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Abstract

This paper discusses the theory and implementation of a general production
rule system using Query Rewrite in POSTGRES. Such a system is useful be
cause data management features including Integrity Constraints, Database
Procedures. Query Modification Views and Materialized Views can be im
plemented as a few simple rules. Query Rewrite provides a highly* efficient
rule system on which these features can be implemented with performance
similar to or better than traditional methods.



1 Introduction

[STON75] proposes that Query Rewrite may be effectively used to pro

cess views and integrity constraints in a Data Base Management System

(DBMS). Subsequently, [STON90] shows that viewsand integrity constraints

are merely special cases of a general production rules system and proposes

that Query Rewrite be used to effectivelj*process a subset of these production

rules. [STON90] further shows some examples of how rules can be enforced

by means of modifying the user queries, but presents neither an algorithm

nor the complete semantics of such a rule processing strategy.

This paper provides a detailed report on the actual implementation of a

Query Rewrite Rule Processor called the Query Rewrite System (QRS) in

the POSTGRES DBMS, and describes the algorithms and semantics of the

QRS.

This paper further provides detailed implementations of the following

database functions in terms of QRS rules :

1. Deferred Maintenance Views.

2. Materialized Views.



3. Procedures.

2 Design of the Query Rewrite System

2.1 Syntax

Since both the Query Rewrite System (QRS) and the Tuple Level System

(TLS) are part of the Postgres Rules System II (PRS2), they naturally share

the same rule definiton syntax. This syntax is largely similar to [HANS89,

WIDO90] except that we allow for retrieve-rules to be definedwhereas neither

[HANS89, WIDO90] tries to do so. Retrieve-rules, briefly, are those rules that

dictate what processing should take place if a user attempts to uretrievev or

otherwise reference any data which is in the scope of the rule. In this section,

we briefly review the syntax of PRS2 rules which were first presented in

[STON90].

Rules are of the form :

define rule rule-name is

on (retrieve \ replace \ append \ delete) to relnarne.attname
where event —qualification
do [instead]
action

where the event-qualification and action clauses are normal POSTQUEL



qualifications and statements respectively except that they can contain ref

erences to current and new wherever normal tuple variables are allowed.

The semantics of current and new axe as follows : When tuples are ac

cessed, updated, inserted or deleted, there is a current tuple (for retrieves,

replaces and deletes) and a newtuple (for replaces and appends). If the event

and the condition specified in the event clause are true for the current tuple,

then the action clause is executed. First, however, values from fields in the

current tuple and/or the new tuple are substituted into current, column-name

and new. column-nam.e

2.2 Semantics

[STON90] defines the semantics ofthe Tuple Level System (TLS) ruleactions,

but does not clearly define the semantics ofQueryRewrite System (QRS) rule

actions. To clarify the semantics of QRS rule actions, let us examine the

following example of a rule which make's Fred's salax3r be the same as Joe's

salary :

on retrieve to emp.salary where emp.name = "Fred"
do instead

retrieve ( e.salary ) from e in emp
where e.name = '"Joe"



then the definition of a "Fred" tuple would become

retrieve ( emp.name. emp.age.e.salary ) from e in emp
where emp.name = Tred*"'
and e.name = "Joe**

That is, "Fred** tuples are unchanged in any way except that their salaries

are defined to be that of "Joe'*. The action part of the rule defines Fred's tuple

to be the join of his name and age and Joe's salar}*. Therefore, evaluating

the above rule action will produce a result that falls into one of the following

three classes :

1. No "Joe" tuples

Since "Fred" tuple(s) are defined to be the join of his name, age and

Joe's salary, then, by QRS semantics, there is no tuple for "Fred". This

result is consistent with a relational interpretation of the action, but

is contrary to the semantics of the TLS which says that there will be

as many Fred tuple(s) as there would have been without the rule, but

that their salaries would be null.

2. One "Joe" tuple

This produces as many tuples for Fred as there would have been without



the rule, except that all their salaries are logically ''replaced" by Joe's

salary. Here, the QRS semantics conincide with those of the TLS.

3. Many "Joe" tuples

If m is the number of employees whose name is "Joe** and n is the

number of employees whose name is "Fred'', then the action quite log

ically produces m * 7? •"Fred" tuples. Again, this is a different result

from the TLS which will take the salary of the first 4*Joe" tuple found

and propagate it to all n "Fred'' tuples.

Classes (1) and (2) are merely special cases of (3) where m. the num

ber of "Joe" tuples is a constant value ( in class (1), m = 0, and in class

(2) 7T? = 1). In [STON90], it was assumed that the semantics of the Query

Rewrite System (QRS) would be identical to those of the TLS. As we have

shown above. QRS and TLS have different semantics for classes (1) and (3).

These semantic differences are unavoidable because QRS rules have inher

ent^7 relational semantics whereas the TLS rules have "random*' semantics.

Therefore, the user is advised to select whichever system has the semantics

appropriate to his application.



2.3 Inherent Limitations

There is one limitation to the power of the Query Rewrite System (QRS):

It is unable to process recursive rules of any kind. This includes rules that

are truly recursive as well as rules that are pseudo recursive. Truly Recursive

rules are those rules that will invoke themselves because one or more real

tuples that result from rule evaluation actually fall into the scope of the

rule's event qualification ( also called the rule domain ). That is, tuplesevent n

tupltsaction^tuj)lesu9erquery ^ 0. In contrast, pseudo recursive rules are those

rules which theoretically produce a range of tuples that m.ay overlap its own

domain : That is, qual€vent D qualaction H qualUBerquery may or may not be

empty, so the rule might invoke itself.

For example, the following pseudo recursive rule declares that the man

ager of the toy department earns twice the average salary of employees in

the toy department whose age is less than 30.

define rule toy-mgr-salary is
on retrieve to emp.salary
where emp.dept = "toy" and emp.manager = emp.name
do instead

retrieve ( 2 * average(emp.salary) )
where emp.dept — toy" and emp.age < 30

If a retrieve to the manager's salary is attempted, there is absolutely no way



to determine whether or not the rule will loop by inspecting the qualifications

since the rule will recurse only if the manager's age is less than 30.

This is because if the manager is less than thirty years of age, the man

ager's tuple falls into the scope of the qualification of the action clause (also

called the action qualification ) and will therefore be retrieved again by the

rule action. This then triggers the rule again, resulting in an infinite loop.

In this scenario, then, we have a truly recursive situation.

On the other hand, if the manager is older than thirty years of age. his

tuple does not fall into the action qualification, and therefore the rule will

not be retriggered by the action. In this case, evaluating the rule shows it to

be not recursive, although we cannot deduce this by just looking at the rule

in the absence of the actual data.

From the above example, it is clear that the only way to tell if there is a

loop is to know what the manager's age is beforehand. Unfortunately, this

information is not available to the QRS since it never sees the data on which

the queries will operate. In general, the QRS cannot distinguish between

truly and pseudo recursive rules. At best, the QRS can detect "loops'" based



on logical evaluation of the event, action and user qualifications. That is, if

qualeveni n qualaction Dqualuaerquery ^ 0

then QRS aborts the rule evaluation and declares that a loop exists even if

actual query execution might prove otherwise. However, there is one problem

with this method : it occasionally detects a loop where there is none. Thus,

in the above example. QRS will declare a loop even if the manager is actually

more than thirty years old.

3 Implementation

In this section, we provide a description of the various aspects of implement

ing the Query Rewrite System (QRS) which consists of two parts :

1. A rule definition module, which takes rules that conform to the rule

syntax shown in section 2.1 and stores them in a system catalog called

a rewrite-rule catalog.

2. A rule processing module, which takes a parse tree from the parser,

modifies it by the applicable rules using algorithms 3.1 and 3.2 which

are described on page 11. After all applicable rules have been evaluated,

8



the rewrite system returns a list of zero or more parse trees which

correspond to the modified queries.

The parse trees which are returned by the rewrite system are then planned

and executed in the same transaction context as the user query which trig

gered the rule.

3.1 Rule Locks

Although all meta data associated with rewrite-rules are stored in the rewrite-

rule catalog, we still need some way to indicate which queries actually require

rule evaluation, and what rules are applicable to an incoming query. This

information is condensed into a small data structure called a rule lock. This

section describes how these rule locks are stored and how the}' are used in

the processing of rules.

3.1.1 Placing Locks

Although [STON90] describes both relation-level and tuple-level rule locks,

tuple-level rule locks are not seen until the command is in execution, and

therefore cannot be used by the QRS. Thus, in our implementation, we



use relation-level rule locks. These locks are stored as an attribute in the

Relation-relation when the rule is defined.

3.1.2 Activating Locks

Currently, in the course of parsing a query involving a relation X , the

parser reads in the tuple describing A" from the Relation-relation and stores

the description in the parse tree. Since the rule lock is now part of that tuple,

the only additional cost is that the parser now copies the rule lock for X in

addition to the other information it already copies.

This involves negligible overhead for relations that have rule locks placed

on them and no overhead at all for relations that do not have any rule locks.

Thus, when the QRS receives the parse tree, all relevant locking information

is already in the parse tree , and the QRS only has to decide whether or not

the rules are applicable to the current parse tree and process the rules if they

are.

3.2 Algorithms

If the parse tree has locks placed on it, the Query Rewrite System (QRS)

modifies the query according to the rule base by the following algorithm:
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Algorithm 3.1 (Handle-Retrieve )

for each entry in rangetabltquery
for each retrieve —lock on entry

for each varnode which references entry
if attribute number of varnode is locked

replace varnode with ruletargetlist
add rangetable entries as needed
add rultqualifications

else

do nothing

If the query happens to be a replace, append or delete, then the following

algorithm needs to be run as well:

Algorithm 3.2 (Handle-Updates )

for each rule defined on rtsultjrelation {
replace references to current and new in the action clause
with the appropriate attribute from targetlistquery
qualU8erquery = qualU8erquery and qualrui€

}

The sole reason for having two algorithms rather than one algorithm is

that the structure of a 'Retrieve" parse tree is radically different from that

of the other three types of queries (append, replace and delete), and thus the

manipulation routines need to be different. The structural difference between

the retrieve parse tree and the other parse trees is purely historical, and there
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is no other reason why a future implementation should not be able to merge

algorithms 3.1 and 3.2 into a single algorithm.

4 Examples and Timings

In this section, we show some examples of how QRS rules may be used to

implement some database functions that have been typically hardcoded into

the DBMS. Where applicable, we will also discuss the performance of each of

these rulebases as compared with more "traditional" ways of implementing

these functions.

4.1 Simple Constraints

One possible use of the QMS would be to maintain the constraint that an

update to Sam's salary is propagated to Joe's salary. The rule to achieve

this is :

define rule equal-sal is
on replace to emp.salary where emp.name = usamv
do replace e ( salary = new.salary ) from e in emp
where e.name = "joe"

thus, subsequentlywhen the application submits a query that updated Sam's

salary :

12



replace e ( salary = 7000 ) from e in emp
where e.name = "sam"

the rule would be triggered, and the QRS produces two queries :

replace e ( salary = 7000 ) from e in emp
where e.name = "sam"

replace e ( salary = 7000 ) from e in emp
where e.name = "joe" and emp.name — "samr

In the second query, the additional clause ( emp.name = "sam." ) is

necessary in case there is no employee called ^sanT. Alternatively, if the

programmer wishes to maintain the constraint from within the application

he would have to submit the following two queries :

begin transaction

replace e ( salary = 7000 ) from e in emp
where e.name = "joe"

replace emp ( salary = e.salary ) from e in emp
where emp.name — "joev and e.name = "samv

end transaction

Intuitive^*, the rule-based method of maintaining the constraint performs

at least as well as the application performing maintaining the constraint

because of the following reasons :

1. Number of Commands

QRS performs both updates in a single command, whereas, under all
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circumstances, the application requires two commands to maintain the

constraint. Thus, in this example, QRS eliminates the overhead of one

command "commit**. There is no way to avoid the extra command

"commit" overhead when submitting two separate queries even if they

are in the same transaction because by definition each user command

can see the effect of the prior command, so the "commit'* processing

that takes place between any two commands is necessary. In contrast.

QRS passes values between the user command and the rewrite system

via ''current*' and "new**. This does not require the user command to

commit before the rule begins execution since they are logically part of

the same command and the rules do not need to see the effect of the

user command.

2. Number of Messages

In order to enforce the constraint without rules, the application has

to send two queries. By enforcing the constraint via the QRS, the

application has to submit only one query. This reduces the number of

messages between the application and the DBMS by at least half.

3. Complexity of Queries

14



Query Number Rewrite Time (sees) Query Time (sees)

User

QRS
0.0000

0.0078

1.50

0.48

Table 1: Performance of QRS vs Application Maintained Constraints

The application based method requires the use of a real join (Q2)

whereas the rule-based method requires only an existential join because

it substitutes the value of the new tuple into the query (Q3).

This intuition is borne out by the following statistics :

As we can see. the cost of maintaining this simple constraint from the

application costs 1.5 sees, whereas the cost of maintaining it in QRS costs

merely 0.48 sees.

4.2 Query Modification Views

POSTGRES views are identical to those described in [STON75] except for

one aspect : View update semantics are uuser programmable". As noted in

[STON90], current relational view systems have certain limitations on the

manner in which they may be updated. In particular, it seems particularly

difficult to design an update policy in the absence of "view-specific" knowl

edge. There have been previous efforts to overcome these shortcomings,
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though most, like [MEDE85] attempt to translate functional dependencies

into view update strategies and completely fail when such functional depen

dencies do not exist. In contrast, since the update semantics in the POST

GRES view system are completely user definable, no functional dependencies

are required.

In POSTGRES, this "Query Modification View System" is easily pro

vided by translating a view definition into a simple set of QRS rules. For

example, if we wanted to provide the canonical toy view of the emp relation,

we would type:

define view toy ( emp.name, emp.salary )
where emp.dept = "toy"

This view definition would then be automatically transformed by a view-

compiler which we have implemented to produce the following rules:

define rewrite rule toy.retrieve is

on retrieve to toy

do instead

retrieve ( emp.oid, emp.name, emp.salary )
where emp.dept = "toy"

define rewrite rule toy.replace is

on replace to toy

do instead

replace emp ( name = new.name , salary = new.salary )

16



Query Execution Time QRS overhead

retrieve (toy.name.toy.salary) 0.5001 0.0078

retrieve (emp.name,emp.salary)
where emp.dept = "toy"*

0.4923 0.0000

Table 2: Performance of View vs. Normal Relations (50% selectivity)

where emp.oid = current.oid

define rewrite rule toy.delete is
on delete to toy

do instead

delete emp where emp.oid = current.oid

define rewrite rule toy.append is
on append to toy

do instead

append emp ( name = new.name, salary = new.salary,
dept = "toy" )

Of course, any of the above rules can be subsequently replaced by a

user defined rule so that the view-update semantics are exactly as desired

by the user. Since POSTGRES does not already have a hard-wired view

maintenance system, we are unable to provide a comparison between this new

rule based method and the more traditional view system. We do however

provide a comparison between queries to the view and queries to the actual

relation in Table 2

The overhead in using QRS to maintain this simple view is mostly due to

the recreation of rule parse trees from the "flattened" rule parse trees that
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are stored in the rewrite-rule catalog. Caching of the structural rather than

the flattened form would require major changes to the internals of POST

GRES. but would greatly reduce the QRS overhead. However, since the

overhead is already fairly low (0.0078 sees), and stays constant regardless of

the complexity of the querj*. it doesn't seem worth the extra effort to cache

the "unfiattened** rule structures.

4.3 Materialized Views

An alternate method of view maintenance is immediate view maintenance

which provides the user with materialized views [BLAK86]. This kind of

view is just as easily provided by providing a simple set of QRS rules.

For example, assuming that we materialize a view which consists of the

ids, names and salaries of all employees who work in the toy department by

submitting the query :

retrieve into toy ( emp.name, emp.salary, emp.id )
where emp.dept = "toy"

The following rule definition will ensure that updates to the "emp"* rela

tion are automatically propagated to the "toy" view,

define rewrite rule mat.app is
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on append to emp where new.dept = "toy"
do append toy ( emp.name, emp.salary , emp.id )

define rewrite rule mat.repl is

on replace to emp where new.dept = "toy"
and current.dept != "toy"

do append toy ( id = new.id, name = new.name,
salary = new.salary )

define rewrite rule mat_rep2 is

on replace to emp where current.dept = "toy"
do replace toy ( id = new.id, name = new.name,

salary = new.salary )

define rewrite rule mat.del is

on delete to emp where current.dept = "toy"
do delete toy where emp.id = toy.id

A similar set of rules ( which we will not present here ) is required to

ensure that updates from the "toy"* view are propagated to the "emp"* rela

tion.

4.4 Procedure Rule

In POSTGRES, database procedures are known as POSTQUEL functions,

and have been implemented as follows :

1. an incoming Postquel function definition similar to the following is

received:
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define postquel function DEPT(emp) returns dept is
retrieve ( dept.all ) where dept.name = current.dept

2. Define a new attribute DEPT in emp. of type dept corresponding to the

function name and the function return type as specified in the function

definition.

3. Define the following rule by extracting the relevant information from

the function body.

define rewrite rule dept is
on retrieve to emp.dept do instead
retrieve ( dept.all ) where dept.name = current.dept

5 Future Extensions

In this section, we describe various enhancements that could be made to the

QRS, but were unable to implement at the current time. The list of enhance

ments is ordered by potential usefulness, rather than ease of implementation.

Unfortunately, none of them are easily implementable.
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5.1 Compiled Rules

As proposed in [STON86]. queries in Postgres could be compiled and stored

in a compiled-plan catalog and plan invalidation would take place whenever

the DBMS decided was necessary. Since rewriting of queries takes place

before plans are stored, the stored plans will contain the rule-modified queries

rather than just the original user query. This has the effect of reducing the

runtime overhead of the QRS to zero. The only additional overhead might

be the possibly greater occurence of plan invalidation because more complex

queries are being run.

5.2 Parameterized Rules

To implement TPl via database procedures, we would like to be able to

define this POSTQUEL function :

define postquel function TPl (customer,$1) {
replace current ( balance = current.balance + $1 )
replace branch (balance = current.balance + $1 )

where current.branch = branch.name

retrieve ( b = branch.balance, c = customer.balance )
where customer.name = current.name

and current.branch = branch.name
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where customer and branch are the tables where the customer's and

branch's accounts are stored respectively. This function takes the value given

in the parameter $1 and updates the customer and branch accounts with it.

A positive value in $1 corresponds to a deposit and a negative value corre

sponds to a withdrawal from the account. Having defined this function, we

could deposit $500 to Sam's account by running the following querj*:

retrieve ( customer.TPl(500) .all ) where customer.name = "Sam"

Unfortunately, POSTQUEL functions are implemented as rules, and rules

cannot have explicit parameters, so the above function cannot currently be

defined as stated because it is parameterized. This example demonstrates

that there are some functions where explicit parameters are very much de

sirable, and that we should explore parameterized rules.

5.3 Pseudo Recursive Rules/Procedures

As mentioned in Section 2.3, the rewrite system is inherently unable to

process all truly recursive and most pseudo recursive rules. There is how

ever, a subclass of "pseudo recursive* rules where qualevent D qualaction H
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qualU8erquery = 0 that the rewrite system should be able to process. A "loop

detector" could be written that would algebraicalh* evaluate the qualifica

tions to determine whether there was any recursion. Unfortunately, adding

a "loop detector" provides little additional functionality to the user, since

truly recursive rules still could not be processed. Furthermore, constructing

such a "loop detector" is non trivial and the cost of algebraic evaluations is

potentially quite high. Because of these considerations, in our current imple

mentation both pseudo and truly recursive rules axe disallowed by asserting

that there are no recursive threads in any invocation of a rule.

6 Conclusion

In this paper, we have provided a detailed description of a Query Rewrite

mechanismthat will support the full syntax of PRS2 as describedin [STON90],

The working examples in Section 4 show that the full spectrum of applica

tions described in [STON90] are possible and have in fact been implemented

in POSTGRES.

The timings provided in Section 4 further shows that such a system runs

at least as fast as having the rules hardcoded into the application program.
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Preliminary analysis shows that in the case of views, versions and "special1"

procedures, the Query Rewrite System (QRS) should outperform the Tuple

Level System (TLS). However, it is not possible at this time to verify this

by doing performance benchmarks as the TLS does not yet provide these

functions.

Thus, at the time of writing, the functionality of the QRS is a superset

rather than a subset of the TLS. even though in theory the reverse should be

true. This may be attributed to the fact a QRS system is easily and efficiently

implemented as a self contained module, whereas the TLS implementation,

which requires hooks into many levels of the executor and access methods,

is easily bogged down by the myriad interfaces required. This suggests that

even though there are cases where the TLS could easilj* outperform the QRS,

a database implementor should consider doing QRS first because the amount

of functionality derived per man hour spent is greater.
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