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ABSTRACT

We investigate the self-synchronization of nonlinear systems. The particular system

consideredis two digital coupled phaselocked loops. It is shown that the overall dynamics

is far more complicated than that of a singleloop, which is governed by a one-dimensional

circle map. In the case of two coupled loops we observe that the dynamics is governed by

explicit mapping equations only for certain regions of the parameter space. In the regions

for which mapping equations can be derived we find the universality class of the coupled

loop. Using such a two loop system as a transmitter of a chaotic signal, it is shown how

a third loop can synchronize with this signal. Our results may have applications for the

problem of secure communications.



I. INTRODUCTION

A synchronizing system is one that locks the phase of an output signal (the receiver)

to an input signal (the transmitter). A particular device that accomplishes this is a phase

locked loop (PLL). Such devices have proved useful in a variety of communication applica

tions, including modulation and demodulation, and noise reduction1. PLL's can be either

analog or digital (DPLL), both being easy to realize and obeying equations that are con

venient to analyze2. In particular, the DPLL's have mapping representations that allow

straightforward numerical investigation of their nonlinear properties, that is, dynamics far

from the locked state3'**5'6.

In the usual synchronization system, the transmitter signal is a single carrier fre

quency that corresponds to a sinusoidal signal at constant amplitude and phase, and a

phase locked loop in the receiver is used to lock the receiver phase to that of the transmit

ter. Recently, it has been shown7 that a dynamical system of three differential equations,

exhibiting chaos, can be used to transmit a signal to a subsystem of those equations, in

such a manner that the subsystem is synchronized with the primary chaotic system. This

opens up an interesting new possibility that the phase of a receiver can be locked to that

of a transmitter even if the transmitted signal is chaotic, i.e., consisting of a continuous

spectrum of carrier frequencies. Such synchronized systems can have applications to prob

lems of secure communications and may be an alternative to conventional spread spectrum

systems.

A particularly simple DPLL is a first-order nonuniformly sampling loop, which, as we

shall discuss in Section II, has a circle map representation. If we couple two such DPLL's

together, the resulting dynamics can be fax more complicated than that of a single loop,

because the loops can switch asynchronously, so that far from the locked state one DPLL

may change state more than once while the other is not changing state. Thus unlike the

usual coupled map lattices8, there is no explicit mapping representation for such coupled

devices.

In the following sections we describe the behavior of a coupled system consisting of

two first order DPLL's in which the output of the second loop serves as the input for the



first loop, and vice-versa. We call such a system self-synchronizing. For some regions of

the parameter space the usual properties associated with a single circle map persist, while

for other parameters the overall dynamics is more complicated. We then show how two

self-synchronized first-order DPLL's can be used to implement a transmitting system, that

generates a chaotic carrier signal, and how a third loop can be used as a receiving system,

that locks to the phase of the chaotic carrier.

In section U we derive the dynamics of a single loop, showing that the dynamics

can be described by a simple one-dimensional circle map. Such maps are known to have a

richdynamical behavior9, including quasiperiodic motion, regions of phase-locking, period-

doubling to chaos and intermittency. Coupling two such DPLL's together such that the

output of eachloop is the input for the other loop, we obtain the algorithm for iterating the

coupledsystem and obtain explicit mapping equationsvalid forsome regimes. In section III

we analyze the dynamics of the two-coupled-loop system in detail and obtain numerically

the conditions for the self-synchronized chaotic motion. In Section IV we introduce the

receiving element and demonstrate phase locking of the receiver to the chaotic transmitted

signal. We also study the effect of variation of the receiving loop parameters on the phase

locking. The embodiment here has a particular simplicity that makes the concept both

transparent and potentially useful. In Section V we summarize our results and describe

some extensions to the concept.

H. SYSTEM DESCRIPTION

A. Single Loop

A block diagram of a single, first-order, nonuniformly sampling DPLL is shown in Fig.

1. It consists of a sample-and-hold (SH) and a variable frequency oscillator (VFO). During

the operation, the SH takes a discrete sample a(tk) of the incoming signal at a sampling

time tk, when the VFO signals it to do so at a positive going zero crossing. The sample is

used to control the frequency of the VFO according to a given function w(s) in such a way

as to decrease the phase difference between the incoming signal and the oscillator output.

As a result, there is a possibility of locked behavior when the oscillator frequency adjusts



itself to the input frequency and locks to its phase, hence sampling always at the same

point on the input signal.

Consider the case in which the incoming signal is given by s(t) = Asin(urf + 9$).

Suppose that the period of the oscillator is linearly related to a(t*) as

Tk+1=TQ-bs(tk), (1)

where To = 2tt/wq. The center frequency wo is the frequency of the VFO in the absence

of the applied signal. It was shown by Gil and Gupta3 that in a loop governed by Eq. (1)

the evolution of the phase difference between signal and oscillator output is described by

a nonlinear difference equation given by

<f>(tk+i) = <£(<*) - wbAsin<£(<*) + 2tt(jj/(jJq. (2)

Equation (2) is the well known sine-circle map, which has been studied in detail as a

prototype that presents the quasi-periodic route to chaos9. In the context of DPLL's, Eq.

(2) was studied by several authors4, after Gil and Gupta.

In the usual practical devices, where the frequency, not the period, is linearly related

to the input sample as

v(tk+i) =w0 + 6s(**)» (3)

then another map is obtained for the phase difference:

<j,{tk+1) =Wk) + 2™ (4)
uq + bAsm<p(tk)

This is also of the form of a circle map, and displays the usual behavior associated with

such maps5.

B. Coupled Self-Synchronizing Loops

The self-synchronization system of two coupled DPLL's, for which the forcing input

in one loop is the oscillator output of the other loop is shown in Fig. 2. We study here

only the case in which the frequency of the oscillator is linearly related to the input sample

according to Eq. (3). Preliminary calculations show that if the coupled system is governed

by Eq. (1) similar qualitative results are obtained.



In Fig. 3 we show a diagram that exemplifies the dynamics of the coupled system.

The signals in the figure, which are taken to be sinusoidal, represent the time varying

output of the VFO's. Each time that one of these signals cross the zero axis in the positive

derivative sense, then the oscillator sends a signal to the SH and an input sample is taken

from the VFO output of the other loop. The loop that samples switches its frequency to

a new value according to Eq. (3). The evolution of the system follows the steps described

by the following algorithm:

Given the frequencies wi, U2 and the phases 9\, $2 of the two VFO's at t = 0 then:

0) Initialization: Find what should have been the last sampling time t{ and the next

sampling time t\ for both loops (t = 1,2)

U=di, (5a)

, 27T —6j
*»• = ... • (5a)

1) Search over the two DPLL's to find the loop / with the smallest time for the next

sampling; that is, find / such that

t\ = smaller^), (* = 1,2). (6)

2) Calculate the input samplevalue, whichis taken from the output signalof the other

VFO:

«<(<{) = AaMi, (i^l) (7)

where

4>i = «.•(<{ - <••). (8)

3) Update the frequency of the loop / according to Eq. (3)

<jj\ = u/0 + bisi(t\). (9)

4) Set U = t\ and t\ = ti + 2tt/wJ. Go to step 1.

For any time t, the system state is determined by four variables, that is, the frequencies

and the phases of the two loops. However, observe that the system state changes only at



the sampling instants, <j>\ = 0 (mod 2tt) or ^2 = 0 (mod 2tt). At these instants we need

to know only the two variables (u and </>) of the loop that does not sample, because <j> = 0

and u = wo + bs(tk) for the loop that samples. In this way, we can evolve the system at

discrete times in a reduced variable space. For a surface of section, say <j>2 = 0, because

u2 = W2(u>i,<£i), the dynamics can be visualized in a two dimensional subspace (u>i,^i).

The evolution is therefore determined by three variables, (say $2(= 0), ui and <j>i), rather

than the four variables of the total phase space. We note that we do not have an explicit

mapping, as in the case of a single loop. The system evolution is described by the algorithm

given above. We find that two equations for the phases govern the dynamics of the coupled

system, namely

l-aW"!^!')' (10a)\<*>o +bjsm<f>ij

and

where i, j refers to the index of the loop, 1 or 2. The phases that appear on the right hand

side of Eqs. (10) are the phases associated with the last sampling times of loops i and

j, and the primes refer to the next sampling time. The first equation applies when one

loop samples at two or more consecutive times while the other loop does not sample. The

second equation applies when successive sampling times originate from alternate loops.

Note that we have taken A = 1, since it appears always multiplied by the gain 6, and we

can take this product as a unique parameter. Also, we consider that the &'s are in principle

distinct for the two loops, whereas the center frequencies wo's are the same for both. This

is done to reduce the dimensionality of the parameter space.

When we evolve the dynamics, we do not know in principle the sequence in which

Eqs. (10) will be applied; this will depend on the loop parameters. In a general situation

we have to follow the steps of the algorithm described previously.

HI. RESULTS

Following the above dynamics we explore numerically the two coupled DPLL system

by varying the external parameters u>q and &'s, and a complex behavior is observed. Initially



we consider two identical loops, i.e., the parameters are both the same. In this situation we

expect that we will not lose any important aspect of the dynamical evolution by observing

the dynamics of one of the loops. We therefore study the evolution of one loop at the

sampling times of the other, that is, we study the system at the the surface of section

^, = 0, where i is chosen to be 1 or 2. Without loss of generality we can take u>o = 1.

In Fig. 4(a) we show the bifurcation diagram for <£i at fa = 0 as a function of b =

b\ —b2 for ljq = 1, after the transient period has died out. The dynamics is characterized

by periodic cycles and a chaotic regime, which is interwoven with periodic windows, as

in many dissipative dynamical systems. Initially the system locks in a period one cycle.

Then it bifurcates to a period two cycle where a 'splitting' bifurcation appears10. A

splitting bifurcation is observed when multiple basins of attraction emerge; the initial

condition determines which basin of attraction will be chosen by the system. The new

stable attractors have the same periodicity as the attractors which become unstable. This

phenomenon has interesting consequences for the synchronization of coupled DPLL's, as

we shall see in section IV. Following the splitting bifurcation we observe a cascade of

period doubling bifurcations and beyond this a chaotic regime. By varying the center

frequency wo, we observed a similar qualitative behavior, in a reverse order. This is easily

understood in terms of the trajectoryof passing through an Arnold tongue (region of phase

locking) in the parameter space. For b\ ^ &2 we observe period doubling sequences in the

parameter plane, and also more complicated bifurcation diagrams for certain choices of

the parameters, such as the one shown in Fig. 4(b).

The phase diagram in the (61,62) plane for w0 = 1 is shown in Fig. 5. The black

regions represent the parts of the parameter space with a very large period, whichwe use

as an approximate test that the systemis chaotic at those points. As expected, the region

of stability is mostly concentrated about the lower values of the parameter b. For higher

values of b there is stochastic behavior mixed with some tongues of stability.

As stated previously, we do not know in principle the sequence in which Eqs. (10) will

be applied. However we observe numerically that anywhere within the period doubling
sequence, at the periodic orbit, the loops sample in a fixed time sequence, such that one

loop samples twice, then the other loop also samples twice, then the first one repeats the

7



process, following exactly the sequence shown in Fig. 3. We observed this for several

choices of the initial conditions and parameter values. We believe that this is a generic

process in the bifurcation cascade.

For the parameter values for which the dynamics lies within the bifurcation sequence

we can write mapping equations to describe the evolution of the system. They are given

by

<!>{ = <t>i + 2tt [ — . J, (11a)

«-<*-«>(2rS=£)' (116)

From the above equations, one can calculate the jacobian matrix for the transformation

<f>{ —»<f)'!. Initially we calculate the matrix that transforms <f>i —> $, and then multiply this

matrix by the one that transforms <j>\ —• </>". The trace of the resulting jacobian matrix gives

a measure of the stability of the orbit. The most stable orbits have null trace, giving the

parameter value that corresponds to the optimum stable system performance for a given

cycle. We show in Table 1 the values of the parameter b = &i = 62 at these superstable

orbits of the bifurcation cascade, for u>o = 1. Because of the splitting bifurcation, two

superstable values are found for the 2-cycle. The sequence of 6's converges with a geometric

ratio given by 8 « 4.6692..., as in quadratic mappings. Thus the two coupled DPLL's, when

described by Eqs. (11), have the same universality class as dissipative systems governed

by a quadratic map. At the period doubling bifurcations the trace of the jacobian matrix

is -1, as expected; for the splitting bifurcation it is 1.

The border of stability of the period one cycle can be obtained analytically by explicit

examination of the Jacobian matrix near <j>\ = 4>2 =0 which is the stable sampling phase

of the 1-cycle. Suppose that one perturbs the frequency of one loop in such a way that its



frequency changes to wo+e; then one finds that at the next samplingtime, the perturbation

in the frequency with respect to the locked state will be

€' = € 1-~(&1+M (12)

with the bracketed term being the trace of the Jacobian matrix. At the superstable cycle

the perturbation vanishes, and therefore

61 +h=g-. (13)

The period doubling bifurcation will occur when e'/e is -1. Thus, at this point

61 + 62 = —. (14)

We studied the chaotic regime in the phase vs. frequency plot, by taking a surface of

section in which the phase of one (any one) loop is zero, as described previously. The point

61 = 0.15, 62 = 0*55 and u>o = 1 has positive Liapunov exponent (we used the algorithm of

Ref. [11] in the calculation of the exponent). We have chosen these parameters to plot in

Fig. 6 the phase vs. frequency of loop 1 at fa = 0. A magnification of that figure shows

a finely structured group of neighboring trajectories, which is a characteristic of strange

attractors. Observe that for <j>\ —• 0 the only possible value for u>i is u>i « wq. This is easily

understood when we follow the dynamics shown in Fig. 3. Every time that the phase of

loop 1 is near 2tt, then the input sample taken by loop 2 will be near zero. Consequently

the frequency of loop 2 will be close to ljq. The next loop to sample will be loop 1, and

for an analogous reason its frequency will also be close to the center frequency.

IV. SYNCHRONIZATION TO A CHAOTIC SIGNAL

We consider in this section the synchronization to a chaotic signal produced by the

coupled DPLL's. The idea of synchronizing to chaotic signals was introduced recently

by Pecora and Carroll7. They have shown that certain subsystems of nonlinear, chaotic

systems can be made to synchronize by linking them with common signals. The synchro

nization is obtained from the influence of the chaotic driving system (the transmitter) on



the response system (the receiver) while the driving system remain unperturbed. In their

work, Pecora and Carroll investigated low-dimensional systems described by ODE's. They

showed numerically that the necessary condition for the subsystem to follow the master

system is that it have only negative Liapunov exponents. The concept of synchronized

chaos was applied recently to spatially extended systems, consisting of an array of coupled

lasers11. It was shown that there are extended systems where the synchronized chaos cor

responds to spatial order and temporal disorder. By varying the external parameters this

scenario breaks down and spatiotemporal chaos, or turbulence, may appear.

The system we studied is shown in Fig. 7. The driving (or master) system is the two

coupled DPLL system studied in the previous sections. The signal that originates from one

of the VFO's (in this case the second one) is used to feed a slave system which consists of one

single DPLL (the third loop). For the system shown, we investigated the parameter values

that yield synchronization of the signals originated from loop 1 and loop 3. We observe that

there is a range of the parameter space where the slave system completely synchronizes

to the driving system, whereas in other regions they seem practically uncorrelated. We

showed in Fig. 5 the region of the parameter space where chaotic behavior is expected for

the driving system, H we pick the point bi = 0.15 and 62 = 0.55, for which we verified that

the temporal dynamics is chaotic, we observe that at this point, for 63 = 61, the temporal

evolution of the outputs of VFO 1 and VFO 3, after a transient period, are completely

identical This is illustrated in Fig. 8, where we plot ^3 against fa, for the surface of

section fa = 0. Thus, as in the case of coupled lasers11 we observe a regime of temporal

chaos and spatial order. The result here might have been expected, because, as we can see

from Fig. 5, 61 and 63 are chosen such that loops 1 and 3 are operating in a regime that

would be phase locked to an appropriate sinusoidal input signal. With a chaotic input, we

cannot expect a phase locked output, but it is intuitive to expect that the stable loops will

have identical outputs for identical inputs, as observed.

Those expectations are verified globally in Fig. 9, in which the white region indicates

the parameter space of synchronization. The necessary condition for the existence of

synchronized chaos is that all the Liapunov exponents of the subsystem must be negative,

as shown by Pecora and Carroll. We observe that the value 61 = 63 < 0.35 roughly
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marks the border of synchronization. This corresponds approximately to the region of the

parameter space, as seen in Fig. 5, of regular motion for loop 1 and loop 3. Thus, even if

loop 2 is chaotic, i.e., 62 ^0.35, synchronization may be achieved between loop 1 and loop

3.

When 61 = 63 £0.35, (the cross-hatched portion) synchronization of loop 1 and loop 3

is not observed in most part of the parameter space. This is consistent with their chaotic

response to any input signal for these parameters. For this regime the resulting chaotic

attractor appears to lie in in a higher dimensional space, as is shown in Fig. 10 . Contrast

this figure with Fig. 6, which shows a chaotic attractor in the region of synchronization.

Theoretical questions remain concerning such problems as quantitative differences between

different types of attractor, characterizing them by fractal dimension, etc.

For parameter values where multiple basins of attraction are found, the synchro

nization may not occur. One clear example in the figure is the region of the splitting

bifurcations (61 « 62 « 0.33). There we have two separate 2-cycles, such that the system

does not synchronize, if loops 1 and 3 settle in different basins of attraction.

In a practical situation, it would not be possible to make 61 and 63 identical. Pecora

and Carroll addressed this question for systems of differential equations and found that the

synchronization persists, but with some errorbetween the dynamical values of the master

and slave system. We expect this same behavior in our coupled loop transmitter-receiver

system, which, indeed, turns out to be the case. In Fig. 11 we make 63 = 0.1 and use the

same values 61 = 0.15 and 62 = 0.55 given in Fig. 8. We observe that in this case, when

loop 3 is not completely identical to loop 1, the synchronization is degraded, but the loops

have retained much of their correlation.

V. CONCLUSIONS AND DISCUSSIONS

We have seen that a self-synchronizing system of two coupled DPLL's has parameter

ranges in which its behavior is one to one with its simpler relative, a single synchronizing

DPLL. The larger phase space allows more complicated behavior over other parameter

ranges, and some of the similarities and differences are noted in our study. In particular the

11



sequence of bifurcations, leading to chaos, can be more complicated than period doubling,

as seen in Fig. 4(b). The chaos, itself, looks different when observed on the output of the

two loops, in the case where the 6's for both loops are chosen such that they are unstable,

as seen in Fig. 10, when compared to the output of the loops if one of them is stable and

the other unstable, as shown in Fig. 6.

One key property of a self-synchronizing system of practical interest is that it can

transmit a signal in the chaotic state that can be synchronized in time with a receiver.

This synchronization to chaos, demonstrated in Fig. 8, opens up new possibilities for com

munications systems. An exploration of the parameter range over which synchronization

can be achieved, shown in Fig. 9, indicates general agreement with the intuitive notion

that the identical subsystems of the transmitter and receiver must be, themselves, stable.

H the subsystem parameters are not identical, then the synchronization is not perfect, as

shown in Fig. 11. However, information can still be transmitted.

It is clear that our study represents only a beginning of a detailed exploration of both

the nonlinear dynamics and the communications possibilities. Some practical questions

concern methods of modulation and implementation. Quantification of the degradation of

synchronization, shown qualitatively in Fig. 11, is also important for practical applications.

A more general extension of this study concerns larger systems. It is clear from

the above analysis that a repeater chain is more closely allied to the self-synchronizing

system studied here than to a coupled map lattice, with one way coupling, that it might

superficially resemble. If the repeater is put on a circle, then it is also self-synchronizing.

Studies of more complex interconnections also suggest themselves.

We thank K. A. Grajski, S. Sriram and W. Wonchoba for useful inputs into this

study. The work was partially supported by NSF Grant. ECS - 8910762 and partly by a

joint research project with Lorel Aerospace Corporation under a DARPA contract.
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TABLE 1

Period

1 wo/2ir

2 0.2808560407

2 0.3496205907

4 0.3672296277

8 0.3715083345

16 0.3724198720

32 0.3726153586

64 0.3726572262

Table 1. Values of b for the superstable orbits, with w0 = 1.
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Fig. 1. Schematic representation of a single DPLL.
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Fig. 2. Two coupled self-synchronizing DPLL's.
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Fig. 3. Schematic representation of the dynamics of the two coupled DPLL's.
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and (b) 61 for 62 = 0.35, for uq = 1.
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Fig. 5. Phase diagram bx versus b2 for u0 =1, showing periodic orbits (labeled with the
period) and chaotic regions (dotted).
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Fig. 6. Chaotic (or strange) attractor associated with loop 1 for bx = 0.15, b2 = 0.55 and
wo = 1 at fa = 0.
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£
CS in

CO

in

o

Fig. 8. fa vs. fa for w0 = 1, 61 = 63 = 0.15 and b2 = 0.55 at fa = 0.
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Fig. 9. Diagram showing the region of synchronization (white region) for three DPLL s.
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Fig. 10. Chaotic attractor associated with loop 1 (or loop 3) for &i = 62 = &3 = 0.55 and

wo = 1 at fa = 0.
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