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Abstract-This note presents the first experimental demonstration that two

phase-locked loops driven by a common chaotic signal derived from a master

phase-locked loop can be synchronized under some suitably chosen but robust

range of system parameters. Experimental observations are completely

consistent with both computer simulations, and with the recent synchronization

criterion due to Pecora and Carrol. The robustness of this synchronization

scheme suggests the intriguing possibility of achieving secure communication

through chaos.

1. Introduction

Chaos is believed to defy synchronization. Namely, two identical chaotic

systems started at nearly the same initial points in phase space have trajectories

which quickly become uricorrelated, even though each system traces the same

attractor in phase space. Recently, Pecora and Carroll reported that a

sub-system of a chaotic system could be synchronized with a separate chaotic

system undercertain conditions [1][2]. Synchronization in chaotic systems seems

to be an interesting problem not only from a purely theoretical viewpoint but

also from a practical engineering viewpoint. Indeed, if chaos can be

synchronized, it could give rise to new applications, such as using chaos for
secure communications.



Previously, we reported that the phase of the voltage controlled oscillator
(VCO) of phase-locked loops (PLL's) can become chaotic under certain
conditions [3][4]. We now investigate whether or not aPLL can be synchronized
with this chaotically modulated VCO signal. We have discovered a very
interesting phenomenon whereby the chaotic VCO outputs of two almost

identical PLL's can be synchronized in a certain circuit configuration. Namely,
two identical PLL's driven by a common chaotically modulated input signal
(therefore, the VCO outputs are also chaotic) can achieve a one-to-one

synchronization (configuration 1). In contrast, the chaotic VCO outputs of two

almost identical PLUs driven by a common frequency modulated signal with

detuning, cannot be synchronized (configuration 2). In this paper, we report

some experimental observations and the associated computer simulations

concerning the synchronization of chaos in the two systems of PLUs shown in

Figs. 1 and 2. We also investigate theoretically the conditions for

synchronization and non-synchronization of chaos in PLL's. In particular, we

found that the sub-system receiving a chaotic driving signal from the master

system can synchronize only if the Lyapunov exponents of the sub-system are all

negative. By calculating these Lyapunov exponents, we verify that they are all

negative in configuration 1, while one of them is positive in configuration 2.

These results are completely consistent with our experiments and computer

simulations.

2. DERIVATION OF DIFFERENTIAL EQUATIONS FOR

CONFIGURATION 1 AND CONHGURATION 2

In this section, we will derive the differential equations governing

configuration 1 and configuration 2. We derive first the differential equation

for configuration 1 which consists of two almost identical PLL's receiving a

common chaotic input signal generated from another PLL. The theory,

experiments and the associated computer simulations of chaos generated in

PLL's are reported in our previous papers [3]-[5]. Here we investigate the PLL



system shown in Fig.1 consisting of three PLL's, where the PLLO is used for

generating chaos, and where its chaotic VCO output is applied to the input of

both PLLl and PLL2 which are almost identical. Here we will assume the

following properties for all PLL's.

1) The loop filter is assumed to be a lag filter of the form:

F0(s)=1/(1+t0s) , FrfsM/U+^s), F2(s)=1/(1+t2s).

2) The VCO free-running frequencies of PLLO and PLLl are equal, but there

exists a frequency detuning Acovco between PLLO and PLL2.

From Fig.l the differential equation of the phase error (J>0 can be calculated as

follow:

d^dt2 +(l/T0)dct)o/dt +(Ko/T0)h((t)o)= d^/dt2 +(l/roMe/dt (la)

where

dOj/dt = Aco + M sin comt (lb)

and where Aco is the detuning between the carrier frequency and the VCO

free-running frequency of the PLLO, M is the maximum angular frequency

deviation, tom is the angular frequency of modulation. In the same manner, the

differential equation of the phase errors fa and fa can be written respectively

as follow:

dfy/dt2 +(l/r^/dt +(Ko/TiMfy) =d20in/dt2 +(1/r^de^/dt (2)

d2c|)2/dt2 +(l/T2)d(f)2/dt +(K0/T2)h(cJ)2) =d20in/dt2 +(l/r^Bjn/dt (3)

where

0in(t) - W =©i(0 - *o(t) • (4)



By changing the time variable t into t' via t'=cont and defining the state variables

Xi=fa, x2=d(()o/dt', x3=((>1, x4=dc))1/dt', x5=fa, and x6=d())2/dt', equations (1) to

(4) can be recast into the following 6th-order system of non-autonomous

differential equations:

dx^dt' = x2

dx2/dt' - -Px2-h(x1)+Pa+mp sinHt' +mO cosHt'

dx3/dt' = x4

dx4/dt' =-K1px4 - K1h(x3)+h(x1)+p(K1-l)(-x2+a+m sinHt')

dx5/dt' - x6

dxg/df- -K2Px6-K2h(x5)+h(x1)+P(K2-l)(-x2+o+m sinnt')+pK25 (5)

where oon=</Ko/T0 (natural angular frequency), P= con /K0=l// K0t0

(normalized natural angular frequency), k^tq/tj (ratio of the loop filter time

constants), k2=t0/t2 (ratio of the loop filter time constants), a=Aco/con

(normalized frequency detuning of the input FM carrier frequency), m=M/oon

(normalized maximum angular frequency deviation), n=com/con (normalized

modulation frequency) and 5=Atovco/con (normalized frequency detuning of the

PLL2).

Let us investigate next the second system consisting of two almost identical

PLLl and PLL2 having a common input consisting of a frequency modulated

sinusoid with detuning. We call this system configuration 2 and is shown in

Fig.2. Assuming the same lag filter for F^s) and F2(s) as before, the

differential equations of the phase errors fa and fa can be written as follow:



dfy/dt2 +(1/r^^dt +(K0/T1)h(4>l) =d20i/dt2 +(l/T^dej/dt (6)

and

d^/dt2 +(l/x2)dct)2/dt +(Ko/T2)h((|>2) =d20i/dt2 +(l/r2)d6/dt (7)

where

dOj/dt = Aco + M sin comt. (lb)

Applying the similar normalizations as in configuration 1 (e.g.; t'=cont,

con=vKo/Ti ) and defining the state variables x^^j, x2=d(|>1/dt\ x3=()>2, and

x4=dc))2/dt', this system can be recast into the following 4th-order system of

non-autonomous differential equations:

dxj/dt- x2

dx2/dt'= -Px^x^+mfi cosHt'+Pa+mP sinHt*

dx3/dt'=x4

dx4/dt'=-K1Px4-K1h(x3)+mn cosHt'+K^a+K^m sinftt' (8)

where P= con /Ko=l/V K^ , k^t^ .

3. COMPUTER SIMULATION RESULTS

In this section we will present our computer simulation results for both

configuration 1 (eq.(5)) and configuration 2 (eq.(8)). We present first our

computer simulation results of configuration 1, as represented by eq.(5) for the

small damping case with £=0.28, P(=20 =0.56, a= 1.43341, and H=0.637. The

initial conditions are xt(0)=2.3389 and x2(0)=2.8027 for the PLLO, x3(0)=0.1

and x4(0)=0.1 for the PLLl, and x5(0)=0.09 and x6(0)=0.09 for the PLL2.



Note that there is a 10 % difference between the initial conditions for the PLLl

and the PLL2. It is known that the VCO output of the PLLO is chaotic for the

above choice of parameter values [4]. Our goal is to investigate the dynamical

behavior of the VCO outputs of PLLl and PLL2 when their common input, i.e.,

the VCO output of the PLLO, is chaotic. In particular, we investigate whether

or not PLLl and PLL2 can synchronize with each other over some range of

system parameter values. In particular, we assume 5 slightly different sets of

parameter values for PLLl and PLL2.

Figure 3 presents the simplest situation in which PLLO, PLLl and PLL2

have the same loop filter time constants (kj=1 and k2=1) and the same VCO

free-running frequencies (5=0); i.e., the three PLL's have the same system

parameter values. Figure 3(a) shows a Poincare section of the attractor of the

state variables Xj and x2 (fa versus dc^Q/dt') taken at every period T=27t/n of

the external force. Observe that the VCO output of the PLLO is indeed chaotic.

Fig.3(b) shows the attractor in the x3 versus x4 (fy versus dfy/df) plane

thereby confirming that the internal dynamics of the PLLl is chaotic. Fig.3(d)

shows the attractor in the x5 versus x6 (fa versus dfa/dC) plane. Observe that

the PLL2 is also chaotic and exhibits the same attractor as PLLl. Figure 3(c)

shows a trace on Poincare section relating the two chaotic state variables x3 and

x5 (((>! versus fa). Observe that there is an exact one-to-one (i.e., complete)

synchronization between the two phase errors <t>i and fa in spite of the 10 %

difference in the initial conditions of the PLLl and the PLL2.

Figure 4 presents the attractors corresponding to those in Fig.3 but for the

case where the loop filter time constants of the PLLl and the PLL2 differ by 5

% of that of the PLLO ( k^I.05 and k2=0.95) and where there is no detuning of

the VCO free-running frequencies (5=0). Observe that although the chaotic

attractors shown in Figs.4(b) and (d) differ to some extent in this case, there

remains a strong partial correlation between x3 and x5 (fa and fa) in Fig.4(c).



Figure 5 shows three Poincare sections relating x3 and x5 (fa versus fa) for the

following 3 distinct sets of parameter values: (a) k^I.O, k2=1.0 and 5=0.01

(equal loop filter time constants with small detuning), (b) k^I.OI, k2=0.99 and

5=0.0 (unequal loop filter time constants with no detuning), (c) k^I.O, k2=1.0

and 5=0.1 (equal loop filter time constants with large detuning). The strong

correlation exhibited by these three examples suggests that the synchronization is

quite robust.

Consider next our computer simulations of eq.(5) for the case where the

damping is large. In particular, we choose C=0.635, P (=20=1.27, a=1.15,

a=0.2; with the initial condition x1(0)=1.6811 and x2(0)=3.4605 for the PLLO,

x3(0)=0.1 and x4(0)=0.1 for the PLLl, and x5(0)=0.09 and x6(0)=0.09 for the

PLL2. Figure 6 presents the case with equal loop filter (kj=1, k2=1) and with

no detuning (5=0). Figure 6(a) shows the chaotic attractor of the PLLO in the Xj

versus x2 (fa versus d(J)0/dt') plane. Recall that the output of this chaotic

system is the common chaotic input signal for both PLLl and PLL2. Figures

6(b) and (d) show the attractors in the x3 versus x4 ($1 versus dt^j/dt') plane and

in the x5 and x6 (4>2 versus d(J)2/dt') plane. Observe that they are virtually

identical. Figure 6(c) confirms that there is an exact one-to-one synchronization

between PLLl and PLL2. If we introduce some detuning (5=0.05) without

changing other parameters, we obtain the corresponding results shown in Fig.7.

Observe that some synchronization still exists. Figures 8(a), (b), and (c) are

traces of the Poincare section on the x3 versus x5 (()>! versus fa) plane for 3

different sets of parameters showing that the synchronization is also quite robust

for the large damping case: (a) Kpl.05, k2=0.95, 5=0 (unequal loop filter time

constants and no detuning); (b) k^I.1, k2=0.9, 5=0 (unequal loop filter time

constants and no detuning); (c) k^I.0, k2=1.0, 5=0.1 (equal loop filter time
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constants with large detuning). Observe that Figs.8(a) and (b) show complete
synchronization, as expected, while Fig.8(c) shows no synchronization because

the PLL2 is out-of-lock itself, let alone synchronizing with the PLLl.

Next, we will present computer simulation results of configuration 2
(eq.(8)). Fig.9 shows the attractors on the Poincare section for the small

damping case (C=0.28, P (=20=0.56, a=1.43341, £1=0.637, m=0.097) with the

initial condition Xi(0)=2.3389 and x2(0)= 1.8027 for the PLLl and a slightly

different initial condition x3(0)=2.3365 and x4(0)= 1.8009 for the PLL2. Note

that these two sets of initial conditions have only a 0.1 % difference. Figure 9(a)

is a chaotic attractor for the PLLl observed in the x{ versus x2 plane, while

Fig.9(b) is an identical chaotic attractor for the PLL2 observed in the x3 versus

x4 plane. Observe that the trace between Xj and x3 in Fig.9(c) reveals no

correlation whatsoever, which means that the PLLl and the PLL2 cannot be

synchronized with each other even if their system parameters are identical,

thereby exhibiting identical attractors. We have also repeated our simulation for

the large damping case (C=0.635, P(=2Q=1.27, o=1.15, 0=0.2, m=0.054) with

the initial condition x1(0)=1.6811 and x2(0)=2.4605 for the PLLl, and with a

slightly different initial condition x3(0)= 1.6794 and x4(0)=2.4580 for the PLL2.

The difference between the two sets of initial conditions is only 0.1 % as before.

Again, Figs. 10 (a), (b) and (c) show that there is no synchronization between

PLLl and PLL2 in configuration 2 for the large damping case, although they

have completely the same attractors.

These results of our computer simulations can be summarized as follow:

For configuration 1:

1) Synchronization of chaos between the PLLl and the PLL2 is possible for both

the small and the large damping cases with the same system parameters

(kj =k2=1 and 5=0) but with a 10 % difference in their respective initial

conditions. Moreover, this synchronization continues to hold even for a certain



amount of system parameter variations ( Kj, k2 = 0.9-1.1 and 5=0-0.1). Such

robustness suggests that synchronization of chaos is possible in real systems.

2) The degradation of synchronization due to a mismatch of loop-filter time

constants is more serious in the small damping case than in the large damping

case. In contrast, the degradation due to the detuning of the VCO free-running

frequencies is more serious in the large damping case than in the small damping

case.

For configuration 2:

3) Synchronization of chaos in configuration 2 is impossible for both the small

and the large damping cases,even for the same choice of system parameters; e.g.,

Kl» K2 = 1 an(^ §=0. If there is some discrepancy of parameter values,

synchronization of chaos is, of course, also impossible. In configuration 2, a

very small difference in the initial conditions and /or parameter values of the

PLLl and the PLL2 gives rise to complete asynchronization.

4. CALCULATION OF SUB-SYSTEM LYAPUNOV EXPONENTS

In this section, we will apply the results of Pecora and Carrol [1][2] to explain

why synchronization of chaos is possible in configuration 1 but not in

configuration 2. Let us consider the n-dimensional dynamical system defined

by dv/dt=g(v,w), dw/dt=h(v,w), and dw'/dt=h(v,w') where v€Rm, w,w'eRn"m,

g:Rm*Rn-m—Rm, and h:Rm*Rn-m—Rn"m. jn mis dynamical system, the v-w

sub-system is called the drive system, since it runs independently of w' and the v

signal is used to drive the w' subsystem. Consequently, we call the w'

sub-system the response system. Under the right condition, and as time elapses,

the w'(t) variables will converge asymptotically to the w(t) variables and

continue to remain in step with the instantaneous values of w(t). The necessary

and sufficient conditions for this to happen are determined by the signs of the

"v-constrained" Lyapunov exponents of the w sub-system. They are calculated

from the variational system with respect to w: d£/dt=Dwh(v(t),w(t))£ where



Dwh is the Jacobian of the w sub-system with respect to w only. If all

Lyapunov exponents of the variational equation are negative, w(t) and w'(t) will

synchronize eventually. If at least one of them is positive, they will not

synchronize.

For configuration 1, represented by equation (5), the set of state variables

(xl9x2,x7) can be identified with vGR3, (x3,x4) can be identified with weR2 and

(x5,x6) can be identified with w'eR2, where x7=ftt' has been introduced in

order to convert our nonautonomous system into an autonomous system. The

variational equation of (5) with respect to w becomes:

d^/dt' = £2

d52/dt' = -K1h'(x3)51-K1P?2 (9)

Thus solving (5) and (9) as a system of differential equations, we can calculate

the Lyapunov exponents for configuration 1.

For example, we have calculated the Lyapunov exponents for the w

sub-system for the small damping case shown in Fig.3 to be LE1=-0.241<0 and

LE2=-0.319<0. Hence synchronization occurs even for a chaotic input signal

generated by the PLLO, whose Lyapunov exponents have been calculated to be

LE1=0.0296>0, LE2=0.00438«0 and LE3=-0.594<0. Similarly, we have

calculated the Lyapunov exponents of the w sub-system for the large damping

case shown in Fig.6 to be LEl=-0.633<0 and LE2=-0.636<0. Again,

synchronization occurs for a chaotic input signal whose Lyapunov exponents are

LE1=0.0135>0, LE2=-0.0001432*0 and LE3=-1.258<0. In case where there

exists some discrepancy of parameters in two almost identical PLL's (PLLl and

PLL2) as in Figs. 4, 5, 7, and 8, some degradation of synchronization occurs,

but this discrepancy does not diverge as time elapses. Therefore the two PLL's

still have strong correlation. In contrast, for configuration 2, the Lyapunov

exponents for the w sub-system have been calculated to be LE1=0.0846>0 and

0



LE2=-0.646<0 for the small-damping case in Fig.9, and LE1=0.00083>0 and

LE2=-1.277<0 for the large-damping case in Fig.10. Indeed, synchronization of

the two chaotic PLL's does not occur in this configuration even after a fine

adjustment of their parameter values.

5. EXPERIMENTAL RESULT

In this section, we will present our experimental results for configuration 1

and configuration 2. Figure 11 shows the actual experimental circuit of a PLL

using an integrated circuit module MC14046B. Combining three or two such

PLL's as in Fig.l or Fig.2, respectively, we have built the experimental circuit

for configuration 1 and configuration 2. The parameter values for r, R and C

are chosen as r=2.7 kH, R=51 kH and C=1000 pF, thereby giving a loop filter

time constant equal to T=(R+r/2)*C=52.4*10"6. The total DC loop gain K0 is

determined from the lock range of fL=5.9 kHz so that K0=2fL=11.8* 103

rad/sec. From these data, we have calculated the normalized natural frequency

P and the damping coefficient Cto be equal to P=2C=1//kJJt =1.27, which

correspond to one of the parameters in our computer simulations for the large

damping case. The natural frequency was calculated to be equal to

fn=(l/27rVK0/T=2388 Hz. Figurel2 gives the experimental results for

configuration 1, where Figs. 12(a), (b), and (c) show the chaotic VCO spectrum

of the PLLO, PLLl, and PLL2, respectively. Figure12(d) shows the voltage

trace between the VCO outputs of the PLLl and PLL2: the 45° straight line

confirms that there is a complete synchronization. In Fig.12, all the VCO

free-running frequencies are set equal to fvco.o'fvco.rfvco^"28 kHz. and the

carrier frequency and the modulation frequency of the input FM signal are set

equal to fc=29.33 kHz and fm=515 Hz, respectively. Therefore, the normalized

detuning is equal to o=(fc-fvco0)/fn=0.432 and the normalized modulation



frequency is equal to n=fm/fn=0.215. These parameter values are close to our

computer simulation results shown in Fig.6, although a is much smaller in this

case. Figure 13 is the result in which the free-running frequency of fvco 2 is

increased as fVCo,2=30-88 kHz while the other parameters remain the same as

those in Fig. 12. Hence, the VCO free-running frequencies of PLLl and PLL2

have a detuning equal to 5=(3088-2800)/2388=0.12. For this set of parameter

values, the PLLl and PLL2 can not be synchronized which corresponds to our

computer simulation result of Fig.8(c).

Next, we present our experimental results for configuration 2 in Figs. 14(a),

(b) and (c). The experimental parameters are fvco i=fVCo 2=^6.8 kHz, ^=30 kHz

and fm=473 Hz. Figures 14(a) and (b) show the VCO spectra of the PLLl and

PLL2 are chaotic. Figure14(c) shows the trace of the VCO outputs of PLLl and

PLL2. In this configuration, the PLLl and PLL2 have almost the same

parameter values, yet synchronization is impossible to achieve. These

experimental results are completely consistent with our computer simulation

results.

6. CONCLUSIONS

We have shown that the chaotic VCO outputs of two identical PLL's which

have a common chaotic input signal can synchronize with each other if the

detuning of the VCO free-running frequencies is not large. We have also

shown that the chaotic VCO outputs of two identical PLL's which have a

common frequency modulated input signal with detuning can not be

synchronized even after fine adjustments of the parameter values. By

calculating the Lyapunov exponents of the respective sub-system, it is confirmed

that they are all negative in configuration 1, but one of them is positive in

configuration 2. Since PLL's are real systems widely used in the communication

industry, synchronizing chaos in PLL's represents a first step towards the
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application of chaos in the design of secure communication systems.
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Figure captions:

Fig. 1: Phase-diagram of configuration 1

Fig.2: Phase-diagram of configuration 2

Fig.3: Synchronization of chaos in configuration 1 observed on a Poincare

section for the small damping case: P=0.56, o=1.43341, Q=0.637, m=0.097.

The loop-filter time constants are equal and the VCO free-running frequency has

no detuning: Kj =l, k2=1, 5=0. (a) chaotic attractor of the input signal (b)

chaotic attractor in the PLLl (c) trace between (j)j and fa representing

complete synchronization (d) chaotic attractor in the PLL2

Fig.4: Synchronization of chaos in configuration 1 observed on a Poincare

section for the small damping case: P=0.56, 0=1.43341, H=0.637, m=0.097.

The loop-filter time constants are not equal and the VCO free-running

frequency has no detuning: k^I.05, k2=0.95, 5=0. (a) chaotic attractor of the

input signal (b) chaotic attractor in the PLLl (c) trace between (J^ and fa

representing some correlation (partial synchronization) (d) chaotic attractor in

the PLL2

Fig. 5: Three traces between <(>! and fa for either unequal loop-filter time

constants or non-zero detuning of the VCO free-running frequencies in

configuration 1 for the small damping case: P=0.56, 0=1.43341, 0=0.637,

m=0.097. (a) k^I.O, k2=1.0, 5=0.01 (b) k^I.OI, k2=0.99, 5=0.0 (c)

Kt=1.0,K2=1.0, 5=0.1

Fig.6: Synchronization of chaos in configuration 1 observed on a Poincare

section for the large damping case: p=1.27, o=1.15,11=0.2, m=0.053. The loop
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filter time constants are equal and the VCO free-running frequency has no

detuning: k^I, k2=1, 5=0. (a) chaotic attractor of the input signal (b) chaotic

attractor in the PLLl (c) trace between (^ and fa representing complete

synchronization (d) chaotic attractor in the PLL2

Fig.7: Synchronization of chaos in configuration 1 observed on a Poincare

section for the large damping case: P=1.27, o=1.15, H=0.2, m=0.053. The

loop-filter time constants are equal but the VCO free-running frequency has

detuning: 1^=1, k2=1, 5=0.05. (a) chaotic attractor of input signal (b) chaotic

attractor in the PLLl (c) trace between <j>! and fa representing partial

synchronization (d) chaotic attractor in the PLL2

Fig.8: Three traces between fa and fa for either unequal loop-filter time

constants or non-zero detuning of the VCO free-running frequencies in

configuration 1 for the large damping case: P=1.27, o=1.15, 0=0.2, m=0.053.

(a) k^I.05, k2=0.95, 5=0.0 (b) k^I.1, k2=0.9, 5=0.0 (c) k^I.O, k2=1.0,

5=0.1

Fig.9: Non-synchronization of chaos in configuration 2 observed on a Poincare

section for the small damping case: P=0.56, o=1.43341, 0=0.637, m=0.097. (a)

chaotic attractor in the PLLl (b) chaotic attractor in the PLL2 (c) trace

between fa and fa showing no correlation with each other.

Fig. 10: Non-synchronization of chaos in configuration 2 observed on a Poincare

section for the large damping case: p=1.27, a=1.15, 0=0.2, m=0.053. (a)

chaotic attractor in the PLLl (b) chaotic attractor in the PLL2 (c) trace

between fa and fa showing no correlation with each other.



Fig.l 1: Experimental circuit of a PLL using an integrated circuit module

MC14046B.

Fig. 12: Experimental verification of synchronization of chaos between the PLLl

and PLL2 in configuration 1. The PLLl and PLL2 have almost identical

parameter values.

Fig. 13: Experimental demonstration of non-synchronized chaos in configuration

1. The PLLl and PLL2 have almost identical parameter values. The VCO

free-running frequencies have a detuning.

Fig.14: Experimental demonstration of non-synchronized chaos in configuration

2.
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