
Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

COMPUTING SHORTEST PATHS IN NETWORKS

DERIVED FROM RECURRENCE RELATIONS

by

E. L. Lawler

Memorandum No. UCB/ERL/IGCT M91/7

28 January 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

COMPUTING SHORTEST PATHS IN NETWORKS

DERIVED FROM RECURRENCE RELATIONS

by

E. L. Lawler

Memorandum No. UCB/ERL/IGCT M91/7

28 January 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Computing Shortest Paths in Networks

Derived from Recurrence Relations

E. L. Lawler

Computer Science Division
University of California

Berkeley, CA 94720

Dedicated to the memory ofPaolo M. Camerini

ABSTRACT

Dynamic programming formulations of optimization problems often call for the com
putation of shortest paths in networks derived from recurrence relations. These
derived networks tend to be very large, but they are also very regularand lend them
selves to the computation of nontrivial lower bounds on path lengths. In this tutorial
paper we describe unidirectional and bidirectional search procedures that make use of
bounding information in computing shortest paths. When applied to many optimiza
tion problems, these shortest path algorithms capture the advantages of both dynamic
programming and branch-and-bound.

1. Introduction

Sometimes networks are meant to model the real world. Examples are highway net

works, communication networks, and interconnection networks for VLSI design. These

"physical" networks are often quite irregular and complex. Other networks arise from

purely mathematical structures, particularly recurrence relations. Such "derived" net

works tend to be very large, but they are also very regular.

For example, many sequencing problems lend themselves to dynamic programming

formulations that call for the computation of a value u(N) defined by recuirence rela

tions over subsetsX £N = {1,2, ...,n}. A generic form of these recuirencerelations is

u(X) = imn{uQC-j) + c(X-j,X)\jeX}, X *0, (1.1)

n(0) = O.

(Here and in the sequel we let X +j denote X u{j} and X-j denote X-{j}.) By

appropriately specifying values for c(X -j ,X), equations (1.1) can be made to apply to

such diverse problems as single-machine sequencing, linear arrangement, the weighted

acyclic subgraph problem, and assembly linebalancing, aswe showin the next section.

It is easy to see thatthe problem of solving equations (1.1) foru(N) is equivalent to

the problem of finding the length of a shortest path from node 0 to node N in a network

in which each of the 2" nodes is identified with a subset X qN and in which the length

of arc QC -j,X) is cQC-j\X). The network is layered and has the appearance of a

hypercube whoseedgesare directed from one layer to the next The equations (1.1) actu

ally suggest an algorithm for finding a shortest path by computing the values u(X) one

layer at a time.

The most immediate, and most obvious, difficulty in trying to solve a shortest path

problem suchas that derived from equations (1.1) is thatthe networkmay be exceedingly

large. Because the number of nodes is exponential in the size of the set N, it may be

impossible to store an explicit representation of the entire network in computermemory.

In fact, it may be excessively time consuming simply to generate a listing of all the

nodes.

-3

Nevertheless, derived networks have properties that lend themselves to computa

tional exploitation. The regularity and symmetry of these networks means that local

structure is readily ascertained. That is, given the designation of a node X, one can

readily determine the arcs incident to X and also the lengths of those arcs. This means

that it is unecessary to maintain an explicit representation of the network; those parts of

the network that are needed in the search for a shortest path can be generated upon

demand.

A second property of derived networks that can be exploited is that of lower bound

ing of path lengths. It is usually possible to compute a nontrivial lower bound on the

length of a shortest path from 0 to X, and from X to N. In much the same way that

bounds are used to truncate branch-and-bound searches, these bounds can be used to

eliminate parts of the network in the search for a shortest path from 0 to N. The result

ing "hybrid" computation captures some of the best features of both branch-and-bound

and dynamic programming. Cf. [7].

We shall describe four types of procedures for computing shortest paths. First, we

consider simple unidirectional search, which amounts to nothing more than the well

known Dijkstra shortest path algorithm [3]. We then generalize unidirectional search to

unidirectional search with bounds, bidirectional search, and bidirectional search with

bounds. These procedures are slightly modified versions of those given in [6].

2. Some Specific Examples

For the sake of concreteness, we shall review some specific applications of the gen

eric equations (1.1). In each case, we indicate how cQC-j,X)9 the length of arc

(X-j,X)tis defined. We also indicate a simple, but nontrivial, lower bound g QC) on

the length of a shortest path from node 0 to node X, and a similar lower bound h(X)on

the length of a shortest path from X to N. These lower bounds are meant to be illustra

tive only; in many cases, stronger bounds can be obtained.

Single-Machine Sequencing:

Let N denote a set ofn jobs, j = 1,2, ...,n, each with a processing time pj £ 0. The

jobs are to be sequenced for processing by a single machine, with the first job starting at

-4

time zero and with no preemptions ormachine idleness until the last job is completed. If

job j iscompleted at time t, acost/, (f) is incurred, where/;-, j =1,2,..., n, isanonde-
creasing, but otherwise arbitrarily specified, penalty function. The objective is tominim

ize the sum of these costs. For this problem,

cQ(-j,X)=fj(p(X))t

*(X) =maxf2/;(?,), Txm{fi(p(X))\ieX}},
ieX

h(X) =m*x{ J fi(p(X)+Pi), rmn{fi(p(N))\ieN-X}}t
ieN-X

where

P(X)=IA-
ieX

Linear Arrangement:

Let G =(N ,E) be a given graph, with N its set of vertices and E its set of edges.
The vertices are to be placed at unit intervals on aline so as to minimize the sum of the
lengths of its edges. Let m(X) denote the number of edges extending across the cut
(X,N-X). For this problem,

c(X-j,X) = m(X-j),

g(X) =\cZd(i)+mQ()),
* ieX

h(X) =\(2 d(i) +m(X)),

where d (i) is the degree of vertex i.

-5

Weighted Acyclic Subgraph Problem:

This problem is equivalent to the following: Given annxn matrix W =(wiy), find

apermutation matrix P such that the sum ofthe entries below the diagonal in PWP'1 is
minimized. Here

cQC-j,X)= J >V
ieN-X

S(*)=Z 2 wq.
jeX ieN-X

/i(X) =minf X Wij\jeN-X}.
ie(N-Xhj

Assembly Line Balancing:

LetN denote a set of tasks, each with a processing time 0 <pj; £ 1. These tasks are

to be assigned to workstations on an assembly line, where the sum of the processing

times of the tasks assigned to a given workstation may not exceed unity (the normalized

"cycle time" of the line). Moreover, the assignment of tasks to workstations must respect

certain given precedence constraints "->", where i ~> j means that ;' may not be

assigned to a workstation that precedes i. As shown by Held, et al [5], the minimum

number of workstations is given by u(N\ when arc lengths are defined as follows. If;

has one or more predecessorsin X -/ then c (X -j ,X) =+ ©o, else

JPj. tfuQC-j)+Pj£\uQC-j)\,
otherwise.

«(X)=IP;,
jeX

h{X)= 2 Pj.
jeN-X

Observe that the value of c(X-j,X) depends on u(X-j). Hence one cannot

determine the length of arc (X -jtX) until the length of a shortest path from 0toX-j

has been found. This presents no difficulty for the shortest path computations we shall

describe.

3. A Generic Search Procedure

For notational convenience, we shall hereafter denote the nodes of the network by

integers, with s and t denoting the end pointsof the shortestpath that is to be found. The

length of arc (i, j) will be denoted c (i, j).

Each search procedure involves the application of numerical labels to nodes, where

the value of a label u(j) (or v(/)) on node j represents the length of the shortest path

that has been discovered from s to ; (or j to f). Labels are either "tentative" or "per

manent". Following initialization, each search procedure contains a while loop of the

form:

while LB <UB

choose a tentatively-labeled node for scanning and make its label permanent;

"scan" the chosen node by updating existing tentative labels, and applying new tentative

labels, on the nodes that are adjacent to it;

revise LB and UB;

endwhile

In the statement of this generic while loop, UB is an upper bound on the length of a

shortestpath from s tot; invariably this is the lengthof the shortestpath that has actually

been discovered. LB is a lower bound on the length of any path that has length less than

UB. When the computation terminates, UBequals the length of a shortest path.

For each of the four search procedures we shall describe how a tentatively-labeled

node is chosen for scanning, how scanning is performed, and how the bounds LB and

UB are revised. We shall also establish the validity of each procedure by showing that

certain assertions are valid at each iteration of the while loop.

3. Unidirectional Search

As we remarked, the unidirectional search procedure we shall present is a straight

forward adaptation of Dijkstra's well known shortestpath algorithm [3]. We let S denote

the set of permanently-labeled nodes and S the set of tentatively-labeled nodes. Since the

reader is presumably familiar with this algorithm, we simply summarize its particulars

for comparison with the other search procedures, numbering certain lines for later refer

ence.

Assumption:

c(j\;)£0, for all arcs (/,;).

Initial Conditions:

u(s):=0;

S:={s);

5:=0; (3.1)

LB :=0;

UB := + oo;

Choice Rule for Scanning:

k —argmin {u(J)\je S} (3.2)

S :=S+k

S:=S-k

(Here argmin (u(J) I j e S} denotes any node keS such that

u(k) = rmn{u(j)\jeS}.)

Scanning:

for each arc (k J) do

if; € Sthen

u(j) := win {u(j),u(k) + c(k J)}; fl

if j <£SvS then

u(j):=u(k) + c(kj);

S:=SKj{k};fiod

Lower Bound LB:

LB -xmn{u(j)\jeS}; (3-3>

Upper Bound UB:

itteSthenUB -u(t)e\seUB :=+ ~;

Loop Invariants:

(3.4) IfjeS then u(J) is the length of ashortest path from s to j.

(3.5) If ; e Sthen u(j) is the length of a shortest path from s to ;, subject to the

constraint that all nodes in the path (except;) are in S.

(3.6) If UB is finite, there is a path from s to t with length UB.

(3.7) There is no path from s to t with length less than LB.

To prove the validity ofthe loop invariants we argue as follows. Suppose (3.4) and
(3.5) are true at the beginning of an iteration. Let k be the node chosen for scanning.
We assen that u(k) is the length of a shortest path from s tok. Proof of this assertion is

by contradiction. Assume there exists ashorter path P, and k'e Sis the first node in P
not in S. It follows from (3.5) and the choice of k that the length of the prefix of P from

s to k' is u(k 0 £ u(k). Because all arc lengths are nonnegative, the suffix of the path
from k' to k is nonnegative. It follows that the length ofP is at least u(k 0 £ u(k), con
trary to assumption. Hence u(k) must be the length ofashortest path to * and placing k
in S leaves (3.4) valid. The scanning of k makes (3.5) valid at the end of the iteration.
The validity of (3.6) isobvious. The validity of (3.7) follows from the fact that any path
from s to t must contain somenode k'e S and the length of such a path must be at least

u{k^LB.

4. Unidirectional Search with Bounds

Hart, et al [4] appear to have been among the first to notice that a lower bound h(J)

on the length of a shortest path from ; to r can be used to improve the efficiency of uni

directional search. In the artificial intelligence community, h(J)is often referred to as a

"heuristic function" and the mode of search as "heuristically guided search" or the "A *"
algorithm.

We shall assume that lower bounds on path lengths satisfy certain consistency con

ditions:

h(i)£c(i,j) + h(j), for all arcs (i,;). (4.1)

Informally, what these conditions say is that the length of a shortest path from i to t

should be no greater than the length of a shortest path from i to t, subject to the con

straint that the first arc in the path is from i to ;. It is ordinarily the case that bounds

derived for combinatorial optimization problems satisfy conditions (4.1). We leave it as

an exercise for the reader to verify that this is indeed true for each of the bounds given in

Section 2.

Bounds satisfying conditions (4.1) enable us to define a new set of nonnegative arc

lengths ch (/,;):

ck(i,j) = c(i,j)-h(i) + h(j)*0.

Notice that these arc lengths are nonnegative, whether or not this is so for the original arc

lengths c(ij). Notice also that if P is any path from s tot, men the length ofP with

respect to arc lengths ch(i,j) differs by a constantfrom the length of the same path with

respect to arc lengths c (i, ;*):

2 chQJ)= Z c(ij)-h(s) + h(t).
(ijyeP (ijyeP

Accordingly, the computation of a shortest path with respect to lengths ch(i,j) yields a

shortest path with respect to lengths c (i,;).

-10-

It is a straightforward matter to modify the while loop of the unidirectional search

procedure to use arc lengths ch(i,j). All that is required is to modify statements (3.2)

and (3.3) to read

k —argmin {u(j)-h(s) + h(j)\ j eS};

LB :=xmn{u(j)-h(s) + h(j)\jeS};

However, (assuming h(t) = 0) adding the constant h(s) to all path lengths will cause all

path lengths to be expressed in terms of the original arc lengths c (i,;). Accordingly, we

choose to modify statements (3.1)-(3.3) to read as follows:

LB :=h(s); (3.1')

k -argmin {u(j) + h(j) I; € S}; (3.2')

LB :=min{u(j) + h(j)\jeS}; (3.3')

We have now described all that is necessary to modify the unidirectional search pro

cedure so that it makes use of consistent bounds on path lengths.

Does the use of bounds improve the efficiency of the search procedure? Let u(j)

denote the true length of a shortest path to ;. Without bounds, node / is scanned if and

onlyif u(j)<u(t). With bounds, node; is scanned if and only if u(j) + h(j)<u(t). It

follows that the number of nodes scanned cannot be increased by the use of bounds, pro

vided they are nonnegative. And even rather weak bounds may significantly reduce the

number of nodes that are scanned.

Of course, stronger bounds are better than weakbounds. (In the extremecase, when

h(j) denotes the true length of a shortest path from / to t, the only nodes scanned are

those which actually lie on a shortest path from s tot.) Fortunately, it is not necessary to

make a choice between two or more alternative bounds: If h^\ h^2\...,h(m) are all

bounds satisfying the consistency conditions (4.1), then

A(/) =max#(1)(/) /»(m)0);

also satisfies the consistency conditions.

11

5. Bidirectional Search

We have described unidirectional search in terms of a labeling of nodes proceeding

"forward" from node s. By symmetry, we could equally well have labeled "backward"

from node r. It seems only natural to consider a bidirectional type of search in which

labeling proceeds simultaneously in both directions. Since the middle of a derived net

work is often its "thickest" part, thereis some intuitive appeal to the idea of approaching

the difficult middle from both sides.

Various authors, e.g., Pohl [8], have proposed bidirectional variants of Dijkstra's

algorithm. These variants turn out to bea bit tricky, because it is easy to mistate termina

tion conditions. (And at least one eminent researcher once did so.) The procedure we

present here differs in some minor but significant respects from these previous proposals.

First let us set some notation. As before, we assume that all arc lengths c(i,j) are

nonnegative. And as before, u(j) denotes a label applied to node j by forward labeling

from node s, S denotes set of nodes with permanent u-labels, and S denotes the set of

nodes with tentative u-labels. Symmetrically, v(J) will denote a label applied by back

ward labeling from node t, T will denote thesetof nodes withpermanent v-labels, andT

will denote the set of nodes with tentative v -labels.

We begin by applying the tentative labels u(s) = 0 and v(r) = 0. At each iteration

of the while loop we chooseeither to scanforward froma node k, where

k := argmin {u(j)\jeS},

or backward from a node /, where

/ := argmin {v(j) \jef}.

The scanning of k is exactly the same as in unidirectional search, and the scanning of / is

its symmetric equivalent

Eventually some node will receive both a u-label and a v-label. When this hap

pens, we havediscovered a pathfrom s tot. Accordingly, we let

UB ^min{u(j) +v(j) \ j e (S vS)n(T vf)}.

-12-

Now all thatremains to be explained is howLB is determined. We wish LB to be a

lower boundon the length of any path that is shorter than one that has been discovered.

Assume sets S and T arc disjoint Suppose P is a path from s to t with length less than

UB. We assert that the sequence of nodes through which P passes decomposes into a

prefix containing only nodes in S, a middle part from a node ieS-T to a node
j ef-S, and a suffix containing only nodes in T. A lower bound on the length of P
from s to i is

trdn{u(i)\ ieS-T},

a lower bound on the length of P from ; to t is

Tmn{v(j)\jef-S},

and the length of P from / to ; is nonnegative. Hence a lower bound on the length of

any path shorterthan UB is

LB :=minfw(0 Ii e S-T} +mm{v(j) I; € f-S}.

We summarize the bidirectional search procedure as follows:

Assumption:

c (i,;) £ 0, for all arcs (i, j).

Initial Conditions:

u(s):=0;

S:={s};

S:=0;

v(r):=0;

T:=0;

LB :=0;

UB := + ~;

13

Choice Rule for Scanning:

If scanning forward then

k ^argmin {u(j)\jeS};

S:=S-k\

S :=S+k;

if scanning backward then

/ := argmin (u(J) I j € f};
f:=f-k\

T :=T+k;

Scanning:

if scanning forward then

for each arc (fc,;) do

if; eSthen

u(J) :=Tmn{u(j),u(k) + c(k,j)};fi

if; ^SuSthen

u(j):=u(k) + c(k,j);

S:=Su{k};fiod

fi

if scanning backward then

for each arc O',0 do

if; e fthen
v(j)^Tam{u(j),u(l)+c(j,l)};

if/^rufthen

v(j)-u(i)+c(j,D;

f:=fv{k}; Rod
fi

Lower Bound LB:

-14-

LB :=min/K(0 Ii e S-T} +tmn{v(j) I; € f-S}

Upper Bound UB:

UB ^mm{u(j) +v(j) \je (S uS)r\(TKjf)};

Loop Invariants:

(5.1) If ;' e S then u(J) is the length of a shortest path from s to ;. IfjeT then

v (J) is the length of a shonest path from j tot.

(52) If ; e 5 then u(j) is the length of a shortest path from s toj, subject to the

constraint that all nodes in the path (except;) are in S. If ; € T then v 0') is the length of

a shonest path from ; to r, subject to the constraint that all nodes in the path (except;')

are in T.

(5.3) If UB is finite, there is a path from s to t with length UB.

(5.4) If there is a path from s to t with length shorterthan UB, then such a path has

length at least LB.

The validity of the loop invariants (5.1) and (5.2) follows from exacdy the same

argument we made in the case of unidirectional search. The validity of (5.3) is obvious,

and (5.4) follows from the reasoning given in the text.

Interestingly, the algorithm never scans the samenode in both a forward and a back

ward direction. That is, the algorithm terminates before any node receives both a per

manent u-label and a permanent v-label. For example, suppose leSnf and
v(l) = m&n{v(j)\jeT}. Then u(l) + v(l)ZUB. But also leS implies

u(l)£min{u(j) \j eS}, hence u(/) + v(/)£LB, implying that the procedure has

already terminated. It follows that the algorithm is unaffected if we modify the choice

rule by having

k :=argmin {u(J) \jeS-T},

I := argmin {v(j) I; € f-S}.

Intuition suggests that it is indeed wasted effon to scan any node in both the for

ward and the backward direction. If, as in the preceding example, IeS nf and

15-

v(/) = min/v(;) I j e 77, then a shonest path from s to / has been found, and also a

shonest path from I tot. If / does lie on a shonest path from s to t, we have constructed

such a path and there is nothing more to be learned by scanning backward from /.

Finally, note that the bidirectional procedure is nondeterministic, in that at each

iteration one is free to choose a node k for forward scanning or a node / for backward

scanning. A reasonable strategy is to scan alternately forward and backward. This stra

tegy ensures that, in the worst case, no more than twice as many nodes are scanned as

would have been scanned with a unidirectional search. Very possibly, of course, the

number of scanned nodes will be a good deal less than with unidirectional search.

6. Bidirectional Search with Bounds

First let us suppose only one type of bound on path lengths is available, namely, a

bound h (J) on the length of a shortest path from ; to t. In order to find out how the

bidirectional search procedure should be revised to take advantage of this bound, we

adopt the same approach as in Section 4. That is, we begin by considering how we

would carry out bidirectional search without bounds, but with respect to arc lengths

ch(ij) = c(i,j) + h(j)-h(i).

The change in arc lengths implies that we should modify the choice rule to make

k :=argmin {u(i) + h(i)-h(s)\ ieS},

I :-argmin {v(j)-h(j) +h(t)\ j ef}.

But as we observed in in Section 4, (assuming h(t) = 0) adding the constant h(s) to all

path lengths causes all path lengths to be expressed in terms of the original arc lengths

c (i, j). Hence we modify the choice rule to read

k -argmin {u(i) + h(i) I i e S}; (6.1)

/ := argmin {v(J) -h(j)\jef}\ (6.2)

Since we are again measuring path lengths in terms arc lengths c(i,j), the compu

tation of UB remains as before. In order to compute LB, we reason as follows. As we

observed in the previous section, any path P from s to t with length less than UB has a

-16

prefix from s to some node i eS-T, with length u(i), a suffix from some node

j ef-S tot, with length v(j), and amiddle part from i to ;. It follows, byrepeated
application of (4.1), that h(i) - h(j) is a lowerboundon the length of P from i to ;. Let

LBh denote the resulting lower bound:

LBh :=min{u(i) +h(i)\ieS-T} +nnn{v(j)-h(j)\jef-S}; (6.3)

If we do use only a single type of bound h(J) on path lengths, then no other

modifications to the bidirectional search procedure are necessary, other than those we

have indicated to the choice rule and to the computation of LB. However, as we indi

cated in Section 3, it is often feasible to compute two types of bounds on path length: in

addition to h(J<), a symmetric lower boundg(j) on the length of a shortest path from s to

;. We may assume that g(j) satisfies consistency conditions symmetric to (4.1), i.e.,

g(j)<c(i,j) + g(i), for all arcs (/,;). (6.4)

How should we make use of these alternate lower bounds?

The lower bounds g (J) imply the following modifications in the choice rule and in

the computation of LB:

k :=argmin (u(i)-g(i) I i € S}\ (6.1')

/ :=argmin {v(j) + g(j) \jeTf; (6.2')

LBg :=min{u(i)-g(i)\ieS-T} +mxn{v(j) +g(j)\jef-S}; (6.3*)

It is certainly legitimate touse as alower bound the larger ofLBg and LBh, i.e.,

LB —voax{LBgLBhy,

And, intuitively, it seems desirable to use a choice rule that will tend to increase LB at

the next iteration of the while loop. That is, if LB =LBh use (6.1) or (6.2), and if

LB =LBg, use (6.1*) or(6.2').

One consequence of this proposal is that we can no longer guarantee that a given

node will never be scanned in both a forward direction and a backward direction. Sup

pose LB =LBg, Ie Snf and v(/) =minfv(/)+S(/)' / e t>- Then u(l) is the length

17-

of a shortest path from s to /, v(/) is the length of a shortest path from / to t, and

u(/) + v (/) £ UB. However, / e S does not imply

u(I)-g(l)£ min {u(i)-g (i) I i eS}, because it may be the case that / was chosen for

scanning in the forward direction when LB =LBk. Hence it does not follow that

UB £ u(l) + v(/) £LB, as in search without bounds.

Nevertheless, it is wasted effort to scan any node in more than one direction. The

way to prevent this from happening is to modify (6.1) and (6.1') so that minimization is

carried out only over i eS-T and (6.2) and (6.2') so that minimization is only over

j et-S. This modification has the effect of causing the choice rule toignore any node
that cannot lie on an (s, t) path shorter than UB. But this also means that the loop invari

ants must be modified. For example, we now have: If i € S and i lies on a path from s to

t shorter than UB then u(i) is the length of a shortestpath from s to i.

We now summarize the changes that are required in the bidirectional search pro

cedure, in order to accommodate bounds g (j) and h (j):

Assumption:

h(j) and g(J) each satisfy the consistency conditions,

h(i)Zc(i,j) + h(j),

g(i)£c(i,j) + g(j), for all arcs (/,;').

It is not necessary that arc lengths be nonnegative.

Initial Conditions:

The same as bidirectional search without bounds, except:

LBg :=g(t);

LBhv=h(s);

LB :=max{LBgtLBh};

Choice Rule for Scanning:

if scanning forward andLB = LBP then

-18-

k :=argmin {u(i)-g(i)\ ieS-T};R

if scanningforward and LB = LBh then

k ^argmin {u(i) + h(i)\ ieS-T};&

if scanning backward and LB =LBg then

/ -argmin {v(j) +g(j)\jef-S};fi
if scanning backward and LB = L0A then

/ ^argmin (v(j)-h(j) I; € f-Sj;fi

Lower Bound LB:

LBg -min{u(i)-g(i)\ieS-T} +mm{v(j) +g(j)\jef-S};
LBh := min {u(i) +h(i) 11 e 5- T} +min fv(/) -h(j)\je f-S};
LB —max{LBgtLBh};

Loop Invariants:

(6.8) IfjeS and ; is contained in a path from s to r shorter than UB then k(/) is

the length of a shortest path from stoj. If ; e 7 and ; is contained in a path from s to

t shorter than UB then v (J) is the length of a shortest path from ; to t.

(6.9) If ; € 5 and ; is contained in a path from s to t shorter than UB then u(j) is

the length of a shortest path from s to j, subject to the constraint that all nodes in the

path (except;) are in S. UjeT and ; is contained in a path from s to t shorter than UB

then v (J) is the length of a shortest path from j to t, subject to the constraint that all

nodes in the path (except;) are in T.

(6.10) If UB is finite, there is a path from s to t with length UB.

(6.11) If there is a path from s to t with length shorter than UB, then such a path

has length at least LB.

Acknowledgement

The author gratefully acknowledges the contributions of Michael Luby and Bruce

Parker who coauthored [6], on which this tutorial is based. Research reported in this

paper was supported by NSF grants CCR-8704184 and IRI-9045635.

-19-

References

[1] D. de Champeaux and L. Sim, "An Improved Bidirectional Heuristic Search Algo

rithm, J. ACM, 24, (1977), 177-191.

[2] D. de Champeaux, "Bidrectional Search Again," /. ACM, 30, (1983), 22-32.

[3] E. Dijkstra, "A Note on Two Problems in Connexion with Graphs," Numerische

Mathematik, 1, (1959), 269-271.

[4] P. Hart, N. Nilsson and B. Raphael, "A Formal Basis for the Heuristic Determina

tion of Minimum Cost Paths," IEEETrans. Sys. Sci. Cyber., 4, (1968), 100-107.

[5] M. Held, R. M. Karp and R. Shareshian, "Assembly-Line Balancing — Dynamic

Programming with Precedence Constraints," Operations Research, 11, (1963), 442-

452.

[6] E. L. Lawler, M. G. Luby and B. Parker, "Finding Shortest Paths in Very Large Net

works," Proc. WG'83, Workshop on Graph Theoretic Concepts in Computer Sci

ence, M. Nagle and J. Perl, eds., Trauner Verlag, (1983), 184-199.

[7] T. L. Morin and R. E. Marsten, "Branch-and-Bound Strategies for Dynamic Pro

gramming," Operations Research, 24, (1976), 611-627.

[8] I. Pohl, "Bi-Directional Search," in Machine Intelligence 6, B. Meltzer and D.

Michie, eds., 1971, Edinburgh University Press, 127-140.

