is called the justification sequence, and

the set of states and edgestraversed during justification constitute the justification path.

State justification may be forward or backward, depending on whether the search is

conducted from the reset state to the excitation state or vice versa. A justification sequence

for state Cis the input vector sequence {0,0} whichtakes the machinefrom state H through

16 CHAPTER 2. TEST GENERATION FOR SEQUENTIAL CIRCUITS

state B to C. A justification sequence for state A is {l}.

If state C is used as the excitation state, then on applying the input vector 1 (the

excitation vector) with the machine in state C, the true (or fault-free) machine asserts the

output 1 while the faulty machine asserts the output 0. Therefore the effect of the fault is

observable at the POs, and a test sequence can be formed by concatenating the justification

sequence and the excitation vector. In this case, the test sequence is {0,0, l}. The situation

is different if state A is used as the excitation state. The true and faulty circuits assert the

output 1 in state A on application of the excitation vector 0. However, the true machine

goes to state B, while the faulty machine stays in state A. States B and A axe called the

true/faulty or fault-free/faulty state pair. In order to propagate the effect of the fault

to the POs, it is necessary to differentiate between state B in the true machine and the

state A in the faulty machine. A differentiating sequence for a pair of states (Si, S2)

in a sequential circuit is a sequence of input vectors, such that if the sequence is applied

to the circuit when the circuit is initially in Si, the last vector in the sequence produces a

different primary output combination than if the circuit were initially in 52. The process of

finding such a sequence is called state differentiation. In this example, a differentiating

sequence is the single vector {l}, where state B in the fault-free machine asserts the output

0 while the state A in the faulty machine asserts the output 1. The test sequence is obtained

by concatenating the justification sequence, the excitation vector, and the differentiating

sequence. In this case it is {1,0,1}.

Justification and differentiation axe the bottlenecks in test pattern generation for

sequential circuits. Determining the justification sequence for a state is conjectured to be

an NP-hard problem and so is finding a differentiating sequence for a state pair. For both

these steps, the entire STG of the machine might have to be enumerated (especially if

the excitation state is not reachable from the reset state or if the true/faulty states axe

equivalent).

It can be shown that a fault in a general, fully specified, synchronous sequential

circuit, like the one shown in Figure 2.1, may require a test sequence of up to 2n+1 —1

input vectors, where n is the number of memory elements in the machine. To show this,

consider the true and faulty machines and their STGs. Each of these STGs can have a

maximum of 2n states. The two STGs can be concatenated, and a test (if it exists) will be

the differentiating sequence for the two reset states. Since there can be 2n+1 states in the

concatenated machine, the longest differentiating sequence can have as many as 2n+1 —1

2.1. PRELIMINARIES 17

vectors [83]. This shows that the search space for sequential test generation is very large.

In fact, if there axe i primary inputs, then the total seaxch space is 2'+n+1. To add to

the complexity of test generation, some faults in the circuit may be redundant, i.e., the

behaviorof the circuit does not change in the presence of the fault. There axe two classes of

redundancies [90] in a sequential circuit —combinational redundancies and sequential

redundancies. For a combinationally-redundant fault (CRF), the effect of the fault

cannot be propagated to the primary outputs or the next-state lines, beginning from any

state and using any input vector. A sequentially-redundant fault (SRF) is a fault which

cannot be excited or whose effect cannot be propagated to the primary outputs using any

sequence of input vectors starting from the reset state of the machine. Since such faults axe

very difficult to identify, large amounts of effort can be spent in trying to generate tests for

them.

For the combinational logic (Figure 2.1) in the sequential circuit, there axe p pri

mary inputs, n present-state and next-state lines, and q primary outputs. The combi

national logic implements a multiple-output Boolean function, / : 5p+n -> Bq+n, where

B = {0, 1}. Each of the primary outputs or next-state lines axe single-output functions of

p+n variables. 2?p+n is referred to as the input space and Bq+n is referred to as the output

space for the function [16]. The ON-set, Xon Q B**n, of a primary output or next-state

line is the complete set of input values such that the primary output or next-state line is 1.

Similarly, the OFF-set, Xoff Q •Bp+n, is the complete set of input values for which the

corresponding Une is 0. The set of cubes C, is said to be a cover for a ON-set if Xon Q C

and C does not intersect Xoff-

The fanout of a gate Q (or a wire) is defined as the set of gates that use the value

generated by Q as an input. The transitive fanout of Q is defined recursively as follows.

If Q is a gate generating only a primary output, then its transitive fanout is the null set.

Else, the transitive fanout of Q is the union of the fanouts of Q and the transitive fanout of

every element in the fanout of Q.

The initial state of the machine before a test vector is applied or right after it is

powered up may or may not be known. The fault model used in test generation also varies.

The following assumptions are made regarding the sequential circuit to be tested:

1. The machine is assumed to have a reset state, R. All test sequences axe applied with

this state as the starting state.

18 CHAPTER 2. TEST GENERATION FOR SEQUENTIAL CIRCUITS

2. The fault model is assumed to be single stuck-at. Since the state justification

and differentiation parts of the test generation algorithm are independent of the fault

model, the algorithm is not restricted to only this fault model. Other fault models

like multiple stuck-at, bridging faults, etc., may be used with minor modifications to

the procedure described.

3. The memory elements axe considered as distinct logic primitives and faults inside the

memory elements axe not considered. However, all faults on present-state and next-

state lines axe considered. In general, these faults model a large fraction of the faults

inside the memory elements.

2.2 Previous Work

Initial work in tackling the problem of test generation involved the use of both

random [20, 118] and deterministic techniques [95, 97, 108, 123]. In random test pattern

generation techniques, a sequence of random patterns is generated and applied to the circuit.

In general, all primary inputs to the circuit axe excited equally, i.e., the average number of

transitions on each primary input is the same over a long period of time. In some random

test pattern generators, inputs axe assigned different weights and inputs with more weights

axe exercised more frequently than others [118]. Different distributions can be used for the

random number generator from which the random patterns axe derived. Though the test

generation time is small, the fault coverage obtained is not satisfactory. Also, the number

of test vectors required is often too large to be used as a practical test set. Moreover,

redundant faults cannot be identified.

Some test generation algorithms were developed that use the iterative array model

[21] of the circuit and combinational test generation techniques to generate tests for sequen

tial circuits [95, 97,108,123]. All these approaches start with one copy of the combinational

logic block of the machine and use combinational test generation algorithms like PODEM

[65] or FAN [60] to find a test for the fault. If a test is not found, another copy of the circuit

is added and the process continues. The major drawback of this approach is the complexity

of finding a test vector in an iterative arraymodel of the circuit. Since the length of the test

vector is not known a priori, a large amount of effort may be wasted in trying to generate

tests in an iterative array model with an inappropriate number of copies of the circuit. In

2.2. PREVIOUS WORK 19

[21], it was shown that the complexity of the extended D-Algorithm is 4n where n is the

number of latches in the circuit. Though minimum length test vectors axe produced, this

approach can only be applied to small sequential circuits.

A heuristic, simulation-based test pattern generation algorithmis described in [1].

Starting with an initial vector, the final test sequence is derived using a fault simulator. For

eachvector applied, a cost function is computed which indicates whether the fault is excited

or if the effect of the fault is propagated closer to a primary output. This cost function

guides the selection of subsequent test vectors to be applied. The process continues until the

fault is detected or a limit is reached. This is a pseudo-random approach and therefore does

not guarantee that a test willbe found, even when one exists. Also, redundant faults cannot

be identified. However, this approach does not require the existence of a reset state. The

simulation-based algorithm can find input vector sequences that set the required latches

to a known value. However, there is a danger in not assuming a reset state for a certain

class of circuits. Figure 2.4 shows a machine whose latches cannot be initialized using the

simulation technique of CONTEST. In such a case, CONTEST would indicate that 100%

of the faults in the circuit are ^intestable. In real life, the designer would ensure that the

machine starts in one of the valid states, and assuming any of the valid states as reset state,

100% fault coverage can be obtained. It has also been shown [34] that even if a machine

has a synchronizing sequence, then a fault may prevent the initialization of some latches in

the circuit making the task of test generation difficult, if not impossible.

Recently, there has been considerable progress in this area. A PODEM-based de

terministic approach to sequential test generation is described in [90]. This approach uses

the iterative array model for fault excitation and propagation and makes intelligent use

of a partial State Transition Graph (STG) of the circuit while generating justification se

quences for the faults under test. Before test generation, the STG of the fault-free machine

is extracted using the STG enumeration technique of [46]. The STG is used for finding jus

tification sequences for the excitation states. Fault excitation and propagation is performed

using the iterative array model of the circuit, considering the effect of the fault in each time

frame. This approach can test circuits more efficiently than the approaches described pre

viously in this section. However, this approach is not applicable to circuits with more than

100 latches. For such circuits, only a partial STG can be generated. Since the excitation

states for the faults axe not known a priori, the parts of the STG to be enumerated are not

known. Therefore, a significant number of excitation states might not be justifiable.

20 CHAPTER 2. TEST GENERATION FOR SEQUENTIAL CIRCUITS

Figure 2.4: A machine illustrating problem with initialization

2.3 Test Generation Strategy

Three major characteristics of the test generation algorithm to be described dis

tinguish it from previous approaches. They axe:

• Decomposition of the testing problem into three subproblems of derivation of the

excitation state, state justification, and state differentiation. As will be seen later,

this decomposition makes the reuse of information possible, thereby improving the

efficiency of test generation.

• Fault-free state justification and differentiation.

• Selectiveenumeration of the state transition graph, as required for test generation.

In this section the overall test pattern generation strategy that uses these ideas is presented.

Information about state transitions in sequential machines is traditionally repre

sentedusingState Transition Graphs. It is also possible to represent this information using

the ON-sets and OFF-sets of all the next-state lines and the primary outputs. Connectiv

ity (i.e., connectivity between states) can be represented by the ON and OFF-sets of the

2.3. TEST GENERATION STRATEGY 21

next-state lines only.

The first step in test generation is the enumeration of the partial or complete

(memory and CPU time permitting) ON and OFF-sets of each next-state line and primary

output of the sequential circuit to be tested. Cover enumeration can be performed using

a PODEM-based [65] or D-Algorithm-based [115] enumeration algorithm. A limit on the

number of cubes in each ON or OFF-set can be placed.. This limit is used to restrict the

amount of memory and CPU time used for enumeration. Cover enumeration is fast and full

covers of moderately large circuits can be extracted easily.

Given the complete (or partial) covers, test generation is a three-step process.

These three steps axe:

1. Derivation of the excitation state for a fault using combinational test generation,

treating the present-state (PS) lines also as primary inputs (Pis) and the NS lines

also as POs.

2. State justification.

3. State differentiation.

In theory, the justification sequence should be derived using the faulty machine. Also, the

differentiating sequence should be derived using the fault-free and the faulty machines. It

has been observed that a fault typically modifies a few edges in the State Transition Graph.

If a justification or differentiating sequence is derived using the fault-free machine, the

probability of that sequence being valid in the faulty machine is high. Therefore, the fault-

free state justification and differentiationheuristic is used. There are several advantages of

using this heuristic. Firstly, covers of the fault-free circuit can be used to generate these

sequences on demand, and covers do not have to be extracted for each fault. Secondly,

parts of the justification and differentiating sequence can be reused, saving time. Consider

the examples used to illustrate the problem of test generation in Figures 2.2 and 2.3. The

fault-free justification sequences derived for state A and C axe {1} and {0,0} respectively

and both axe valid in the faulty machine. A fault-free differentiating sequence between state

B and A is {1}, and it is also valid in the faulty machine. Of course, there axe faults that

modify the STG drastically, but test generation for such faults is relatively simple.

After combinational test generation, the excitation vector is examined to see if

the present-state part of the excitation vector covers the reset state. If the excitation state

22 CHAPTER 2. TEST GENERATION FOR SEQUENTIAL CIRCUITS

covers the reset state, then the fault can be excited from the reset state of the machine.

If not, the excitation state is justified using a backward justification algorithm. Backward

justification is performed by first finding all the fanin states of the excitation state (states

that have an edge in the STG going from them to the excitation state) using repeated cube

intersections. If the reset state is a member of the set of fanin states, then a one vector

justification sequence is found. Otherwise, the process is repeated for some state in the

fanin of the state being currently justified. Once a justification sequence is found, it is fault

simulated to see if the required state is justified. If the required state is justified, then the

justification sequence is a valid justification sequence in the faulty machine. If the required

state is not justified, then some edge in the justification path must have been corrupted. A

part of the justification sequence can then be used as a justification sequence for the state

whose fanout edge was corrupted by the fault. State differentiation can then be performed

between the corresponding true and faulty states. Thus, only one fault-free justification has

to be performed to obtain a true and faulty state pair (cf. Section 2.5).

If the effect of the fault under test has been propagated to the primary outputs

by the combinational test vector and if the excitation state can be justified in the faulty

machine, then a successful test for the fault has been generated. If, however, the effect of the

fault is propagated only to the next-state lines, then the fault-effect has to be propagated

to some primary output by state differentiation. This is performed by first finding an input

vector that produces a different output on at least one primary output line for the true

and the faulty states. Such a vector constitutes a single-vector differentiating sequence

between the true and faulty states. If a single-vector differentiating sequence cannot be

found, all the fanout states of the true and faulty states are found using repeated cube

intersections. Then, for each pair of fanout states a single-vector differentiating sequence is

sought. If no such pair exists, then a pair of states fanning out from some fanout state pair

is picked and differentiation between this pair is attempted. This differentiating sequence

obtained is valid under fault-free conditions. After the differentiating sequence is obtained,

the entire test sequence is fault simulated to see if the fault under test is detected. As shown

later, experimental evidence gathered to date indicates that most of the time, the sequence

generated is actually a test for the fault.

If a test is not valid for the fault under consideration, then the fault-free differen

tiating sequence is not a valid differentiating sequence under faulty conditions. Sometimes

a fault-free differentiating sequence might not be obtainable because the true and faulty

2.3. TEST GENERATION STRATEGY 23

states axe equivalent in the true machine. For such rare cases, the covers of the ON and

OFF sets of the PO and NS lines axe extracted assuming that the fault is present in the

circuit. Differentiation is now attempted using the true and the faulty coversof the circuit.

The differentiating sequence obtained can be guaranteed to be valid under faulty conditions

(cf. Section 2.6).

At this point it is necessary to look at the assumption of having a reset state

in more detail. The reset state acts as a reference state from which all test vectors are

applied. The justification procedure looks for a sequence of vectors that will take the

machine from this reference state to the fault excitation state. If there is no such reference

state, it might not be possible to justify excitation states by the procedure outlined here.

In Section 2.2, the problem of not assuming a reset state for the test generator CONTEST

was presented. In addition, to ensure that the machine starts in some proper state, most

designers incorporate a reset state. Therefore, the assumption of having a reset state is

realistic. This reference state can be produced in a variety of ways. It could be provided as

a reset line that sets the machine to a particular state or it could be derived by applying

a sequence of vectors (called the synchronizingsequence) to the machine that will take the

machine, irrespective of its starting state, to a known state. However, faults can invalidate a

synchronizing sequence and make it impossible to generate tests. In general, the reset state

can be a cube state, i.e., there might be don't-care entries in the reset state. Such a reset

state is interpreted to mean that all the minterm states covered by the cube reset state are

valid reset states for the machine, as the machine can be driven to any of those states using

a known sequence of input vectors. For a certain class of circuits, like microprocessors, only

the latches in the controller axe initialized first, and then the other registers in the processor

are initialized. These other registers can be set to any value by selecting the right inputs

during the initialization phase. For such circuits, the reset state is a cube state.

As in some combinational test generators [20] and in some sequential test gener

ators [118], random test vector generation is used as a front end to the deterministic test

generation algorithm. Random vector test generation helps in detecting some of the easy

to detect faults without much effort and therefore reduces test generation time. However,

unlike combinational circuits where sometimes a large percentage of the faults can be de

tected using random techniques, for sequential circuits, only a moderate percentage of the

faults can be detected.

The test generation algorithm based on the ideas presented above is as follows:

24 CHAPTER 2. TEST GENERATION FOR SEQUENTIAL CIRCUITS

1. Extract the complete or partial covers of the ON-set and OFF-set of primary outputs

and next-state lines.

2. Generate a (new) combinational test vector for the fault under test. H test vectors

for the fault have already been generated and some of the excitation states were not

justifiable, the new test vector has the present-state part disjoint from the present-

state part of all such previously generated test vectors. If no new test vector can be

found, then exit without a test.

3. Generate a (new) fault-free justification sequence Js for the excitation state. If no

new justification sequence is found, go to Step 2.

4. Fault simulate the potential justification sequence Js- Hit detects the fault, generate

a test sequence Ts directly from Js- H it is a valid justification sequence, then go to

Step 5. If it is not a valid justification sequence, then find the first state whose fanout

edge was corrupted by the fault. Use part of Js as the justification sequence for that

state, and try to differentiate between the new true and faulty state pair.

5. Generate a fault-free differentiating sequence Ds for the true-faulty state pair. Con

catenate Js-, the excitation vector, and Ds to obtain the test sequence Ts. Fault

simulate Ts. H the fault under test is detected, exit with test vector Ts- H the fault

is not detected, try to generate another Ds- H unsuccessful or if Ds is not found, go

to Step 6.

6. Extract the faulty cover of the PO and NS lines. Set the unspecified inputs in the

justification sequence to 1 or 0 and simulate the circuit to derive a true and faulty state

pair. Generate a differentiating sequence Ds under faulty conditions. Concatenate

Js, the excitation vector, and Ds to obtain the test sequence Ts. Fault simulate Ts

to find other faults that this sequence detects. Ts is guaranteed to be a test for the

fault under consideration. Exit with test vector Ts- H Ds cannot be found and all

possible assignments to unspecified inputs have been exhausted, go to Step 3. Else,

set the unspecified inputs in the justification sequence to a different value and repeat

this step.

By checking for the validity of the justification sequence before state differentiation,

the need for generating more than one justification sequence in each pass of the algorithm

2.4. COVER EXTRACTION AND COMBINATIONAL TEST GENERATION 25

is obviated. The algorithm is complete, i.e., if a test exists for a fault, then given enough

time and memory the algorithm will find it.

Since justification and differentiating sequences axe derived using the fault-free

machine, a significant fraction of these sequences can be reused and are therefore stored.

In effect, parts of the State Transition Graph (STG) that axe required for test generation

axe explicitly enumerated. Enumeration of only the required parts of the STG results in

significant memory and CPU time savings over the approach of [90].
An important part of any test pattern generator is the fault simulator used to

grade the test patterns. Significant amountof research has been done in this area. To date,

there exist efficient algorithms for fault simulation, both for combinational and sequential

circuits [6, 88, 99, 107, 120, 130]. Since the focus of this research was the development

of efficient test pattern generation algorithms, a simple, parallel, event-driven sequential

fault simulator was used to grade the test patterns. More sophisticated fault simulation

algorithms like concurrent fault simulation can help in speeding up the total time required

for test pattern generation.

Finally, though covers axe used for justification and differentiation, it is also pos

sible to use alternate representations,like reduced, ordered Binary Decision Diagrams [26],

for the implementation of the general principles presented in this section and the three

sections that follow.

2.4 Cover Extraction and Combinational Test Generation

The input to the test generator is the combinational logic specification of the

finite state machine with the latch inputs and outputs properly identified. For each primary

output and next-state line, the ON-set and OFF-set axe derived by setting the corresponding

line to a 1 or 0 and using PODEM [65] to implicitly enumerate the input combinations that

can set the line to a 1 or 0. For example, for the circuit shown in Figure 2.5, Fi is set

to 1 and the backtrace procedure of PODEM sets input A to 1 and then input B to 1.

Upon simulation, it is found that F\ is 1 and therefore 11 is a cube in the ON-set

of F\. Both the inputs and their values axe stored in a decision tree. After the output is

set to a value, the last decision in the tree is reversed, i.e., B is assigned the value 0. In

order to set F\, more inputs have to be set. The backtrace procedure identifies input C

and sets it to 0. Upon simulation, the value of F\ is determined to be 0, and therefore

26 CHAPTER 2. TEST GENERATION FOR SEQUENTIAL CIRCUITS

100- is a cube in the OFF-set of F\. The backtracking and backtracing continues until

the decision tree becomes empty. The entire decision tree and the resulting cover is shown

in Figure 2.5. Since on every backtrack PODEM sets an input line to a value different

from what it had previously, the cover of the ON and OFF-sets axe guaranteed to be single

cube containment minimal. The algorithm also tries to set as many primary input lines

as possible before setting the present-state line to either 0 or 1.. For large circuits, where

entire covers cannot be enumerated, a partial cover is generated so that different portions

of the entire input space axe sampled. This is performed by backtracking more than one

variable in the decision tree for every N backtracks, where N is usually set according to the

estimated size of the cover and the total space allocated to store the cover. For most of the

examples tried, complete covers could be generated. For some, complete covers were too

large and partial covers had to be generated, but were found to be quite effective for test

pattern generation. In most cases, cover enumeration took a small fraction of the total test

generation time. However, there exist circuits for which even partial cover generation can

take a significant amount of time and memory (e.g., xor trees, combinationalmultipliers).

Covers of the circuit when a fault is present axe extracted using the same procedure, except

that the faulty line is always assumed to have the corresponding stuck-at value.

As mentioned earlier, for certain circuits, it might not be possible to generate and

store the complete covers. In certain cases, even when complete covers can be generated,

the user might be interested in using only partial covers because of memory restrictions.

For all circuits, a bound is set on the memory and CPU time required to enumerate the

covers of each PO and NS line. As soon as the bound is reached, cover extraction for the

particular PO or NS is aborted and a new PO or NS line is considered. Note that the

inability to generate complete covers or even a good partial cover will limit the applicability

of this approach to very large circuits.

Given a fault for which a test sequence has to be generated, the first step in sequen

tial test generation is to derive an excitation vector using combinational test generation.

The circuit is considered to be combinational with inputs being the Pis and the PS lines

and the outputs being the POs and NS lines. A cube test vector is generated having as

many don't-care entries in the present-state part as possible, because state justification is

easier for states represented by large cubes. Combinational test generation is based on the

decision tree concept of the test pattern generation algorithm PODEM. It uses 9-valued

simulation as used in [105]. The fault is first excited by setting the faulty wire to a value

2.4. COVER EXTRACTION AND COMBINATIONAL TEST GENERATION

ON-set

11-- 10 0-

10 11 10 10

0-11 0 - 0 -

0-10

OFF ON

Decision Tree

Figure 2.5: Cover enumeration example

27

different from the faulty value. At first, this value is justified by setting some of the inputs

to the combinational logic block. The algorithm then tries to propagate the effect of the

fault to the primary outputs, failing that it tries to propagate the effect of the fault to

the next-state Hnes. If the fault is combinationally redundant, then the effect of the fault

cannot be propagated to either the NS or PO lines. Since the goal is to generate a maximal

cube for the PS lines, all NS and PO lines may not be set to a 1 or 0 at the end of test

generation — some lines may still be left unknown.

If a new test has to be generated because the previous excitation state could not

be justified, then the new excitation state should be disjoint from the previous excitation

state, i.e., it should not intersect the previous excitation state. Thus, for a particular fault,

each test generated has an excitation state that is disjoint from all previous excitation states

28 CHAPTER 2. TEST GENERATION FOR SEQUENTIAL CIRCUITS

Nt (ON) Ni (OFF) N2 (ON) N2 (OFF)
0-0 1-0 1-0 0 0-

00- 10- -1- -01

111 Oil

Figure 2.6: ON and OFF-sets for NS lines of example machine

for which justification failed. This is performed by setting a state variable to a different

value in the backtracking process.

2.5 Justification

The present-state part of the combinational test vector is the excitation state S\.

Combinational test generation produces a test vector with as many don't-care entries in

the present-state part as possible. Therefore, the excitation state is generally a cube state.

Any minterm state in the group of states S\ has to be justified. If the reset state R is

already covered by Si, then the fault can be excited from the reset state and a justification

sequence is not needed.

The state justification algorithm first attempts to find a single-vector justification

sequence from the reset state R of the machine to any of the states (minterms) in S\. If

complete covers of the next-state lines axe available, the entire fanin of S\ can be found

via cube intersections. S\ is represented as a bit-vector with 0, 1, and — (don't-care)

entries. If the position corresponding to a PS line has a 1 (0), the ON-set (OFF-set) of the

corresponding NS line is picked. Bit positions with - axe ignored. The intersection of the

ON and OFF-sets of the NS lines picked gives the fanin edges (both PI and PS vectors)

to the states in Si. The intersection can be computed dynamically, checking each cube,

c, produced to see if the PS part of the cube covers the reset state R. If such a cube(s)

is found, a single-vector justification sequence from R to Si is obtained. The justification

sequence corresponds to the PI part of the cube c. In Figure 2.6, the covers of the ON-set

and OFF-set for the two NS lines for the machine of Figure 2.2 axe shown. In trying to

justify state A (code 01), the OFF-set of the first NS line and ON-set of the second NS

2.5. JUSTIFICATION 29

line axe intersected, and the cubes in the intersection (Figure 2.7) axe the fanins of state

A. The first and the second cubes in the fanin contain the reset state, and a single-vector

justification sequence for state A is {1}.

If the reset state is not covered by any state in the fanin, then a single-vector

justification sequence does not exist for any of the states in Si. Thus, an N-vector sequence

with N > 1 has to be found. This is achieved by heuristically selecting a cube state 52

which exists in the fanin of Sa and attempting to justify some minterm state in 52 using a

single-vector justification sequence. The fact that Si can be a cube state implies an implicit

traversal of the STG of the machine.

While inspecting each cube c formed from the intersection of the ON and OFF-

sets, the largest cube (cube with most don't-careentries) that is not coveredby Si and which

is not already in the potential justification path is picked to be 52. The first condition is

required, since if S2 C Si, then all states in the fanin of 52 axe also in the fanin of Si, and

a single-vector justification sequence does not exist for 52. Also, to prevent cycles during

justification, the state selected should not be in the potential justification path built so fax.

For example, to justify state C, the ON-sets of both the NS Hnes have to be intersected.

The fanins of C contain only two cubes, which axe {010, 111}. Since C has the code 11, the

only cube in the fanin that can be chosen is the cube 010. The state with code 10 is state

B, and the justification process can be repeated for state B giving the final justification

sequence {0,0}.

In general, the excitation state is a cube state which might contain some valid as

well as invalid states. The fanin of the excitation state contains all states that can reach

any minterm state covered by the cube state. If the reset state is covered by some state in

the fanin, then it means that one or more of the excitation states axe reachable from the

reset state. The exact state reachable can be found by simulating the justification sequence.

Therefore if a justification sequence for a cube state is found, it does not mean that all states

in the cube state are justifiable. While reusing justification sequences, this fact has to be

considered. Whenever a new state has to be justified, it is checked to see if it covers any

of the states that have been justified. If so, the justification sequence for that state can

be used. In fact, the first step in justification is to make this check before generating the

justification sequence.

Many primary inputs in the justification sequence are don't-cares. By setting

these entries to different 1 or 0 values, different justification sequences to different minterm

30 CHAPTER 2. TEST GENERATION FOR SEQUENTIAL CIRCUITS

Nx (OFF) N2 (ON) Fanins

1-0 1-0 1-0

10- n - 1 - 10 0

0 11 110

0 1 1

Figure 2.7: Justifying state A

excitation states can be found. During test generation, all possible assignments of 1 or 0 to

the don't-care inputs have to be looked at, if necessary. In practice, it is seldom necessary

to look at more than one or two such assignments.

The process of finding the justification sequence, as illustrated here, is a mixed

depth-first/breadth-first method. This is because at each step all fanins of the current

state being justified axe found. Then one of the cube-states in the fanin is selected and

all the fanins for the states contained in the cube-state are found. This method can be

easily modified to do a complete depth-first or a complete breadth first search. In the

complete depth first seaxch, only one cube in the fanin is generated at a time. Then the

corresponding fanin state is justified. This method has the advantage of using less memory,

but could produce long test sequences and may take a longer time to find justification

sequences. On the other hand, in the complete breadth-first method, at each step the fanin

of all the states in the fanin of the excitation state is calculated. This obviously requires

more memory, but guarantees the shortest justification sequence. In practice, it has been

found that the mixed depth-first/breadth-first procedure produces the best result in terms

of test generation time and the length of the test vector.

The justification sequence that is constructed is valid under fault-free conditions

because the covers of the fault-free circuit were used to derive it. This sequence may be

invalid under faulty conditions. If a justification sequence is invalid under faulty conditions,

it means that the effect of the fault has already been propagated to the NS Hnes or the POs.

Empirical evidence gathered to date has shown that over 99% of the time, in real circuits, a

justification sequence valid in a fault-free machine is also valid in the faulty machine or is in

itself a test sequenceioi the fault. Consider the unlikely event that a justification sequence is

2.5. JUSTIFICATION 31

Figure 2.8: Fault-free state justification

neither valid in the faulty machine nor a test sequence in itself. This situation is depicted in

Figure 2.8, where the fault-free justification sequence takes the correct machine along path

A-*B->C-*l)-*£, but takes the faulty machine along path A-* B —• C —> T —> Q.

The fanout edge of state C is corrupted, and therefore, a part of the justification sequence,

namely, the part that takes the machine from A to C, is a correct justification sequence.

Also states V and T correspond to the new true/faulty state pair. The fault simulator is

used to derive the correct justification sequence and the true/faulty state pair.

All cubes axe represented as bit vectors which makes storage and operations on

cubes very efficient. Data structures used for representing cubes and covers are similax

to those used in ESPRESSO [16]. Using proper bit notations for Os, Is, and —'s, cube

intersection can be performed efficiently by bitwise AND operations. The cubes in each

cover axe ordered so that the cubes that cover the reset state are before those that do not.

This helps in finding a fanin state that covers the reset state as early as possible. Cubes axe

also sorted so that the larger ones are placed before the smaller ones. This helps in finding

32 CHAPTER 2. TEST GENERATION FOR SEQUENTIAL CIRCUITS

J ustifyJState(State)
{

if (Reset State covered by State)
return (FOUND);

/* Check if information can be re-used */
if (State is already justified)

return (FOUND);
/* Fanins is all the fanins of the excitation state */
Fanins = universal cube]
for (each PS line that is a 1 or 0){

Fanins = Fanins D (ON or OFF set of corresponding NS line);

}
if (Reset State covered by some state in Fanins)

return (FOUND);
/* Pjs is the potential justificationsequence */
while (there axe still cubes in Fanins){

/* Select state amongst the state in Fanins so that it is not covered by State
and so it is not in the potential justification sequence Pjs */
FaninState = select_state();
if (FaninState is found){

Pjs = Pjs U FaninState;
J ustifyJState(FaninState);
if (Justification Sequence is found){

return (FOUND);
}
else{

Pjs = Pjs —faninjstate;

}
}

}
return (NOTJPOUND);

}

Figure 2.9: Justification algorithm

the largest cube in the fanin easily.

The pseudo-code for the justification algorithm is given in Figure 2.9.

2.6. STATE DIFFERENTIATION 33

2.6 State Differentiation

This is the third and the final step in test generation and is required if the initial

combinational test vector generated for the fault under test propagates the effect of the

fault only to the NS lines.

Typically, in sequential test pattern generators, a propagation sequence that prop

agates the effect of the fault to the POs is found using a test generation algorithm like

PODEM on multipletime-frames (or clock cycles) usingthe iterative-array model [21]. The

first vector in this sequence propagates the effect of the fault only to the NS lines. Since the

fault is present in each time-frame, propagation from the PS lines of the second time-frame

to the POs of the second time-frame is attempted under faulty conditions (to take into

account the multiple-fault effect corresponding to the presence of the fault in each time

frame).

Since a fault typically modifies a few edges in the STG, a method of fault-free state

differentiation is used. However, if a fault-free state differentiating sequence is not found or

if such a sequence is not a valid sequence under faulty conditions, then state differentiation

is performed considering the effect of the fault in all time frames.

In the general case, differentiation is attempted between disjoint groups of states

rather than a minterm state pair. The existence of a differentiating sequence between two

groups of states means that if any state A from the true group is chosen along with a

correspondingstate A' from the faulty group, then the differentiating sequence will be able

to differentiate between the states A and A'. Since this is a strong requirement it is often

impossible to find a differentiating sequence between the state groups. This does not mean

that a test for the fault does not exist. To find a test, it is necessary to set the unspecified

inputs in the justification sequence to either 1 or 0 and then fault simulate the sequence to

find the true and faulty state pairs. Differentiation is then attempted between the minterm

state pairs. All possible assignments to the unspecified inputs have to be made before it

can be concluded that a test for the fault under consideration does not exist. At first, an

attempt is made to find a fault-free differentiating sequence for the true/faulty state pair.

If it is not found, then the faulty covers axe extracted and differentiation is once again

attempted with the true and faulty covers.

After justification, the true/faulty state pair (SiT, SiF) given by the excitation

vector has to be differentiated. In reality, SiT is a state in the fault-free machine and SiF

34 CHAPTER 2. TEST GENERATION FOR SEQUENTIAL CIRCUITS

Ni (ON) Ni (OFF)
0 10 - 0 0

- 0 1 1-0

1-1 Oil

Figure 2.10: ON and OFF-set for PO of example machine

is a state in the faulty machine. It is assumed initially that Si and Si axe states in the

fault-free machine and a differentiating sequence for them is obtained. Note that SiT and

SiF are guaranteed to differ in at least one bit.

State differentiation can be performed using the complete or partial covers of the

POs and the NS lines. The procedure for single-vector differentiation is as follows:

1. Pick a (new) output.

2. Inspect the covers of the ON-set and OFF-set of the output and seaxch for a PI

combination, ti, which appears concatenated with SiT (or c D SiT) in the ON-set

and concatenated with SiF (or c D SiF) in the OFF-set (or vice versa). If such

an input combination is found for some output, then a fault-free state differentiating

sequence can be constructed. Exit with the input combination. If not, a single-vector

state differentiating sequence cannot be found for (SiT, SiF). If the true and the

faulty covers of the circuit axe used, then the ON-set of the true machine is used

together with the OFF-set of the faulty machine (and vice versa) instead of using the

ON-set and OFF-set of the true machine, as outlined above. For example, consider

the machine shown in Figure 2.2. One true/faulty state pair is the pair {B,A}. The

ON and OFF-set of the only output axe shown in Figure 2.10. The second cube in

the ON-set of the output contains state A and the second cube in the OFF-set of the

output contains state B. Also, the cubes have a common input minterm, which is 1.

Therefore a single-vector differentiating sequence can be found between A and B.

Multiple-vector differentiating sequences can be searched for in the following fashion. N

is the number of vectors in the current sequence. Note that the procedure uses depth-first

seaxch.

2.7. IDENTIFICATION OF REDUNDANT FAULTS 35

3. N = 1.

4. Pick a NS line and attempt to find a PI vector (using the method outlined in Step

2 above), In, that produces a 1 (0) when concatenated with 5jvT and a 0 (1) when

concatenated with Snf. Try another NS line if a vector cannot be found for the one

that was picked. If an input combination cannot be found for any such NS line, then

a differentiating sequence cannot be found for (Snt, Snf).

5. Find by simulation or cube intersections the state pair (5//+iT, Spj+iF) which is

the fanout state pair of the state pair (Snt, Snf) for the PI vector ipj. Now set

N = N + 1. Attempt to find a single-vector propagation sequence for the state pair

(5jv+it, Sn+iF)-

The procedure attempts to find a single-vector sequence, then a two-vector sequence, and

so on. The NS lines axe selected in a heuristic order that uses topological information about

the location of the fault with respect to the different NS lines and POs. Only NS lines that

axe in the transitive fanout-cone of the line on which the fault resides axe chosen. Also, the

NS lines that axe closest to the fault axe chosen first. The rationale behind this choice is

that if the NS line is close to the faulty line, it will be easier to propagate the effect of the

fault to that NS line.

Since the justification and differentiation procedures axe based on cube intersec

tions, the cover sizes determine the time required for justification and differentiation. For

circuits with very large covers, justification and differentiation can take a long time. Also,

the mixed depth-first/breadth-first approach usually produces test vectors that axe longer

than the minimal length test vector that can be obtained for a fault.

2.7 Identification of Redundant Faults

The difficulty in sequential test generation lies not only in the generation of tests

for difficult-to-detect but testable faults, but also in the identification of redundant faults.

Low fault coverage on certain circuits does not necessarily mean that the test generator

is inadequate, if it can be shown that the fault coverage is dose to the maximum possible

value. In general, identification of redundant faults may require astronomical amounts of

CPU time as the total input and state space has to be enumerated before a fault can be

pronounced redundant. As defined in Section 2.1, there axe two classes ofredundant faults -

36 CHAPTER 2. TEST GENERATION FOR SEQUENTIAL CIRCUITS

combinationally-redundant and sequentially-redundant. Combinationally-redundant faults

axe detected during combinational test generation and axe easier to find than sequentially-

redundant faults. Sequentially-redundant faults (SRFs) can be divided into invalid-SRFs,

equivalent-SRFs and isomorph-SRFs. Detailed definition and examples of these faults

axe provided in Chapter 4. Brief definitions axe presented here. A fault is said to be an

invalid-SRF if for all possible combinational tests for the fault, none of the excitation states

axe valid. Similarly, a fault is said to be an equivalent-SRF if none of the true and faulty

state pairs have a differentiating sequence. In the third kind of sequentially-redundant fault,

namely, isomorph-SRF, the STG of the faulty machine is isomorphic to the STG of the true

machine (cf. Chapter 4).

It is possible to detect a subset of the sequentially-redundant faults (namely the

invalid-SRFs) using Theorem 1 of [90]. This theorem states that if all excitation states for

a fault axe invalid states in the fault-free machine, then the fault is sequentially redundant.

The same theorem is used here for the detection of invalid-SRFs. However, the conditions

of Theorem 1 axe verified differently. A state (or group of states) cannot be justified if

the total number of fanin cubes determined during the justification procedure is zero or if

all the fanin states of the state axe unjustifiable. Also, a group of states is unjustifiable

if the fanin states of all states in the group are states within the group, and the reset

state is not a member of the group. Such groups of states can be identified during the

justification procedure. An unjustifiable state is a state that cannot be reached in the true

machine (invalid state). All possible combinational tests for a fault axe generated with

disjoint excitation states. If all the excitation states axe unjustifiable, then the fault under

test is redundant. If complete covers axe available, then given enough, time, all unjustifiable

states in the machine can be detected. Even when complete covers of every next-state line

axe not available, if the covers necessary to find the justification sequence are complete, it

might be possible to establish sequential redundancies. In the next section it is shown that

it is possible to establish, redundancy for a larger fraction of undetected faults using the

approach outlined above as opposed to the method of [90].

It is also possible to detect equivalent and isomorph-SRFs. If a fault-free differ

entiating sequence is not valid or is not found, then the test generator extracts the faulty

cover of the circuit and attempts to find a differentiating sequence using the true and the

faulty covers of the circuit. This is performed using the procedure outlined in Section 2.6.

If a differentiating sequence cannot be found using this procedure, then it can be concluded

2.8. TEST GENERATION RESULTS USING STEED

CKT #Inp #Out #Gate #Lat #Faults

cse 7 7 192 4 519

sse 7 7 130 6 368

planet 7 19 606 6 1482

sand 9 6 555 6 1425

scf 27 54 959 8 2456

mult4 9 9 170 15 336

sbc 40 56 1011 •28 1985

stage 131 64 2700 64 7227

key 62 48 1342 56 8520

pewd 117 101 1873 112 3483

dsip 228 197 3654 224 6781

37

Table 2.1: Statistics for example circuits

that the true and faulty state pairs axe not differentiable. If for all possible combinational

tests for the fault the true and faulty state pairs axe not differentiable, then the fault is

sequentially-redundant. Identification of such redundancies is potentially very expensive,

as it might require the enumeration of the entire STG of the true and the faulty machines.

2.8 Test Generation Results Using STEED

The test generation algorithm described in the previous sections has been imple

mented in the program STEED. It consists of about 10,000 Hnes of C code and runs in a

VAX-UNIX™ environment.

Results and time profiles using STEED for eleven finite state machines that axe

described in Table 2.1 axe given in Tables 2.2 and 2.3 respectively. In Table 2.4, comparisons

axe made with STALLION [90] and the test generator CONTEST described in [l]. In

the tables m and s stands for minutes and seconds, respectively. For each example in

Table 2.1, the number of inputs (#Inp), number of outputs (#Out), number of gates

(#Gate), number of latches (#Lat), and number of non-equivalent faults for which tests

have to be generated(#Faults) axe shown.

The first five examples axe finite state machines obtained from various industrial

sources. The example sbc is a snooping bus controller in the SPUR chip set. Examples

stage and key axe finite state machines in a data encryption chip. For the examples dsip

and key, which have extremely large STGs, STALLION is unable to establish sequential

38 CHAPTER 2. TEST GENERATION FOR SEQUENTIAL CIRCUITS

CKT

#Test
Seq. #Vec

Max.

Seq.
Len.

Success

(%)

Fault

Cov.

(%)

Red.

fault

(%)

TFC

(%)

Mem

(Kb)
TPG

time

cse 83 397 9 98.0 99.61 0.39 100.0 1.2 29.5s

sse 52 336 11 100.0 80.98 19.02 100.0 0.8 25.1s

planet 57 1046 28 100.0 96.56 3.44 100.0 2.7 5.85m

sand 109 722 33 95.0 92.77 6.66 99.43 7.6 7.77m

scf 164 2400 24 95.0 93.81 5.00 98.81 18.1 57.58m

mult4 9 94 46 100.0 98.51 1.19 99.70 3.3 11.9s

sbc 102 1364 31 95.0 95.42 3.22 98.64 118.7 75m

stage 58 155 19 100.0 92.36 7.64 100.0 3328.0 50.87m

key 454 1669 17 100.0 94.75 5.25 100.0 44.7 419m

pewd 11 221 28 100.0 100.0 0 100.0 108.1 6.58m

dsip 8 212 39 100.0 99.99 0.01 100.0 404.0 25.8m

Table 2.2: Test generation results for circuits

CKT Cover

Enum.

Justify Differ Test

Generation

Fault

Simulation

Miscell.

Set up
Total

Time

cse 0.6s 0.6s 0.7s 4.4s 24.3s 0.2s 29.5s

sse 0.3s 0.8s 0.3s 10.7s 13.9s 0.2s 25.1s

planet 1.9s 3.0s 3.0s 36.9s 311.9s 0.7s 5.85m

sand 3.5s 8.8s 48.8s 4.54m 3.16m 0.7s 7.77m

scf 8.7s 2.29m 4.28m 10.63m 47.01m 1.2s 57.58m

mult4 1.4s 3.5s 0.01s 4.59s 5.12s 0.2s 11.9s

sbc 1.71m 21m 26m 50m 23m 1.4s 75m

stage 3.38m 15.3m 0.0s 27.3m 20.07m 10.1s 50.8m

key 21.3s 21.27s 174.75s 59.0m 354.6m 6.8s 419m

pewd 31.9s 0.23s 8.0s 9.49s 5.18m 2.3s 6.58m

dsip 120.2s 0.34s 12.8s 14.9s 23.46m 5.1s 25.8m

Table 2.3: Time profiles for example circuits

redundancy for faults but STEED can.

In Table 2.2, the number of test sequences (#Test Seq.), the total number of test

vectors (#Vect), the maximum test sequence length (Max. Seq. Len), the percentage of

times when a potential test sequence generated for a fault actually detected the fault (/^Suc

cess), the fault coverage (Fault Cov.), the percentage of provably redundant faults (Red.

Fault) (using the redundancy identification procedure), the total fault coverageincluding

detected and provably redundant faults (TFC), the total memory required for storing the

covers (Mem) in kilo-bytes, and the time required (TPG Time) on a VAX 11/8800 axe

2.8. TEST GENERATION RESULTS USING STEED

CKT CONTEST STALLION STEED

TFC Time TFC Time TFC Time

cse — — 100.0 32.8s 100.0 29.5s

sse 99.56 291s 99.8 26.6s 100.0 25.1s

planet 98.42 52m 99.95 6.58m 100.0 5.85m

sand - - 99.36 12.2m 99.43 7.77m

scf — - 98.23 59.9m 98.81 57.58m

mult4 97.41 838s 99.21 42.4s 99.70 11.9s

sbc - — 98.34 80.0m 98.64 75m

stage — - 100.0 154m 100.0 50.8m

key — - 35.95 > 900m 100.0 419m

pewd - - 100.0 117m 100.0 6.58m

dsip — - 99.99 350m 100.0 25.8m

Table 2.4: Comparisons with STALLION and CONTEST

39

shown for each example. For the example stage, it was not possible to store the entire

cover, and only parts of the cover were generated. For this example, all redundant faults

were combinationally-redundant, and the partial covers were as effective as total covers for

test pattern generation. The quality of test patterns is determined by the total amount of

test data (bits) that have to be stored in the tester and the time required to apply these

vectors to the circuit under test. The total number of test vectors suggest that the amount

of test data is within reasonable limits for these circuits.

CPU times for enumeration of covers, justification, differentiation, total test gen

eration, fault simulation, miscellaneous setup operations, and for the entire test generation

process are given in Table 2.3. The test generation time includes the time required for jus

tification and differentiation. It is noteworthy that justification and differentiation, which

axe traditionally the bottlenecks in sequential test pattern generation, take a small fraction

of the total test pattern generation time for most of the examples.

The fraction of time spent in cover enumeration is very small, much smaller than

the corresponding time required for even partial STG enumeration in STALLION. Test

generation times axe in most cases small, and fault simulation dominates the total test

generation time. A better fault simulation algorithm can help in decreasing the time re

quired for test pattern generation. It is worthwhile to note that the success rate, i.e., the

percentage of times that a potential fault-free test sequence is valid, is 100% for the larger

examples.

40 CHAPTER 2. TEST GENERATION FOR SEQUENTIAL CIRCUITS

CKT #Scan design
Testing Cycles

#Non-scan design
Testing Cycles

cse 368 397

sse 486 336

planet 834 1046

sand 1290 772

scf 2008 2400

mult4 420 94

sbc 4536 1364

stage 9216 155

key 26208 1669

pewd 5376 221

dsip 12096 212

Table 2.5: Number of clock cycles needed for testing

In Table2.4, total test generationtime (Time)and fault coverage (TFC) of STAL

LION [90], CONTEST [1], and STEED are compared. As can be seen, this test generation

technique obtains close to the maximum possible fault coverage in all the examples. It

takes significantly less time than STALLION [90] and CONTEST [l] to achieve the same

fault coverage. For the large examples, significant speed-ups were obtained. The results for

STALLION shown here have been derived using a newer and improved version of the pro

gram that uses better fault collapsing and hierarchical STG enumeration. Thus the results

quoted here for STALLION reflect an improvement over those in [90].

To determine the quality of the test patterns, the time required for the application

of the test patterns have to be evaluated. In Table 2.5, the times for testing the sequential

circuits using the popular Scan approach and the non-scan approach used here axe com

pared. The number of clock cycles required for non-scan testing is equal to the number of

test vectors required. For scan design, it is the total number of combinational test vectors

multiplied by the number of latches in the circuit. For the large examples, testing is con

siderably faster for non-scan design than it is for scan design, anywhere between a factor of

4 to 60 times.

Finally, the results on a subset of the ISCAS-89 benchmarks [23] axe presented in

Table 2.6. For each example, the number of test vectors required, the memory required to

store the covers, the percentage of provably redundant faults, and the total fault coverage

including the detected as wellas the provably redundant faults is shown. The time required

2.8. TEST GENERATION RESULTS USING STEED

CKT

#Test
Vec.

Memory
(Kbytes)

Red.

Fault

(%)

TFC

(%)

TPG

time

s27 23 0.086 0.00 100.00 0.2s

s208 195 0.330 26.51 97.02 12.5s

s298 280 0.681 11.36 99.02 17.7s

s344 125 3.354 1.50 100.00 15.7s

s349 120 3.354 2.10 100.00 16.9s

s382 1633 3.771 4.50 95.23 66m

s386 238 0.740 18.20 100.00 11.3s

s400 409 4.161 5.89 95.75 60m

s420 808 0.836 43.72 91.16 22m

s444 994 3.186 7.17 95.56 1.66h

s510 733 1.230 0.00 99.82 19.8s

s526 2037 1.755 14.41 90.99 53m

s526n 2287 1.755 14.10 90.95 52m

s641 327 39.505 6.90 93.08 8.5h

s713 315 43.335 11.53 93.11 8.7h

s820 1304 4.374 4.17 100.00 6m

s832 1344 4.338 5.80 99.65 6m

s838 290 2.508 43.87 80.50 75m

s953 1050 4.408 0.90 100.00 86s

S1196 545 98.730 0.00 98.71 3.4h

sl238 576 99.012 5.00 98.96 3h

S1423 4026 503.98 0.00 56.43 9h

S1488 1310 2.920 2.60 100.00 400s

S1494 1374 2.942 3.38 100.00 440s

S5378 1037 712.67 30.25 99.25 lOh

Table 2.6: Test generation results for ISCAS sequential benchmarks

41

for test pattern generation is shown in the last column. For all examples except sl423 and

s5378, complete covers were generated. None of the ISCAS-89 benchmark examples have a

specified reset state. It is difficult to conjecture what the correct reset state for each of the

examples could be, given only the logic-level description of the circuits. The fault coverage

obtained and the test pattern generation time is very much dependent on the reset state

of the machine. If an invalid state is chosen as the reset state, only a small portion of the

State Transition Graph of the original machine will be exercised, thereby producing a large

number of redundant faults. Stemming from the lack of information about the functionality

of the circuits, for each example, a vector of all zeros was assumed to be the reset state.

42 CHAPTER 2. TEST GENERATION FOR SEQUENTIAL CIRCUITS

This could be a very bad choice for some circuits, notably, the circuit s5378. It has a very

large number of sequential redundancies, assuming a reset state of all zeros, which were

identified. For some examples, where the entire covers cannot be generated, e.g., sl423,

the lack of proper reset state information is largely responsible for the poor fault coverage.

The high percentage of redundant faults shows that the corresponding circuits were either

not optimally designed or that the choice of reset state was a poor one. The size of the

total test vector set for each example shows that the tests axe of acceptable quality. For the

examples in the benchmark set that are not mentioned here, covers could not be generated

due to lack of memory.

2.9 Conclusions

A novel approach to test generation for sequential circuits using selective state

transition graph enumeration and fault-free justification and differentiation heuristics has

been presented. Fault-free justification and differentiation can be performed much more

efficiently than the same under faulty conditions since information can be reused. Further,

selective enumeration of the STG using the intersection of sum-of-product forms, which

forms the basis for justification and differentiation, can be performed efficiently using so

phisticated data structures. (Other representations, e.g., Binary Decision Diagrams can be

used instead of covers and is the subject of ongoing work). Splitting the sequential test

generation problem into three subproblems, rather than the traditional two, also improves

efficiency by enabling the use of parts of the justification and differentiation sequences.

These factors combine to give up to fifteen times improvement in performance over previ

ous approaches for large sequential machines. Experimental results also show that faults

that require long input sequences axe handled efficiently. This approach has been used to

successfully generate tests for finite state machines with a large number of latches within

reasonable amounts of CPU time, and close to the maximum fault coverage has been ob

tained. It has been demonstrated that this approach requires significantly smaller time

than the test generator described in [90] and [1] while maintaining or improving fault cov

erage. It was also demonstrated that a larger class of sequentially redundant faults can be

determined during test generation.

Despite these advantages, this approach has some drawbacks. The major drawback

is the memory required to store the covers for the PO and NS lines. For a class of large cir-

2.9. CONCLUSIONS 43

cuits, partial covers axe not effective for test generation. Though this approach can handle

larger circuits than previous approaches, the larger circuits in the ISCAS sequential bench

mark set and complete chips axe still out of reach. In some cases, very short justification

or differentiating sequences exist, but using the mixed depth-first/breadth-first approach,

longer length sequences axe found. To solve the problem of size, a different approach that

uses register-transfer level descriptions for generating justification and differentiating se

quences can be used, and is the subject of the following chapter.

Chapter 3

SEQUENTIAL TEST

GENERATION USING RTL

DESCRIPTIONS

The test generation algorithm described in the previous chapter used novel ideas

to improve the efficiency of test generation for sequential circuits. The main drawback of

the approach is that complete covers cannot be generated for very large circuits. Though

partial covers axe adequate for test generation for certain circuits, for a class of large circuits

it is not possible to obtain high fault coverage using partial covers. Also, with the increase

in cover sizes, the time taken to perform all the intersections increases, thereby increasing

the time required for justification and differentiation. To date, there is no known way of

generating partial covers so that they can be made as effective as complete covers for test

generation. Though the approach presented in Chapter 2 was shown to be more efficient

than previous approaches, there is still a need for test generators that can handle large

circuits, especially entire chips.

In most cases, large designs can be divided into a control portion and a datap

ath portion. The datapath portion performs all the data processing operations under the

supervision of the control portion. The major part of most real-life chips is the datapath

which contains adders, registers, etc. The control portion is usually a finite state machine.

The entire circuit (datapath and control) can be thought of as one finite state machine or

as a set of interacting finite state machines. An important characteristic of many datapath

44

3.1. PRELIMINARIES 45

portions of large circuits is the presence ofarithmetic modules. The arithmetic properties

of these modules can be exploited to generate tests efficiently.

Large circuits axe often synthesized from their high-level or behavioral descrip

tion. As pointed out in Chapter 1, an intermediate representation that is often used is the

Register-Transfer Level (RTL) description (e.g., [113]). At this level, the circuitis described

as an interconnection of well-definedmodules. The logic-leveldescription of the circuit could

be hugeand cumbersome to manipulate, but the RTL description is often small and easier

to manipulate. These properties and some algebraic properties of arithmetic modules in

the RTL description can be used to generate tests for circuits described both at the RT and

logic level.

The rest of this chapter is organized as follows. In Section 3.1, definitions and some

new notions in RTL test generation are presented. Previous work is reviewed in Section 3.2.

The global test generation strategy is presented in Section 3.3. State justification, indexed

backtracking, conflict resolution, and differentiation axe the topics of Sections 3.4, 3.5, 3.6,

and 3.7. Results and conclusions axe presented in Section 3.8 and Section 3.9 respectively.

3.1 Preliminaries

In a typical design process, as illustrated in Section 1.1, the designer starts with a

behavioral description of the circuit and converts it into a structural description, which is

an interconnection of well-defined modules like adders, multipliers, multiplexors, registers,

finite state machines, etc. A description of the system in terms of such modules is called

the Register-Transfer Level or RTL description. Note that the RTL description might

contain arbitrary combinational and sequential functions as modules. These modules axe

said to be well-defined because either a Truth Tableor a State Transition Graphis associated

with such modules. The RTL description is converted into an interconnection of logic gates

that is finally implemented. The implementable description is also called the gate-level or

the logic-level description.

As in the test generator of the previous chapter, a gate-level fault model is used. A

portion of the work required for test generation is performed at the gate level and the rest is

performed at the RT level. Therefore, it is frequently necessary to move from the logic level

to the RT level and vice versa. Wires at the RT level could be single wires or buses, and

therefore they correspond to multiple logic-level wires. In the test generation procedure to

46 CHAPTER 3. SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS

be described, it will be necessary to maintain a correspondence between single wires or buses

at the RT level and wires at the logic level. This correspondence is required only for the

wires corresponding to primary inputs, present-state lines, primary outputs, and next-state

lines. Correspondence between intermediate wires is neither necessary nor desired. This

is because logic-synthesis tools may alter the structure imposed by the RTL description of

the circuit so that certain intermediate wires might disappear and some new ones might

appear. Integers axe used as the data type to represent values on wires at the RT level and

Boolean values axe used at the logic level. Therefore, moving from the RT level to the logic

level and back involves the translation of numbers from one radix to another, namely,

decimal to binary and vice versa. There is an important issue in translation, especially of

negative integers. If a circuit consists only of adders and arbitrary Boolean functions, then

during translation the particular encoding of the integer (either as Ts-complement or 2's-

complement) does not matter. However, if a circuit contains multipliers, since multipliers

axe built for a certain encoding, that encoding has to be used during translation. Also, the

underlying encoding limits the range of integer values on an RTL wire. For example, for a

circuit that consists of a single 3-bit multiplier that uses 2's-complement, the input wires

will have a range of —4 to 3 and the output wire will have a range of —16 to 15. For all

circuits with arithmetic modules, the same encoding that is used for integers in the circuit

is used during translation and to determine the range of integer values on all RTL wires.

Consider the circuit shown in Figure 3.1. Assume that wire g has a certain value

and module A is an adder. To justify the value on wire g is to find an assignment of

values to wires 6 and c so that their values add up to the value on wire g. In this example,

initially, wires 6 and c axe free to take any value. However, once either 6 or c is assigned a

value, the other wire is forced or bound to take a fixed value in order to justify the value

on g. A wire in the circuit is said to be free if it can take more than one value without

causing any conflicts. A wire that is not free is said to be bound. In other words, a wire

is said to be free if its value cannot be uniquely imphed, either by forward or backward

implication. Implication, as will be seen later, is performed each time a wire is assigned a

value. A conflict is defined to be a situation where a particular wire (called the primary

wire of the conflict) is required to have twoor moredifferent values simultaneously in order

to justify the values on other wires (these wires axe said to be forcing requirements on the

value of the primary wire and axe called the secondary wires of the conflict). For the

circuit of Figure 3.1, assume that wires h and i have the values 20 and 1 respectively. Let

3.1. PRELIMINARIES 47

Figure 3.1: An example RTL description

module B be a multipUer and module C be a comparator. Assume wires d and / were

assigned the values 4 and 16 respectively. In order to justify the value on wire h, wire e is

required to have the value 5, but to justify the value on wire i it is required to have a value

greater than 16. This is a conflict with wire e as the primary wire and wires h and i as the

secondary wires. In the circuit of Figure 3.1, assume that wires n, o, and p have values on

them that have to be justified. Wire m is unimportant and can assume any value. Initially,

wires j, k, I, and a axe free. Assume that wire / is assigned a value. This forces wire k

to have a fixed value in order to justify the value on wire p. Therefore wire k is bound.

Forcing k to have a fixed value also forces wire j to have a fixed value. Wire k is said to be

directly bound by the free wire /, while wire j is said to be transitively bound. Note

that wire a is not bound because the value on m is not important. If wire m were to have

48 CHAPTER 3. SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS

a value that had to be justified, a too would have been transitively bound by /.

Consider a path from the input / to the output p consisting of wires i and /, in

the example shown in Figure 3.1. To propagate a value on / to the wire p, three modules

have to be encountered, namely C, F, J. The other inputs to these modules axe called the

side-inputs to the path, and they axe e, h, and k.

The fanout of a gate G is defined as the set of gates that use the value generated

by the gate Q. The transitive fanout of G is defined recursively as follows. If G is a

gate generating only a primary output, then its transitive fanout is the null set. Else, the

transitive fanout of G is the union of the fanout of G and the transitive fanout of every

element in the fanout of Q. The fanin of a gate G is defined as the set of gates whose

output value is used by the gate G. The transitive fanin of G is defined recursively as

follows. If Gis a gate whose inputs axe only primary inputs, its transitive fanin is the null

set. Else, the transitive fanin of G is the union of the fanin of G and the transitive fanin of

every element in the fanin of G. Similar terms can be defined for a wire in the circuit. For

any wire that is an input to a module(s), the co-fanin of the wire is defined as the set of

wires that axe also inputs to the same module(s), e.g., the co-fanins of e axe d and /.

As in the previous chapter, it is assumed that the circuit has a reset state. If the

circuit is simulated with the PS Hnes set to the reset state of the circuit and the primary

inputs set to unknown, some wires in the circuit might get set to a known value. This

value is called the reset value or guide value for the wire. Wires which do not get set

to a known value during this simulation do not have a reset value. For any RTL module,

forward and backward implication (or justification and differentiation) is performed using

the description of the module. If the module has an associated operator, the algebraof the

operator is used. Otherwise, the Truth Table of the module is used. This implies that if

a large number of modules are arithmetic, then the time taken for implication is relatively

smaller.

The assumptions about the sequential circuit for which test patterns have to be

generated axe the same as in the previouschapter. For the easeof reading, they axe repeated

here.

1. The machine is assumed to have a reset state, R. All test sequences are applied with

this state as the starting state.

2. A gate-level fault model is used, and it is the single stuck-at fault model. Since

3.2. PREVIOUS WORK 49

the state justification and differentiation parts of the test generation algorithm axe

independent of the fault model, the algorithm is not restricted to only this fault

model. Other fault models like multiple stuck-at, bridging faults, etc., may be used

with minor modifications to the procedure described.

3. The memory elements axe considered as distinct logic primitives and faults inside

the memory elements axe not considered. However, all faults on present-state and

next-state lines axe considered.

4. It is assumed that an RTL description of the circuit is available.

3.2 Previous Work

In Chapter 2, previous work in the area of test pattern generation for sequential

circuits was reviewed. In the rest of this section, recent work in the use of high-level

information in test pattern generation is briefly presented.

In [3], a symbolic test generation system for hierarchicallymodeled digital systems

is described. The system under test is modeled as a data path and a control section. Often,

partitioning the circuit into data path and control sections is somewhat arbitrary. The

modules in the datapath section axe defined as an interconnection of other modules or

described behaviorally. The behavioral model is a simplified and incomplete model of the

module and is used for the purpose of fault-effect propagation and justification. The control

section is always modeled as a finite state machine. Since a hierarchical description of the

controller is not allowed, large controllers for which State Transition Graphs cannot be

generated, cannot be handled by this approach. There is a fundamental assumption that

the control section has been tested using existing techniques and is found to be fault-

free. This can be an artificial assumption, as the system designer often wants to test the

control and the datapath together. Also, for control dominated chips, this approach will

not be applicable because it assumes that the control portion is handled by some other test

generator. Instead of using binary or integer values, symbols axe used to represent values on

the wires. However, in any computer implementation, the symbols have to be represented as

a code, and therefore integersor a similax representation have to be used for the encoding.

Therefore the advantage of using symbols instead of integers is not dear. Very few results

were quoted for this approach and it is difficult to gauge its effectiveness.

50 CHAPTER 3. SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS

In [117], the gate-level combinational test pattern generator SOCRATES [119]

is augmented to handle circuits described hierarchically. The only high-level primitives

supported axe decoder, demultiplexer, bus, encoder, multiplexor, tri-state driver, and one-

bit adder. The implication, unique sensitization, and multiple backtrace procedures used

in SOCRATES axe extended to handle these high-level primitives. A gate-level fault modd

is used and modules inside which faults have to be considered axe.dynamically expanded to

thdr gate-level drcuit. Therefore the structure of the drcuit changes dynamically during

test generation. Apart from these modifications, the procedures are similax to well known

procedures in combinationaltest pattern generation. This approach handles combinational

drcuits only. A maximum speed-up of a factor of two is reported for this approach.

Module-oriented dedsion making is introduced in [32]. Modules and faults were

captured at both the functional and the gate levd. The problem of hierarchical test gen

eration is viewed as an extension of the gate-levd problem. This approach works only for

combinational drcuits and for a limited number of high-levd primitives. Some other work

in exploiting high-level information (e.g., [76, 81]) has been restricted to combinational or

Scan-based sequential circuits and does not offer guarantees as to stuck-at fault coverage.

One of the major problems encountered in using purdy high-levd information is

in the fault modeling process. Almost all approaches that use high-levd information in

the test generation process use a gate-levd fault modd. Gate-levd fault models have the

advantage of bdng accurate and easy to use. On the other hand, modeling faults at higher

levds is an extremdy complex process. There is not only a significant loss in accuracy but

the fault modd is often too complex to be of any use. In [22], functional levd primitives

for test generation axe obtained and the problem of functional fault modeling is addressed.

Though this problem can be solved for simple modules, there axe modules for which there

axe no known good methods for obtaining functional fault models.

3.3 Global Strategy for Test Generation

The key ideas in the test generation algorithm axe similax to those used in the

previous chapter. The problem of test generation is divided into three sub-problems. Com

binational test generation is used to derive the exdtation state, state justification is used

to justify this state, and state differentiation is used to propagate the effect of the fault to

the POs. The fault-free heuristic is used for justification and differentiation. Unlike the al-

3.3. GLOBAL STRATEGY FOR TEST GENERATION 51

gorithm in the previous chapter, justification and differentiation is not performed using the
coversof ON and OFF sets. Instead, the RTL description of the circuit is used. To motivate

the use of RTL descriptions for justification, consider a 32-bit combinational multiplier with

a prime value at its output. There is only one way to justify this value; by assigning one

of the inputs the prime value and the other input the value 1. To discover this from the

logic-levd description might require significant amounts of work, but at the RT level this

is easily performed. Similarly, for the example circuit of Figure 3.2, it is easy to see that

a value can be propagated from the wire C to wire G by setting the values of A and B to

0. This global knowledge available at the RT levd can be exploited to perform justification

and differentiation. Given an RTL as well as a logic-levd description of the drcuit, the

deterministic sequential test pattern generation algorithm consists of the following steps:

1. Derivation of the exdtation state for a fault using combinational test generation,

treating the PS lines also as primary inputs (Pis) and the NS hnes alsoas POs. This

is performed at the gate levd using a standard test pattern generation algorithm (cf.

Section 2.4).

2. Fault-free state justification performed at the RT levd.

3. Fault-free state differentiation performed at the RT levd.

The RTL description is represented as a graph whose nodes are modules and edges

represent wires. The nodes are annotated with the information about the module and the

edges axe annotated with information about the wires. Information at a node consists of:

• Fanin wires for the module.

• Fanout wires for the module.

• Type information. This fidd is used to indicate whether the module is arithmetic,

logical, an arbitrary Boolean function, or finite state machine.

• Function-type information. This fidd indicates whether the module is one of the

primitives or has a modd in terms of the primitive modules.

• Truth Table or STG of the module, if necessary.

• Modd information, if necessary.

52 CHAPTER 3. SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS

B

C

D

MUX

£
ADDER

ADDER H

MUX

Figure 3.2: An example circuit

Information at a wire consists of:

• Fanin module of the wire.

• Fanout modules of the wire.

• Correspondence with logic-levd wires, if necessary.

• The width of the wire in terms of the number of logic-levd wires needed to implement

the RTL wire.

• Encoding type, which is the type of valueon the RTL wire. Integers axe used for almost

all the wires in the circuit except for some modules whose input/output behavior is

specified using symbolic values and thdr assodated encodings.

3.3. GLOBAL STRATEGY FOR TEST GENERATION 53

• Range of integer values, if the encoding type is integer. Otherwise the symbolic values

and thdr encodings axe spedfied.

The graph representing the RTL description can be easily obtained from the connectivity

graph of the system and the process of translation is straightforward. The primitives sup

ported by the test generation system axe given in Figure 3.4. For an arbitrary Boolean

function or a finite state machine, it is required that a Truth Table or a State Transition

Graph be spedfied and it is stored at the node corresponding to the module. Not all mod

ules can be represented using primitives or truth tables. In such cases, a model is used

for the module. A modd is always defined in terms of primitives. An example of such a

modd is the Arithmetic-Logic Unit (ALU). The modd for the ALU is shown in Figure 3.3.

Depending on the values of wires Cl and C2, the appropriate primitive is inserted into the

drcuit during justification and differentiation. These models axe supplied by the user.

After combinational test generation, the exdtation vector is examined to see if the

present state part of the exdtation vector covers the reset state. If the exdtation state is

covered by the reset state, then the fault can be exdted from the reset state of the machine.

If not, the exdtation state is justified using a backward justification algorithm. Backward

justification is performed by considering the exdtation state as a next state and using an

RTL justification algorithm to justify the values on the NS wires over multiple time frames

(cf. Section 3.4). Once a justification sequence is found, it is fault simulated to see if the

required state is justified. If the required state is justified, then the justification sequence is

valid in the faulty machine. If the required state is not justified, then a correct justification

sequence can be obtained easily from the invalid justification sequence using the technique

described in Section 2.5. Thus only a single fault-free justification has to be performed to

obtain a true/faulty state pair.

If the effect of the fault is propagated only to the next-state lines, then the effect

has to be propagated to some primary output by state differentiation. State differentiation

is performed using the RTL description by sensitizing a path from a present-state wire

having the true and faulty value to a primary output. If an input combination exists

that can sensitize such a path, then it serves as the state differentiation vector. Multiple-

vector differentiation sequences can also be obtained (cf. Section 3.7). The differentiation

sequence obtained is valid under fault-free conditions. After the differentiation sequence is

obtained, the entire test sequence is fault simulated to see if the fault under test is detected.

54 CHAPTER 3. SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS

INA—:

INB—a

—=-OUT

C1C2 = 00
C1C2 = 01
C1C2 = 10
C1C2 = 11

OUT = INA+INB
OUT = INA-INB
OUT = INA & INB
OUT = INA || INB

Operation of ALU

Cl C2

Cl C2 Operation

0
0
1

1

0
1
0
1

OUT = INA (ADD) INB
OUT = INA (SUB) INB
OUT = INA (AND) INB
OUT = INA (OR) INB

Model of the ALU

Figure 3.3: An ALU and its model

Experimental evidence gathered to date indicates that more than 95% of the time, a test

sequence obtained is actually a test for the fault (cf. Section 3.8).

The fault-free heuristic enables the use of RTL descriptions for justification and

differentiation without using any kind of functional fault modeling. If the fault-free heuristic

were not used, it would be necessary to identify the module in which the fault occurs. This

would require a correspondence between modules at RT levd and a set of gates and wires at

the logic levd. This is an undesirable requirement because logic synthesis tools can easily

blur the boundaries between modules during operations like factoring and resubstitution.

Another problem is that of functional fault modeling. The effect of the fault has to be

modded as a discrepancy in the behavior of the module. It was indicated in the previous

section that this is a hard problem and there are no known good solutions.

3.3. GLOBAL STRATEGY FOR TEST GENERATION 55

adder decoder and

subtractor comparator or
multiplier multiplexor not
divider demultiplexor nand
finite state machine arbitrary function buffer
encoder xor nor

xnor

Figure 3.4: List of primitives used in test generation

A test generation algorithm based on the ideas discussed above is as follows:

1. Generate a (new) combinational test vector for the fault under test to derive the

exdtation state 5. If test vectors for the fault have already been generated and some

of the exdtation states were not justifiable, the new test vector has its present-state

part disjoint from the present-state part of all such previously generated test vectors.

If no new test vector can be found, then exit without a test.

2. Generate a (new) fault-free justification sequence Js for the exdtation state. If no

justification sequence is found, go to Step 1.

3. Fault simulate the potential justification sequence Js* If it detects the fault, generate

a test sequence Ts directly from Js- If it is a valid justification sequence, then go to

Step 4. If it is not a valid justification sequence, then find the first state whose fanout

edge was corrupted by the fault. Use part of Js as the justification sequence for that

state and try to differentiate between the new true/faulty state pair.

4. Generate a fault-free differentiation sequence Ds for the true/faulty state pair. Con

catenate Js, the exdtation vector, and Ds to obtain the test sequence Ts. Fault

simulate Ts. If the fault under test is detected, exit with test sequence Ts- If the

fault is not detected, try generating another Ds. If not successful, go to Step 2.

In each pass of the algorithm, for a given exdtation state, a justification sequence is

derived. Backtrack limits are set for justification and differentiation that control the amount

56 CHAPTER 3. SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS

of time spent in each of these steps. These limits axe user controllable. By checking to see

if the justification sequence is valid prior to state differentiation, the need for generating

more than one justification sequence in each pass of the algorithm is obviated. Now all

possible differentiation sequences axe generated for the fault-free/faulty state pair. If the

fault is not detected, the procedure goes back to Step 2 to generate another justification

sequence and initiate another pass of the algorithm. Therefore, for each exdtation state,

all possible justification and differentiation sequences axe generated. Also, for each fault,

all possible exdtation states axe tried, if necessary. Thus the algorithm will find a test for

a fault if it exists in the fault-free machine. In this sense, the algorithm is complete. All

justification and differentiation sequences generated axe stored for possible reuse. Thus,

parts of the State Transition Graph that axe required for test generation axe enumerated,

as in the algorithm described in the previous chapter.

This test generation algorithm is not guaranteed to find a test for a fault if one

exists. This is due to the nature of fault-free differentiation. Firstly, a fault-free differentia

tion sequence might not be a valid differentiation sequence in the faulty machine. Secondly,

though a fault-free differentiation sequence might not be obtainable, a test for a fault may

exist, as noted in Chapter 2. To obtain such a test vector, the effect of the fault has to

be modded at the RT levd using some form of functional fault modeling, and then a true

and a faulty copy of the RTL description has to be used to propagate the effect of the fault

to the primary outputs, as in the iterative array approaches described in Section 2.2. Due

to the inaccuracies in functional fault modeling, this approach is also not guaranteed to

generate a test. However, as experimental evidence gathered to date indicates, more than

95% of the time a fault-free test sequence is valid. If one such sequence is not valid, another

fault-free test sequence may be generated for the fault under test. Use of multiple fault-free

sequences produces 100% fault coveragein all the examples that have been considered.

This approach works best for circuits that have an STG where any state can be

reached easily from any other. This is true for almost all datapath circuits. Of course, by

exploiting the higher-levd arithmetic properties, the approach is most effident when the

majority of the modules in the drcuit axe arithmetic. This property is used during the

justification, differentiation, and conflict resolution phases of the algorithm as illustrated in

the sections that follow.

3.4. STATE JUSTIFICATION 57

justify state()
{

Assign all unknown logic-levd NS wires a value;
Store all assignments in binary dedsion tree;

while (binary dedsion tree != NULL) {
value_set = values on each RTL NS wire;
if (valuejset covers Reset State)

return (NULL justification sequence);
flag = justify values(value set, 1);
if (flag) {

return (justification sequence);
}
else {

/* Justification sequence not found */
assign last variable on binary dedsion tree
a different value;

}
}
/* No justification sequence obtainable*/
return (justification not posdble);

}

Figure 3.5: Main justification procedure

3.4 State Justification

Combinational test generation produces a test vector with as many don't-care

entries in the present state part as possible. The present state part of the exdtation vector

is the exdtation state Si. In general, Si is a cube state. Any state covered by Si has to be

justified.

The main justification procedure is shown in Figure 3.5. Justification is performed

using the RTL description of the drcuit. The objective of the justification algorithm is to

find a justification sequence to any one of the minterm exdtation states covered by Si. To

justify a state, it is necessary to think of it as a next state and use a backward justification

algorithm. Therefore, the first step in justification is to transfer the values from the present-

58 CHAPTER 3. SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS

state wires to thdr corresponding logic-levd next-state wires. The next step is to find a

single or a minterm exdtation state. A particular excitation state is sdected by assigning

the unknown logic-levd next-state wires a random 0 or 1 value. All NS wires not having

a value on them axe assigned values, with one exception. If a set of NS wires do not have

a value and they correspond to a single wire at the RT levd, then those wires axe not

assigned values. This ensures that the corresponding next-state RTL wire is not assigned a

value, thereby giving more freedom to the justification algorithm. Next, the Boolean values

on the logic-levd wires axe translated into integer values on the corresponding RTL wires.

This set of values on the next-state wires of the RTL description, after translation, is called

the value set. A value set is therefore an integer representation of a minterm state. The

state defined by the value set is justified by the routine justify_values(). It is possible

that the state represented by value set is not a valid state. Therefore, the assignments to

the unknown logic-levd next-state wires axe stored in a dedsion tree. If a state cannot

be justified, then the last assigned NS wire is assigned a different value and the process

of justification is repeated by calling the procedure justify_values() with the new value

set. Thus all possible minterm exdtation states for a fault axe tried, if necessary. The

decision tree used in this procedure is called the binary dedsion tree because all variables

in the tree can only take two values. For large datapath-type drcuits, almost any state is

reachable from any other and the number of invalid states is not large. For such circuits, no

backtracking is usually necessary on the binary dedsion tree. However, there axe drcuits

that have the opposite characteristic. Such circuits axe often small and can be best handled

by STEED. This approach is not likdy to perform better than STEED for such drcuits.

The procedure for justifying a particular state is shown in Figure 3.6. Before

justification, the circuit is levelized from the primary outputs backwards. Primary output

and next-state wires axe assumed to be of levd 0. The levd of any module is the minimum

of the levels of all its fanout wires. The levd of any intermediate wire is the minimum of

the levels of its fanout modules plus one. Wires at a particular levd axe assigned values to

justify the values on wires at lower levels, and the procedure is called recursively until the

primary inputs are reached. During justification, only next-state wires, which axe levd 0,

have values on them that have to be justified. Justification starts with wires at levd 1. At

3.4. STATE JUSTIFICATION 59

justify values(v set, Levd)

{
/* Level is the level of RTL wires being considered */
/* vjset is the values on wires at previous level */
do{"

Sdect free wire at Levd, assign value, store in decision tree;
Assign value to bound wires, simulate circuit;
if (conflict)

conflict_resolve();
if (conflict resolved or no conflict) {

if (all free wires assigned values) {
if (all wires at Levd axe PI or PS) {

Store vector as part of justification sequence;
if (reset state covered)

return (TRUE);
else{

Form newjstate;
flag = justify_values(newjstate, 1);
if (flag)

return (TRUE);
}

}
else { /* All wires are not PI or PS */

Form new_v_set;
flag = justify values(new v set, Levd+1);
if (flag)

return (TRUE);
}

}
else { /* All free wires not assigned values */

continue;

}
}
/* Conflict not resolved or justification sequence notfound */
/* Use indexed backtracking if necessary */
Assign last node in dedsion tree a different value;

}while (deddon tree is not empty)
return (FALSE); /* No justification sequence found */

}

Figure 3.6: Procedure for justifying a state

60 CHAPTER 3. SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS

first a free wire at the given levd is identified and assigned a value (heuristically) and this

decision is stored in a dedsion tree. All wires which axe bound (directly or transitivdy)

by the free wire axe then assigned values. After assigning values, the circuit is simulated

to detect any conflicts (this is similax to forward implication performed in D-Algorithmor

PODEM). If there is a conflict, the conflict resolution procedure is called (cf. Section 3.6).

This procedure tries to form a system of equations with the values of wires involved in

the conflict. In this system of equations, all wires involved in the conflict axe assigned

a variable and the system of equations represents thdr interdependence. This system of

equations is solved to obtain the correct assignment of values for the wires. Sometimes no

solution can be obtained using this procedure. In such cases, it can be assumed that the

value set cannot be justified under the given conditions. Therefore, the procedure must

backtrack to a previous node in the decision tree. If the conflict resolution procedure fails

(i.e., the system of equations cannot be assembled or a solution cannot be found), then the

last free wire in the dedsion tree is assigned a new value and the process repeated. The

backtrackingprocedure goes through all the values of a free wire beforebacktrackingto the

previous node in the dedsion tree. If no solution is found, backtracking continues till the

last node in the dedsion tree is reached, i.e., to the first free wire that was assigned a value.

During backtracking, one of two things might happen. A satisfactory assignment might be

found or the decision tree may become empty. If the dedsion tree becomes empty, it can

be conduded that the state represented by value set cannot be justified. Such a state is an

invalid state and is stored in the set of invalid states.

After all free wires at a given levd are assigned values without any conflicts,

the procedure justify_values() is called recursivdy to justify the newly assigned values.

At each levd all essential assignments axe done first, i.e., wires that have to be assigned a

certain value to justify values at lower levels axe considered first. This is similax to backward

implication in the D-Algorithm. However, unlike the D-Algorithm where implications can

be performed for many levels at a time, here it is performed for only one levd at a time. The

reason for this is that implications usually can be performed for only one levd in an RTL

description. During justification and differentiation, forward and backwardimplications axe

performed as soon as a wire is assigned a value, for early detection of conflicts. Note that

3.4. STATE JUSTIFICATION 61

none of the essential assignments axe stored in the dedsion tree as they are considered to

be bound wires (they are forced to have a single value). The decision index assigned to any

such wire is the largest of the dedsion indices of its fanout wires as well as its co-fanins (cf.

Section 3.5).

During justification, the frontier of assigned values moves from the outputs of the

RTL description to the inputs (referring both to the PI and PS), and when all inputs have

been successfully assigned a value, the one-step justification procedure is done. Note that if

the backtracking procedure backtracks to a node of level i, then all decisions bdow levd i

have already been undone, and the backward justification procedure starts once again from

levd t. If the reset state is covered by the values on the PS wires, then a single-vector

justification sequence has been found. If not, the state corresponding to the values on the

PS wires is justified by calling the routine justify.values() recursivdy. In this manner

multiple-vector justification sequences might be derived. After deriving the justification

sequence, the RTL values axe translated to binary values and the justification sequence is

fault simulated.

Heuristics axe used to speed up justification and the detection of invalid states.

From the set of free wires that can be sdected at any given point, the one with the maximum

number of fanouts is sdected first. Also, wires with guide values axe given priority during

sdection. A wire with a large fanout binds a large number of other wires. This hdps in

early detection of conflicts and also in keeping the size of the decision tree small so that less

effort is spent in backtracking. For wires having the same number of fanouts, the one dosest

to the primary inputs is sdected. This is because a wire doser to an input is more easily

justified than one further away. While setting free wires to a value, the guide value for the

wire is sdected first. If a guide value does not exist for a wire, then a value is sdected in

the following manner. An RTL wire that has to be implemented as n logic-level wires can

have values ranging from 0 to 2n —1, assuming an encoding where only positive integers are

allowed. If an RTL wire does not have a guide value, then the first value sdected for the

wire is a value midway in this range, i.e., 2n_1. In subsequent backtracks, the value chosen

is 2**"*1 + (—l)k\k/2\, where k is the numberof times the procedure has backtracked to the

node in the deddon tree corresponding to that wire (\x] means the smallest integer greater

62 CHAPTER 3. SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS

CTRL

INA

INB

PS1

PS2

INC

ADDER

COMP

ADDER

MUX OUT

INTA

MUX NS1

INTB

NS2

Figure 3.7: Circuit to illustrate justification and differentiation

than or equal to x). For example, if the RTL wire corresponds to 3 logic-levd wires, the

first choice would be the value 4. Subsequent choices, in order, would be 3, 5,2, 6,1, 7, and

0. For other encodings, the process is similax. Modules like multiplexors axe handled easily

by noting that the free wire is the control input to the multiplexor and the corresponding

input to the multiplexor is bound. The asdgnment to the input wire and the contrd wire

for the multiplexor is stored as a single node of the deddon tree. In addition, indexed

backtrackingas in [95], with modifications, is used to speed-up backtrackingby eliminating

non-critical nodes in the backtracking process (cf. Section 3.5).

As an example, condder the circuit of Figure 3.7. Wires INA, INB, INC and

CTRL axe primary inputs, PS1 and PS2 axe present-state lines, OUT is the primary

3.4. STATE JUSTIFICATION 63

output, and #51 and NS2 axe next-stateHnes corresponding to PSl and PS2 respectivdy.

The modules axe adders, multiplexors (denoted as MUX), and a comparator (COMP). The

output of the comparator is 0 if and only if PSl is strictly greater than PS2, otherwise it

is 1. Assume that the reset state of the machine is all zero, and that it is required to find a

justification sequence for the value set NS1 = 7 and NS2 = 29. In the first step the control

input of the multiplexor, wire INTB, is set to 1. This binds PS2 to the value 7. To justify

the value on NS2, PSl is chosen as the free wire, and since it has a reset value, the value

chosen for it is 0. This binds INC to the value 29. On simulation, it is seen that the value

on INTB is justified. The values on the present-state wires axe 0 and 7, and this state does

not cover the reset state. Therefore, this new state has to be justified. In the next step the

value set is NSl = 0, NS2 = 7. Once again, assigning INTB to 1 forces PS2 to have the

value 0. Choosing the guide value for PSl, the value on NS2 can be justified by assigning

the value 7 to INC. The value on the present-state wires is PSl = 0, PS2 = 0, and this

covers the reset state. Therefore a two vector justification sequence for the initial value set

is {[INA = INB = CTRL = -,INC = 7],[INA = INB = CTRL = -,INC = 29]}. In

this justification sequence, the values of the inputs CTRL, INA, and INB axe don't-cares.

Another interesting example is the circuit of Figure 3.2. In this circuit, wires A and

B axe the primary inputs, C and D axe the present-state lines, G and H axe the next-state

lines, and G is also the only primary output. Let the value set be G = 20, H = 16. Setting

A = 0, B = 20 justifies the value on G, and C is forced to take the value —2 to justify the

value on H. The value of D is left unspecified. In the next step of justification, the value set

is G = -2, H = —. This value on G is easily justified by setting A = 0, B = —2. The value

of both the present-state wires is left unspecified. Therefore the present state is the universal

state, and the reset state must be covered by the universal state. Therefore a two-vector

justification sequence for the originalvalue set is {[A = 0,B = 20], [A= 0,B = —2]}.

The justification sequence that is constructed is valid under fault-free conditions

and may be invalid under faulty conditions. Experimental evidence gathered to date has

shown that over 99% of the time, in real-life drcuits, a justification sequence that is valid

in a fault-free machine is also valid in the faulty machine or is in itself a test sequence for

the fault. In the unlikdy event that a justification sequence is ndther valid in the faulty

64 CHAPTER 3. SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS

machine nor a test sequence in itself, a valid justification sequence may be obtained from

the invalid one using the procedure of Section 2.5.

The procedure for finding a justification sequence uses a depth-first search method.

This approach is therefore best suited for circuits whose STGs axe not too deep. Most

datapath-type circuits meet this condition. However, this does not mean that this ap

proach fails for drcuits that require long justification and differentiation sequences. As

will be shown in Section 3.8, some such drcuits axe handled effidently. In theory, finding

a justification sequence for a state can involve the enumeration of the entire STG of the

machine. Therefore, detection of invalid states can be computationally very expensive. In

most cases invalid states can be identified very quickly because the number of invalid states

are small and they form rdativdy small groups of interconnected states. However, there

might exist examples where justification and detection of invalid states can take significant

amounts of time and impair the effidency of this approach.

3.5 Indexed Backtracking

One of the main objectives during justification and differentiation is to keep the

number of backtracks small. Each wire at the RT level can have a large number of values.

Going through all possible values of a wire is a time consuming process and should be

avoided wherever possible. Consider a situation where a dedsion tree has three nodes, and

a conflict is detected that cannot be solved using the conflict resolution procedure. This

means that the last node in the dedsion tree should be examined and a new dedsion should

be made at that node. If the last dedsion made has nothing to do with the conflict, then the

procedure would unnecessarily go through all possible values of the last wire in the decision

tree. Therefore, it is necessary to reach the node in the deddon tree which affects the wires

involved in the confiict in a single step so as to avoid the unnecessary backtracking.

To achieve this goal the technique of indexed backtracking is used. The main steps

in the process axe:

• Create an array called the decision array. This array grows or shrinks dynamically.

• Each time a free wire is assigned a value, the pointer to the decision tree node cone-

3.5. INDEXED BACKTRACKING

A
Index=:1

Index=l

MUX

ADDER
E

c* CIf

r»

Index=2

Inde:K=2

ADDER

MUX

u

F

COMP
^ 1 Ind<a=2" 1

i

][ndex=3

2 1

Index List

65

DECISION TREE

Backtrack
Here

Figure 3.8: Circuit to illustrate indexed backtracking

sponding to the dedsion is stored in the first free position in the dedsion array. The

index of this entry is stored in the dedsion tree, and the free wire and all wires bound

by the free wire axe given the same index. This index is called the decision index.

Indexed backtracking is used only when a conflict happens and cannot be resolved

by the conflict resolution procedure. The wires involved in the conflict axe first identified.

The index of the wires axe gathered in a list, called the index list, and sorted in descending

order. The head of the list (i.e., the most recent dedsion affecting the conflict) is examined

and the procedure backtracks to the node corresponding to that index and not to the last

node in the deddon tree. If the conflict cannot be resolved by assigning different values to

66 CHAPTER 3. SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS

the the wire at the node, then the next node in the index Hst is used for backtracking. The

critical step in the procedure is to detect the set of wires involved in the conflict. This set

of wires, called the set C, is derived using the following rules:

• The primary and secondary wires of the conflict axe in this set.

• For each wire, w, in the set, wires whose values axe justified by w axe also in the set.

• For each wire, w, in the set, the wires in its co-fanin that have been assigned a value

and also force w to have a particular value axe also in the set. In other words, if w

is considered as a free wire, the co-fanins of w that axe bound and have been already

assigned values axe in the set. Those that axe not bound axe not in the set, unless

sdected by some other rule.

• For each wire in the set, if the wire is the fanout of a module whose fanin wires have

been assigned values, then the fanin wires axe also in the set.

• For each wire in the set, all wires with the same dedsion index axe also in the set.

It is easy to see that for any wire, the value on that wire is directly determined

only by one or more of the following: the value of its fanout wires, the values of its fanin

wires, or by the values of its co-fanin wires. The rules are formulated so that all wires that

directly determine the values of the primary and secondary wires of the conflict axe sdected

first in set C, and then a transitive dosure of this set is obtained. Therefore, it is easy to

see that for any wire in the set C, all wires that affect its value, directly or indirectly, axe

also in C. It can also be easily seen that the primary wire of the conflict and the secondary

wires of the conflict axe separated by at most one levd. In justification, all wires at a levd

axe assigned values before moving on to wires at the next higher level. If there is a conflict

on a wire at level p, it must be due to the requirements enforced on the wire by wires at

levd p —1. Note that all wires at levd k < p - 1 have thdr values justified, and there can

be no conflict involving those wires as secondary wires.

A conflict can be resolved in one of two ways. It can be resolved if the requirements

on the primary wire axe changed by changes in the values of the secondary wires of the

3.5. INDEXED BACKTRACKING 67

conflict. It can also be resolved by a change in the value of the co-fanins of the primary

wire, whereby the primary wire can be asdgned a different value to justify the values on the

secondary wires. To show that the procedure only avoids looking at portions of the space

where a justifiable assignment does not lie, it is necessary to show that for any set of values

on the wires in C for which the confiict is not resolved, the confiict will not be resolved by

changing the values on wires not in C. This is proved in the following theorem.

Theorem 3.5.1 Given the primary wire, W, involved in the conflict, the set of wires in

volved in the conflict C, if wires in C have values for which the conflict is not resolved, then

the conflict cannot be resolved by any possible assignment to wires not in C.

Proof: Assume that instead of indexed backtracking, normal backtracking is performed.

At some stage when the conflict has not yet been resolved, the wires both in and outside the

set C have some value. Now assume that the conflict is resolved by assigning a wire not in

C a different value. Since the conflict gets resolved, the wire (call it K) must have affected

the values of the secondary wires of the conflict or the co-fanin of W. In that case, by the

rules used for forming the set C, wire K should also be in C, which is a contradiction. •

For example, consider the drcuit of Figure 3.8. It is required to justify the values

G = 20, H = 16, J = 0. The choices made axe shown in the dedsion tree with the

corresponding index assodated with the dedsions and the wires. Note that to justify the

value on wire J, wire I can assume more than one value (as long as it is greater than the

value on wire F) and is therefore not bound by the value on wire F. When wire C is

assigned the value —4 to justify the value on wire E, a conflict is detected on wire C. Note

that wire C is not a free wire as its value is forced by the values assigned to wires B and

E. This is an example where a wire is bound by more than one wire, and such wires are

often the sources of conflicts. The wires involved in the conflict axe C (the primary wire of

the conflict), wire B (as it is the co-fanin of C), wire A (same dedsion index as B), wires

E and F (secondary wires of the confiict), and wires G, H and J (fanouts of E and F).

Wire I is not chosen as it does not bound the value of F. Note that wire C is assigned the

index 2, which is the largest of the indices of its fanout and co-fanin wires. The index list

corresponding to these wires is also shown in the figure. The procedure first backtracks to

68 CHAPTER 3. SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS

the node with index 2, as shown in the figure, avoiding the node with index 3 which has

nothing to do with the conflict.

Consider another situation where the values on wires G, H and J are 20, 16, and

1 respectivdy. Assume that the dedsion tree is the same as shown in Figure 3.8 but with

wire I assigned the value —1 to justify the value on wire J. When the justification process

moves back one level to assign a value on wire C, a conflict is detected and resolved using

indexed backtracking as illustrated in the previous paragraph. The value assigned to wire F

is now —2. This gives rise to a conflict on wire F, as it is required to have a value less than

that of wire I. Now indexed backtracking can be used again to resolve this conflict. This

is an example of how the resolution of one conflict can give rise to another. The resolution

of a conflict can give rise to other conflicts or a conflict on the wire that was involved in

the first conflict. This indicates that there is a possibility of oscillation. However, each

time new values axe assigned to the nodes in the dedsion tree and the number of different

values at each node (on each wire) is finite. Therefore, the backtracking process will dther

converge to an asdgnment that resolves the conflict or stop once no such assignment can

be found.

3.6 Conflict Resolution

Consider the RTL description of Figure 3.2. Assume that wire G has the value 20

and wire H has the value 16. In the first step of justification,let the values assignedto wires

A, B, E, and F be 0, 20,16, and 0 respectivdy. In the next step wire C has to be assigned

a value to justify the values on wire E and F. To justify the value on E wire C must have

the value -4, while to justify the value on F it has to have the value 0. This is a conflict. At

this point the justification procedure is forced to backtrack on the assignmentof a value to

wire E and ultimatdy reach a justifiable asdgnment of E = 18. Since the number of values

on wire E can be large, backtracking can take a long time. This conflict can be resolved

efficiently by noting that all the modules involved in the conflict axe arithmetic and their

interdependence can be represented by the following system of equations:

B + C = E

3.6. CONFLICT RESOLUTION

5

ADD

c

MULT

' >

8

32

Figure 3.9: Circuit illustrating conflict resolution

C

E + F

B

H

F

H

20

16

69

This system of equations can be assembled only if the modules involved in the

conflict axe arithmetic. In this example, the system of equations is linear, but in general,

the system of equations is non-linear and is solved using Newton-Raphson (NR) methods

[58]. The process of solution is standard and will not be discussed here. The equations axe

assembled using techniques used in drcuit simulators like SPICE [106].

3.6.1 Assembling the equations

The first step in conflict resolution is to identify the wires involved in the conflict.

The procedure for doing this is the same as outlined in Section 3.5. The modules involved

in the conflict axe defined to be modules whose input wires and output wires axe wires

involved in the conflict. Wires axe said to be boundary wires of the conflict if they axe

not both an input as well as an output for some modules involved in the conflict. If all

the modules involved in the conflict axe arithmetic and thdr operation can be represented

70 CHAPTER 3. SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS

algebraically using an operator, only then will the system of equations be assembled. Infor

mation regarding the suitability of a module for conflict resolution comes from the user and

is stored in the function-type fidd of the module. Having identified the wires and the mod

ules, a matrix called the coefficient matrix is built. This is a square matrix. The number of

columns in the matrix is equal to the number of wires (n) involved in the conflict, while the

number of rows is equal to the number of modules involved in the conflict plus the number

of boundary wires that have been assigned values. Each wire is assigned a variable and the

variable is assigned a column in the matrix. Together with the coeffident matrix, another

n x 1 matrix called the Right Hand Side (RHS) is constructed. For boundary wires having

a value assigned to them, an equation of the form

variable = constant

is formulated. For each equation a row is allocated in the coeffident and the RHS matrices.

For the equation above, all the columns in the row of the coefficient matrix axe 0 except

the one for the variable in the equation, which is given the value 1. The entry in the RHS

matrix is the constant. For modules, the equation is of the form

f(vari, var2,..., varn) = constant

and another row is allocated in the matrix, and the entry in each column is the partial

derivative of the function / with respect to the variable corresponding to the column.

These partial derivatives can be pre-computed and used as stamps to form the coeffident

matrix, as in drcuit simulatorslike SPICE [106].

The derivation of the stamps will be illustrated with the hdp of the drcuit of

Figure 3.9. The system of equations representing this drcuit is:

a + b-c = 0

cd-32 = 0

c-8 = 0

a-5 = 0

3.6. CONFLICT RESOLUTION 71

The variables axe ordered as a, b, c, d; a is assigned the first column in the matrix,

b the second, and so on. This system of equations can be represented as F(x) — 0, where

x is the vector of values on the wires. The formula for Newton-Raphson iteration is:

J(xk) (xk - xk+1) = F(xk)

where xk is the vector of values on the wires after the kth iteration, and the values to be

computed axe xk+1. F(xk) is the value of F(x) and J(xk) is the coefficient matrix (also

called Jacobian matrix) after the kth iteration. Applying this to the system of equations

above, the following linearized system of equations is obtained:

11-10 ak - ak+1 ak + bk-ci

0 0 dk c* bk _ bk+i ckdk - 32

0 0 10 c* - c*+1 c*-8

10 0 0 dk - dk+1 ak-5

On inspection of this system of equations, the stamps for the adder and the mul

tiplier can be easily identified. For the adder whose two inputs axe vp and vq and whose

output is vr, the stamp in the coeffident matrix is:

Np ... Nq ... Nr

1 ... -1

The stamps for other modules like multipliers can be formed accordingly.

In the casewhen the system of equationsis non-linear,and there axe no guarantees

about the existence and the uniqueness of the solution. The initial guess (which is zero)

in the NR-iteration is very important in reaching a solution. Despite these uncertainties,

in most cases, the system of equations can be solved and the conflict resolved without

backtracking. Note that inequalities cannot be handled, and modules like comparators,

though arithmetic in nature, cannot behandled during conflict resdution. For circuits that

72 CHAPTER 3. SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS

axe purdy arithmetic, the conflict resolution procedure can be used for implication in the

drcuit, as PI values can be directly implied from PO and NS values.

3.7 State Differentiation

Combinational test generation produces fault-free /faulty state pairs. It is assumed

that both the fault-free and the faulty states axe states in the fault-free machine and a

differentiating sequence is sought for that pair of states. Usually, due to the large number

of unknown values on the primary inputs and present state wires in the combinational

test vector, the values on some of the next state wires are unknown. In the general case

therefore, it is necessary to find a differentiating sequence between groups of states rather

than a minterm state pair. However, fault simulation of the justification sequence produces

a minterm state pair to differentiate. If the state pair cannot be differentiated using the

procedure described in this section, then the fault-free/faulty state pair corresponds to

equivalent states in the fault-free machine. Such statepairs axe stored in the set ofequivalent

states.

Fault-free differentiating sequences axe generated udng the RT level description

of the drcuit. Fault simulation or combinationd test generation produces the true/faulty

state on the next-state wires. The first step is to transfer these values to the corresponding

present-state wires. The values axe now translated to integer values to obtain a fault-free

present state as well as a faulty present state at the RT levd. During translation, a D on

any present state wire is given the value 1 in the true drcuit and 0 in the faulty circuit.

The oppodte is done for a D, where D and 2? axe used to represent true/faulty values on

wires at the gate-levd, as in the D-Algorithm [115].

The state differentiation procedure is shown in Figure 3.10. It uses the fact that if

an input combination exists for which a particular output depends on the value ofa PS wire,

then if the effect of the fault is propagated to that PS wire, the true and faulty states can

be differentiated inone time frame. The corresponding input combination isasingle-vector
differentiating sequence.

A primary output is said to be sensitive to the value of a PS wire if on changing

3.7. STATE DIFFERENTIATION 73

differentiateQ

{
/* Given the NS wires that has true/faulty value */
if (differentiating input comb, exists for NS wire)

Store differentiation sequence; return (TRUE);
for (each PS wire with true/faulty vdue) {

for (each output) {
for (each path from the PS wire to output) {

Sensitize path;
simulate assignments;
justify all values on intermediate wires;
if (all values justified) {

Store differentiation sequence;
return (TRUE);

}
}

}
}
/* True/Faulty value cannot bepropagated to output */
for (each PS wire with true/faulty value) {

for (each NS wire) {
for (each possible path from the PS to NS) {

Sensitize path;
simulate assignments;
justify all values on intermediate wires;
if (all values justified) {

flag = differentiate();
if (flag) {

make up differentiation sequence;
return (TRUE);

}

}
}

}
}

}
/* Cannot differentiate this state pair */
return (FALSE);

Figure 8.10: Procedure for state differentiation

74 CHAPTER 3. SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS

the value of the PS wire, the value of the output changes. The value of the primary inputs

and other PS lines for which this happens is called the sensitizing input combination.

If a sensitizing input combination for a PS wire does not require the other PS wires to

have any particular value, the corresponding input combination is called a differentiating

input combination for that PS wire. If a differentiating input combination exists for a

PS wire to which the effect of the fault is propagated, then that input combination is a

single-vector fault-free differentiating sequence. For example, for the drcuit of Figure 3.2,

a differentiating input combination for C is A = 0, B = 0. There is no such combination

for wire D.

Differentiating input combinations and differentiating sequences axe found using

similax techniques. If there exists a path from a PS wire to a primary output such that

the path can be sensitized by setting the primary inputs only, then the primary input

combination is the differentiating input combination. For each path from a PS wire to each

primary output, values axe set on the side inputs so that the path is sensitized. As soon

as a side input is assigned a value, it is stored in a dedsion tree and this value is justified

using a modified version of the procedure justify_values() of Section 3.4. If all the values

on the side inputs axe justified without setting any PS wires to a value, a differentiating

input combination is obtained. The side inputs to the path bdng sensitized axe arranged

in increasing order, according to their levds. Wires of a lower levd, t.e., those doser to the

POs axe assigned values before wires at higher levds. This reduces the chances of conflict in

the later stages of the sensitization process. All the side inputs that axe assigned values axe

stored in a decidon tree, and all possible assignments to these wires axe looked at in order

to find a differentiating input combination or a differentiating sequence. Differentiating

input combinations are found before actual test generation begins and can be used for the

differentiation of any fault whose effect is propagated to a PS wire with a differentiating

input combination. This improves the effidency of the differentiation algorithm.

If a differentiating input combination does not exist for the PS wire to which the

effect of the fault has been propagated, a single-vector differentiating sequence is searched

for in a manner similar to the one described above. However, there axe some differences.

Firstly, during the sensitization of paths, the values on the PS wires have to be taken into

3.7. STATE DIFFERENTIATION 75

account. Also, the side inputs to the path axe now arranged in decreasing order, thereby

side inputs dosest to the primary inputs axe assigned values before side inputs further away.

This is required to ensure that the effect of the fault is propagated to the next levd of the

drcuit so that the value of the side inputs at that levd can be accurately determined. In

case a single-vector differentiating sequence cannot be found for the true and faulty state

pairs, an effort is made to propagate the effect of the fault to the NS wires. The process

is similar to the one that propagates the effect of the fault to the primary outputs. The

next-state line to which the effect of the fault has to be propagated is sdected heuristically.

If a particular PS wire has a differentiating input combination, the corresponding NS wire

is chosen. If no PS wire has a differentiating input combination, the one that requires the

least number of side inputs to be set to sensitize a path from that wire to the output is

a good candidate to which the effect of the fault should be propagated. This is because

a small number of side inputs can be assigned sensitizing values more easily than a large

number. Once the fault effect has been propagated to the NS lines, an attempt is made to

find a single-vector differentiating sequence between the new true/faulty state pairs, i.e., to

propagate the effect of the fault from the new PS wire to one of the POs. The algorithm

thus attempts to find a single-vector sequence, then a two-vector sequence, and so on.

As an example, consider the circuit of Figure 3.7. Let the true state be PSl =

18, PS2 = 23 and the faulty state be PSl = 18, PS2 = 5. There is no path from PS2 to

the primary output. Therefore, the effect of the fault has to be propagated to an NS line.

Since PSl has a differentiating input combination (which is INB = 0, CTRL = 1), the

obvious choice for the next-state line to which the effect of the fault should be propagated

is NS1. There is only one side input to the path, namdy, wire INTB, which has to be

set to 1. With the fault-free state PSl = 18, PS2 = 23, the value of INTB is 1, as

required. On the other hand, for the faulty state PSl = 18, PS2 = 5, the valueof INTB

is 0. Since the fault-free value on JVS1 was already determined to be 23, the procedure has

to ensure that the faulty value on NSl is different from 23. Therefore, INTA is set to a

value different from 23. Say the value chosen is 16. Now the procedure justify_values()

is called to justify the value on wire INTA, which is easily done by assigning INB = -2.

Therefore, a two-vector differentiating sequence is {[INA = INC = CTRL = -, INB =

76 CHAPTER 3. SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS

-2],[INA = INC = -, INB = 0, CTRL = 1]}.

For the circuit of Figure 3.2, present-state wire C has a differentiating input com

bination. But for wire D there is no such combination, and moreover, there is no way to

propagate a true/faulty valueon wire H to the primary output or any other next-state line.

Therefore, all states which have the same value on wire C but different values on wire D

axe equivalent.

If a differentiating sequence exists in the fault-free drcuit, but the sequence is not

valid in the faulty machine, the fault is not detected. Therefore, even when a test exists

for a fault in the fault-free machine, the fault may be redundant. The opposite is also true,

i.e., a test might exist for a fault, but no fault-free differentiating sequence might exist for

it.

This procedure involves a depth-first seaxch of the STG of the machine. Therefore,

it is best suited for drcuits where any state can be differentiated from any other within a few

time frames. Once again, most datapath-type drcuits meet this condition. In Section 3.8, it

will be shown that this approachalsoworks for somecircuitsthat requirelongdifferentiating

sequences. Potentially, the entire State Trandtion Graph of the drcuit might have to be

enumerated in order to verify that the fault-free/faulty state pair axe equivalent. Since the

STG could be very large, detection of equivalent states might require a large amount of

CPU time for some examples. However, experimental evidence gathered to date suggests

that in most cases it is possible to detect equivalent states within a reasonable number

of time frames. This happens because the fanouts of the fault-free and the faulty states

become identical in a few time frames.

3.8 Test Generation Results Using ELEKTRA

The test generation algorithm described in the previous sections has been imple

mented in the program ELEKTRA. It consists of about 14,000 lines of C code and runs in

a VAX-UNIXrM environment.

Results and time profiles using ELEKTRA for six sequential drcuits which axe

described in Table 3.1 axe given in Tables 3.2 and 3.3 respectivdy. In the tables m and s

3.8. TEST GENERATION RESULTS USING ELEKTRA

CKT #Inputs #Outputs # Gates #Latches #Total
Faults

exl 130 32 1073 64 3410

ex2 140 96 3422 256 11572

ex3 220 146 5216 480 20198

des 113 64 1439 64 4886

key 258 193 1812 228 5926

viterbi 94 43 1717 640 5202

Table 3.1: Statistics for example circuits

77

stands for minutes and seconds respectivdy. For each example in Table 3.1, the number

of inputs (#Inputs), number of outputs (#Outputs), number of gates (#Gates), number

of latches (#Latches), and number of faults for which tests have to be generated (#Total

Faults) are indicated.

Example exl and ex2 axe datapath portions of digital signal processing chips.

Example ex3 is a datapath and a controller for a digital signal processor. Examples key

and des axe data encryption standard chips described in [129]. Example viterbi is a word

processing chip that forms a part of a speech recognition system [125].

In Table 3.2, the total number of test vectors (#Vect), the maximum test sequence

length (Max. seq. len), the percentage of times when a potential test sequence generated for

a fault actually detected the fault (%Success), the fault coverage, the percentage of provably

redundant faults, the total fault coverage induding detected and provably redundant faults

(TFC), and the test pattern generation (TPG) time on a VAX 11/8800 axe indicated for

each example. The quality of test patterns is determined by the total amount of test data

(bits) that have to be stored in the tester and the time required to apply these vectors to

the drcuit under test. The total number of test vectors suggest that the amount of test

data is always within reasonable limits even for the large examples.

CPU times for justification, differentiation, total test generation, fault simula

tion, miscellaneous setup operations, and for the entire test generation process axe given

in Table 3.3. The test generation time includes the time required for justification and dif

ferentiation. It is noteworthy that justification and differentiation takes, in most cases, a

small fraction of the total test pattern generation time using the algorithms described in

78 CHAPTER 3. SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS

CKT #Vect
Max.

seq.

len.

Success

(%)

Fault

Cov.

(%)

Red.

Fault

(%)

TFC

(%)

TPG

time

exl 208 4 100 100 0 100 226.7s

ex2 590 4 100 100 0 100 129m

ex3 1033 4 100 100 0 100 316m

des 202 6 100 99.4 0.6 100 256m

key 203 9 96 100 0 100 23m

viterbi 2045 8 99 99.8 0.2 100 674m

Table 3.2: Test generation results for circuits

CKT Justify Differ Test

Generation

Fault

Sim

Misc.

Set up
Total

Time

exl 0.49s 0.36s 9.17s 212s 5.53 226.7s

ex2 7.47s 3.23s 102s 126m 38s 129m

ex3 11.3s 8.5s 300s 309m 120s 316m

des 36m 0.0s 40m 210m 300s 256m

key 3m 2m 8m 14m 43s 23m

viterbi 40m 3m 462m 202m 10m 674m

Table 3.3: Time profiles for example circuits

this chapter. The fraction of time spent in justification and differentiation is small, much

smaller than the corresponding time required in STEED. Moreover, there is no need for

cover enumeration. Test generation times axe in most cases small, and fault simulation

dominates the total test generation time. A betterfault simulation algorithm can decrease

the time required for test pattern generation. It is noteworthy that the success rate, i.e.,

the fraction of times that a potential test sequence is valid, is close to 100% for mostof the

examples.

In Table 3.4, total test generation timeandfault coverage ofSTEED axe compared

with ELEKTRA. As can be seen, the algorithm described in this chapter obtains close to

the maximum posdble fault coverage in all the examples. It takes significantly smaller time

thanSTEED to achieve the same fault coverage. For some ofthe examples, very dgnificant

speed-ups, up to a factor of 100 were obtained.

Todetermine the quality ofthe test patterns, the time required for the application

of the test patterns has to be evaluated. In Table 3.5, the times for testing the sequential

3.9. CONCLUSIONS

CKT STEED ELEKTRA

Fault Cov. TPG time Fault Cov. TPG time

exl 85.68 > 240m 100 226.7s

ex2 55.32 > 1200m 100 129m

ex3 40.44 > 1200m 100 316m

des 97.93 1423m 100 256m

key 100 256m 100 23m

viterbi 88.95 > 1200m 100 674m

Table 3.4: Comparisons with STEED

CKT #Scan Design
Testing Cycles

#Non-scan design
Testing Cycles

exl 4032 208

ex2 29696 590

ex3 55680 1033

des 8768 202

key 11856 203

viterbi 15168 2045

79

Table 3.5: Clock cycles needed for testing

circuits udng the Scan approach and the non-scan approach used here axe compared. The

testing time required for a non-scan implementation is significantly smaller than a Scan im

plementation. This is because values have to be clocked in and out offlip-flops sequentially

in a Scan design and each test vector takes multiple dock cycles to apply. The larger the

number offlip-flops in a Scan chain, the longer the testing time. This time can be reduced

by using multiple Scan paths but at the cost of higher overhead. On the other hand, in

non-scan testing, each vector takes only one clock cycle to apply. For the examples above,

ELEKTRA generates test sequences that require a factor of 7 to 58 smaller testing times

than compacted, combinational tests applied udng Scan design techniques.

3.9 Conclusions

A new approach to test generation for sequential drcuits was presented in this

chapter. The key ideas of the previous chapter were used together with the exploitation

of the arithmetic properties of many RTL descriptions to design a test pattern generator

80 CHAPTER 3. SEQUENTIAL TEST GENERATION USING RTL DESCRIPTIONS

that can handle larger drcuits than previous approaches, and which ismore effident. Good

heuristics play a major role in the effidency of this algorithm. It was possible to generate

tests for an entire chip of medium complexity.

Despite these advantages, there axe certain drawbacks. This approach works best

for circuits whose STGs have a strong connectivity, and there axe various paths from one

state to another. Also, this approach is not suitable for drcuits without arithmetic modules.

In addition, some arithmetic modules (e.g., multipliers with round-off ability) cannot be

handled. For pure controllers, the approach described in the previous chapter may be better.

Due to the nature of fault-free justification and differentiation, it might be necessary to

operate strictly at the logic levd to generate tests for certain faults. Also, this approach

requires that the Computer-Aided Design (CAD) system used to design the chip maintains

and rdates the RTL and logic-level descriptions. However, this requirement is easily met

in most modern CAD frameworks.

Despite having more powerful test generators, the problem of testing is not fully

solved. If a drcuit has a large numberof redundant faults, even a very good test generator

might spend a significant amount of time in identifying those faults. The synthesis process

can help in easing the task of test generation by synthesizing the circuit to be fully and

easily testable. Though it is difficult to characterize easy testability and make the circuit

easily testable, there axe procedures to synthesize drcuits to be fully testable. One such

procedure is the topic of the next chapter.

Chapter 4

SEQUENTIAL SYNTHESIS FOR

TESTABILITY

Test generation for VLSI circuits has traditionally been a post-design activity.

In most cases, test generators like those described in the previous chapters axe used after

the design is complete. Most drcuits axe designed with only area and performance under

consideration, and quite often, the drcuits axe not fully or easily testable. Therefore, a

significant amount ofeffort might be spent in generating tests for such drcuits. Furthermore,

design for testability approaches, such as Level Sensitive Scan Design (LSSD [56]), have

been primarily used to transform the difficult sequential test generation problem into a

more tractable problem of combinational test generation by enhandng the controllability

and observability of the sequential drcuit. Such approaches have an associated area or

performance penalty or both, because the latches used axe spedal scan latches, which axe

larger than simple non-scan latches.

Synthesis for testability approaches attempt to completdy integrate the tasks of

logic design, optimization, and test generation for combinational as well as for sequential

drcuits. The goal of synthesis is to meet area, performance, and testability requirements.

Ideally, test vectors to detect the targeted faults in the circuit axe obtained as a by-product

of the syntheds step. Testability-directed synthesis strategies for combinational drcuits

are well devdoped (e.g., [13, 43, 68]). It is well known that for a two-levd prime and

81

82 CHAPTER 4. SEQUENTIAL SYNTHESIS FOR TESTABILITY

irredundant circuit, all single stuck-at faults are testable. Similax results axe alsoknown for

multi-leveldrcuits. Logic synthesis systems like MIS [15] and BOLD [57] can produce fully

testable two-level or multi-levd combinational drcuits, for single as well as multiple stuck-at

faults. Various approaches for synthesis of fully testable non-scan sequential circuits (e.g.,

[44, 48, 49, 50]) have been proposed in the past. These approaches use logic optimization

under don't-cares to derive a fully testable implementation of the drcuit.

Previous approaches like [44, 48, 49, 50] for synthesis of fully testable non-scan

sequential circuits have used State Transition Graph descriptions of finite state machines.

These approaches axe therefore limited in applicability to small controller drcuits that have

small STGs. Datapath-controller circuits, as well as communication chips and digital signal

processors have STGs that require too much memory to store and are too cumbersome to

manipulate. For such drcuits, a different synthesis for testability approach is needed.

In this chapter, a synthesis for testability approach is presented that can be used for

large sequential circuits. This approach uses covers or a Register-Transfer Level description

of a sequential drcuit instead of State Transition Graphs. The rest of this chapter is

organized as follows. Terminology is introduced in Section 4.1. Previous work is briefly

reviewed in Section 4.2. Some essential theoretical results axe presented in Section 4.3. The

overall synthesis for testability strategy is outlined in Section 4.4. The identification of

invalid and equivalent state don't-cares is the topic of Sections 4.5 and 4.6. Experimental

results are presented in Section 4.7, with condusions in Section 4.8.

4.1 Preliminaries

A general synchronous sequential circuit is shown in Figure 2.1. The behavior

of such a drcuit is often represented using a State Transition Graph. An example State

Transition Graphis shownin Figure4.1. This machinehas five states. In an implementation

of the machine, each state is assigned a binary code called the state code. Since there axe

five states, at least three bits have to be used to asdgn codes to the states of the machine.

However, three bits can be used to asdgn dght state codes,which means that in this machine

three state codes are not used. As in the previous chapters, assume that the machine has

4.1. PRELIMINARIES 83

Figure 4.1: An example STG

a reset state, state R in the figure. In any correctly functioning implementation of the

machine, only the five states given in the STG of Figure 4.1 are visited. However, the three

other states exist in the logic-level implementation of the machine. Assume that the entire

STG of the implemented machine is as shown in Figure 4.2. A state in this STG is said to

be valid if it is either the reset state or it can be reached from the reset state given that the

machine is functioning properly. Otherwise, the state is said to be invalid. The portion of

the STG consisting of all the valid states and all edges emanating from the valid states is

called the valid portion of the STG. The rest of the STG is called the invalid portion. For

all possible implementations of a fully specified machine, the valid portion of the STG is

the same but the invalid portion might depend on how the machine is synthesized. For the

84 CHAPTER 4. SEQUENTIAL SYNTHESIS FOR TESTABILITY

eos
V

•*—....,
——•~~...^„..

Invalid Portion /
of STG /

......«••••••**

Figure 4.2: The STG of an implemented machine

STG of Figure 4.2, the invalid portion of the STG is explicitly shown.

A differentiating sequence for a pair of states (Si, 52) in a sequential circuit

is a sequence of input vectors such that if the sequence is applied to the circuit when the

circuit is initially in Si, the last vector in the sequence produces a differentprimary output

combination than if the circuit were initially in 52. If there is no differentiating sequence

for the pair of states (Si, S2), then they are said to be equivalent. In the machine of

Figure 4.2, states B and C are equivalent.

4.1. PRELIMINARIES

„«•••

(-1* rr^) -yi
V ^--A^/ /^TV^ Invalid Portion /
\^ (**_ \ of STG

•^•M.
••-.,

.«•••»••

Figure 4.3: Equivalent-SRF

85

Faults in a sequential circuit may occur on the inputs or outputs of the combina

tional logic block or may occur inside the combinational logic block. Faults on the inputs

and outputs are either primary input faults, present-state faults, primary output faults, or

next-state faults. All other faults are called internal faults. In the following paragraphs,

some terms that were mentioned briefly in Chapter 2 are defined.

A fault in a sequential circuit is said to be redundant if the behavior of the fault-

free and the faulty circuit is identical under all possible input sequences. Redundant faults

86 CHAPTER 4. SEQUENTIAL SYNTHESIS FOR TESTABILITY

can be divided into two categories — combinationally-redundant and sequentially-

redundant. A combinationally-redundant fault (CRF) is one whose effect cannot be ob

served at the PO or NS wires using any primary input and any present state. Synthesizing

the combinational logic block of the circuit to be prime and irredundant can ensure that

there are no CRFs. Sequentially redundant faults can be classified into three categories as

in [49]:

1. Equivalent-SRF: The fault causes the interchange/creation 1 of equivalent states in

the STG.

2. Invalid-SRF: The fault does not corrupt any fanout edge of a valid state in the STG.

3. Isomorph-SRF: The fault results in a faulty machine that is isomorphic to the

original machine but with a different state encoding.

Consider the circuit whose STG is shown in Figure 4.2. Let a fault modify this

circuit to another one having the STG shown in Figure 4.3. The corrupted edge is shown

using a dotted line. In the faulty machine the corrupted edge goes from state R to C

instead of B. Since states B and C are equivalent, the true and faulty machines behave

identically. This is an equivalent-SRF. On the other hand, if the fault were to change the

STG to that of Figure 4.4, then only the invalid portion of the STG would be corrupted.

Since the invalid portion of the STG is never visited, this fault will never be exerted and

therefore it is redundant. Such a fault is called an invalid-SRF. The third kind of SRF,

namely, isomorph-SRF, is illustrated with the STG of Figure 4.5. In this figure, the state

codes of state B and D and that of C and IC are interchanged.

In addition to these SRFs, there is a complicated equivalent-SRF. Consider a

portion of an STG shown in Figure 4.6(a). In this STG state B is an invalid state and is

not equivalent to state C. Let a fault modify only the same portion of the STG to that

shownin Figure 4.6(b). The fault-free state C in the fault-free machine is equivalent to the

faulty state B in the faulty machine. Therefore, the fault is redundant. In [49], it is shown

that apart from the three kinds mentioned above, no other kind of sequential redundancy

can exist.

1Replacement is included as a form of interchange.

4.1. PRELIMINARIES

Invalid Portion /
of STG y

„.«....•—
'•••M*..a.s>..M...*.*M.*<l

Figure 4.4: Invalid-SRF

87

Complicated equivalent-SRFs as wellas isomorph-SRFs are very rare. In fact, in all

practical circuits seen so far, not a single instance of these faults have been encountered. On

the other hand, invalid-SRFs and simple equivalent-SRFs are very common. The approach

to be described here is therefore restricted only to these SRFs. Full testability therefore

means that there are no invalid or simple equivalent-SRFs in the machine.

88 CHAPTER 4. SEQUENTIAL SYNTHESIS FOR TESTABILITY

S

(-G© Invalid Portion /
of STG /

•••••—..«..••••••••«••••••••••••

Figure 4.5: Isomorph-SRF

4.1.1 Eliminating Sequential Redundancies Using Don't-Cares

In general, in an n-latch machine, there are invalid states as well as equivalent

states. To eliminate invalid-SRFs it has to be ensured that no fault requires only invalid

states as excitation states. This can be achieved using invalid states as don't-cares during

combinational logic optimization [49]. For example, a two-level cover of the combinational

logic blockimplementing the machine ofFigure4.1 is shown in Figure4.7. The useofinvalid

4.1. PRELIMINARIES 89

(a) (b)

Figure 4.6: Complicated equivalent-SRF

states as don't-cares is illustrated in the last three lines of the cover. Making a network

prime and irredundant under a don't-care set ensures that there exists a test vector outside

the don't-care set. That is, there will exist at least one valid state for each fault that will

excite and propagate the effect of the fault to the next-state lines and/or primary outputs.

In many cases, the effect of a fault is propagated only to the next-state lines of a

sequential circuit. In such cases a fault-free/faulty state pair is obtained. In order to detect

the fault it is necessary to be able to differentiate between the fault-free/faulty state pair.

To ensure that there are no equivalent-SRFs, it is necessary to ensure that some faulty

state in the faulty machine is not equivalent to the corresponding true state in the fault-

free machine. This is achieved by using an equivalent state don't-care set [49] or Boolean

90 CHAPTER 4. SEQUENTIAL SYNTHESIS FOR TESTABILITY

PI PS PO NS

1 000 1 010

0 000 1 001 -• {001,111}
1 010 0 Oil

0 010 1 000

1 001 0 010

0 001 1 111 -> {001,111}
1 111 0 010

0 111 1 001 -• {001, 111}
1 Oil 0 111 -• {001,111}
0 Oil 0 000

Invalid State Don't-Cares

- 100

- 101

- 110

Figure 4.7: Two-level cover of the FSM

relations [18]. In the example ofFigure 4.1, states B and C areequivalent. Forevery edge

that fans in to state B or C, the next-statefunction could either produce state B or C, t.e.,

the next state for the corresponding present state is a set of states, not a single state. In

this example, a Boolean relation has to be minimized. Minimization of Boolean relations is

discussed in Chapter 7. If the state codes of B and C were different in only one bit, then

they could have been combined into one cube and a Boolean function with output don't-

cares would have to be minimized, as in [49]. Using these don't-cares or minimizing the

associated Boolean relation guarantees the existence of a test vector outside the don't-care

set. That is, for each fault there is a fault-free and faulty state that are not equivalent.

The two main issues in using don't-cares for synthesis are the efficient derivation

of the don't-cares and the use of the don't-care sets in synthesis. If the number of latches

in a machine is large, then even a listing of all invalid states may not be possible, let alone

optimization underthe don't-care set. Similarly, explicitly detecting and listing equivalences

between all pairs of states is virtually impossible. Therefore, STG-based techniques for

4.2. PREVIOUS WORK 91

synthesis for testability will fail for such circuits. In Sections 4.5 and 4.6 it will be shown

how to find a subset of invalid and equivalent state don't-cares that will ensure that the

circuit will have no equivalent or invalid-SRFs. This don't-care information is extracted

using the covers of PO and NS lines or the RTL description of the circuit.

4.2 Previous Work

In [48], a procedure is given for implementing fully and easily testable finite state

machines. This approach represents approaches that constrain the synthesis procedure by

restricting the implementation of the logic. In this approach the next-state logic block is

separated from the output logic block. Also, the logic for each next-state line is implemented

as a single cone. Using a distance-2 state assignment strategy, it is shown that the resultant

circuit is fully testable. The attractive feature of this approach is that the resultant circuit

is very easy to test and the length of each test sequence is bounded. An obvious drawback

of this approach is that the resultant logic is usually larger and the area of the machine

might increase significantly. In a related work, a synthesis method for easily testable PLAs

using a crosspoint fault model is proposed in [45].

The classification of redundancies presented in the previous section was first pre

sented in [49]. It is shown that all SRFs are one of the three kinds discussed. This classifi

cation serves as a basis for approaches that use optimal synthesis procedures to guarantee

full testability, instead of constraining the synthesis process. The STG of the machine to

be synthesized is used to derive the don't-care sets. A three-step synthesis procedure is

outlined. The first step is state minimization, the second is state assignment, and the third

one is combinational logic optimization under a proper don't-care set. Locally optimal state

assignment is introduced, and it is shown that a locally optimal state assignment can guar

antee that no single stuck-at fault is an isomorph-SRF. An iterative synthesis procedure is

used to synthesize a fully testable implementation of the circuit. In the first step of the

procedure the equivalent don't-care set is empty and only the invalid state don't-cares are

used. In each iteration the circuit is synthesized to be combinationally prime and irredun

dant under the don't-care sets. Now all invalid states that are equivalent to valid states

92 CHAPTER 4. SEQUENTIAL SYNTHESIS FOR TESTABILITY

are identified and are used as don't-cares. Therefore, in the next iteration, some previously

invalid states might become valid and vice versa. The new invalid and equivalent state

don't-cares are extracted and the same set of operations is repeated. This carries on until

the circuit doesn't change from one iteration to the next. The resultant circuit can be

proved to be fully testable, and it can also be shown that the procedure converges. The

fundamental ideas introduced in this paper are used in this chapter. The major practical

drawback of this approach is the use of the STG for the purpose of synthesis. As has been

pointed out already, the STG of certain circuits like datapath-controllers and digital signal

processors can be huge, thereby precluding the use of this approach.

In [44], a unified approach for the synthesis of testable sequential circuits is given.

Equivalent-SRFs axe identified as the most difficult fault to remove, and the concept of fault-

effectdisjointnessis introduced. Procedures for retaining fault-effect disjointness are used to

ensure that all fault-free/faulty state pairs can be differentiated, thereby guaranteeing that

there are no equivalent-SRFs. The results of [49] are extended and the relationship between

redundancies and don't-cares are further exploredin [50]. A classification of redundancies in

circuits consisting of single or interacting finite state machines is proposed. Foreach class of

redundancies, don't-care sets are defined which if properly exploited during logic synthesis

can implicitly remove the redundancies. The steps followed by the synthesis procedure are

similar to those of [49].

4.3 Theoretical Results

Beforedescribing the synthesis procedure, it necessary to lay the theoreticalground

work for some results that will be used in the synthesis process. The first result in this

section concerns a special class of circuits and a logic-partitioning strategy such that the

circuits can be synthesized to be fully non-scan testable through well known procedures

for synthesizing combinational circuits to be fully testable. The second part of this section

deals with strategies that can be used to prune the size of the don't-care sets necessary to

ensure full testability. These strategies exploit the already existing partitions in the logic.

4.3. THEORETICAL RESULTS 93

4.3.1 An Unconditional Testability Theorem

Logic partitioning strategies have been used in the past to synthesize more testable

circuits. It is possible to synthesize a certain class of circuits to be fully non-scan testable by

partitioning the next-state and output logic blocks and ensuring that each logic block is free

of CRFs. The following theorem provides the theoretical foundation for such a synthesis

strategy.

Theorem 4.3.1 ; Given a sequential machine with N latches and 2N valid states like

the one shown in Figure J^.S, if each state can be differentiated from every other state

using a single vector, then the machine is fully sequentially testable, provided that each

combinational logic block is fully testable.

Proof: Since both combinational logic blocks are fully testable, no CRFs can exist. Now it

has to be shown that for each fault a test can be generated. Since the fault is not a CRF, an

excitation state can be obtained for the fault. Since all states are valid, this excitation state

is definitely a valid state, and therefore the excitation state can be justified. Assume that

the fault is in the output logic block. In that case the effect of the fault can be observed at

the POs by a test vector consisting of the justification sequence and the excitation vector. If

the fault is in the next-state logic block, a fault-free/faulty state pair will be produced and

the two states will differ in at least one bit. Since every state is differentiable from every

other by just one vector, the output logic block can be made to assert different outputs for

the individual states in any state pair. Therefore, the fault-free/faulty state pair can be

differentiated with one vector and the effect of the fault can be propagated to the POs. •

As a first step in testability-directed synthesis, the circuit is checked to see if it

satisfies the properties required by Theorem 4.3.1. This information has to be provided by

the user of this tool. These conditions are satisfied in some pure datapath-type circuits.

If the conditions are satisfied, the combinational logic block is partitioned and each block

is synthesized to be prime and irredundant, either using test generation algorithms [14]

or using synthesis procedures [13]. The resulting sequential machine is guaranteed to be

non-scan testable for all single stuck-at faults. No constraints are placed on the synthesis

procedure for each block, neither are there any associated don't-care sets.

94 CHAPTER 4. SEQUENTIAL SYNTHESIS FOR TESTABILITY

PI

Output Logic

Block

Next-State Logic

Block

Latches

PO

Figure 4.8: An implementation of a sequential circuit

4.3.2 Logic Partitioning

In general, in VLSI designs, logic is partitioned and implemented as separate

modules in order to contain the complexityof the designas wellto improvethe performance

of the circuit. A useful side effect of partitioning is that it helps to prune the don't-care sets

associated with a sequential circuit. Typically, in a multiple-output circuit, the different

outputs are functions of a subset of the inputs. For a primary output 0,-, support(0{) is

defined to be the set of inputs that 0,- is a function of. In Figure 4.9(a), for instance,

support(Fi) = {A, B, C}.

The logic required to implement a function corresponding to an output may be

shared with other outputs or may be separate. In Figure 4.9(a),Fi and J2 share logic but

F3 does not. The set of logic gates which implement the function for any output 0,- of a

multiple-output function is defined as logic(Oi). Forexample, in the circuit ofFigure 4.9(a),

logic(Fi) D logic(F3) = ^, but support(Fi) D support(F3) ^ <f>. Any such separation

can be exploited to prune the size of the set of equivalent states that is required to be

specified as don't-cares to ensure full sequential testability. The following theorems form

4.3. THEORETICAL RESULTS 95

(a) (b)

Figure 4.9: Partitioned logic blocks

the basis of the strategy for pruning the set of don't-cares required to synthesize the circuit

so that all internal faults are testable.

Theorem 4.3.2 ; If two next-state lines Ni and JV2 are such that they have disjoint logic,

i.e., logic(N{) fl /op*c(JV2) = <f>, then the equivalent state don't-care corresponding to any

pair of states sa and Sb that differ in bit positions corresponding to both N\ and JV2, is not

required to ensure that any internal fault is not an equivalent-SRF.

Proof: For an internal fault to be an equivalent-SRF, it has to result in an equivalent

fault-free/faulty state pair. For any internal fault to be propagated to the next-state lines

N\ and JV2, the fault has to be present both in logic(Ni) and logic(Ni). Since their logic is

disjoint, this cannot occur. Therefore, fault-free/faulty state pairs that differ in bit positions

corresponding to both Ni and JV2 will never occur. Therefore, don't-cares corresponding to

pairs of states that are equivalent and that differ in these bits are not necessary. •

For instance, assume that a machine has three next-state lines N\9 iV2, and JV3,

96 CHAPTER 4. SEQUENTIAL SYNTHESIS FOR TESTABILITY

such that logic(Ni) f] logic(N^) = <f>* Then, if state pairs like {110, 011} are equivalent,

they need not be considered in the equivalent state don't-care set that is required to ensure

testability for internal faults.

It is also possible that two inputs never appear simultaneously in the support of

any output in a multiple-output function. For example, in the circuit shown in Figure 4.9(b),

support(Fi) = {A, B}, and support^) = {B, C}. Inputs A and C never appear in

the same support for this multiple-output function. This information can be exploited to

prune the invalid state don't-care set. In the following theorem, Up corresponds to the set

of all present-state lines.

Theorem 4.3.3 ; If two present-state lines Pi and P2 are such that there does not exist any

next-state line Ni or primary output 0,- where support(Ni) D {Pi, P2} or support(Oi) D

{Pi» P2}, then the invalid state don't-care set can be limited to cubes that do not have

positions corresponding to both Pi and P2 set to either 0 or 1, i.e., it can be restricted to

combinations on lines Up —Pi and Up —P2.

Proof: This theorem implies that the cubes in the invalid state don't-care set are such that

the positions corresponding to Pi and P2 in the cube should not have a 0/1 value together.

Consider an internal fault in the combinational logicblock of the machine. The fault will be

present in several logic^NiYs or /opic(0,)'s. To excite and propagate the effect of the fault

to the next-state lines or outputs, a specific combination of support(Ni) or support(Oi) is

required. It is guaranteed that none of these supports contain both Pi and P2. Therefore,

the test vector for the fault willhave a don't-care entry for either Pi or P2 (or both). This

implies that to preclude the occurrence of invalid-SRFs, it is necessary to consider only

invalid states corresponding to combinations of Up - Pi or Up —P2. •

For instance, given a finite state machine with three present-state lines, Pi, P2,

and P3, if Pi and P3 satisfy the conditions of the theoremabove, then it is not necessary to

consider invalid states corresponding to all three present-state lines. If 111 happens to be

an invalid state, then the only kind of don't-care information that will be relevant is 11—

or —11. If 110 and Oil are valid states, then 11— and —11 are not invalid state cubes and

therefore it is not necessary to use 111 as a don't-care. On the other hand, if 110 is also

4.4. THE SYNTHESIS AND TEST STRATEGY 97

an invalid state, then 11— is an invalid combination for lines Up —P3, namely, Pi, P2, and

this should be used as a don't-care during synthesis.

As has been stated in the theorems, only internal faults are considered, i.e., no

faults on primary inputs, present-state lines, next-state lines, and primary outputs of the

circuit are considered. These faults have dramatic effects and are easy to generate tests for.

The conditions for the above theorem can be used to prune the set of don't-cares required

to remove redundant internal faults. For some circuits, the set of don't-cares can be very

large. The time required for synthesis often depends on the size of the don't-care set; the

larger the set, the larger the time taken. Pruning the set of don't-cares is therefore an

important step in improving the efficiency of the synthesis process.

4.4 The Synthesis and Test Strategy

The synthesis for testability approach to be outlined involves the use of a sequential

test pattern generator to derive the essential set of don't cares and combinational logic

optimization using this don't-care set. The test generators described in Chapters 2 and 3

can be used. The overall synthesis for testability procedure is as follows:

1. If the RTL description of the circuit is available, it is analyzed to see if it satisfies

the conditions of Theorem 4.3.1. If so, the logic block is partitioned and each block

is synthesized to be combinationally prime and irredundant. The resulting sequential

machine is fully testable, non-scan.

2. Otherwise, the circuit is synthesized to be combinationally prime and irredundant

using the procedure outlined in [13] or using any redundancy identification procedure.

This guarantees that there are no CRFs in the circuit.

3. A fault list for all single stuck-at faults in the circuit is derived and tests are generated

for faults in the list. If an RTL description of the circuit is available, ELEKTRA is

used, otherwise STEED is used.

4. For every fault requiring invalid states for excitation, the invalid states are stored.

Pruning techniques like those of Theorem 4.3.3 are used, if necessary, to decrease the

98 CHAPTER 4. SEQUENTIAL SYNTHESIS FOR TESTABILITY

size of the don't-care set. Procedures for detection of invalid states are presented in

Section 4.5.

5. For every fault that produces fault-free/faulty state pairs that are equivalent, the

equivalent states are stored. Pruning techniques like those described in Theorem

4.3.2 can be used, if necessary. Procedures for the detection of equivalent states are

presented in Section 4.6.

6. The combinational logic is synthesized to be prime and irredundant under the invalid

and equivalent state don't-care set. Not all equivalent state pairs can be represented

using traditional don't-cares, as was illustrated in Figure 4.7. In such cases, Boolean

relations have to be minimized while synthesizing the logic.

7. After re-synthesis, some previously invalid states might become valid states and the

set of invalid and equivalent state don't-cares might change,together with the network

topology. Therefore, Steps 3 to 6 are repeated until the circuit becomes fully testable

or the circuit structure and the set of don't-cares don't change from one iteration to

the next. In [49] it is shown that this procedure must converge.

Faults that require only invalid states for justification are redundant, as are those

that only produce equivalent fault-free/faulty state pairs. After all don't-care information

has been derived, the circuit is optimized using MIS by specifying all possible don't-care

information that MIS can make use of. Currently, MIS cannot use all the don't-care infor

mation,neitherdoes it guarantee a primeandirredundant combinational circuit. Therefore,

after logic optimization, a combinational test generator is used to make the circuit prime

and irredundant under the don't-care set using techniques described in Chapter 7.

An alternative to this synthesis strategy would be to explicitly remove the re

dundancies in the circuit, as soon as they are detected, using a sequential test pattern

generator like STEED or ELEKTRA. Explicit removal of redundancies would entail the

replacement of the redundant linewith a 0/1, propagating the value through the network,

and eliminating all wires that get set to a 0/1 value. Therefore, for each redundant fault,

the amount of logic that can be removed would vary with the fault. Since redundant faults

4.5. DETECTION OF INVALID STATES 99

have to be removed one at a time [38], after each removal all previous faults have to be

checked to ensure that their status (redundant or testable) haven't changed. Removal of

each redundant fault forces a new iteration where test generation has to begin all over

again. Rather than removing the redundancies explicitly, don't-cares are used to implicitly

eliminate them. Test generators like ELEKTRA are not able to establish equivalent-SRFs

but can identify equivalent states. Therefore, equivalent-SRFs would not be removed using

the explicit approach but would be removed using the implicit approach.

The procedure above guarantees that the synthesized logic-level circuit will not

have any invalid-SRFs, neither will the kind of simple equivalent-SRFs shown in Figure 4.3

occur. Isomorph-SRFs and complicatedequivalent-SRFs may be present since these redun

dancies can occur in theory even after using the don't-care sets above. However, even a

singleinstance of such a redundancy has not been encountered to date in the experiments of

Section 4.7 and in the experiments reported in [49, 50]. It is not hard to see why such faults

are rare. For a complicated equivalent-SRF, a single stuck-at fault has to modify only two

edges in the STG, one from a valid state and the other from an invalid state. It is difficult

to find a fault that does this. For an isomorph-SRF, the original state assignment should

be such that there is another state assignment whose cost is only one literal less than the

original one. Since most state assignments tend to be locally optimal, such a situation is

also difficult to come by. Therefore, such faults are not considered.

4.5 Detection of Invalid States

Invalid states are detected during state justification. In Sections 2.7 and 3.4, the

procedures for the detection of invalid states using either the covers of the ON and OFF-sets

of PO and NS lines or an RTL description of the circuit was briefly described. Details are

provided in this section.

Consider a circuit described only at the logic level. For such a circuit, STEED

would be used for the purpose of test generation. The first step in checking whether a state

is invalid is to compute its fanin. If the fanin is empty, the state cannot be reached from

the reset state and is therefore invalid. However, this is not the only criterion for detecting

100 CHAPTER 4. SEQUENTIAL SYNTHESIS FOR TESTABILITY

invalid states. Given any excitation state that has to be justified, it is marked temporarily

invalid. Now all its fanin states are computed, and if the reset state is not covered by some

state in the fanin, then all the states are stored in a transitive fanin set. For every state

in the transitive fanin set that has not been considered before, the fanin of that state is

generated and added to the transitive fanin set. In this manner, all states in the transitive

fanin of the initial excitation state can be generated. Once all the states in the transitive

fanin are obtained, they can be said to be invalid if the reset state is not in the transitive

fanin set. For example, for the machine whose STG is shown in Figure 4.2, if IC is chosen

as an excitation state, the transitive fanin of IC contains only IB, and thus states IC and

IB can be declared invalid.

The same procedure is used when justification is performed using the RTL descrip

tion of the circuit. If while justifying a state the decision tree becomes empty, then the state

has no fanin states and is definitely invalid. Otherwise the transitive fanin of the excitation

state is computed, as described in the previous paragraph, and is used in the detection of

invalid states. The test generation procedure might end up detecting all invalid states, but

in many cases only those that are required as excitation states and therefore required to

ensure full testability are computed.

If the invalid states form small disjoint groups of states, it is easy to detect them.

On the other hand, if the invalid portion of the STG is large and well connected, it might

not be possible to identify invalid states as it would entail the enumeration of a large STG.

It has been observed that there exist circuits where the valid portion of the STG is a

small fraction of the total STG and the invalid portion of the STG is well connected. For

such machines it is not possible to list all the invalid states and use them as don't-cares

during synthesis. Such circuits are inherently hard to test and hard to synthesize to be fully

testable. Fortunately, they are very rare and can be re-designed to be highly testable by

starting from the behavioral description of the circuit.

Recently, State Transition Graph traversal techniques [30, 35] based on BDD rep

resentations have been used to obtain all the valid states of a finite-state machine [87]. The

set of invalid states of the machine can therefore be easily obtained. However, not all of

these states will be necessary to ensure full testability. The algorithms described in this

4.6. DETECTION OF EQUIVALENT STATES 101

section extract only the necessary set of invalid state don't-cares.

4.6 Detection of Equivalent States

Procedures for the identification of equivalent states were presented in Sections 2.6

and 3.7. As pointed out in Section2.6,for everyfault-free/faulty state pair, at first a single-

vector differentiating sequence is sought using cube intersections. Instead of using cube

intersections, ELEKTRA (cf. Section 3.7) uses a D-Algorithm-type fault effect propagation

from a PS line to a PO. If a single-vector differentiating sequence is not found, the states

that are in the fanout of each state are found. If the fanout states of the two states are

identical, then the two states are equivalent. If not, differentiation is now attempted using

the new state pair. In both cases a depth-first search technique is used, where in the worst

case the entire STG of the machine has to be enumerated to find a differentiating sequence

or to establish that two states are equivalent. For large machines, enumeration of the entire

STG is not possible. However, it has been observed that the worst-case situation almost

never arises. In most cases the equivalence of two states can be established in a few time

frames. This is because the fanout states of the fault-free/faulty states become identical

within a few time frames.

Equivalences are detected between states that are produced as a fault-free/faulty

state pair. The synthesis procedure might have to use all equivalent state pairs to ensure

full testability, but in the average case, not all of them are needed to ensure full testability.

Therefore, as in the invalid state case, only those equivalent state pairs that are necessary

to ensure full testability are computed.

4.7 Experimental Results

In this section, experimental results for the synthesis and test procedure described

here are presented. In Table 4.1, for each example used, the number of inputs (#Inputs),

outputs (#Outputs), and latches (#Latches) axe given. Example dsip was obtained from

[63]. The example exl is a data path of a simple computer with no associated control.

102 CHAPTER 4. SEQUENTIAL SYNTHESIS FOR TESTABILITY

CKT #Inputs #Outputs #Latches

dsip 228 197 224

exl 130 32 64

des 113 64 64

key 258 193 228

viterbi 94 43 640

Table 4.1: Statistics for example circuits

Examples des and key are large finite-state machines from a data-encryption chip [129].

Example viterbi is digital signal processing chip in a speech recognition system [125].

The examples described in Table 4.1 are synthesized without using the extended

set of don't-cares, and the results of test generation are presented in Table 4.2. In this

table the number of test sequences (# Test Seq.), the total number of test vectors (# Vect),

the percentage of redundant faults (Red. fault), the total fault coverageincluding detected

and provably redundant faults (TFC), and the TPG time on a VAX 11/8800 are indicated

for each example. Also, the times required for logic optimization (LO time) and don't-

care determination (both invalid state and equivalent state don't-cares), which is a part of

TPG time, is indicated (DC time). Logic optimizationis performed using MIS [15] and a

combinational test generator. The circuits were synthesized to be combinationally prime

and irredundant and the number of literals in factored form (as a measure of the area)

for each of these circuits is shown in the last column of the table. For the example dsip

the test generator STEED was used. For the rest of the examples ELEKTRA was used.

Example exl satisfied the conditions of Theorem 4.3.1 and was easily synthesized to be fully

testable. In key, though certain states were detected to be invalid, they were not essential

for test pattern generation. For all examples, a large fraction of the test pattern generation

time was spent in combinational test generation and fault simulation. All redundant faults

detected in the last four examples are invalid-SRFs.

In Table 4.3, the number of iterations required (#Iterations) during logic opti

mization to obtain a fully testable circuit, the additional synthesis time (LO time) using

the extended don't-care set, the fault coverage (TFC), and the time required for test pattern

generation (TPG time) is shown. Test pattern generation time is significantly smaller than

4.8. CONCLUSIONS

CKT

#Test
Seq.

#Vect Red.

fault

(%)

TFC

(%)

TPG

time

LO

time

DC

time

Area

dsip 8 212 0.01 100 25.8m 24m 2.0s 2766

exl 72 208 0 100 226s 26m 0 4671

des 129 202 0.6 100 256m 2h 36m 2312

key 33 203 0 100 23m 1.5h 3m 2960

viterbi 329 2045 0.17 100 674m 4.5h 40m 2075

Table 4.2: Test generation results for circuits

CKT #Iterations LO

time

TFC TPG

time

Reduction

in Area

dsip 1 45s 100 2m 0.8%

des 3 100m 100 21m 10.2%

viterbi 4 136m 100 48m 6.5%

103

Table 4.3: Results of logic optimization

those in Table 4.2 because the test patterns generated previously gave a high initial fault

coverage. Only the examples that were not fully testable are shown in Table 4.3. As can be

seen, the examples have been synthesized to be fully testable within a reasonable amount

of CPU time. The percentage reduction in the number of literals after the use of the ex

tended don't-care set is shown in the last column of the table. In all cases the circuits were

smaller. Since Scan-based approaches would have required the area indicated in Table 4.2

(and perhaps more, because of the Scan latches), this approach compares favorably with

respect to Scan-based approaches in terms of area (as well as performance, since they are

intimately related).

4.8 Conclusions

A synthesis procedure that produces an optimized and fully testable logic imple

mentation of a sequential circuit starting from an RTL description or a logic-level description

of the sequential circuit was presented. Unlike previous approaches, this is not based on the

STG description of the system and is not restricted to small controller circuits. Datapath-

controller circuits as well as digital signal processors, whose STGs are very large, can be

104 CHAPTER 4. SEQUENTIAL SYNTHESIS FOR TESTABILITY

synthesized to be fully testable. The essential invalid-state and equivalent-state don't-cares

are derived and are used in synthesis. The procedure involves the use of combinational

logicoptimization and test generation techniques for the detection of invalid and equivalent

states. Though a purely gate-level descriptionof the circuit can be used as a starting point,

using an RTL description often facilitates the detection of invalid and equivalent states in

largecircuits. The procedure does not introduce any areaor performanceoverhead like scan

design and can be used for circuits an order of magnitude larger than those handled by pre

vious State Transition Graph based approaches. The memory and CPU time requirements

for synthesis and test generation are also reasonable.

As has been pointed out, in some cases, detection of invalid states and equivalent

states can take an exponential amount of time. Though such circuits have not been encoun

tered, their existence cannot be ruled out. Similarly, there might exist examples for which

faults give rise to isomorph-SRFs or complex equivalent-SRFs, which are not handled by

the approach presented in this chapter. Despite these drawbacks, this approach works for

a class of large circuits.

Chapter 5

VERIFICATION OF

SEQUENTIAL CIRCUITS

The problem of verifying the equivalence of two implementations of a sequential

circuit and the problem of test generation for such circuits are intimately related. The

verification problem can be formulated as a decision problem where given two descriptions

of a circuit, the question asked is whether the two descriptions have the same functionality.

With the increasing use of sophisticated, automatic optimization tools in the synthesis of

combinational and sequential logic circuits, it has become essential to be able to verify

efficiently that the optimized and original descriptions represent the same machine, i.e., the

synthesis process has not introduced any errors in the circuit. As observed in Chapter 1,

verification is required at all stages of the design process and different verification techniques

are used at different stages for verification. One of the most important phases of the design

process is sequential logic optimization. At this level, various techniques like retiming

[86, 93], decomposition [10], optimization under don't cares [40, 87], and re-encoding [40]

are used to transform the logic-level description of the circuit to a more optimal description.

The focus of this chapter is the verification of circuits described at the logic level. The main

application of the techniques described in this chapter is in verifying the correctness of the

optimization and synthesis tools.

A significant amount of research has been performed in the area of verification of

105

106 CHAPTER 5. VERIFICATION OF SEQUENTIAL CIRCUITS

combinationalcircuits [27,67,91,92, 94,133]. To date, one of the most efficient approaches

for verification of such circuits use Binary Decision Diagram-based canonical representa

tion, whereby the verification problem can be converted into a graph isomorphism problem

[27, 94]. However, there exist circuits for which the size of the BDDs can be proved to

grow exponentially with the number of inputs to the circuit (e.g., multipliers) [26]. For

such circuits, enumeration-simulation approaches [91,133] work better due to their smaller

memory requirement. In such an approach, the truth table of one circuit is enumerated

and simultaneously simulated on the other circuit. The time required for verification can

grow exponentially with the number of inputs to the circuit. However, using implicit enu

meration, the number of cubes to be simulated can be significantly reduced. In a different

approach, the use of multi-level tautology for verification has also been proposed [67]. In

this technique a product network is built from the individual networks and the product

network is checked for tautology.

The sequential logic verification problem is more complicated than the combina

tional verification problem. One approach to sequential verification is exhaustive simulation,

where each path in the State Transition Graphs (STGs) of the machines being verified is

simulated. Since the number of input patterns to be simulated in an equivalence check

always grows exponentially with the number of inputs to the logic circuit, this approach is

only feasible for small circuits. To reduce the number of paths to be enumerated and sim

ulated, implicit enumeration techniques are used [46, 62]. Formal verificationmethods also

use some form of implicit search mechanism in order to prove or disprove logic equivalence

[79]. In this chapter, an algorithm for the implicit enumeration of the STG of a circuit is

described and its use in verification is presented. This algorithm is memory and CPU time

efficient and requires only the explicit storage of the logic-level descriptions of the circuits

and the valid states in the finite state machines. Unlike previous algorithms as in [46], the

input as well as the state space is enumerated implicitly. The algorithms described are

especially applicable to interconnected finite state machines.

The rest of the chapter is organized as follows. Definitions are presented in Sec

tion 5.1. Previous work in this area is reviewed in Section 5.2. An implicit STG traversal

algorithm is presented in Section 5.3 and its use in verification is described. This algorithm

5.1. PRELIMINARIES 107

uses the covers of the ON and OFF-sets of the primary outputs and next-state lines for

traversal. In Section 5.4, an implicit STG enumeration algorithm is presented and its use

in verification is illustrated. Results using both approaches are presented in Section 5.5,

followed by conclusions in Section 5.6.

5.1 Preliminaries

A general sequential circuit is shown in Figure 2.1. In order to show that two such

circuits are not equivalent, it is necessary to find a primary input sequence which when

applied to the two machines results in the machines asserting different output sequences. If

no such sequence exists, the machines are said to be equivalent. Before trying to deter

mine equivalence, correspondence between at least one state in each machine is required.

Therefore each machine is assumed to have a reset state. The problem of verification of

sequential machines is thereby reduced to the problem of determining the equivalence of

the reset states of the two machines.

Consider a Boolean function of r input variables and n output variables. This

function is a mapping from the r-dimensional Boolean input space to the n-dimensional

Boolean output space. The process of finding the output value of the function (or range)

for each point in the input space (or domain) is called an enumeration of the function [41].

Given a logic-leveldescription of a circuit implementing a function, minterm enumeration

refers to the use of minterms for the purpose of enumeration. Each input applied to the

logic-level circuit is a minterm and enumeration involves the simulation of the circuit for

each of the minterms. On the other hand, implicit enumeration refers to the use of

cubes (with one or more don't-care entries) for enumeration. In minterm enumeration all

2r input combinations have to be considered, but in implicit enumeration the number of

cubes to be considered can be significantly less than 2r. For example, for the 3-input single

output function of Figure 5.1, minterm enumeration requires 8 input vectors but implicit

enumeration requires only 4 vectors.

The combinational logicblockof the sequential circuit takes both primary inputs as

wellas present-state variablesas input. If there are p primary inputs, qprimary outputs, and

108 CHAPTER 5. VERIFICATION OF SEQUENTIAL CIRCUITS

IMPLICT ENUMERATION

ON OFF

1 0 - 11-

0-1 0-0

Figure 5.1: Circuit illustrating explicit and implicit enumeration

n present-state and next-state lines, the combinational logic block implements a mapping

from the (p + n)-dimensional input space to the (q + n)-dimensional output space. The

total input space for the combinational logic block can be partitioned into the p-dimensional

primary input space or simply the input space and the n-dimensional state space.

Given finite state machines Mi and M2, the product of the two machines is

defined to be the single machine obtained by connecting the machines in parallel, as shown

in Figure 5.2. The inputs of both machines are connected to the primary inputs. The

product machine has a single output which is obtained by connecting the corresponding

outputs of the individual machines to an XNOR (or equivalence) gate and connecting the

outputs of the XNOR gate to an AND gate. For machines Mi and M2 to be equivalent,

the output of the product machine should alwaysbe true (i.e., 1). Alternately, the product

machine can have the same number of outputs as the original machines, and this is obtained

by not performing the final AND in the previous step. The main use of the product machine

is for the purposes of verification or to establish the equivalence of two states.

If there exists for a pair of states (5,-, Sj) a differentiating sequence of length k,

the states S% and Sj are said to be k-differentiable. States that are not i-differentiable for

any i < k are said to be k-equivalent. If a finite differentiating sequence does not exist

5.1. PRELIMINARIES 109

M.

Latches

Inputs Outputs

M.

Latches

Figure 5.2: Product machine

for a state pair, the states in the pair are said to be equivalent. Two states are said to be

output-equivalent or single-cycle equivalent if they are 1-equivalent.

Enumeration of the STG of a machine is the process of obtaining the STG

description of the machine. In such a description, each state is represented with a unique

symbolic code, and from any state, given any input vector, the next state and the output can

be uniquely determined. On the other hand, in the traversal of the STG of a machine, each

state migjhtnot have a unique symbolic code and the next state for every input combination

might not be uniquely determined. However, all valid states are visited to check if a certain

property is true for all such states. Examples in Sections 5.3 and 5.4 will illustrate the

difference between the two.

110 CHAPTER 5. VERIFICATION OF SEQUENTIAL CIRCUITS

5.2 Previous Work

The problem of verification of sequential circuits has been under investigation for

a long time. There exist algorithms that require the explicit storage of the State Transition

Graph of the sequential machine in order to check for equivalence [25, 79, 126]. These

algorithms can only be used for circuits with less than 10 latches since the STG descriptions

of large circuits typically require huge amounts of memory to store.

To avoid storing the STG of the machine, the enumeration-simulation approach

was first presented in [46]. In this approach the STG of one machine is enumerated and

simultaneously simulated on the other machine. During enumeration every path in the

STG and all valid states have to be visited. One way of doing this would involve explicit

or minterm enumeration of the input as well as the state space. This is similar to exhaus

tive simulation and therefore can be applied only to small circuits. However, the memory

requirement of such a method is small and the entire STG does not have to be stored. In

the algorithm described in the afore-mentioned paper, cubes are used to implicitly search

the input space thereby coalescing multiple edges between states to one edge. A depth-first

enumeration procedure is used whereby only one path in the STG has to be stored at any

point of time, making the approach memory efficient. Implicit enumeration of the input

spaceis performed using a PODEM-based [65] algorithm.

Recently, efficient symbolic STG traversal algorithms have been developed that

can be used to traverse the STG of a machine and verify whether a certain property is

true for all the valid states of the machine [30, 35]. In these approaches, a breadth-first

technique is used and the input as well as the state space is implicitly enumerated. Such a

traversal algorithm can be used for verification by constructing and traversing the STG of

the product machine, ensuring that every reachable state in the product machine asserts the

output 1. The algorithms are best implemented using Binary Decision Diagrams (BDDs)

[27]. These methods work best for circuits that have a certain regularity in the structure

of the STG. Such regularity is displayed in datapath-type circuits. For such circuits, the

STG is very wide but not deep, i.e., there are a large number of states but almost any state

can be reached from any other. Therefore any state can be reached in a small number of

5.3. IMPLICIT STATE TRANSITION GRAPH TRAVERSAL 111

clock cycles. Most large circuits contain datapath portions and can be handled efficiently

by this approach. However, for certain circuits, the BDDs are so large that they cannot

be built. Also, for certain machines, the transition relations become very complex causing

each iteration to take a long time. Improvements on these techniques havebeen presented

in [37, 66,127]. Most of these improvements are in the form of better ordering strategies,

recursive range computation methods, and the use of ATPG techniques to fine tune the

traversal process.

5.3 Implicit State Transition Graph Traversal

In this section, an algorithm for the traversal of the STG of a sequential circuit is

described. This algorithm enumerates the input as well as the state space implicitly, giving

rise to significant savings in CPU time for verification. Before going into the details of the

algorithm, the use of implicit state methods will be motivated with an example.

Consider the interconnection of machines shown in Figure 5.3. The STGs of ma

chines Mi and M2 are shown underneath each machine. State A in Mi and state X in M2

are the reset states. Each of the machines is state minimized, and the output of M\ is fed as

the input of M2 through a pipeline latch. The reset state of the pipeline latchis 1. Pipeline

latches areintroduced to preserve timing constraints and often do not add much complexity

to the sequential behavior of the circuit. If this interconnection of machines is considered

as a single machine, then the enumeration approach of [46] that implicitly enumerates only

the input space yields an STG with 9 states and 13 edges as shown in Figure 5.4(a). Each

state in the machine has a 5-bit code, where the first two state bits correspond to the state

of Mi, the next two correspond to the state of M2, and the last bit corresponds to the

state of the pipeline latch. As canbe easily seen from Figure 5.4(a), the states in the state

pairs {01001,01000} and {01101,01100} that differ only in the state of the pipeline latch

are equivalent, and can be combined into single cube states 0100— and 0110—. During

the enumeration process, if the state bits are allowed to have the don't-care value, then a

smaller STG with 7 states and 9 edges can be obtained, as shown in Figure 5.4(b). This

STG is not only smaller but takes less time to enumerate.

112 CHAPTER 5. VERIFICATION OF SEQUENTIAL CIRCUITS

Pipeline Latch

Ml

Latches

M2

Latches

Figure 5.3: A cascade of two machines

As illustrated with this example, implicit enumeration of the state space together

with the input space can give rise to savingsin terms of CPU time to generate the STG and

can produce more compact STGs. In the compact STG representation, a cube state implies

that all minterm states coveredby that cube state are equivalent. Note that only states that

are equivalent and have codes that can be combined into a cube (without including other

states that are not equivalent to it) can be represented as a cube state. Most complicated

sequential circuits are an interconnection of simpler machines. As illustrated with this

example, interacting machines connected through pipeline latches have the property that

there are many states that are equivalent and have codes that can be combined into a cube.

5.3. IMPLICIT STATE TRANSITION GRAPH TRAVERSAL 113

(a) (b)

Figure 5.4: STGs using explicit and implicit state enumeration

Therefore the approach presented is especially suitable for complex interacting machines.

Before going into the details of the traversal algorithm, its use for the purpose

of verification will be illustrated. The main verification procedure is shown in Figure 5.5.

114 CHAPTER 5. VERIFICATION OF SEQUENTIAL CIRCUITS

verify equivalence^!, M2)
{

/* Mi and M2 are the machines to be verified */
productMachine = form_product_machine (Mi, M2);
flag = stg^traverse (resetstate);
if (flag is TRUE)

Machines are same;
else

Machines are different;

}

Figure 5.5: Main verification procedure using traversal

The first step in the procedure is to form the product machine using the two machines

to be verified. This is a simple and standard procedure and will not be discussed. If the

two machines are identical, then all valid states in the product machine should assert the

output 1. To checkthis, the product machine is traversed using the routine stg.traverse().

The initial state of the product machine is the concatenation of the reset states of the two

component machines. During traversal, all valid states are visited, and if any valid state

asserts the output 0, the machines are different. Otherwise, the machines are equivalent.

The STG traversal algorithm is geared towards the efficient traversal of the product

machine. Before traversal begins, the covers of the ON and OFF-sets ofeach PO and NS line

in the product machine are extracted using the method used in Chapter 2. The traversal

algorithm shown in Figure 5.6 makes use of these covers.

The procedure is best described with an example. Since the procedure uses covers,

a real example should use covers. However, the fundamental ideas are better illustrated with

an STG. Therefore, the STG of an example product machine, as shown in Figure 5.7, will

be used. In the following section, the use of covers for all the procedures will be illustrated

with another example.

The reset state of the product machine is derived as the concatenation of the reset

states of the individual machines. Traversal starts with the initial state Si = 010000. The

5.3. IMPLICIT STATE TRANSITION GRAPH TRAVERSAL 115

stgy_traverse(5i)

{
/* Si is the current state */
if (Si is in the current path)

return (TRUE);
if (Si has all its fanout edges enumerated)

return (TRUE);
Add Si to current path;
if (Si is covered by some state in List)

restore saved decisionTree;
else

decisionTree = NULL;
do{

(Si, flag) = get_fanout_edge (Si, decisionTree);
if (flag is TRUE){ /* Some state variables were set */

if saveFlag is set, then save decisionTree and Si in List;
return (BACKTRACK);

}
flag = stg_traverse (Si');
if (flag is BACKTRACK){

LABEL :

(Si', flag) = set_state_variables (Si);
if(flagisTRUE){

/* State variables cannot be set without setting other state variables */
if saveFlag is set, then save decisionTree and Si in List;
return (BACKTRACK);

}
else{

flag = stg_traverse (Si');
if (flag is BACKTRACK){

/* Cannot enumerate further without setting some morestate variables */
goto LABEL;

}
}

}
Assign last variable in decisionTree a different value and set saveFlag;

} while (decisionTree is not empty);
Store Si as a state whose fanout edges have been enumerated;

Figure 5.6: Procedure for traversing the STG of a machine

116 CHAPTER 5. VERIFICATION OF SEQUENTIAL CIRCUITS

path variable is initialized to zero. The first step is to check if the current state Si is already

in the current path. It is also necessary to check whether all fanout edges from Si have

been enumerated or not. If so, there is no need to enumerate further from Si. If not, the

next step is to enumerate an edge in the STG of the product machine from state Si. At

this point it is also checked to see if Si is covered by any state in the set of states stored in

the variable List. The use of this check will be illustrated later.

The enumeration of a fanout edge is performed in the routine get_fanout_edge().

The objective of this procedure is to set a minimal number of inputs so that all the outputs

of the product machine are set to a value. This is performed using cube intersections and a

minimal covering procedure that will be illustrated in Section 5.4. The inputs that are set

determine the part of the input space that has been enumerated for the current state. These

inputs are stored in a decision tree. The fanout state corresponding to the input is also

determined through a series of cube intersections or simulation. In this case the outputs

can be set without setting any primary inputs. The next state obtained is Si' = 00 —01—.

Having obtained the fanout state of the current state, further enumeration from

the fanout state is carried out by calling the routine stg_traverse() recursively with the

fanout state Si' as the input variable. In this case Si' = 00 —01— becomes the current

state. The operations outlined in the previous paragraph are now repeated. For 00 - 01—,

the routine get_fanout_edge() sets the primary input to zero thereby setting the output

to 11. The next state obtained is 100001. This new edge shows that for the input condition

0, the states covered by the cube 00 —01- all go to the same next state and assert the

same output. Continuing further from the state 100001, another edge in the STG going

from state 100001 to 010000 and asserting the output 11 is enumerated. The part of the

STG of the product machine traversed so far is shown in Figure 5.8(a).

Continuing further, it is noticed that the current state 010000 is already in the

current path. The procedure goes back to state 100001 and tries to explore other fanout

edges from that state. Since the input condition corresponding to the edge from 100001

to 010000 is a don't-care, all input conditions from state 100001 have been explored. The

procedure therefore goes back one more state to the state 00 —01—. From this state a part

of the input space has already been explored and the input conditions explored are stored

5.3. IMPLICIT STATE TRANSITION GRAPH TRAVERSAL 117

-til

Figure 5.7: The STG of a product machine

in the decision tree. Now the last variable in the decision tree is assigned a different value,

i.e., the primary input variable is set to the value 1. Also, the saveFlag variable is set to

indicate that part of the input space for that state has been enumerated. With the input set

to 1, in order to set the outputs to a 0 or 1 value, the routine get.fanoutjedge() has to set

some state variables. With the current state being 00—01—, the state variables that can be

set axe the third and the sixth variables. If the third and the sixth 6tate variables axe set to

0, the current state corresponds to an invalid state in the STG. Invalid states might assert

the output 0, forcing the procedure to conclude wrongly that the machines axe different. At

this point two things shouldbe done. At first, the routine get_fanout_edge() tries to seeif

the current state (obtained after setting the state variables)is justifiable. This is performed

118

-/ll

CHAPTER 5. VERIFICATION OF SEQUENTIAL CIRCUITS

(a) (b)

Save decision
tree and

backtrack

1/1?

Output
Cannot be set

Figure 5.8: Parts of the STG enumerated during traversal

by obtaining the fanin states of the current state, using the cube intersection technique of

the justification algorithm of Chapter 2. If there exists a state in the fanin of the current

state that covers the fanin state of the current state, then the current state can be reached

from any state in the fanin of the current state. Therefore, the current state must be a

valid state. If justification succeeds, the routine getJanout_edge() does not set a flag.

In this example, the current state obtained after setting the third and sixth state variables

to 0 is an invalid state and therefore justification fails. Note that justification might fail

even if the current state is valid, as the justification requirement is very stringent. When

justification fails (as in this example), the routine getJanout_edge() sets a flag that forces

backtracking. The procedure backtracks to the fanin state of 00-01—, i.e., to state 010000.

Since part of the input space from state 00 —01— has been enumerated (as indicated by

saveFlag, which is set), the decision tree and the state associated with it is saved in a list.

5.3. IMPLICIT STATE TRANSITION GRAPH TRAVERSAL 119

This is illustrated in Figure 5.8(b).

Having backtracked to the state 010000, the procedure set_state_variables() is

used to set the required state bits by setting more inputs. For this purpose, once again, the

covers are used. (Note that justification is performed in the routine set_state_variables()

also). The details of this routine will be given in the next section. From state 010000, by

settingthe input to 0, the state 001010 is reached. In this state, both the third and the sixth

state variables axe set to a value. Further enumeration can proceed from this new state.

However, this new state is covered by the state 00-01-, for which half the input space

has already been enumerated. This is discovered by checking to see if 001010 is covered by

any state in List. Since it is covered by 00- 01-, the decision tree that was saved for state

00 - 01- is restored for the state 001010 and further traversal from state 001010 proceeds

only with the edge corresponding to the input condition 1. In this manner, enumeration

proceeds until state 000011 is reached. For this state the output corresponding to the input

condition 1 is 10, indicating that the two machinesaxenot equivalent. The traversal process

stops and reports the non-equivalence and the path to the current state. The final STG

obtained after traversal is shown in Figure 5.9. In this STG states do not have disjoint state

codes. Moreover, some states only have fanout edges corresponding to the input condition

0 and some states only have fanout edges corresponding to the input condition 1.

Further discussion of this algorithm willbe postponed until the enumeration algo

rithm is presented in the next section. It is necessary to point out that for large data-path

like circuits, instead of considering all the outputs together, one output or a subset of the

outputs can be considered at a time thereby exploiting some of the regularity of the topology

and the natural partitions in the logic.

5.3.1 Incompletely-specified machines

For incompletely-specified machines it is expected that the user provides a set of

don't-care sequences. Don't-care sequences could be of various kinds:

1. It could be a sequenceof input vectors that will never be applied to the machine. The

behavior of the machine when that sequence is applied is therefore not important.

120 CHAPTER 5. VERIFICATION OF SEQUENTIAL CIRCUITS

Figure 5.0: Final STG after traversal

2. Given a state of the machine, it could be input vectors that will never be applied

when the machine is in that particular state. For such vectors, the fanout edges from

the state corresponding to the don't-care input conditions are not important.

3. It could also be a set of vectors for which some or all of the outputs of the machine

do not matter when the machine is in a particular state.

The procedure outlined in Figure 5.5 can handle incompletely-specified machines.

It can be easily checked during traversal whether an input vector is a don't-care for a

particular state. If so, the input vector is not considered. If a differentiating sequence

5.4. IMPLICIT STATE TRANSITION GRAPH ENUMERATION 121

is found and a don't-care sequence is a subsequence of the differentiating sequence, the

differentiating sequence is rejected and the search for a new differentiating sequence is

continued.

5.4 Implicit State Transition Graph Enumeration

Verification using the product machine approach works well for circuits that are

not very large. Otherwise, the cover sizes become so large that storing the entire covers

takes a significant amount ofmemory and cube intersections take a long time. Forsuch large

circuits a better approach is the enumeration-simulation approach, where the STG of one

machine is enumerated and simultaneously simulated on the other machine. This approach

is efficient for more than one reason. Firstly, only the covers of the single machine have to

be stored thereby requiring smaller amount of memory and less time in cube intersections.

Secondly, a depth-first search procedure is used whereby only one path in the STG of the

machines has to be stored at any point of time.

The algorithm for STG enumeration, given a logic-level implementation of a circuit,

is presented first. The main enumeration algorithm is shown in Figure 5.11 and will be

illustrated with an example. Consider the machine shown in Figure 5.3. The covers of the

ON and OFF-sets of each primary output and next-state line is shown in Figure 5.10. Ni

and N2 correspond to the next-state lines for the latches in Mi, N3 and N4 correspond to

the next-state lines for the latches in Af2, and N5 corresponds to the pipeline latch.

At the beginning, the current state Si is the reset state of the machine. The path

variable is initialized to zero. The procedure first checks to determine if the current state

is coveredby some state alreadyin the path. It alsochecks to determine if all fanout edges

from the current state has been enumerated. If so, no further enumeration is necessary.

Otherwise, the current state is added to the current path and the next step is to enumerate

a fanout edge from the current state. An input vector to the combinational logic block of

the circuit is formed. This input vector has all its primary input variables set to don't-cares

and the present-state variables set to the current state. The vector is now intersected with

the ON and OFF-set of each primary output line. If the vector intersects only the ON-set

122 CHAPTER 5. VERIFICATION OF SEQUENTIAL CIRCUITS

0(0N)
... i o -

- - - 0 1 0

0 (OFF)
.... 1 1

- - - 1 1 -

... 0 0 -

Ni (ON)
- 0 1 - - -

Ni (OFF)
- . 0 - - -

. 1 . - . .

N2 (ON)
- 0 0 - - -

0 - 0 - - -

N2 (OFF)
1 i ... -

N3(OFF)
nil

N3(ON)
.... 0 -

. . . 1 . .

0

. . i . . .

N4 (ON)
- - - 0 - 0

... 0 0 -

N4 (OFF)
...I..

.... 1 1

Ns (ON)
0 0 - - - -

1 1 0 - - -

- 0 1 - - -

N5 (OFF)
1 0 0 - - -

0 1 - - - -

- 1 1 - - -

Figure 5.10: ON and OFF-sets of the PO and NS lines of a machine

(OFF-set) of the PO line, the value of the line is 1 (0). In this example, the input vector

is —00101 and it intersects only the ON-set of the PO line. Therefore the value of the

output is 1. The values of the next-state lines axe obtained by intersecting the input vector

with the ON and OFF-sets of each next-state line. If the input vector intersects only the

ON-set (OFF-set) the value of the corresponding next-state line is 1 (0). If it intersects

both, then the value of the next-state line is a don't-care. Since a logic-level description

of the machine is available, the next state can also be obtained by simulating the input

vector. In this case the next state obtained is 0100—. These operations axe performed in

the routine getJanoutjedge(). However, this is only a part of what this routine does.

Further operations will be illustrated later.

Having obtained the fanout state Si' of the current state, further enumeration from

the fanout state is performed by calling the routine stgjenumerateQ recursively with Si

5.4. IMPLICIT STATE TRANSITION GRAPH ENUMERATION 123

stg_enumerate(5i)

{
/* Si is the current state */
if {Si is in the current path)

return (TRUE);
if (Si has all its fanout edges enumerated)

return (TRUE);
Add Si to current path;
decisionTree = NULL;
do{

(Si', flag) = get_fanout_edge (Si, decisionTree);
if (flag is TRUE) /* Some state variables were set */

return (BACKTRACK);
flag = stg_enumerate (Si');
if (flag is BACKTRACK){

LABEL:

(Si', flag) = setjstatejvariables (Si);
if(flagisTRUE){

/* State variables cannot be set without setting other state variables */
return (BACKTRACK);

}
else{

flag = stg_enumerate (Si');
if (flag is BACKTRACK){

/* Cannot enumerate further without setting some more state variables */
goto LABEL;

}
}

}
Assign last variable in decisionTree a different value;

} while (decisionTree is not empty);
Store Si as a state whose fanout edges have been enumerated;

}

Figure 5.11: State Transition Graph enumeration algorithm

as the input variable. Therefore, in the next step of the enumeration process 0100— is the

current state. The operations outlined above axe repeated and another edge in the STG of

the machine is enumerated. This edge goes from state 0100— to the state 10011 asserting

124 CHAPTER 5. VERIFICATION OF SEQUENTIAL CIRCUITS

-/l

0100-

-/o

r 10011 j 10011 10011

-/o

0-10- 0-10-

-/l 1 Backtrack 0/1

—00- —001

-/O 2 Backtrack

—01-

OutputNotSet

(a) (b) (c)

Figure 5.12: Example to illustrate STG enumeration

the output 0. The portion of the STG enumerated so fax is shown in Figuxe 5.12(a). Note

that 0100— covers two states, and both states under all possible input conditions go to

the same next state and assert the same output. Therefore the states covered by 0100—

5.4. IMPLICIT STATE TRANSITION GRAPE ENUMERATION 125

(a) (b)

Figure 5.13: Machines illustrating difference between traversal and enumeration

areequivalent (in this case single-cycle equivalent), and the enumeration process implicitly

detects this and combines them into one cube state. In order to detect such equivalent

states it is necessary to reach, somehow, the cube state that covers the equivalent states.

Otherwise the equivalent states will not be detected.

Continuing enumeration farther, the routine get_fanout_edge() tries to find a

fanout edge for the current state 10011. In this case, with the input vector is -10011,

the output is set to 0 and the next state obtained after intersections is 0 —10—. In the

next step of enumeration 0 —10- becomes the current state and the initial input vector is

—0 - 10-. This vector intersects only the ON-set of the PO and therefore the output is

set to 1. The fanout state derived for this state is 00-. This indicates that the states

covered by 0 —10— are output-equivalent. Enumeration continues in this fashion until the

state —01— is reached. The part of the STG enumerated so fax is shownin Figure5.12(b).

With the current state 01- the input vector initially is 01-. This input

vector intersects both the ON and the OFF set of the PO line. Under such circumstances,

126 CHAPTER 5. VERIFICATION OF SEQUENTIAL CIRCUITS

the routine get_fanout_edge() tries to set some PI or PS variables that were don't-cares

to a 0 or 1 value so that the input vector intersects only the ON or the OFF-set, i.e., the

output is set to either a 0 or a 1 value. To do this, the procedure examines how many

variables have to be set to make the input vector orthogonal to first the ON and then the

OFF-set. If the number of variables required to be set to make the input vector orthogonal

to the ON-set is smaller than the number of variables required to be set to make the input

vector orthogonal to the OFF-set, then the variables in the former group are set to a value

and vice versa. To determine the variables that have to be set to a value to make the

input vector orthogonal to the ON-set, the cubes in the ON-set that intersect the input

vector axe considered. All columns for which the input vector already has a variable set to

a value axe removed from the cubes. With the remaining set of columns, a minimal covering

procedure is used to determine the set of variables whichif set to a value will make the input

vector orthogonal to the ON-set. This procedure is identical to the procedure for obtaining

the lowering set in the EXPAND step of the logic minimizer ESPRESSO [16]. The only

difference is that the covering procedure is biased to select primary input variables in the

loweringset before selecting state variables. The rationale behind this is that if the output

can be set by setting only primary input variables, then that should be done first. As will

be seen shortly, setting state variables forces backtracking which splits up states that have

been combined into cubes. This is undesirable and should be avoided whenever possible.

In this example, the ON-set cube that intersects the input vector is 010

and the OFF-set cube that intersects the input vector is 11. As can be seen,

to keep the cube orthogonal to the ON-set or the OFF-set the fifth state variable has to

be set to a value. Let this be called the required state variable. Since a state variable

has to be set, the routine get_fanout_edge() sets a flag. The enumeration procedure

now backtracks to the previous level where the current state is 00-. The procedure

setjstate_variables() tries to set the required state variable in the fanout state by setting

only some more primary inputs. In this case, the procedure tries to obtain as the fanout

state of 00—, some state like 010 or — 011. This is similar to setting the output to

a value as in get-fanout_edge(). However, instead of considering a primary output line,

a next-state line is considered. If set jstate_variables() succeeds in setting the required

5.4. IMPLICIT STATE TRANSITION GRAPH ENUMERATION 127

state variables without setting someother state variables, then enumerationcontinueswith

the new fanout state.

In this example, the procedure fails because in order to set the fifth state variable

it is necessary to set the first or the second state variable. The enumeration procedure is

forced to backtrack another level where the current state is 0 — 10-. At this level, the

routine set_state_variables() can set the fifth state variable to 1 by setting only the PI

to 0. The new fanout state is 001 and enumeration proceeds further from this state as

shown in Figure 5.12(c). In this fashion the entire STG of the machine can be enumerated

and the final STG is shown in Figure 5.4(b).

For each state, the input variables set by the procedures get_fanout_edge() and

set_state_variables() axe stored in a decision tree. Whenever one path from a current

state has been enumerated, the last variable in the decision tree is assigned a different value

and other fanout edges from the current state axe enumerated. Therefore, all possible input

combinations for a particular state are implicitly but exhaustively enumerated. Once all

fanout edges from a state has been enumerated, the state is storedin a special list of states

all whose fanout edges have been enumerated.

This enumeration algorithm can be used in conjunction with a simulator for the

purposeof verification. One of two methods can be followed. If the machines axe small, the

entire STG of one machine can be enumerated before simulating it on the other machine. If

the machines axe large, as soon as an edge is enumerated using one machine it is simulated

on the other. If upon simulation, the output of the machine being simulated is not set,

then the enumeration procedure starts to backtrack. If at any stage of the enumeration-

simulation process the outputs from the enumerated and simulated machines don't match,

the machines axe different. Otherwise the machines are identical. In the enumeration-

simulation approach, search along a particular path is terminated when the total state,

consisting of the state of the enumerated machine and the simulated machine, already

exists in the path.

Incompletely-specified machines can be handled in very much the same manner as

in the product machine traversal case. It is assumed that the user provides the necessary

don't-care sequences. As soon as a differentiating sequence is found it is checked to see

128 CHAPTER 5. VERIFICATION OF SEQUENTIAL CIRCUITS

that no don't-care sequence is a subsequence of the differentiating sequence. If so, the

differentiating sequence is rejected and enumeration-simulation is continued.

The equivalent states that were detected in this example were single-cycle equiva

lent. Multiple-cycle equivalent states can also be detected. During the enumeration process

output-equivalent states axe grouped into cubes. Setting state variables corresponds to

splitting of states combined into cubes. If during enumeration a cube state is never split,

then all the states covered by the cube state axe equivalent.

At this point it is necessary to distinguish between the enumeration and the traver

sal approach. A cursory perusal of the algorithms of Figure 5.6 and 5.11 shows that the

difference between the two approaches is in the storing and retrieving of decision trees and

in performing justification at certain times to verify that a state is valid. In the traversal

algorithm it is necessary to visit only the valid states, and it is not important how the valid

states are reached as long as all of them were reached. Therefore justification is used in

certain cases to verify whether a state is valid or not. However, this cannot be done with

enumeration, as illustrated with the example in Figure 5.13. In this case, for both machines,

traversal would yield the same STG. The reason for this is the following. From state 00

the next state for all possible input conditions is —1 and the output is 1. When the state

variable has to be set in the state —1, the don't-care state variable can be set either to 0

or 1, and both resulting states axe valid states and their validity can be easily determined

by justification. Backtracking would not be necessary under 6uch circumstances. In both

machines therefore, the edges going from state 00 to states 11 and 01 will never be revisited,

after they have been visited once. However, one can easily determine that the machines

axe different and a differentiatinginput sequence is {1,0}. Note that in trying to verify the

equivalence of the two machines using the traversal method, the product machine will be

traversed and in such a machine, the difference in behavior can be easily detected. In enu

meration, however, the exact STG has to be enumerated and therefore justification cannot

be used. The reason for storing a decision tree (or trees) during traversalis to avoidretrac

ing portions of the STG that have already been traversed. But the use of stored decision

trees in traversal produces an STG with state codes that axe not disjoint and with many

states having only parts of the input space enumerated. In enumeration it is required that

5.5. EXPERIMENTAL RESULTS 129

CKT #1 #o #L Explicit State [46] Implicit State
States Edges Time States Edges Time

sse 7 7 6 13 60 0.3s 13 66 0.2s

sand 11 9 6 32 206 3.7s 32 163 1.01s

planet 7 19 6 48 135 3.0s 48 130 0.6s

scf 27 54 8 115 279 10.9s 115 280 3.35s

tic 3 5 10 400 2026 5.3s 201 712 2.74s

mclc 11 6 11 35 1404 3.2s 35 1264 18.44s

viterbi 11 34 12 1863 214962 52m 1863 139087 49m

counterl2 0 1 12 4096 4096 18.4s 4096 4096 10s

acl2 2 3 14 16384 65536 380s 16384 65536 290s

sbcll-12 35 51 33 — — — 6 70 180s

Table 5.1: Comparison of implicit and explicit state techniques

each state have a code disjoint from the rest and that fanout edges for all input conditions

for each state be specified. Therefore, decision trees axe not stored during enumeration.

The traversal as well as the enumeration-simulation approach uses a depth-first

technique. However, since some states are combined into a single state during traversal,

this technique can be thought of as a mixed depth-first/breadth-first technique. As will be

shown in the results sections, circuits that have STGs that axe not too wide but are deep,

t.e., there are not too many states but certain states require a large number of clock cycles

to reach, axe handled efficiently by the algorithms presented here.

5.5 Experimental Results

In this section, results obtained using the algorithms described in this chapter are

presented. All examples have been run on a VAX11/8800 computer. CPU times axe quoted

in seconds (symbol s), in minutes (symbol m), or in hours (symbol h).

In Table 5.1, the implicit state enumeration technique is compared with the explicit

state technique of [46]. The number of states and edges enumerated using the approach

of [46] axe compared with the number of states and edges obtained using the enumeration

algorithm of Section 5.4. The times required for enumeration of the STGs axe also compared.

For all the examples, the implicit state algorithm performed better or at least as good as

the algorithm of [46]. For the example tic, the advantage of the implicit state technique

130 CHAPTER 5. VERIFICATION OF SEQUENTIAL CIRCUITS

CKT #1 #o #Gates #L #Valid
States

#Edges
in STG

CPU

Time

Memory
(kB)

sse 7 7 130 6 13 73 0.32s 214

sand 11 9 555 6 32 166 1.60s 288

planet 7 19 606 6 48 130 1.35s 283

scf 27 54 959 8 115 280 5.34s 485

tic 3 5 76 10 201 712 4.07s 483

mclc 11 6 148 11 35 1264 29.5s 483

viterbi 11 34 232 12 1863 139087 1.23h 240

counterl2 0 1 61 12 4096 4096 20s 311

acl2 2 3 152 14 16384 65536 640s 2074

adder6 6 6 54 6 64 4096 62.3s 272

Table 5.2: Verification of machines using traversal

over the explicit state technique is clearly demonstrated. For examples where the number

of equivalent states were small or non-existent, the approach presented here is seen to do

no worse than the approach of [46]. For the example sbcll-12, the STG could not be

extracted using the approach of [46]. However, the implicit state approach was able to

easily derive the STG.

Most of the examples presented here have been presented in the previous chapters.

The examples tic and mclc are traffic light controller chips. In the previous chapter the

entire Viterbi speech processing chip [125] was used as an example. Here only the controller

of the chip is used. It is an interconnection of smaller finite state machines. The example

sbcll-12 is the circuit corresponding to the 11th and 12th output of the snooping-bus

controller discussed in Chapter 2. Examples counter12, adder6, and acl2 axe a 12-bit

counter, a 6-bit adder, and a 2-bit ALU driven by a 12-bit counter respectively.

In Table 5.2, the results of verification of single machines using the product ma

chine approach is presented. Both the statistics and the CPU times required for verification

for ten finite state machine examples axe given in Table 5.2. For each example, the number

of inputs (#1), the number of outputs (#0), the number of gates (#Gates), and the number

of latches in the initial implementation (#L) axe indicated together with the time required

for verification. For each example, verification was performed between different implemen

tations of the same circuit and/or with different encodings, implying no correspondence

5.5. EXPERIMENTAL RESULTS

CKT States Edges CPU

Time

Memory
(kB)

sse 13 66 0.4s 152

sand 32 163 2.0s 218

planet 48 130 1.2s 200

scf 115 280 7.7s 350

tic 201 712 5.5s 346

mclc 35 1264 37.0 352

viterbi 1863 139087 1.6h 180

counter12 4096 4096 20s 220

acl2 16384 65536 610s 1600

adder6 64 4096 52s 256

Table 5.3: Verification of machines using enumeration-simulation

131

between the latches of the two circuits. Memory usage was restricted to a few megabytes

for all these examples.

In Table 5.3, the results of verification of the same finite state machines using

the enumeration-simulation approach is presented. For all examples, only the number of

states and edges enumerated and the time required to verify the circuits using enumeration-

simulation method is presented. As can be seen, the times required for verification using

product machine traversal and enumeration-simulation is comparable for the examples pre

sented here. The example counter12 is a 12-bit counter which has a long and narrow STG.

Example adder6, a 6-bit adder is another extreme, having an STG with a regular structure

which is wide but not deep. Though traversal is slightly more efficient than enumeration in

terms of visiting all the valid states, the advantage is offset by the fact that in the product

machine the size of the covers axe larger and therefore intersections take more time. For

the product machine, about twice the number of intersections have to be done in the aver

age case than in the enumeration of a single machine. Therefore traversal of the product

machine is roughly twice as much work as enumeration of a single machine. On the other

hand, simulation of a machine roughly requires the same amount of work as enumeration.

Therefore the times required for verification using the two methods axe comparable.

Finally, the enumeration-simulation approach presented here is compared with a

recent approach in the verification of sequential machines [30, 35]. The results for the

132 CHAPTER 5. VERIFICATION OF SEQUENTIAL CIRCUITS

CKT Time taken by
approach of [127]

Time taken using
enumeration approach

sse 1.0s 0.4s

sand 7.7s 2.0s

planet 6.9s 1.2s

scf 42s 7.7s

tic 2.9s 5.5s

mclc 2.66s 37.0s

viterbi 189s 1.6h

counterl2 2.3h 20s

acl2 2.6h 610s

adder6 0.08s 52s

Table 5.4: Comparison of times for verification

symbolic traversal approach have been obtained using the program described in [127]. For

the small examples the approach presented here worksbetter than the approach of [30,35].

However, as the size of the examples increase, the approach of [30, 35] gets better and

soon shows much better performance than the approaches presented here. For the counter,

however, the symbolic traversal approach does not perform better. It can be concluded

from a study of these examples that for small to medium size controller circuits that have

an irregular state space as well as circuits with long, narrow STGs, the approach of this

chapter will be superior to that of [30, 35]. However, with larger circuits, especially ones

that have a regular STG structure (e.g., datapaths), the approach of [30, 35] will perform

significantly better.

5.6 Conclusions

Two different algorithms for verification of sequential machines were presented

and compared with two other algorithms. For all the examples seen, the implicit state

approach is better than the approach of [46]. It was shown that verification using traversal

and enumeration-simulation took about the same amount of time, though traversal required

more memory. For some circuits that have STGs that are deep, the approaches presented

here work better than symbolic traversal approaches. Almost all circuits for which the

symbolic traversal approaches produce better results have the characteristic that they have

5.6. CONCLUSIONS 133

STGs that axe regular and wide.

One of the major advantages of the approach presented here is its memory ef

ficiency. The symbolic traversal approaches require significantly more memory than that

required by approaches presented here.

The enumeration procedure presented in this chapter can produce STGs that are

compact and partially state minimized. STGs of large machines which could not be derived

previously can now be derived using this technique. This has obvious implications in the

re-encoding and optimization of sequential circuits. The use of the techniques developed in

this chapter in conjunction with other optimization techniques can be used to re-synthesize

circuits to improve performance and/or testability and is the subject of the next chapter.

Chapter 6

SYNTHESIS OF SEQUENTIAL

CIRCUITS

Techniques for optimizing, verifying, and testing finite state machines have tradi

tionally relied on the use of State Transition Graph (or State Transition Table) descriptions

of behavior. While the State Transition Graph is an easily manipulable representation of

behavior, VLSI sequential circuits, consisting of large, interacting FSMs do not usually have

compact representations in terms of STGs. In fact, STGs of even moderate-sized VLSI cir

cuits typically require astronomical amounts of memory to store and large amounts of CPU

time to generate from logic-level implementations.

The problem with conventional STG descriptions is twofold. First, the STG is

a fiattened sum-of-products representation. A variety of VLSI sequential circuits have

combinational portions that require exponential amounts of storage in sum-of-products

form (e.g., xor-trees, adders). The second and the more severe problem, especially for

controller-type circuits *, is that in the STG representation corresponding to a logic-level

implementation, all states are minterm states, i.e., all state variables axe set to 0/1 values

in each state. This results in STGs that require a significant amount of time and space to

generate.

In Chapter 5 a new algorithm for the enumeration of State Transition Graphs

1Typically, FSM controllers can be fiattened quite easily.

134

135

was proposed. The main characteristic of the algorithm is that both the input space and

the state space are enumerated implicitly, producing STGs where some equivalent states

axe merged into single cube states. The resultant STG (called an Implicit State Transition

Graph or ISTG) is more compact and often has a smaller number of states and edges as

opposed to those extracted using conventional techniques, as in [46]. Techniques for STG

traversal (e.g., [30, 35]) axe geaxed towards visiting all the valid states in the most efficient

manner possible and do not produce an STG description that can be used for synthesis.

This is because information about the explicit connectivity between states and the output

vector asserted for each edge is missing. However, the techniques of [30, 35] can be modified

to generate STGs that can be used for synthesis.

In this chapter, sequential optimization algorithms based on ISTGs for FSMs

described at the logic level will be presented. Given a logic-gate and flip-flop specification

of an FSM, inherent logical decompositions into parallel or serial submachines axe first

identified. These may or may not be identifiable by a purely topological analysis. Depending

on the size of the ISTG for a particular circuit, different synthesis strategies axe used. If the

ISTG has a manageable number of states and edges, existing encoding and decomposition

programs axe used. For ISTGs with a prohibitively large number of edges but a reasonable

number of states, a dynamic re-encoding technique is proposed that does not require the

storage of the entire ISTG. If a circuit has an ISTG that has both a large number of states

and edges, a heuristic latch selection algorithm is used that selects submachines in the circuit

corresponding to particular outputs and flip-flops as candidates for re-decomposition and re-

encoding. These submachines axe selected so as to have ISTGs that axe of manageable size.

The conventional STGs for these submachines axe typically significantly larger, precluding

the use of standard synthesis techniques.

The rest of this chapter is organized as follows. Previous work in the area of

sequential logic synthesis is presented in Section 6.1. In Section 6.2 sequential optimiza

tion algorithms based on ISTGs for FSMs described at the logic level will be presented.

Experimental results using the ISTG extraction and FSM optimization algorithms in the

FLAMES system are presented in Section 6.3, followed by conclusions in Section 6.4.

136 CHAPTER 6. SYNTHESIS OF SEQUENTIAL CIRCUITS

6.1 Previous Work

In this section, the steps involved in sequential logic synthesis will be briefly re

viewed and previous work in this area will be presented.

The first step in synthesizing sequential circuits from STG descriptions is state

minimization. This has been a subject of extensive reseaxch for a long time and initial

algorithms for completely specified machines were proposed in [77, 78, 103]. The most

commonly used algorithm for state minimization for completely specified machines was

proposed in [98]. Later, this work was extended to incompletely specified machines in

[64, 96, 112].

The next important step is assigning codes to the symbolic states in a machine.

The area and the performance of the resulting logic network depends strongly on the state

assignment. Initial work in this area was done by Hartmanis and Stearns using algebraic

structure theory [71, 73,124]. In [5, 54] the problem of state assignment was treated from

a different perspective using partitions. The concept of state splitting for obtaining better

state assignment was introduced in [72, 73]. A description of all these techniques can be

found in [74].

In the recent years, significant progress has been made in the area of state encoding.

New algorithms for state assignment targeting two-level implementations were developed

by De Micheli et al in [100, 101]. State assignment algorithms for multilevel IC-based

implementations were first developed by Devadas et al in [47]. Exact algorithms for state

assignment and associated problems of output encoding and four-level minimization were

presented in [53]. It has been conjectured that the state assignment problem is NP-haxd. For

all medium-sized circuits, the above mentioned algorithms can find good state assignments.

However, circuits with large number of states and edges axe still not handled efficiently.

To alleviate the problem of size, while still being able to optimize large sequential

circuits, approaches based on distributed-style STG representations of interacting FSMs

(e.g., [40, 52]) and retiming-based algorithms (e.g., [86, 93]) have been used in the past.

Unfortunately, to perform global optimization, the approaches of [40] require in the limit

information corresponding to the entire STG of the interacting set of FSMs, which grows

6.2. OPTIMIZING SEQUENTIAL CIRCUITS 137

rapidly with circuit size. Logic-level sequential logic synthesis approaches like those in [93]

hold promise as far as efficiency and accurate cost functions are concerned but to date are

also lacking in global optimization capabilities. Recently, significant work has been done in

the area of FSM decomposition both for performance improvementand testability [10,8,9].

The algorithms described in [10, 8, 9] will be used in this chapter in conjunction with new

techniques for sequential logic optimization.

6.2 Optimizing Sequential Circuits

The main objective of sequential logic synthesis is to obtain an implementation

of a circuit that meets area, performance, and testability requirements. Most often these

conditions axe not met by an initial implementation, and the designer is required to re

design the entire circuit or parts of the circuit to meet the specifications. The goal of this

chapter is to provide optimization techniques that can transform a given circuit to a better

one that meets the specifications.

He-designing can be done in a number of ways. One way is to start from the very

beginning, t.e., from the high-level or behavioral description of the system and apply a

new set of design tools or tricks, depending on the instincts of the designer, to arrive at a

better design. This might involve making new decisions about the architecture of the entire

system, and might require significant re-design of other components of the system. Even

when re-designing other parts of the system is not required, designers axe often reluctant

to re-design the circuit from the very beginning, as it is a time consuming process. In the

ASIC market where quick design time is of paramount importance, a designer often cannot

afford the time for a complete re-design. Therefore, the ability to efficiently re-design parts

of the circuit at the logic-level is of great importance.

To illustrate the necessity of re-designing parts of the circuit, consider the combi

national logic block of a sequential circuit shown in Figure 6.1. The logic associated with

each primary output and present state line is represented as a cone in the figure. Assume

that after designing the circuit it is found that only output Oi does not meet the timing

specifications and that there is a redundant fault in the logic cone for that output. In this

138 CHAPTER 6. SYNTHESIS OF SEQUENTIAL CIRCUITS

n

n-1

Redundant Fault Site

Figure 6.1: Combinational logic block of a sequential circuit

case, only the part of the circuit corresponding to the output Oi (shown shaded) has to

be re-designed to meet the testability and the performance specifications. Since Oi shares

logic with other outputs, during re-design it has to be ensured that the performance of the

other parts of the circuit does not degrade.

The use of STG-based techniques to optimize logic-level sequential circuits has

been severely limited by the CPU time and memory requirements posed by the size of

the STG descriptions that correspond to even moderate-sized sequential circuits. Working

at the logic level exclusively, on the other hand, precludes global optimization due to the

lack of information necessary to optimally change the structure/encoding of the sequential

machine. Global alteration of the circuit may be required to improve area, performance, or

testability.

Implicit State Transition Graph extraction techniques presented in Chapter 5 have

the characteristic that some equivalent states with uni-distant state codes are merged into

single states thereby decreasing the number of states and edges in the STG obtained from

the logic level description. One can argue that the same result can be obtained by first

extracting the explicit STG and then minimizing the number of states. However, before

6.2. OPTIMIZING SEQUENTIAL CIRCUITS 139

Latch

F

0-/1

-1/0

Figure 6.2: Sequential circuit before retiming

minimization, the storage of the entire explicit STG is necessary. Also, the time required

for state minimization depends on the size of the explicit STG. As will be demonstrated in

Section 6.3, the entire explicit STG might not be obtainable from the logic-level descrip

tions, though after minimization, the corresponding STG might consist of only a few states.

Therefore ISTGs are important from the point of view of synthesis as they increase the size

of the circuits that can be handled by traditional encoding and decomposition algorithms.

In Chapter 5, an example circuit was presented to demonstrate how equivalent

states axe created in interacting sequential machines. Such equivalent states axe often de-

140 CHAPTER 6. SYNTHESIS OF SEQUENTIAL CIRCUITS

0-/1

1-/1

Figure 6.3: Sequential circuit after retiming

tected by the ISTG extraction routine. Apart from equivalent states arising from interacting

machines, there is another reason why equivalent states arise in many sequential circuits.

Consider the simple finite state machine shown in Figure 6.2. The state transition graph of

6.2. OPTIMIZING SEQUENTIAL CIRCUITS 141

1/11 0/00

0/00

Figure 6.4: Example State Transition Graph

the machine is also shown in the figure. The reset state is state is labeled 1. This circuit can

be re-timed [93] to the one shown in Figure 6.3 (though this might not be a very desirable

re-timing). The latch at the output of the OR gate has been pushed to the inputs. For

the OR gate, the inputs 01, 10, and 11 axe equivalent, and it is expected that the states

represented by these codes axe equivalent. As shown in the STG of the circuit (also in

Figure 6.3) that is indeed the case. Note that the reset state 11, can be merged with either

10 or 01, to form a cube state.

Since only parts of the circuit may be re-designed/re-synthesized, equivalent states

142

PI

CHAPTER 6. SYNTHESIS OF SEQUENTIAL CIRCUITS

Initial

Logic

D L E
e

c

a
t

n

c

o c o

d h d
e e e

r s r

PO

Figure 6.5: FSM with an encoder-decoder

may arise because of a different reason. Consider the FSM whose STG is shown in Figure 6.4.

Considering all the outputs at a time, not a single state in this machine is equivalent to

any other. However, considering only the first output, it is easily seen that states 010 and

Oil are equivalent. While extracting STGs corresponding to subsets of outputs, this kind

of equivalence can be utilized by the ISTG extraction program.

The optimization strategy proposed here begins with a logic-level description of

a sequential circuit. Depending on the needs, either the ISTG of the entire circuit or a

sub-circuit is extracted using the algorithm described in Section 5.4. This ISTG is used

for subsequent re-encoding and re-decomposition. Depending on the size of the ISTG (i.e.,

the number of states and edges), different options axeexercised in the synthesis procedure.

They axe :

1. Small number of states, small number ofedges: If the ISTG of the entire circuit

has a small number of states (less than 1000) and a small number of edges (less than

10000), then existing decomposition [10, 8,9] or state assignment programs [47,131]

that operate on the ISTG can be used for the global optimization of the circuit. It

may so happen that only certain outputs in the circuit have small-sized ISTGs. In

that case the alternate strategies given below have to be followed for the remaining

6.2. OPTIMIZING SEQUENTIAL CIRCUITS 143

outputs.

2. Small number of states, large number edges: If the ISTG of a particular output

has a small numberofstates (less than 1000) but a largenumberofedges (greaterthan

10,000), then it is not CPU-time efficient to use decomposition programs likethose in

[10] and state assignment programs like NOVA [131]. This is because the CPU time

requirement for these programs depends strongly on the number of edges as well as

the number of states in the STG. In this case a dynamic state assignment strategy

that does not require storage of the ISTG is used. It is a two-pass procedure. In the

first pass, the ISTG extraction program is used to obtain all the valid states in the

machinewithout storing each edgein the STG. In the secondpass, given the symbolic

state information, the edges in the ISTG are inspected one by one to determine a

good adjacency-based coding for the states, much like the counting algorithms in

MUSTANG [47], Again, there is no need to store the entire set of edges. Once a new

encoding for the states has been constructed, an encoder and a decoder axe added to

the sequential circuit as illustrated in Figure 6.5. For instance, a state originally may

have the code 10-1—1 and may be re-assigned the code 0000. The combinational

logic (that now includes the encoder and decoder) of the sequential circuit is then

optimized for area or performance using programs like MIS [15], potentially leading

to an improved implementation.

3. Large number of states, large number of edges: In this case the first step is to

reduce the number of states in the ISTG to be manipulated by attempting to find a

good decomposition of the circuit. At first submachines in the circuit that correspond

to a parallel decomposition inherent in the circuit axe searched for. An example of

a parallel decomposition is shown in Figure 6.6(a). Failing that, the next step is to

find a cascade decomposition (cf. Figure 6.6(b)). If the circuit does not possess an

inherent cascade decomposition, a good general decomposition (cf. Figure 6.6(c)) is

obtained by suitably choosing subsets of latches that would form each component

machine. Selecting any subset of latches corresponds to identifying a submachine in

some general decomposition. It is of interest to select a subset of latches and outputs

144

PX

PX

CHAPTER 6. SYNTHESIS OF SEQUENTIAL CIRCUITS

Ml
(B*ad M/C)

PS1 P
(b)

PX

I PS2\

M2
(Tail M/C)

Figure 6.6: FSM decomposition types

PO

such that the submachines that axe so created interact minimally. Each of these

submachines would have a much smaller number of states than the original FSM,

making it possible to apply some of the techniques in options (1) and (2) above for

re-encoding. Heuristics for the selection of latches axe described in [7].

Counting algorithms like those of MUSTANG [47] compute a state assignment

based on adjacency relations between states. It is not necessary to store an entire STG or

ISTG in order to do this computation. Storing all the distinct states in the machine and

a small set of edges currently being inspected is sufficient. After a new encoding is found,

given that an encoder and decoder can be introduced as shown in Figure 6.5, large circuits

can be handled.

If the circuit has an inherent decomposition, this can be used to advantage in re-

6.3. RESULTS USING FLAMES

CKT #1 #o #L #G o/p# Size ISTG Size STG

Slate* Edge* State* Edge*

viterbi 11 34 12 227 0-3 15 48 359 8421

4-7 8 159 136 6464

sbc 35 51 33 1011

11-121 6 70 * *

27-32 1 1 * *

48* 6 190 * *

tic 3 6 21 162 0-51 34 865 * *

s344 9 11 15 160 4 258 569 * *

145

* Conventional STG could not be obtained.

Table 6.1: Example circuits

encoding. In general, state assignment strategies work better on decomposed, rather than

lumped circuits [52]. In the case of a parallel decomposition, either of the two machines

can be re-encoded without affecting the other. In the case of a cascade decomposition,

the tail machine can be re-encoded without affecting the head machine, but if the head

machine is re-encoded, then appropriate encoding logic has to be added to the tail machine,

since the tail machine receives present state inputs from the head machine. Lastly, in the

case of general decomposition, re-encoding either machine requires this additional encoding

circuitry for the other.

Adding the extra logic in the form of encoders and decoders seems to increase the

logic in the circuit, thereby adversely affecting the axea and performance of the resulting

circuit. In the algorithms proposed, the circuit obtained after adding the encoder and

the decoder is optimized using logic synthesis systems like MIS[15]. If the new encoding

corresponds to a better actual implementation, then after introducing the encoder and the

decoder and re-optimizing the combinational logic block, it is expected that the total area

will decrease and the performance will improve. The results of Section 6.3 validate this

claim.

6.3 Results using FLAMES

The strategies described above have been implemented in a sequential synthesis

146 CHAPTER 6. SYNTHESIS OF SEQUENTIAL CIRCUITS

system called FLAMES [11]. It is a powerful system incorporatingvariouslogic optimization

and sequential logic synthesis algorithms. The sequential logic synthesis strategies described

in this chapter have been tried on a number of example sequential circuits. In all the cases

the starting point was a logic-gate and flip-flop description of the circuit. Some of these

examples could not be described in terms of conventional STGs.

Table 6.1 gives the statistics of the examples and the sizes of their corresponding

STGs. The first example is a set of FSMs forming the controller of the viterbi proces

sor [125]. As it happens, the description for the controller contains three parallel FSMs

asserting different sets of outputs but which are driven by the same set of primary inputs.

After combinational logic optimization however, this decomposition could not be identified

via a topological analysis. STGs of all of the outputs were obtainable using the program of

[46] but were large. On the other hand, compact ISTGs foreach output were obtainable us

ing the techniques described in Section 5.4. Extracting the ISTG for any particular output

takes advantage of the inherent parallel decomposition, i.e., the fact that the output under

consideration is functionally dependent only on a subset of the latches and therefore all

the states with the same value in this subset of latches axe equivalent as fax as this output

is concerned. In a sense, the ISTG extraction method attempts to extract the minimal

amount of symbolic information necessary to be able to optimize that particular output.

In an initial pass, ISTGs were extracted for each output separately. After this pass, the

outputs that were found to be dependent on the same set of latches (the outputs that are

asserted by the same component FSM in the parallel decomposition) were clustered together

and a single ISTG was extracted for each such cluster of outputs. In the results presented

here, only two such clusters axe considered.

The next two examples axe large FSM controllers sbc and tic. Conventional STG

descriptions for almost all of the outputs (considered individually) for either of these con

trollers axe not obtainable. On the other hand, manipulable ISTG descriptions could be

obtained for most of their outputs. In addition, the number of outputs for which manip

ulable ISTG descriptions could be extracted was further increased by only re-encoding an

appropriate subset of latches. When it is required to re-encode only a subset of latches,

only the symbolic information corresponding to that subset need be extracted. The latches

6.3. RESULTS USING FLAMES 147

not in the chosen subset can be considered to be primary inputs.

Both the examples have inherent two-way cascade decompositions (detectable by

the algorithms in [7]) that can be identified after cover extraction but not via a topological

analysis. The subsets of latches to be re-encoded were formed by grouping together the

latches belonging to a single component machine in the inherent decomposition. After

exploiting the cascade decomposition in the case of sbc, about two-thirds of the outputs

had a moderate number of states and edges and did not require further latch selection.

However, the remaining outputs either had too large a number of edges or states or both.

In the case of tic, once the inherent cascade decomposition had been identified, all the

outputs could easily be re-encoded using ISTGs. The last example s344 is from the ISCAS

Sequential Testing Benchmark set.

Some of the significant synthesis results have been provided in Table 6.2. In both

Table 6.1 and 6.2, #1 is the number of primary inputs, #0 the number of primary outputs,

#L the total number oflatches, #G the number ofgates, and 0/P # indicates the output(s)

being optimized. The initial areas and delays correspond to the best axea and delay figures

obtained via combinational logic optimization on the initial logic-level description using

MIS [15]. The final areas and delays correspond to the the figures obtained after sequential

logic synthesis from the extracted symbolic information. The axea was measured using the

factored-form literal count in MIS and the delays were measured using the mapped delay

model in MIS. Note that the optimization of the initial circuit and the re-synthesized circuit

were performed using the same set of MIS commands (mis script).

Significant axea and performance improvements were obtained for viterbi and

sbc, as indicated in Table 6.2. The conventional STGs could not be obtained for any of

the outputs of sbc while some of the ISTGs for the same outputs axe extremely compact.

For instance, some of the outputs (27-32) became wires since all states are single-cycle

equivalent Using the algorithm of [46] to extract a conventional STG for outputs 27-32

would result in a STG with millions of equivalent states. Using state minimization would

eventually produce the same area gain but such a method would require exorbitant amounts

of CPU time as well as memory.

The ISTGs for the examples tic and sS44 axe much more compact than the cor-

148 CHAPTER 6. SYNTHESIS OF SEQUENTIAL CIRCUITS

CKT #1 #o #L #G o/p# Delay2
Init./Fin./Impr.

Area

Init./Fin./Impr.

viterbi 11 34 12 227 0-3 32/15.7/51% 321/69/78%
4-7 30.5/23.9/22% 319/85/73%

sbc 35 51 33 1011

11-121 11.8/10.5/11% 632/538/15%
27-32 19.5/0/100% 397/0/100%
481 12.4/9.6/23% • 630/550/13%

tic 3 6 21 162 0-51 18.5/18.5/0% 161/161/0%
s344 9 11 15 160 4 20.7/20.7/0% 131/131/0%

1 Incorporating latch selection heuristics.
2 Using the mapped delay-model in MISII [15].

Table 6.2: Synthesis results using FLAMES

responding conventional STGs. However, for these examples, re-encoding did not provide

any axea or performance gain. After extensive experimentation it has been found that given

large ISTGs, encoding programs like MUSTANG [47] and NOVA [131] are either unable to

find state assignments that axe comparable to the initial literal count, or do not complete in

reasonable amounts of CPU time. Different encoding strategies axe necessary. Some larger

circuits were tried but either ISTGs could not be extracted or the resulting STGs were too

large for the encoding and the decomposition programs to handle.

6.4 Conclusions

The size of sequential circuits for which current sequential logic synthesis strate

gies are viable can be increased quite significantly using Implicit State Transition Graphs

(ISTGs). In this chapter, the focus has been on a sum-of-products representation for ISTGs,

since the most mature state assignment and decomposition strategies in use today target

and use such a representation. However, the algorithms and ideas presented here can quite

easily be modified to use alternate representations of Boolean functions as a base.

Certain classes of sequential circuits usually described at the logic-level, notably,

ALUs interconnected with registers, are not amenable to sequential logic optimization.

6.4. CONCLUSIONS 149

While algorithms exist that canverify/test such circuits,improving the performance of such

circuitsusing re-encoding or re-decomposition appears improbable. Selectionstrategies that

can focus on the control portions of a logic-level sequential circuit, where the most room of

sequentialoptimization exists, axe a must for large,real-life chips. The algorithms described

in this chapter are best suited for the control portions of circuits.

State-of-the-art state assignment programs like KISS, NOVA, and MUSTANG

cannot handle really large circuits, i.e., circuits that have a large number of states and

edges. At the present moment, the ISTG extraction programcan extract ISTGs of circuits

which cannot be re-encoded by these state assignment programs. Finite state machine de

composition techniques should help in the future by producing smaller component machines

that can be encoded. However, better encoding strategies are necessary.

Though cubes and covers were used for the enumeration and the synthesis proce

dure, other representations can be used. In particular, BDDs can be used to improve the

efficiency of the ISTG extraction process. However, all state assignment programs to date

use a State Transition Table type representation of the STG. There is a need for developing

strategies that would use a BDD-based representation of the STG.

Though ISTGs axe more compact and can be better used than conventional STGs,

there axe still some drawbacks. Firstly, all equivalent states axe not detected, so some state

minimization might be necessary. Moreover, if equivalent states do not have uni-distant

state codes, they cannot be combined to obtain a more compact STG. This drawback

can be removed by using BDDs to represent states. Another important drawback is that

the detection of equivalent states is strongly dependent on the heuristics used in setting

the input variables during the enumeration process. Lastly, this approach cannot handle

circuits with more than 30 latches, as even the ISTGs become too large to manipulate.

Chapter 7

HEURISTIC MINIMIZATION

OF BOOLEAN RELATIONS

Most of the work in logic synthesis has been on Boolean functions, which are

one-to-one or many-to-one multi-output Boolean mappings. A Boolean relation is a one-to-

many multi-output Boolean mapping. Boolean relations are a generalization of incompletely

specified logic functions. Typically, for such functions, a set of input values is specified for

which one or more outputs can be either 0 or 1, i.e., a don't-care. Logic minimizers like

ESPRESSO [16] can utilize this information to obtain smaller sum-of-products represen

tations of functions. However, not all aspects of incomplete specification can be captured

using don't-cares, especially for multi-level logic networks. Consider the example shown

in Figure 7.1. In this figure there axe two PLAs, with PLAi driving PLA2. The logic

function of PLAi Is represented by the truth table shown in Figure 7.2. If f\ and fi are

intermediate vaxiables, i.e., they axe used only as inputs to PLA2, then it does not matter

whether PLAi produces 00 instead of 11 because PLA2 maps both 00 and 11 to the same

value 0 at its output. Similarly, PLAi could produce either 01 or 10. The output patterns

00 and 11 are equivalent and so are 01 and 10. This kind of incomplete specification cannot

be represented as output don't-cares but only as a Boolean relation as shown in Figure 7.3

[18].

Forevery minterm in the input space of a Boolean relation, there is a set ofoutputs,

150

a — —»

PLA1
tl

\V\

n\ vJ J y OK

V
7L^u

PLA

Figure 7.1: PLA driving another PLA

151

and any output from the corresponding set of outputs can be chosen for that minterm to

form a function compatible with the Boolean relation. Note that output don't-cares can be

easily represented using Boolean relations, as illustrated with the example in Figure 7.4.

If the function shown in Figure 7.2 is minimized, the minimized function is

/i = ab + ab

f2 = a

However, if a different function is chosen so that it has the output 10 for the first and

third input minterms and the output 00 for the second and fourth, the minimized function

becomes

/i = 5

h = 0

The overall behavior of the PLA network remains unchanged. As is evident from this

example, significant savings in network size may be obtained by exploiting Boolean relations

for the minimization of PLAi.

Boolean relations arise in several contexts. One of them is the situation described

above where one PLA drives another and the driven PLA maps two input patterns x and y

to the same output and therefore for the driver PLA x and y axe equivalent outputs. The

152 CHAPTER 7. HEURISTIC MINIMIZATION OF BOOLEAN RELATIONS

a 6 /i h
0 0 1 0

0 1 0 0

1 0 0 1

1 1 1 1

Figure 7.2: Truth table of PLAi

other situation was presented in Chapter 4 where a finite state machine has sets of equivalent

states. For each present state and input, the machine can go to any one of the states in

the set of equivalent next states. This situation can be easily represented using Boolean

relations. Minimization of Boolean relations helps in deriving smaller logic networks and

alsoin synthesizing circuits for testability [49].

For each minterm in the input space of a Boolean relation, any one of the patterns

from the set of output patterns for that minterm can be chosen. For each choice of outputs

a Boolean function [16] is obtained. In applications, the goal is to implement one of the

functions, generally the one with the least cost. Thus the problem of minimization is

two-fold. A function with the least cost after minimization has to be identified first and

then minimized. In this chapter, the focus is on two-level sum-of-product representations

of functions. In the sequel, a fast heuristic minimization algorithm is presented. This

procedure makes use of test generation techniques to determine a prime and irredundant

(minimal) implementation of a function compatible with a Boolean relation. The test

generation based minimization techniques used here are somewhat similar to those used in

[57].

The rest of the chapter is organized as follows. Definitions axe presented in Sec

tion 7.1, followed by a brief review of previous work in Section 7.2. In Sections 7.3 and 7.4,

the main minimization and network formation procedures axe described. The expansion

procedure is presented in Section 7.5, followed by the irredundant cover procedure in Sec

tion 7.6. In Section 7.7, the reduction procedure is described. In Section 7.8, the last

7.1. DEFINITIONS 153

a

0 0

0 1

1 0

1 1

{/1/2}
{10, 01}
{00, 11}
{01, 10}
{11, 00}

Figure 7.3: Boolean relation for PLAi

procedure for minimization, makesparse, is presented. The procedure for choosing a func

tion compatible with a Boolean relation is presented in Section 7.9. Results presented

in Section 7.10 demonstrate the viability of this approach and its superiority over exact

minimization approaches for large circuits. Conclusions are presented in Section 7.11.

7.1 Definitions

Throughout this chapter it is assumed that the reader is familiar with the termi

nology of [16] and [18].

Definition 7.1.1 A Boolean relation[18] is a one-to-many multi-output Booleanmapping,

11: Br -> Bn, where B = {0,1}. Thus H(x) C Bn is a set. For eachinput minterm ceBr,

a set of primary output vectors can be asserted by that minterm. The set ofprimary output

vectors corresponding to that minterm c of the relation is called the equivalence class for

the minterm and is denoted by Oe(c).

The specification of a Boolean relation is a set of cubes (which could be

either minterms or cubes with don't-care entries) and their corresponding equivalence classes

(c\Oe(c)). The specification is givenas in Figure 7.3. The cubes in the specificationmight

overlap. In such cases, for the minterms common to the overlapping cubes, the equivalence

class is the set union of the equivalence classes of the cubes in which the minterms axe

present.

154 CHAPTER 7. HEURISTIC MINIMIZATION OF BOOLEAN RELATIONS

0 -

1 0

fi h {/1/2}
1 - - {10,11}
0 0 -• {00}

Figure 7.4: Representation of don't-cares

Definition 7.1.2 A multi-output Boolean function f is a function compatible with a

Boolean relation R iffor every minterm x € Br, f(x) € Oe(x).

A set of cubes (c\y), where c 6 Br and y € Oe(c), constitute the cover of a

Boolean function. The cover is said to be valid if the function corresponding to the

cover is compatible with the relation R.

Definition 7.1.3 Two implementations /1 and f2 of a Boolean relation R are equivalent

if fi and f^ are mappings compatible with R. Thus for any minterm x, fi(x) and /^(aO

must beelements of the set Oe(x).

Definition 7.1.4 A cube in the cover of a function f which is compatible with a Boolean

relation R is said to be prime if raising any input or output literal causes the resulting

function to be non-equivalent to f.

Definition 7.1.5 A cube in the cover of a function f which is compatible with a Boolean

relation R is said to be irredundant if on removal of the cubefrom the cover, the resulting

function is not equivalent to f.

Definition 7.1.6 A cover of a function f which is compatible with a Boolean relation R is

said to be prime and irredundant if every cube in the cover is prime and irredundant.

Thefunction corresponding to the cover is thereforecalleda prime and irredundantfunction.

7.2. PREVIOUS WORK 155

7.2 Previous Work

In the mid-80's, researchers in logic synthesis believed that all kinds of incomplete

specification could be represented using don't-cares. In [18], Brayton and Somenzi first

showed that certain kinds of incomplete specification could not be captured using don't-

cares. They were the first to use Boolean relations and to show that it was a generalization

of traditional don't-cares.

The first attempt to minimize Boolean relations was also undertaken by Brayton

and Somenzi in the work presented in [19]. A complete algorithm and results were presented

in [17]. In the last paper, an exact procedure for the minimization of Boolean relations was

given. The problem was formulated as a linear integer 0-1 program and a branch and bound

covering method was given to find the minimum cover. The problem with this approach is

its exponential complexity, both in terms of CPU time and memory required to generate

and store all the c-primes [17] and performingthe constraint generation and binate covering.

Thus, it can be applied only to small examples. To date, no other method for minimization

of Boolean relations has been published.

7.3 Minimization algorithm

Minimization of a Boolean relation can be viewed as a two-step process. The first

step is the choice of a function and the second step is the minimization of the function.

The objective in the first step is to choose the function which when minimized will have the

optimum implementation. An optimum implementation is characterized by :

• minimum number of product terms in the cover

• minimum number of literals in each product term.

A cost function is defined in terms of the above factors and the minimization procedure

tries to minimize the cost function.

A naive approach to minimization would be to form all possible functions com

patible with a Boolean relation and minimize them (exactly or approximately) using logic

156 CHAPTER 7. HEURISTIC MINIMIZATION OF BOOLEAN RELATIONS

MINIMIZE(RelationCover)

{
/ * RelationCover is the specification of a Boolean Relation */
I * FunctionCover is the cover of a Boolean Function */
I * The optimization loop */
I * First choose a particular function compatible with relation */
FunctionCover = Choose_Function(RelationCover);
Build_Interconnected_Network(FunctionCover, RelationCover);
while (quality of solution keeps on improving){

Expand (FunctionCover);
Irredcover (FunctionCover);
if (latest cover better than previous cover){

save latest cover;

}
Reduce (FunctionCover);

}
FunctionCover = best cover;
Makesparse (FunctionCover);
return (FunctionCover);

}

Figure 7.5: Main minimization procedure

optimizers such as ESPRESSO [16]. This approach is a modified exact minimization ap

proach (if ESPRESSO-exact is used) and is not suitable for real examples due to the large

number of minimizations required.

The approach described in this chapter starts with an initial function compatible

with the Boolean relation and through a series of iterations involving the procedures Ex

pand, Irredcover, and Reduce obtains a function with a smaller cost. Instead of trying

to explicitly minimize every possible function compatible with a Boolean relation, in each of

these steps, the initial function is implicitly changed to a function equivalent to it but with

a smaller cost. Due to the lack of ways of predicting which initial function would produce

the best result, the initial choice is made somewhat randomly. However, it has to be ensured

that the initial function chosen is compatible with the Boolean relation. The procedure for

7.3. MINIMIZATION ALGORITHM 157

h h 0

0 0 0

l 1 0

0 1 1

l 0 1

Figure 7.6: Truth table for PLA2

deriving a function compatible with a Boolean relation is given in Section 7.9. Since there is

no known polynomial-time algorithm to solve the Boolean function minimization problem,

which is conjectured to be NP-haxd, the worst-case complexity of this approach is exponen

tial. However, with clever heuristics, a solution can be found within reasonable amounts of

CPU time in the average case. Note that the correspondence between the minimization al

gorithm presented here and that of ESPRESSO is in the general paradigm for minimization

(i.e., in the use of the Expand, Irredcover, and Reduce steps). The procedures used for

each step axe different. As will be pointed out later, these procedures when used for the

minimization of a Boolean function axe, in a sense, less powerful than the corresponding

procedures in ESPRESSO.

The procedures make extensive use of test pattern generation techniques. To

make the use of such techniques feasible, the first step in the main minimization procedure

(Figure 7.5) is to build a networkof gates called the interconnected network. This intercon

nected network is a connection of two PLAs, as in Figure 7.1. The first PLA implements

the initial function compatible with the Boolean relation. The second PLA is built so that

the interconnection of PLAs produce the same Boolean relation for the first PLA as the

original Boolean relation. The procedure BuildJnterconnected_Network() receives as

its input the specification of a Boolean relation and a random initial function compatible

with the Boolean relation, as chosenusing ChooseJFunction(). Having derived the net

work, a gate-level automatic test pattern generator is used for the various steps in the main

loop. The use of this network and test pattern generation techniques will be illustrated in

158 CHAPTER 7. HEURISTIC MINIMIZATION OF BOOLEAN RELATIONS

Figure 7.7: Interconnected PLA network

subsequent sections.

The goal of the Expand procedure is to make each cube in the cover prime while

keeping the function compatible with the Boolean relation. Irredcover identifies a set

of cubes that can be removed from the cover without affecting compatibility. Thus the

cardinality of the cover is reduced and all cubes in the cover axe necessary. In an attempt

to get out of the local minima, Reduce is used to reduce the size of each cube as much

as possible while maintaining compatibility with the Boolean relation. The reduced cubes

can possibly re-expand to cover more cubes and reduce the cardinality of the cover. After

reduction, the operations in the loop axe repeated. Iteration continues as long as the quality

of the solution keeps improving. When the quality of the solution does not improve any

more, the loop is exited and Makesparse is applied to make the cover as sparse as possible.

At all stages, various heuristics are used to guide the algorithm in order to obtain the best

possible solution.

7.4 Network Formation

The main steps in the minimization algorithm axe performed by a test pattern

generator. To enable the use of a test pattern generator it is necessary to build a network

7.4. NETWORK FORMATION 159

a b {/1/2}
0 0 {00, 01}
0 1 {01,10}
1 0 {10}
1 1 {11}

Figure 7.8: Example Boolean relation

of gates from the cover of the function. The objective of the network formation procedure

is to form an interconnected network consisting of a driver network and a driven network

as in Figure 7.1. This interconnection should be such that the Boolean relations for the

driver network arising from this interconnection is the same as the original Boolean relation.

Since we axe interested in two-level sum-of-product representations, PLAs axe the obvious

choice for building such a network. The cover of the initial function chosen can be easily

translated to a PLA where each product term corresponds to an AND gate, with the inputs

to the gate denoting the input literals for the product term. This PLA is called the driver

PLA. Following that, another PLA driven by the driver PLA has to be constructed. The

second PLA is called the driven PLA.

Intuitively, the second PLA should be such that the output patterns of the first

PLA which axe in the same equivalenceclass (remember the outputs of the driver PLA axe

inputs to the driven PLA) should be mapped to a single pattern at the output of the driven

PLA. Though this is the general principle, this step of deriving the driven PLA is performed

in two different ways, depending on the Boolean relation. At first, all unique equivalence

classes of the Boolean relation axe identified. If a particular output pattern never occurs in

more than one equivalence class, then the driven PLA should only map the patterns in the

same equivalence class to a single pattern at its output. To illustrate this with an example,

consider the Boolean relation shown in Figure 7.3. There are only two unique equivalence

classes {01,10} and {11,00}, and they do not have any patterns in common. Therefore

the driven PLA should map 01 and 10 to a single pattern at its output and also map 11

160 CHAPTER 7. HEURISTIC MINIMIZATION OF BOOLEAN RELATIONS

a 6 h h 0

0 0 0 0 1

0 0 0 1 1

0 1 0 1 1

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

Figure 7.9: Truth table for PLA2

and 00 to another pattern. In this manner, the truth table for the second PLA is derived

and is shown in Figure 7.6. If the initial function chosen is as shown in Figure 7.2, the

interconnected network that is formed is shown in Figure 7.7.

If a particular output pattern occurs in more than one equivalence class, then the

inputs to the driver PLA also have to be considered as inputs to the driven PLA. In this

case, the driven PLA is the characteristic function of the Boolean relation. To illustrate

this, consider the Boolean relation shown in Figure 7.8. There axe four unique equivalence

classes and the pattern 01 occurs in two of them. The driven PLA has to be constructed

so that under the input condition a = 0, 6 = 0, it maps /i = 0, f2 = 0 and fi = 0, f2 = l

to a single pattern at its output. This is illustrated by the first two cubes in the truth

table for PLA2, as shown in Figure 7.9. Continuing in this manner, the truth table for the

second PLA can be obtained. The resulting function is called the characteristic function

of the Boolean relation. The interconnected network (with the initial function obtained by

choosing01 as the output for both the first and second minterm) is shown in Figure 7.10.

It is easy to show that the Boolean relation that can be derived from the interconnected

network is the same as the original one.

Note that this method of deriving the driven PLA could have been applied to the

previous case where the equivalence classes were non-intersecting. However, the method

applied there produces a smaller driven PLA in general. Since the time required for test

generation depends on the size of the network, the previous method helps speed up the

7.5. EXPAND

a

b D^V
PLA

0000 1
0001 1
0101 1
0110 1
1010 1
1111 1

PLA

Figure 7.10: Interconnected PLA network

161

algorithm. The size of the driven PLA is not affected by the size of the driver PLA, and

does not affect the quality of the final result.

7.5 Expand

In this section, the Expand procedure is described. This procedure tries to iden

tify a function with a smaller cost and simultaneously minimizes that function.

It is well known for two-level AND-OR logic networks that if the function being

implemented is prime and irredundant [16], then it is testable for all single stuck-at faults in

the network. If a cube in the cover is prime, all input stuck-at-l faults for the corresponding

AND gate axe testable. Conversely, if a cube is not prime, then for certain inputs to the

corresponding AND gate, stuck-at-l faults axe not detectable. These inputs axe therefore

redundant and can be removed to make the cube prime.

Given a Boolean relation and an initial function compatible with the relation, a

cube in that function is prime if and only if raising any literal (either in the input part or

the output part) produces a function that is not equivalent to the original function. To

162 CHAPTER 7. HEURISTIC MINIMIZATION OF BOOLEAN RELATIONS

a 6 /i h
0 0 1 0

0 1 1 1

1 0 0 1

1 1 1 1

Figure 7.11: Function cover after Expand

determine whether a cube is prime or not, it is necessary to raise all the literals in the input

part and the output part of the cube, one at a time, and check if the resulting function

is compatible with the Boolean relation. Looking at this from the point of view of test

pattern generation, an input literal in a cube is redundant if for all stuck-at-l fault tests

for the literal, the response of the fault-free network and the network with the stuck-at-l

fault are in the same equivalence class (which is the equivalence class for the test pattern).

Since the driven PLA maps patterns in the same equivalence class to the same output, this

means that the effect of the fault will not be observable at the outputs of the driven PLA.

This gives a simple criterion for determining whether an input literal is redundant or not.

If a stuck-at-l fault for that literal in the interconnected network is undetectable, then the

literal is redundant and can be removed. Another objective during this phase is to add

redundant fanout stems to AND gates, i.e., raise the output part of the cube. For every

AND gate and OR gate between which a connection does not exist yet, the connection is

made. If a stuck-at-0 fault on the connection is undetectable, it is retained.

To illustrate the procedure with an example, consider the Boolean relation of Fig

ure 7.3. The initial function chosen is shown in Figure 7.2 and the resulting interconnected

network is shown in Figure 7.7. Consider the second AND gate and the input a stuck-at-l.

The only input vector that can excite the fault is a = 0 and 6=1. For this vector, the

response of the fault-free driver PLA is 00 and the faulty driver PLA is 11. The equivalence

class of the test vector, 01, contains both these responses. It can be easily determined

that a stuck-at-l fault on that input is undetectable in the interconnected network, and

7.5. EXPAND 163

Figure 7.12: Network after Expand

therefore the corresponding literal can be removed from the cube. The driver PLA now

implements the function shown in Figure 7.11, which is different from the initial function.

Thus a new function with a smaller cost has been implicitly chosen. Note that the cube

after expansion is a prime of the current function, indicating that the chosen function has

been simultaneously minimized.

The Expand procedure is based on the aforementioned principles. The AND gates

in the driver PLA axe ordered and all literals in each gate are checked for redundancy. Also,

new fanout stems axe added to AND gates and checked for redundancy. All redundant

inputs axe removed as soon as they axe detected. On the other hand, redundant fanout

stems for AND gates axe retained. The process continues iteratively until there axe no more

redundant literals to remove or fanout stems to add. The procedure, since it is iterative,

stops only after going through all the cubes and fails to raise any literals. Since no literals in

any of the cubes can be raised, all the cubes must be prime. For test pattern generation and

efficient identification of undetectable faults, the test pattern generation algorithm PODEM

[65] is used with modifications suggested in [60] and [119].

The result of Expand depends strongly on the order in which the cubes axe

164 CHAPTER 7. HEURISTIC MINIMIZATION OF BOOLEAN RELATIONS

expanded. Cubes are ordered in decreasing size of their equivalence class. The rationale

behind this choice is that a cube with a larger equivalence class can possibly expand more

and cover other cubes in the cover. The input variables in the cube are also ordered before

expansion. Variables axe ordered according to the number of gates they fanout to. Variables

fanning out to a larger number of AND gates axe considered first. This greedy strategy tries

to produce PLAs with better folding characteristics [51] and works better in the average

case. To add redundant fanout stems to an AND gate, the OR gates axeordered so that ones

that have a maximum number of common input literals with the AND gate axe considered

first. Ties axe broken arbitrarily. Since the support of the OR gate and the AND gate is

similar, the chance of the connection being redundant is higher. This is the rationale behind

this choice.

This procedure is different from the corresponding procedure in ESPRESSO. The

major difference is that literals here axe considered serially, while in ESPRESSO, sets of

literals can be considered using Blockingand Covering matrices. Therefore the chances of

this procedure getting stuck in a sub-optimal solution axe higher. However, since there is no

analog of an OFF-set for a test-pattern-generation-based algorithm, the ESPRESSO-type

algorithm cannot be used.

7.6 Irredcover

After expansion, each cube in the cover is prime. However there may be some

cubes in the cover that axe redundant, i.e., the cardinality of the cover may be decreased

by deleting these cubes. Like the Expand procedure, the objective of this procedure is to

identify a function with a lower cost and minimize that function simultaneously.

The principles used axe similar to the ones used in the previous section. For a

two-level AND-OR logic network, a cube is redundant if a stuck-at-0 fault at the output

of the corresponding AND gate is undetectable. For a Boolean relation, the condition for

being redundant can be expressed in the following manner. In the interconnected network,

if a stuck-at-0 fault at the output of an AND gate in the driver PLA is undetectable, then

the corresponding cube is redundant and can be removed from the cover. In this procedure,

7.6. IRREDCOVER 165

a b /i h
0 0 1 0

0 1 0 0

1 0 0 1

1 1 0 0

Figure 7.13: Function cover after Irredcover

the AND gates in the driver PLA are ordered and then tests are generated for output stuck-

at-0 faults. As soon as a redundant cube is detected, it is removed from the cover. The

procedure iterates over all cubes in the cover until no cubes are redundant. Once again,

since the procedure is iterative, it stops only after going through all the cubes and fails to

remove any. Since none of the cubes can be deleted, the cover must be irredundant.

To see how the procedure implicitly changes the function chosen, consider the

example used in the previous section. The cover of the function after expansion is shown

in Figure 7.11 and the corresponding network is shown in Figure 7.12. (For the sake of this

example, in the network shown, not every cube in the function is prime). A stuck-at-0 fault

at the output of the second AND gate is untestable and therefore the cube can be removed

from the cover. This new cover corresponds to the function shown in Figure 7.13 and is

different from the function shown in Figure 7.11. Once again, the function is implicitly

changed and the new function is minimized simultaneously.

The number of cubes removed depends on the order in which they are considered.

A greedy ordering strategy is employed to reduce the number of literals in the final function.

Cubes that have a larger number of literals axe considered before cubes with a smaller

number of literals.

Like the Expand procedure, this procedure is also quite different from the cor

responding ESPRESSO procedure. Once again, the main difference is that cubes axe con

sidered serially here. In ESPRESSO, sets of cubes can be considered for removal using an

auxiliary function and appropriate covering procedures. Again, since paxtially-redundant

166

a

CHAPTER 7. HEURISTIC MINIMIZATION OF BOOLEAN RELATIONS

a

PLA

0000 i

0001 l
0101 i
0110 i
1010 l
mi l

PLA

Figure 7.14: Network after Expand-Irredcover

primes as defined in [16] cannot be defined for a test-pattern-generation-based algorithm,

the ESPRESSO-type procedure cannot be used.

7.7 Reduce

After Expand and Irredcover, the cover is prime and irredundant. No more

literals can be raised, nor can any more cubes be deleted from the cover. This is a locally

optimal solution but may be a poor optimal solution. To move from a local optimum to a

better local optimum, it is necessary to start with a different function of (possibly) higher

cost. Reduction is the operation that transforms a prime cover F into a new (in general,

non-prime) cover F', by replacing each cube by a (smaller) cube contained in it. Like the

two previous procedures, this operation implicitly changes the function of the driver PLA

without destroying the compatibility with the Boolean relation. However, unlike those

procedures, it increases the cost of the resulting function. The reduced function acts as a

new starting point for the Expand and Irredcover operations from where a better local

optimum might be reachable. In fact, since some of the cubes of F' axe not prime, Expand

7.7. REDUCE 167

a 6 h A
0 0 0 l

0 1 0 l

1 0 1 0

1 1 1 1

Figure 7.15: PLAi after Expand and Irredcover

can be applied to F' to yield a different prime cover that may have a fewer number of cubes

thanf.

In order to convert a prime cover to a non-prime cover, cubes in the cover have to

be made non-prime. A non-prime cube has redundant literals and this suggests the use of

test generation techniques for reduction. In this procedure, all inputs not connected to an

AND gate under consideration are connected to it one by one. If a stuck-at-l fault on the

connector is undetectable in the interconnected network, it is retained. If not, the connector

is removed. Thus literals are added to each cube, one literal at a time. Also, for each AND

gate connected to an OR gate, if a stuck-at-0 fault on the connector is undetectable in

the interconnected network, it is removed. The procedure continues as long as redundant

literals can be added to the circuit or fanout stems removed. Note that an ESPRESSO-

style Reduce can only reduce the cubes while keeping the function of the driver PLA the

same. In this procedure, each cube could be reduced further and a different function for the

driver PLA may be chosen during reduction. However, unlike the correspondingprocedure

in ESPRESSO, redundant literals axe added one at a time.

The procedure is illustrated with the help of an example. Consider the Boolean

relation shown in Figure 7.8 and the interconnected network after expansion and irredun

dant cover operation shown in Figure 7.14. The function of the driver PLA is shown in

Figure 7.15. If input bis connected to the second AND gate (dotted line), a stuck-at-l fault

on the connector is undetectable and the connection is retained. The resultant function for

the driver PLA is shown in Figure 7.16and is different from the one shown in Figure 7.15.

168 CHAPTER 7. HEURISTIC MINIMIZATION OF BOOLEAN RELATIONS

a b h /2
0 0 0 0

0 1 0 1

1 0 1 0

1 1 1 1

Figure 7.16: PLAi after Reduce

The choice of cubes to be reduced and the method of reduction have a crucial effect

on solution improvement. The heuristic used here is similar to the one used in ESPRESSO.

Cubes in F axe processed sequentially, maximally reducing each one without destroying

compatibility. A crude heuristic ordering strategy is used before reducing cubes. Cubes axe

ordered in decreasing order of size. The inputs to be connected to the AND gate axe sorted

so that the input variable that occurs in most other cubes comes first. This is motivated

by the fact that the literal chosen first is already present in some other cubes. Thus that

literal can probably be lowered in the cube under consideration.

7.8 Makesparse

The objective of this routine is to make the PLA matrix as sparse as possible. This

enhances the ability of the PLA to be folded and improves some of its electrical properties.

After the main loop in the minimization program, the cover of the PLA is prime and

irredundant but might not be so with respect to each individual output. The first step in

this procedure is to lower the outputs. Foreach cube in the cover,it is necessary to change

as many l's in the output plane to O's as possible. If it is possible to lower a 1 in the

output plane to a 0, it means that the connection between the AND gate representing the

cube and the OR gate implementing the output function can be deleted. This suggests a

way of implementing the lowering of outputs procedure. For the cube under consideration,

the corresponding AND gate has to be identified. Now for each fanout stem of the AND

gate, tests have to be generated for the fault where the stem is stuck-at-0. If the fault is

7.9. CHOOSING AN INITIAL FUNCTION 169

undetectable, the connection is redundant and can be removed. This is repeated for all the

cubes in the cover.

Having lowered the outputs, the cubes may not be prime any more. The next

step in the Makesparse procedure is to raise the input literals in the cubes to make them

prime. The procedure followed is similar to the one described in Section 7.5. However,

instead of raising both the input and the output literals, only the input literals are raised.

In this way the input part of the PLA is made as sparse as possible. The procedure ensures

that the resultant cover is prime for each output function, as well as irredundant. However,

Makesparse, like Expand, could change the function implicitly and provide another (and

perhaps better) starting point for the minimization process.

7.9 Choosing an Initial Function

Choosing an initial function compatible with a Boolean relation is very important

from the point ofview of the correctness of the procedure. Fora minterm-based specification

of a Boolean relation, i.e., where every input condition is a minterm, as in Figure 7.3,

choosing an initial function can be easily performed by choosing a single output pattern

from the equivalence class for each input minterm. The same is not applicable for a cube-

based specification, as illustrated with the example of Figure 7.17. If the same criterion is

used, then for the first and the third cubes the outputs 10 and 01 might be chosen. For the

minterm 1011 that is common to the cubes, the output asserted is 11 which is not in the

equivalence class of the minterm.

The procedure for choosing an initial function for a cube-based specification is

described here. At first, a matrix is formed with the patterns in the equivalence class of

each cube. In this matrix, there is a column for each output variable. For each cube in

the specification, there axe as many rows as there axe patterns in its equivalence class.

Each row therefore corresponds to an output pattern (for a cube) and the entry in any

column for that rowis the valueof the output variable in that pattern. Havingconstructed

the matrix, the number of one's and zero's in each column axe counted, and the column

with the maximum number of one's or zero's (depending on the count) is chosen and the

170 CHAPTER 7. HEURISTIC MINIMIZATION OF BOOLEAN RELATIONS

abed {/i/a>
- 0 1 - {10, 01}
0 - - 1 {00,11}
10-1 {01,10}
0 10- {11, 00}

Figure 7.17: Cube-based specification of a Boolean relation

corresponding output variable is assigned the value 1 or 0. If the value 1 is assigned to

the variable, then all rows that have a 0 in that column are marked and are not considered

in the same pass. This process is repeated until all output vaxiables axe assigned a value,

i.e., until a particular output pattern is chosen. The rows remaining correspond to cubes

that have the chosen output pattern in their equivalence class. These cubes axe assigned

the output pattern, marked as selected, and removed from the specification and from the

matrix (for each selected cube, multiple rows may be removed from the matrix as each cube

has multiple row entries). All cubes in the specification that intersect the selected cubes

but have not been selected axe saved in a set L and their corresponding rows axe removed

from the matrix. Now all the marked cubes in the matrix axe unmarked and the process

of selection of output patterns continues until the matrix becomes empty. For the selected

cubes (with their associated output patterns), it canbe guaranteed that the output for each

minterm is in the equivalence class of that minterm.

The complement of the set of selected cubes is now found using the logicminimizer

ESPRESSO. The complement is intersected with the set of cubes saved in the set X. This

produces cubes containing minterms in the originalspecification for which no output pattern

has been selected yet. These cubes can be treated as a new Boolean relation and the

procedure of selection using the matrix can be applied. These steps axe xepeated until L

becomes empty or the intersection of L with the complement of the selected set becomes

empty. The resulting selected set is a function that is compatible with the Boolean relation.

At each step of the process, more minterms axe added to the selected set and therefore

7.10. EXPERIMENTAL RESULTS 171

this procedure must converge when all minterms for which equivalence classes have been

specified axe selected.

The correctness of the minimization procedure can be proved as follows.

Theorem 7.0.1 ; Given a Boolean relation, the minimization procedure described here

produces a function compatible with the Boolean relation.

Proof: The procedure starts with a function that is compatible with the Boolean relation.

In the procedure wires axe either added or deleted. The addition or deletion is based on the

redundancy of a fault in the interconnected network. Assume that during the procedure,

at a certain step when a wire is either added or deleted, the function becomes incompatible

with the Boolean relation. Therefore, the fault considered in the operation must have been

redundant. Since the new function is not compatible with the Boolean relation, there must

exist a minterm for which the outputs of the driver PLA before the operation and after the

operation axe not in the same equivalence class. Since the driven PLA maps patterns only

in the same equivalence class to a single pattern at its output, the output of the driven

PLA before the operation would be different from that after the operation. Therefore that

minterm constitutes a test for the fault considered in the operation and therefore the fault

is not redundant. This is a contradiction that disproves the assumption. •

7.10 Experimental Results

The algorithm described in this chapter has been implemented in a system called

HERB. As mentioned previously, the test generation algorithm used is a variation of the

PODEM [65] test generation algorithm with modifications suggested in [60] and [119].

In this section, fifteen examples are presented, some of which have been taken

from [17] and the rest from various industrial and university sources. For each example in

Table 7.1, the number of inputs and the number of outputs and the final number of product

terms and literals in the sum-of-product representations after minimization is presented.

The final column indicates the total minimization time on a DECstation 3100.

In Table 7.2, the results are compared with the results obtained from an exact

minimizer for Boolean relations described in [17]. Though in some cases the number of

172 CHAPTER 7. HEURISTIC MINIMIZATION OF BOOLEAN RELATIONS

CKT #Inputs # Outputs #Product
terms

#Literals CPU

Time

intl 4 3 8 24 0.2s

int8 4 3 8 37 0.5s

cl7a 5 3 5 15 0.6s

cl7b 5 3 7 25 0.4s

intlO 6 4 30 157 5.0s

shel 7 3 9 • 58 120.4s

she2 5 5 13 74 30.0s

she3 7 4 10 41 800.2s

she4 5 6 27 154 44s

int7 6 4 16 68 4.5s

yosi 5 13 14 100 24.2s

intl5 24 14 145 1573 421.8s

b9 16 5 452 5052 892.9s

gr 15 11 126 1240 400.4s

vtx 27 6 424 6404 1001.6s

Table 7.1: Experimental results

CKT EXACT HERB

#Terms #Lits Time #Terms #Lits Time

intl 5 13 31.7s 8 24 0.2s

int8 8 35 0.1s 8 37 0.5s

cl7a 5 11 0.9s 5 15 0.6s

cl7b 7 19 26.2s 7 25 0.4s

intlO 25 113 40044.1s 30 157 5.0s

shel 6 34 9.0s 9 58 120.4s

she2 11 43 68.5s 13 74 30.0s

she3 8 31 71.9s 10 41 800.2s

she4 Out of Memory 27 154 44s

int7 Out of Memory 16 68 4.5s

yosi Out of Memory 14 100 24.2s

intl5 Out of Memory 145 1573 421.8s

b9 Out of Memory 452 5052 892.9s

gr Out of Memory 126 1240 400.4s

vtx Out of Memory 424 6404 1001.6s

Table 7.2: Comparison with exact minimization

literals obtained by the heuristic method is double the exact minimum, the time required

for heuristic minimization is significantly smaller. In all cases considered so far, the number

of product terms obtained using the heuristic approach is close to the exact minimizer's

7.10. EXPERIMENTAL RESULTS

CKT #Product
terms

Literals CPU

Time

she4 27 154 0.1s

int7 16 68 0.2s

yosi 18 141 0.6s

intl5 151 1912 240s

b9 452 5054 14s

gr 130 1401 10.9s

vtx 424 6404 120.9s

Table 7.3: Comparison with exact function minimization

173

results. For all the large examples, the exact minimization approach ran out of memory

after running for several hours. The heuristic approach was successful in minimizing all the

relations in reasonable amounts of time. The memory requirements for all examples were

very small as this approach is not at all memory intensive. Despite the dramatic reduction

in time for some examples, there were some for which the time taken by the heuristic

approach was laxger. This can be attributed to the fact that the heuristic approach can

spend a significant amount of time in trying to search for a good solution in a part of the

space where no good solution exists. This might happen because of a poor initial choice.

To compare the quality of results obtained using the heuristic approach for those

examples for which the exact algorithm did not complete due to lack of memory, the ex

amples were minimized using an exact logic minimization algorithm (ESPRESSO-EXACT

[116]). The functions werederived from the Boolean relations by using Choose_Function().

It is time consuming to manually choose a good function compatible with the Boolean rela

tion. Specifying extra don't-care information for the function is even more difficult. These

axe the drawbacks of using function minimizers for minimizing Boolean relations. The re

sults of function minimization are presented in Table 7.3. As can be easily seen, the quality

of results obtained by the heuristic procedure axe in most cases better or at least as good

as those obtained using exact function minimization. Also, there axe examples for which

the difference in the quality of the result is not much.

174 CHAPTER 7. HEURISTIC MINIMIZATION OF BOOLEAN RELATIONS

7.11 Conclusions

Minimization of Boolean relations is important from the point of view of logic

synthesis and synthesis for testability. A fast and memory efficient heuristic test generation

based algorithm for the minimization of Boolean relations was presented. This algorithm

uses iterative logic improvement to derive a function of minimal cost that is compatible with

the Boolean relation. Using this approach, it is possible to minimize larger circuits than

with the exact minimization approach. Moreover, the circuits axe testable for all single

stuck-at faults. It is also guaranteed that for all faults there exists a test such that the

responses of the true and the faulty networks are not in the same equivalence class. The

latter property is useful for sequential logic synthesis for testability.

This approach suffers from some drawbacks. First, since redundant literals and

cubes axe removed sequentially, the ordering of the literals and cubes becomes very critical

for obtaining better quality results. Second, only the removal of one literal or cube is

considered at a time. Considering the removal of more than one literal or cube at a time

(as in ESPRESSO) could give better results. This implies the use of multiple faults instead

of single faults during the minimization process. Since the number of multiple faults is very

large (exponential in the numberof wires in the circuit), the time required for minimization

could be very large. Third, in this approach the entire space of functions is not explored

and thus given enough time, this approach might not be able to find the exact minimum

function compatible with the Boolean relation.

Chapter 8

CONCLUSIONS

The problems of test generation and verification of sequential circuits were ad

dressed in this dissertation. In addition, the relationship between test generation, verifica

tion, and sequential logic synthesis was explored.

Sequential test generation is considered a difficult problem. One of the main rea

sons for this is that a fault typically modifies a few edges in the STG ofa machine. Therefore,

finding an input sequence that distinguishes between the fault-free and the faulty machines

requires an enormous amount of searching. In Chapter 2, a novel approach to test gener

ation for sequential circuits was presented. The algorithm uses selective STG enumeration

together with the fault-free circuit heuristic. The fault-free circuit heuristic is used to gen

erate justification and differentiation sequences for faults using only the fault-free machine.

This heuristic tries to take advantage of the fact that a fault typically modifies a few edges

in the STG of a machine. In addition, fault-free justification and differentiation can be

performed much more efficiently than the same under faulty conditions, since information

can be reused. Further, selective enumeration of the STG using the intersection of sum-of-

product forms, which forms the basis for justification and differentiation, can be performed

efficiently by using sophisticated data structures. Another characteristic of the test genera

tion algorithm proposed is that the problem oftest generation is split into three subproblems

rather than the traditional two. This results in improved efficiency.

The algorithm described makes intelligent use of covers of the ON and OFF-sets

175

176 CHAPTER 8. CONCLUSIONS

of each PO and NS line for test generation. Cubes axe represented as bit vectors and cube

intersections, which form the basis of the justification and differentiation algorithms, are

performed efficiently using bitwise AND operations. This is both a strength and a weak

ness of this approach. If circuits have a moderate number of inputs and latches and the

cover sizes axe not large, the number of intersections performed is within reasonable limits

and therefore justification and differentiation takes a small fraction of the total test gen

eration time. However, as the cover sizes grow with circuit size, the times for justification

and differentiation grow with it. For large circuits, where complete covers cannot be gen

erated because of memory restrictions and even partial covers are large, justification and

differentiation can become the bottleneck in test pattern generation.

Despite these drawbacks, it was shown that this approach is significantly faster

than the best existing approach and could handle larger circuits more efficiently. This

approach has been used to successfully generate tests for finite state machines with a large

number of latches within reasonable amounts of CPU time and close to the maximum fault

coverage has been obtained. In addition, a larger class of sequentially redundant faults can

be identified. This is because invalid states can be easily detected during the justification

process, given the complete covers. Though circuits larger than those handled by the

approaches of [l] and [90] can be handled by this approach, the very large circuits are still

out of reach.

To alleviate the problem of size, an approach that does not require the storage of

covers was presented in Chapter 3. The key ideas of Chapter 2 were used together with the

exploitation of the properties of Register-Transfer Level (RTL) descriptions to design a test

pattern generator that can handle larger circuits and is more efficient. RTL descriptions

axe interconnections of well-defined modules that perform a specific information processing

task. For many such modules, there is an associated algebra. For example, adders can be

represented using the + operator, and for a network of adders, a system of simultaneous

equations can be written to represent the behavior of the system mathematically. This

system of equations can be used to determine uniquely the values on each wire, given the

primary inputs to the system. The opposite is also easily done, t'.e., given the primary

output values, primary input values that justify the output values can be obtained by

177

solving this system of equations. In the test pattern generator, this algebra is exploited

during justification and differentiation. Good heuristics play a major role in the efficiency

of this algorithm and a set of heuristics was presented. It is possible to generate tests for

some chips, of intermediate complexity, for which covers are too large to generate, store,

and use effectively in test pattern generation.

As is often the case, the strongest point of an algorithm also happens to be its

weakest. For circuits consisting of a large number of arbitrary Boolean function modules

which do not have an associated algebra, the test generator has to resort to time consuming

backtracking methods. Though indexed backtracking improves the efficiency of the process

by avoiding backtracking over unrelated decisions, the number of backtracks could still be

large and backtracking could be time consuming. However, it is expected that the test

generator STEED will perform well for such circuits. In general, it can be said that for

circuits with a regular structure, ELEKTRA will perform better than STEED. Such circuits

axe pure datapaths or datapaths with small associated controllers. These circuits have STGs

that are highly connected, i.e., it is possible to reach almost any state from any other. For

circuits like pure controllersthat have a sparseSTG, STEED will perform better. Therefore,

two viable tools that cover more or less the entire spectrum of most commonly designed

circuits have been developed.

Despite having more powerful test generators, the problem of testing is not fully

solved. If a circuit has a large numberof redundant faults, even a good test generator might

spend a significant amount of time in identifying these faults. The synthesis process can

help in easing the task of test generation by synthesizing the circuit to be fully and easily

testable. Though it is difficult to characterize easy testability and make the circuit easily

testable, there axe procedures to synthesizecircuits to be fully testable. One such procedure

was presented in Chapter 4.

The structure of the synthesis for testability algorithm presented in Chapter 4

is similar to that of [49]. The main issue in this algorithm is the efficient derivation of

the set of don't-cares necessary to make the circuit fully testable. The objective is to

derive the minimum set of don't-cares as efficiently as possible. Ideas from Chapters 2

and 3 were used to formulate an algorithm that determined the necessary set of don't-care

178 CHAPTER 8. CONCLUSIONS

conditions. An iterative logicoptimization and don't-care derivationstrategy was used. The

testability of the circuit was iteratively improved until the circuit became fully testable.

Unlike previous approaches, this is not based on the STG description of the circuit and

therefore not restricted to small controller type circuits. In fact, the RTL description can

be exploited (as in Chapter 3) to generate the required don't-cares. Therefore, datapath-

controller circuits as well as digital signal processors, whose STGs axe very large, can be

synthesized to be fully testable. Moreover, the procedure does not introduce any area or

performance overhead like scan design and can be used for circuits an order of magnitude

larger than those handled by previous STG-based synthesis approaches. A complete chip of

intermediate complexity and a data encryption chip were synthesized to be fully testable.

The memory and CPU time requirements for synthesis axe also reasonable.

Despite its advantages and superiority over other approaches for a class of circuits,

this procedure is not the remedy to all testing woes. Determination of invalid and equivalent

states is by no means a solved problem. In the worst case, the algorithms have exponential

complexity. Therefore the dream of designing circuits to be fully testable is not yet a reality.

A significant amount of effort is still required.

Connected intimately to the problem of test generation is the problem of verifi

cation. Many of the techniques used for test generation can be used for verification and

vice versa. In the field of verification, there has been a gradual evolution towards better

and more sophisticated algorithms. Starting from purely explicit techniques like exhaus

tive enumeration, today we have completely implicit techniques for verification. Exhaustive

simulation techniques can be applied only to the smallest examples because of its exponen

tial average-case complexity. The first step towards a better algorithm was taken in [46]

where the input space was implicitly enumerated. Two different algorithms for verification

of sequential machines were presented in Chapter 5. These algorithms represent the next

step in the evolutionary chain, i.e., purely implicit enumeration of the input space and

partially implicit enumeration of the state space. Two different paradigms for the use of

these algorithms were presented. One used the product machine approach and an STG

traversal technique, and the other used an enumeration-simulation approach. The main

characteristic of these algorithms is that equivalent states with uni-distant codes can be

179

merged into single cube states, thereby requiring the enumeration of a smaller number of

states. Also, multiple edges from different states axe coalesced into one edge, producing a

more compact STG. The other characteristic of these algorithms is that they axe based on

depth-first search. Therefore they axe memory efficient, much more so than the recently

developed completely implicit techniques [30, 35]. However, the completely implicit tech

niques axe quite sophisticated and axe able to handle a large class of circuits efficiently. The

experiments performed indicate that for circuits that have STGs that axe narrow and deep,

the approaches presented here work better than purely implicit approaches. For almost

all other classes of circuits, the implicit approaches produce better results, especially for

circuits that have STGs that axe regular and wide.

Arising out of the need to efficiently verify circuits, the Implicit State Transition

Graph (ISTG) extraction procedure was developed. ISTGs are more compact than conven

tional STGs, yet they have all the information that a conventional STG has. Also, ISTG

extraction often takes a smaller amount of time and memory than conventional STG ex

traction. In addition, the resultant STG is partially state minimized, so less time is spent

in state minimization. This has obvious implications for re-synthesis of circuits described

at the logic level.

A strategy for the re-synthesis of circuits was presented in Chapter 6. The ISTGs of

circuits described at the logiclevel wereextracted and used in conjunction with existing state

encoding and decomposition techniques to obtain better implementations of the circuits.

Methods for re-synthesizing only parts of a circuit and changing the encoding of only a

subset of the latches for the sake of axea, performance, or testability improvement were

proposed. It was shown that the size of the sequential circuits for which current sequential

logic synthesis strategies axe viable can be significantly increased using ISTGs. Parts of

circuits were re-synthesized to obtain improvements in both axea and performance. These

algorithms are particularly suitable for the control portions of logic circuits where most of

the room for sequential logic optimization lies.

Finally, the problem ofminimization of Boolean relations, which arise in sequential

logic synthesis is addressed in Chapter 7. Boolean relations, a relatively new concept, is

a generalization of traditional don't-cares. Minimization of Boolean relations is important

180 CHAPTER 8. CONCLUSIONS

from the point of view of logic synthesis and synthesis for testability. A fast and memory

efficient heuristic test-generation-based algorithm for the minimization of Boolean relations

was presented. This algorithm uses the same minimization paradigm as the logic minimizer

ESPRESSO [16]. However, the individual algorithms axe different. A desirable character

istic of the circuits obtained after minimization is that they they are testable for all single

stuck-at faults. It is also guaranteed that for all faults there exists a test such that the

responses of the true and the faulty networks are not in the same equivalence class. The

latter property is useful for sequential logic synthesis for testability. Using this approach,

it is possible to minimize larger circuits than with the exact minimization approach.

For this dissertation, two test generation programs, one verification program, two

synthesis programs, and a program for the minimization of Boolean relations were devel

oped. Some of these tools fit in as a part of a larger sequential synthesis system, FLAMES,

being developed jointly at University of California at Berkeley and Massachusetts Institute

of Technology.

8.1 Future Work

The focus of my research has been to solve some problems as best as I can. How

ever, as in any reseaxch, I have probably opened more doors than I have closed.

In the area of test pattern generation, one obvious extension is to use alternate

representations (instead of covers) in the same framework of algorithms as in STEED.

One representation that could be particularly useful is BDDs. Performing justification and

differentiation using BDDs will have its associated problems, which must be solved. The

State Transition Graph Traversal techniques of [30, 35] will be useful for this purpose.

The problem of size will still plague the test pattern generator, as it will not be

possible to generate BDDs for all circuits. Currently, there is no nice and clean way for

generating BDDs for circuits with multipliers. Also, for large circuits, BDDs might be

very large. Like partial covers, partial BDDs would have to be used. Currently, there is

no notion of partial BDDs. Therefore this work would involve defining partial BDDs and

operations on them. Another alternative is to replicate vaxiables and use a more general,

8.1. FUTURE WORK 181

though non-canonical, BDD.

The main drawback of the test pattern generator ELEKTRA is the lack of a clean

algebra foi all kinds of modules. There is a need to develop either algebra's for such modules

or to develop better backtracking strategies. It is also necessary to formalize what is meant

by an RTL description and provide a calculus for working with such descriptions. Such a

calculus will make the task of test generation and fault simulation easier. It also could have

a significant impact on verification at the RT level.

Though ISTGs axe more compact and can be better used than conventional STGs,

there axe still some drawbacks. Firstly, all equivalent states are not detected and some state

minimization might be necessary. Moreover, if equivalent states do not have uni-distant

state codes, they cannot be combined to obtain a more compact STG. This drawback can

be removed by using alternate representations (like BDDs) to represent states. Another

important drawback is that the detection of equivalent states is strongly dependent on the

heuristics used in setting the input variables during the enumeration process. Lastly, this

approach cannot handle circuits with more than 30 latches, as even the ISTGs become too

large to manipulate. Therefore, alternate, efficient, extraction algorithms that do not have

the above mentioned drawbacks axe necessary.

It has been observed that state of the art state assignment programs like KISS,

NOVA, and MUSTANG cannot handle really large circuits, i.e., circuits that have a large

number of states and edges. At the present moment, the ISTG extraction program can

extract ISTGs of circuits which cannot be re-encoded by these state assignment programs.

Finite state machine decomposition techniques should help in the future. However, better

encoding strategies are necessary. In the future, STG extraction programs would use BDDs

as opposed to cubes and covers and states and edges in the STG would be represented as

BDDs. All state assignment programs to date use a State Transition Table type represen

tation of the STG. There is a need for developing strategies that would use a BDD based

representation of the STG for state encoding.

The approach described for the minimization of Boolean relations suffers from some

drawbacks. First, since redundant literals and cubes are removed sequentially, the ordering

of the literals and cubes becomes very critical for obtaining better quality results. Second,

182 CHAPTER 8. CONCLUSIONS

only the removal of one literal or cube is considered at a time. Considering the removal

of more than one literal or cube at a time (as in ESPRESSO) could give better results.

This implies the use of multiple faults instead of single faults during the minimization

process. Since the number of multiple faults is very large (exponential in the number of

wires in the circuit), the time required for minimization could be very large. However,

there is scope for further improvement here, as all possible multiple faults do not have to

be considered. Therefore, an algorithm could be developed that would intelligently use

multiple fault effects. Also, it is necessary to improve the algorithm so that the entire space

of solutions is searched, so that if the user desires, the exact solution can be found.

Bibliography

[1] V. D. Agrawal, K-T. Cheng, andP.Agrawal. CONTEST: A Concurrent Test Genera

tor for Sequential Circuits. In Proceedings of the 25th Design Automation Conference,

pages 84-89, June 1988.

[2] V. D. Agrawal, S. K. Jain, andD. M. Singer. Automationin Design for Testability. In

Proceedings of the Custom Integrated Circuit Conference, pages 159-163, May 1984.

[3] P. N. Anirudhan and P. R. Menon. Symbolic Test Generation for Hiearchically Mod

eled Digital Systems. In Proceedings of the International Test Conference, pages

461-469, October 1989.

[4] K. Apt and D. Kozen. Limits for Automatic Verification of Finite State Concurrent

Systems. In Information Processing Letters, pages 307-309,1986.

[5] D. B. Armstrong. A Programmed Algorithm for Assigning Internal Codes to Sequen

tial Machines. In IRE Transactions on Electron Computers, volume EC-11, pages

466-472, August 1962.

[6] D. B. Armstrong. A Deductive Method for Simulating Faults in a Circuit. In IEEE

Transactions on Computers, volume C-21, pages 464-471, May 1972.

[7] P. Ashar. Sequential Logic Optimization. PhD thesis,University of California, Berke

ley, December, 1991.

[8] P. Ashax, S. Devadas, and A. R. Newton. A Unified Approach to the Decomposition

and Re-decomposition of Sequential Machines. In Proceedings of the 27th Design

Automation Conference, pages 601-606, June 1990.

183

184 BIBLIOGRAPHY

[9] P. Ashar, S. Devadas, and A. R. Newton. Testability-Driven Synthesis of Interacting

FSMs. In Proceedings of the International Conference on Computer Design, pages

273-276, September 1990.

[10] P. Ashax, S. Devadas, and A. R. Newton. Optimum and Heuristic Algorithms for

an Approach to Finite State Machine Decomposition. In IEEE Transactions on

Computer-Aided Design, pages 296-310, March 1991.

[ll] P. Ashax, A. Ghosh, S. Devadas, and A. R. Newton. Implicit State Transition Graphs

and its Application to Synthesis and Test. In Proceedings of the International Con

ference on Computer-Aided Design, pages 84-87, November 1990.

[12] M. R. Barbacci, G. E. Barnes, R. G. Cattell, and D. P. Siewiorek. The ISPS Com

puter Description Language. Technical report, Dept. of EECS, CMU, Pittsburgh,

PA, August 16,1979.

[13] K. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, C. R. Morrison, R. L.

Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang. Multi-level Logic Minimization

Using Implicit Don't Cares. In IEEE Transactions on Computer-Aided Design, pages

723-740, June 1988.

[14] D. Brand. Redundancy and Don't Cares in Logic Synthesis. In IEEE Transactions

on Computers, volume C-32, pages 947-952, October 1983.

[15] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS: A Multiple-

Level Logic Optimization System. In IEEE Transactions on Computer-Aided Design,

pages 1062-1081, November 1987.

[16] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic

Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[17] R. K. Brayton and F. Somenzi. An Exact Minimizer for Boolean Relations. In

Proceedings of the International Conference on Computer-Aided Design, pages 316-

319, November 1989.

BIBLIOGRAPHY 185

[18] R. K. Brayton and F. Somenzi. Boolean Relations and the Incomplete Specification

of Logic Networks. In Proceedings of the VLSI-89 Conference, Munich, August 1989.

[19] R. K. Brayton and F. Somenzi. Minimization of BooleanRelations. In Proceedings of

the International Symposium on Circuits and Systems, Portland, Oregon, May 1989.

[20] M. A. Breuer. A Random and an Algorithmic Technique for Fault Detection and

Test Generation. In IEEE Transactions on Computers, volume C-20, pages 1366-

1370, November 1971.

[21] M. A. Breuer and A. D. Friedman. Diagnosis and Reliable Design of Digital Systems.

Computer Science Press, 1976.

[22] M. A. Breuer and A. D. Friedman. Functional Level Primitives in Test Generation.

In IEEE Transactions on Computers, pages 223-235, March 1980.

[23] F. Brglez, D. Bryan, and K. Kozminski. Combinational Profiles of Sequential Bench

mark Circuits. In Proceedings of the International Symposium on Circuits and Sys

tems, Portland, Oregon, May 1989.

[24] M. C. Browne and E. M. Clarke. A High Level Language for the Design and Ver

ification of Finite State Machines. In IFIP WG 10.2 Int. Work. Conf. From HDL

Descriptions to Guaranteed Correct Circuit Designs, pages 269-292,1986. Grenoble,

France.

[25] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra, Automatic Verification

of Sequential Circuits Using Temporal Logic. In IEEE Transactions on Computers,

volume C-35, pages 1035-1044, December 1986.

[26] R. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. In IEEE

Transactions on Computers, volume C-35, pages 677-691, August 1986.

[27] R. E. Bryant. Symbolic Verification of MOS Circuits. In Proceedings of the 1985

Chapel Hill Conference on VLSI, pages 419-438, December 1985.

186 BIBLIOGRAPHY

[28] R. E. Bryant. Algorithmic Aspects of Symbolic Switch Network Analysis. In IEEE

Transactions on Computer-Aided Design, pages 618-633, July 1987.

[29] R. E. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffler. COSMOS : A Com

piled Simulator for MOS Circuits. In Proceedings of the 24th Design Automation

Conference, pages 9-16, June 1987.

[30] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. Dill. Sequential Circuit Verifica

tion Using Symbolic Model Checking. In Proceedings of the 27th Design Automation

Conference, pages 46-51, June 1990.

[31] J. Burns, A. Casotto, M. Igusa, F. Marron, F. Romeo, A. Sangiovanni-Vincentelli,

C. Sechen, H. Shin, G. Srinath, and H. Yaghutiel. MOSAICO: An integrated Macro-

cell Layout System. In Proceedings of the VLSI-87 Conference, Vancouver, Canada,

August 1987.

[32] J. D. Calhoun and F. Brglez. A framework and Method for Hierarchical Test Gen

eration. In Proceedings of the International Test Conference, pages 480-490, October

1989.

[33] CB.Shung, R.Jain, K. Rimey, R.W.Brodersen, E.Wang, M.B.Srivastava, B.Richards,

E. Lettang, L. Thon, S.K.Azim, P.N.Hilfinger, and J.Rabaey. An Integrated CAD

System for Algorithmic-Specific IC Design. In IEEE Transactions on Computer-Aided

Design, volume 10, pages 447-463, April 1991.

[34] K-T. Cheng. On Removing Redundancy in Sequential Circuits. In Proceedings of the

28th Design Automation Conference, pages 164-169, June 1991.

[35] O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Machines Us

ing Boolean Functional Vectors. In IMEC-IFIP International Workshop on Applied

Formal Methods for Correct VLSI Design, pages 111-128, November 1989.

[36] O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Machines Us

ing Symbolic Execution. In Proceedings of the Workshop on Automatic Verification

Methods for Finite State Machines, 1989. Grenoble, France.

BIBLIOGRAPHY 187

[37] O. Coudert and J.C. Madre. A Unified Framework for the Formal Verification of

Sequential Circuits. In Proceedings of the International Conference on Computer-

Aided Design, pages 126-129, November 1990.

[38] R. Dandapani and S. M. Reddy. On the Design of Logic Networks with Redundancy

and Testability Considerations. In IEEE Transactions on Computers, volume C23,

pages 1139-1149, November 1974.

[39] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli,and A. Wang. Technol

ogy Mapping in MIS. In Proceedings of the International Conference on Computer-

Aided Design, pages 116-119, November 1987.

[40] S. Devadas. Approaches to Multi-level Sequential Logic Synthesis. In Proceedings of

the 26th Design Automation Conference, pages 270-276, June 1989.

[41] S. Devadas. Techniques for Optimization-Based Synthesis of Digital Systems. PhD

thesis, University of California, Berkeley, August, 1988. UCB ERL Memo No.

M88/54.

[42] S. Devadas and K. Keutzer. An Automata-Theoretic Approach to Behavioral Equiv

alence. In Proceedings of the International Conference on Computer-Aided Design,

pages 30-33, November 1990.

[43] S. Devadas and K. Keutzer. Necessary and Sufficient Conditions for Robust Delay-

Fault Testability of Logic Circuits. In Proceedings of the Sixth MIT Conference on

Advanced Research on VLSI, pages 221-238, April 1990.

[44] S. Devadas and K. Keutzer. A Unified Approach to the Synthesis of Fully Testable

Sequential Machines. In IEEE Transactions on Computer-Aided Design, volume 10,

pages 39-51, January 1991.

[45] S. Devadas and H-K. T. Ma. Easily Testable PLA-based Finite State Machines. In

IEEE Transactions on Computer-Aided Design, pages 604-611, June 1990.

188 BIBLIOGRAPHY

[46] S. Devadas, H-K. T. Ma, and A. R. Newton. On the Verification of Sequential Ma

chines at Differing Levels of Abstraction. In IEEE Transactions on Computer-Aided

Design, pages 713-722, June 1988.

[47] S. Devadas,H-K. T. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli. MUSTANG:

State Assignment of Finite State Machines Targeting Multi-Level Logic Implementa

tions. In IEEE Transactions on Computer-Aided Design, pages 1290-1300, December

1988.

[48] S. Devadas, H-K. T. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli. A Synthesis

and Optimization Procedure for Fully and Easily Testable Sequential Machines. In

IEEE Transactions on Computer-Aided Design, pages 1100-1107, October 1989.

[49] S. Devadas, H-K. T. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli. Irredun

dant Sequential Machines Via Optimal Logic Synthesis. In IEEE Transactions on

Computer Aided Design, pages 8-18, January 1990.

[50] S. Devadas, H-K. Tony Ma, and A. R. Newton. Redundancies and Don't Cares in Se

quential Logic Synthesis. In Journal of Electronic Testing: Theory and Applications,

pages 15-30, January 1990.

[51] S. Devadas and A. R. Newton. GENIE : A Generalized Array Optimizer for VLSI

Synthesis. In Proceedings of the 28rd Design Automation Conference, pages 631-637,

June 1986.

[52] S. Devadas and A. R. Newton. Decomposition and Factorization of Sequential Finite

State Machines. In IEEE Transactions on Computer-Aided Design, pages 1206-1217,

November 1989.

[53] S. Devadas and A. R. Newton. Exact Algorithms for Output Encoding, State Assign

ment and Four-Level Boolean Minimization. In IEEE Transactions on Computer-

Aided Design, pages 13-27, January 1991.

BIBLIOGRAPHY 189

[54] T. A. Dolotta and E. J. McCluskey. The Coding of Internal States of Sequential

Machines. In IEEE Transactions on Electronic Computers, volume EC-13, pages

549-562, October 1964.

[55] A. Domic, S. Levitin, N. Phillips, C. Thai, T. Shiple, D. Bhavsar, and C. Bissell.

CLEO : A CMOS Layout Generator. In Proceedings of the International Conference

on Computer-Aided Design, pages 340-343, November 1989.

[56] E. B. Eichelberger and T. W. Williams. A Logic Design Structure for LSI Testability.

In Proceedings of the 14th Design Automation Conference,pages 462-468, June 1977.

[57] D. Bostick et. al. The Boulder Optimal Logic Design System. In Proceedings of the

International Conference on Computer-Aided Design, pages 62-65, November 1987.

[58] G. Dahlquist et. al. Numerical Methods. Prentice Hall, 1974.

[59] T. E. Fuhrman and D. E. Thomas. Verification of High Level Synthesis Designs

through Gate Level Simulation of Compiled Module Implementations. In Proceedings

of the Workshop on High Level Synthesis, October 1989. Kennebunkport, Maine.

[60] H. Fujiwara and T. Shimono. On the Accelerationof Test Generation Algorithms. In

IEEE Transactions on Computers, pages 1137-1144, December 1983.

[61] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-completeness. W. H. Freeman and Company, 1979.

[62] A. Ghosh, S. Devadas, and A. R. Newton. Verification of Interacting Sequential

Circuits. In Proceedings of the 27th Design Automation Conference, pages 213-219,

June 1990.

[63] A. Ghosh, S. Devadas, and A. R. Newton. Test Generation and Verification for

Highly Sequential Circuits. In IEEE Transactions on Computer-Aided Design, pages

652-667, May 1991.

[64] S. Ginsburg. A Synthesis Technique for Minimal State Sequential Machines. IRE

Transactions on Electronic Computers, pages 13-24, March 1959.

190 BIBLIOGRAPHY

[65] P. Goel. An Implicit Enumeration Algorithmto generate tests for combinational logic

circuits. In IEEE Transactions on Computers, volume C30, pages 215-222, March

1981.

[66] G. Hachtel H. Cho, S-W. Jeong, B. Plessier, E. Schwarz, and F. Somenzi. ATPG

Aspects of FSM Verification. In Proceedings of the International Conference on

Computer-Aided Design, pages 134-137, November 1990.

[67] G. D. Hachtel and R. M. Jacoby. Verification Algorithms for VLSI Synthesis. In

IEEE Transactions on Computer-Aided Design, pages 616-640, May 1988.

[68] G. D. Hachtel, R. M. Jacoby, K. Keutzer, and C. R. Morrison. On Properties of

Algebraic Transformations and the Multifault Testability of Multilevel Logic. In Pro

ceedings of the International Conference on Computer-Aided Design, pages 422-425,

November 1989.

[69] L. J. Hafer and A. Parker. Register-Transfer Level Digital Design Automation : The

Allocation Process. In Proceedings of the 15th Design Automation Conference, pages

213-219, June 1978.

[70] Z. Har'El and R.P. Kurshan. Software for Analysis of Coordination. Proceedings

of the International Conference on System Science and Engineering, pages 382-385,

1988.

[71] J. Hartmanis. Symbolic Analysis of a Decomposition of Information Processing. In

Inform. Control, volume 3, pages 154-178, June 1960.

[72] J. Hartmanis and R. E. Stearns. Some Dangers in the State Reduction of Sequential

Machines. In Information and Control, volume 5, pages 252-260, September 1962.

[73] J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of Sequential Machines.

Prentice-Hall, Englewood Cliffs, N. J., 1966.

[74] F. C. Hennie. Finite State Models for Logical Machines. Wiley, New York, 1968.

BIBLIOGRAPHY 191

[75] F. C. Hennie. Fault Detecting Experiments for Sequential Circuits. In Proceedings of

the 5th Annual Symposium on Switching Theory and Logical Design, pages 95-110,

November 1974.

[76] F. J. Hill and B. Huey. A Design Language Based Approach to Test Sequence Gen

eration. In Computer Journal, pages 28-33. IEEE Computer Society, June 1977.

[77] D. A. Huffman. The Synthesis of Sequential Switching Circuits. Journal of the

Franklin Institute, 1956. pages 161-190.

[78] D. A. Huffman. The Synthesis of Sequential Switching Circuits. Journal of the

Franklin Institute, 1956. pages 275-303.

[79] S. Hwang and A. R. Newton. An Efficient Design Correctness Checker for Finite

State Machines. In Proceedings of the International Conference on Computer-Aided

Design, pages 410-413, November 1987.

[80] C. Y. Hitchcock III and D. E. Thomas. A Method of Automatic DataPath Synthesis.

In Proceedings of the 20th Design Automation Conference, pages 484-489, June 1983.

[81] M. Kawai, H. Shibano, S. Funatsu, S.Kato, T. Kurobe, K.Ookawa, and T. Sasaki. A

High Level Test Pattern Generation Algorithm. In Proceedings of the International

Test Conference, pages 346-352, October 1983.

[82] K. Keutzer. DAGON: Technology Mapping and Local Optimization. In Proceedings

of the 24th Design Automation Conference, pages 341-347, June 1987.

[83] Z. Kohavi. Switching andFinite Automata Theory. Computer Science Press, 1978.

[84] T. Laxabee. Efficient Generation of Test PatternsUsing Boolean Difference. In Pro

ceedings of the International Test Conference, pages 795-801, August 1989.

[85] T. Laxabee. Efficient Generation of Test Patterns Using Boolean Satisfiability. PhD

thesis, Stanford University, February 1990.

[86] C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing Synchronous Circuitry by

Retiming. In Proceedings of the Third CalTech Conference on VLSI, March 1983.

192 BIBLIOGRAPHY

[87] B. Lin, H. Touati, and A. R. Newton. Don't CareMinimization of Multi-Levd Sequen

tial Logic Networks. In Proceedings of the International Conference on Computer-

Aided Design, pages 414-417, November 1990.

[88] C-Y. Lo, H. N. Nham, and A. K. Bose. Algorithms for an Advanced Fault Simulation

System in MOTIS. In IEEE Transactions on Computer-Aided Design, volume CAD-6,

pages 232-240, March 1987.

[89] H-K. T. Ma, S. Devadas, A. R. Newton, and A. Sangiovanni-Vincentelli. An Incom

plete Scan Design Approach to Test Generation for Sequential Circuits. In Proceedings

of the International Test Conference, pages 730-734, September 1988.

[90] H-K. T. Ma, S. Devadas, A. R. Newton, and A. Sangiovanni-Vincentelli. Test Gen

eration for Sequential Circuits. In IEEE Transactions on Computer-Aided Design,

pages 1081-1093, October 1988.

[91] H-K. T. Ma, S. Devadas, R-S. Wd, and A. Sangiovanni-Vincentelli. Logic Verification

Algorithms and Their Parallel Implementation. In IEEE Transactions on Computer-

Aided Design, pages 181-189, February 1989.

[92] J-C. Madre and J-P. Billon. Proving Circuit Correctness using Formal Comparison

Between Expected and Extracted Behaviour. In Proceedings of the 25th Design Au

tomation Conference, pages 205-210, June 1988.

[93] S. Malik, E. Sentovich, R. Brayton, and A. Sangiovanni-Vincentelli. Retiming and

Resynthesis: Optimizing Sequential Circuits Using Combinational Techniques. In

IEEE Transactions on Computer-Aided Design, pages 74-84, January 1991.

[94] S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli. Logic Verifica

tion Using Binary Dedsion Diagrams in a Logic Synthesis Environment. In Proceed

ings ofthe International Conferenceon Computer-Aided Design, pages 6-9, November

1988.

[95] S. Mallda and S. Wu. A Sequential Test Generation System. In Proceedings of the

International Test Conference, pages 57-61, October 1985.

BIBLIOGRAPHY 193

[96] M. P. Marcus. Deriving Maximum Compatibles Using Boolean Algebra. IBM Jour

nal, pages 537-538, November 1964.

[97] R. Marlett. EBT: A Comprehensive Test Generation System for Highly Sequential

Circuits. In Proceedings of the 15th Design Automation Conference, pages 332-338,

June 1978.

[98] G. H. Mealy. A Method of Synthesizing Sequential Circuits. Bell System Technical

Journal, pages 1045-1079, September 1955.

[99] P. R. Menon and S. G. Chappell. Deductive Fault Simulation With Funtional Blocks.

In IEEE Transactions on Computers, volume C-27, pages 689-695, August 1978.

[100] G. De Micheli. Symbolic Design of Combinationaland Sequential Logic Circuits im

plemented by Two-Level Macros. In IEEE Transactions on Computer-Aided Design,

pages 597-616, September 1986.

[101] G. De Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli. Optimal State Assign

ment of Finite State Machines. In IEEE Transactions on Computer-Aided Design,

pages 269-285, July 1985.

[102] A. Miczo. The Sequential ATPG: A Theoretical Limit. In Proceedings of the Inter

national Test Conference, pages 143-147, October 1983.

[103] E. F. Moore. Gedaken-Experiments on Sequential Machines. Princeton University

Press, Princeton, N.J., 1956. pages 129-153.

[104] J. D. Morison, N. E. Peeling, and T. L. Thorp. ELLA: Hardware Description or

Spedfication ? In Proceedings of the International Conference on Computer-Aided

Design, pages 54-56, November 1984.

[105] P. Muth. A Nine-Valued Circuit Modd for Test Generation. In IEEE Transactions

on Computers, volume C-25, pages 630-636, June 1976.

[106] L. W. Nagel. SPICE2 : A Computer Program to Simulate Semiconductor Circuits.

PhD thesis, University of California at Berkdey, 1975. Memo Number ERL-M520.

194 BIBLIOGRAPHY

[107] T. M. Niermann, W-T. Cheng, and J. H. Patd. PROOFS : A Fast, Memory Effident

Sequential Circuit Fault Simulator. In Proceedings of the 27th Design Automation

Conference, pages 535-540, June 1990.

[108] S. Nitta, M. Kawamura, and K. Hirabayashi. Test Generation by Activation and

Defect-Drive (TEGAD). In INTEGRATION Journal, volume 3, pages 2-12, March

1985.

[109] C-L. Ong, J-T. Li, and C-Y. Lo. GENAC : An Automatic Cell Synthesis Tool. In

Proceedings of the 26th Design Automation Conference, pages 239-244, June 1989.

[110] J. K. Ousterhout. Crystal : A Timing Verifier for Digital MOS VLSI. In IEEE

Transactions on Computer-Aided Design, pages 336-349, July 1985.

[ill] A. Parker, D. Thomas, D. Siewiorek, M. Barbacd, L. Hafer, G. Ldve, and J. Kim.

The CMU Design Automation System. In Proceedingsof the 16th Design Automation

Conference, pages 73-79, June 1979.

[112] M. C. Paul and S. H. Unger. Minimizing the Number of States in Incompletely

Spedfied Sequential Circuits. In IRE Transactions on Electronic Computers, volume

EC-8, pages 356-357, September 1959.

[113] IEEE Press. IEEE Standard VHDL Language Reference Manual. The IEEE, Inc.,

New York, 1987.

[114] J. Reed, A. Sangiovanni-Vincentelli, and M. Santamauro. A New Symbohc Channd

Router: YACR2. In IEEE Transactions on Computer-Aided Design, pages 208-219,

July 1985.

[115] J. P. Roth. Diagnosis of Automata Failures: A Calculus and a Method. In IBM

journal of Research and Development, volume 10, pages 278-291, July 1966.

[116] R. Rudell and A. Sangiovanni-Vincentelli. Exact Minimization of Mutiple-Valued

Functions for PLA Optimization. In Proceedings of the International Conference on

Computer-Aided Design, pages 352-355, November 1986.

\

BIBLIOGRAPHY 195

[117] T. M. Saxfert, R. Maxkgraf, E. Trischler, and M. H. Schulz. Hierarchical Test Pattern

Generation Based on High-Levd Primitives. In Proceedings of the International Test

Conference, pages 470-479, October 1989.

[118] H. D. Schnurmann, E. Lindbloom, and R. G. Carpenter. The Wdghted Random

Test-Pattern Generator. In IEEE Transactions on. Computers, volume C-24, pages

695-700, July 1975.

[119] M. Schulz, E. Trischler, and T. Sarfert. SOCRATES : A Highly Effident Automatic

Test Pattern Generation System. In IEEE Transactions on Computer-Aided Design,

pages 126-137, January 1988.

[120] M. D. Schuster and R. E. Bryant. Concurrent Simulation of MOS Digital Circuits.

In Proceedings of the MIT Conference on AdvancedResearch in VLSI, pages 129-138,

January 1984.

[121] C. Sechen and A. Sangiovanni-Vincentelli. The TimberWolf Placement and Routing

Package. In Proceedings of the 1984 Custom Integrated Circuit Conference, pages

522-527, Rochester, NY, May 1984.

[122] R. Segal. BDSYN : Logic Description Translator, BDSIM : Switch-Levd Simulator.

Master's thesis, Univerdty of California, Berkdey, May, 1987. UCB ERL Memo No.

M87/33.

[123] S. Shteingaxt, A. W. Nagle, and J. Grason. RTG: Automatic Register Levd Test

Generator. In Proceedings of the 22nd Design Automation Conference, pages 803-

807, June 1985.

[124] R. E. Steaxns and J. Hartmanis. On the State Assignment Problem for Sequential

Machines II. IRE Transactions on Electronic Computers, pages 593-604, December

1961.

[125] A. Stolzle. A VLSI Wordprocessing Subsystem for a Real Time Large Vocabulaxy

Continuous Speech Recognition System. In U. C. Berkeley, ERL Memo M89/1S3,

January 1990.

196 BIBLIOGRAPHY

[126] K.J. Supowit and S. J. Friedman. A New Method for Verifying Sequential Circuits.

In Proceedingsof the 28rd Design Automation Conference, pages 200-207, June 1986.

[127] H. Touati, H. Savoj, B. Lin, R. Brayton, and A. Sangiovanni Vincentelli. Implidt

State Enumeration of Finite State Machines Using BDDs. In Proceedings of the

International Conferenceon Computer-Aided Design, pages 130-133, November 1990.

[128] C-J. Tseng and D. P. Siewiorek. Automated Syntheds of Data Paths in Digital

Systems. In IEEE Transactions on Computer-Aided Design, pages 379-395, July

1986.

[129] U. S. Department of Commerce, National Bureau of Standards. Data Encryption

Standard,January 1977. FederalInformation ProcessingStandards Publication (FIPS

PUB 46).

[130] E. Ulrich and T. Baker. Concurrent Simulation of Nearly Identical Digital Networks.

In Computer, volume 7, pages 39-44, April 1974.

[131] T. Villa. Constrained Encoding in Hypercubes: Applications to State Assignment.

In U. C. Berkeley, ERL Memo 86/44, May 1986.

[132] R. A. Walker and D. E. Thomas. Behavioral Transformation for Algorithmic Levd

IC Derign. IEEE Transactions on Computer-Aided Design, 8(10):1115-1128, October

1989.

[133] R-S. Wd and A. Sangiovanni-Vincentelli. A Logic Verification System for Combina

tional Circuits. In Proceedings of the International Test Conference, 1987.

[134] G. Whitcomb and A. R. Newton. Abstract Data Types and High-Levd Syntheds. In

Proceedings of the 27th Design Automation Conference, pages 680-685, June 1990.

[135] M. J. Y. Williams and J. B. Angell. Enhancing Testability of Large Scale Integrated

Circuits via Test Points and Additional Logic. In IEEE Transactions on Computers,

volume C22, pages 46-60, January 1973.

	ERL-91-73 (1 of 2)
	ERL-91-73 (2 of 2)

