
Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

MANAGING PERSISTENT OBJECTS IN

A MULTI-LEVEL STORE

by

Michael Stonebraker

Memorandum No. UCB/ERL M91/49

28 May 1991

MANAGING PERSISTENT OBJECTS IN

A MULTI-LEVEL STORE

by

Michael Stonebraker

Memorandum No. UCB/ERL M91/49

28 May 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

MANAGING PERSISTENT OBJECTS IN

A MULTI-LEVEL STORE

by

Michael Stonebraker

Memorandum No. UCB/ERL M91/49

28 May 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

MANAGING PERSISTENT OBJECTS IN A MULTI-LEVEL STORE

Michael Stonebrakert

Computer Science Division, EECS Department
University of California

Berkeley, Ca. 94720

ABSTRACT — This paper presents an architecture for a per
sistent object store in which multi-level storage is explicitly
included. Traditionally, DBMSs have assumed that all accessible
data resides on magnetic disk, and recently several researchers
have begun to consider the possibility that significant amountsof
data will occupy space in a main memory cache. We feel that
future object managers will be called on to manage very large
object bases in which time critical objects reside in main
memory, other objects are disk resident, and the remainder
occupy tertiary memory. Moreover, it is possible that more than
three levels will be present, and that some of these levels will be
on remotehardware. This papercontains an architectural propo
sal addressing these needs along with a sketch of the required
query optimizer.

1. INTRODUCTION

Traditionally DBMSs have assumed that all data resided on
magnetic disk. Therefore, all optimization decisions were
oriented toward disk technology. For example, access methods
have been proposed thatareefficient ondisk devices, e.g. B-trees
[COME79] and R-trees [GUTM84]. Query processing strategies
have been designed that work well for disks, e.g. merge-sort
[SELT79], and queryoptimizers have been architected with a disk
environment in mind [JARK84, SELI79].

Recently, there hasbeen some work on including in this tradi
tional environment the possibility that significant portions of a
data base may reside in main memory. Query processing stra
tegies have been designed which require large amounts of main
memory to be effective, e.g hash joins [DEWI84, DEWI86,
SHAP86]. In addition, access methods appropriate to main
memory have been constructed, e.g. T-trees [LEHM86] and the
possibility of using AVL trees was evaluated in [DEWI84].
Lastly, queryoptimizers have begun to takemorecareful noteof
available main memory when constructing query plans
[HONG90].

However, currentgeneralpurposeDBMSs are still tooslow to
manage the real-time data bases associated, for example, with

tThis researchwas sponsored by the DefenseAdvanced Research
Projects Agency through NASA Grant NAG 2-530 and by the Army
ResearchOffice through Grant DAALO3-87-0083

factory floor applications or telephone switching. Such applica
tions are addressed by special purpose system software such as
VAX-Elan and Rdb-Elan. It would clearly be desirable to expand
the set of applications amenable to a general purpose DBMS
solution by increasing its support for main memory data.

We alsobelieve thatmostdata bases willexpanddramatically
in size, requiring the inclusion of tertiary storage. In addition, it
is possible that there will be multiple tertiary stores, perhaps at
remote locations. Moreover, it is not unreasonable that there may
be more than three levels in future systems. Therefore, the
current paper indicates an architecture that supports a multi-level
store. In Section 2, we justify why we believe that a multi-level
storage system is required. Then, in Section 3, we present our
proposal for a storage architecture. The special needs of long
fields are covered in Section 4, and then we move in Section 5 to
an outline of the query optimizer needed in this environment.
Section 6 discusses how the proposal could be extended to a dis
tributed environment. We conclude in Sections 7 withour proto
typing plans.

In the remainder of the paper we make several assumptions.
First, we assume that an abstract data type facility is available
[STON86B, STON90]. Hence, a usercandefine new data types,
functions and operators. Moreover, such types, functions, and
operators are automatically available in the query language sup
ported by the DBMS. For the purposes of this discussion, we
assume the ADT facility available in POSTGRES and the query
language, POSTQUEL [STON86]. However, any comparable
capabilities could be readily substituted.

We also assume that the storage manager uses a no-overwrite
philosophy as in [STON87], Therefore, certain techniques that
we propose take advantage of this property. Anyone interested in
a Write Ahead Log (WAL) storage manager must make minor
adjustments to our proposal.

2. WHY TERTIARY MEMORY

In this section we present six reasons why data bases are
likely to become very large in the near future, and why tertiary
memory is desirable for such data bases.

1)Many databases willbegin to includeimages.

For example, banks wish to destroy paper checks and use an
imageof the check as the historicalrecord. Insurancecompanies
wish to record photographs of accidents, police reports, and the
like. Moreover, satellite data should not be overlooked, and
NASA is currently collecting one terabyte of data per day that
they wish to store and distribute to interested scientists. In addi
tion, a personnel application might want to record a photograph
of each employee, say for security purposes. Moreover, military
intelligencewill make increasing use of images to track troop and
equipment movements. Lastly, people will begin to store video
and/or animation in data bases, which are a sequence of images.

Even in encoded form, images are likely to be in the range 0.1 to
1 megabyte each. A data base of a million images might be 1 ter
abyte in size and would require tertiary storage.

2) Many data bases will begin to include audio.

Clearly, voice mail is an obvious candidate for inclusion in data
bases, as well as audio recordings. Such signals require at least
10K bytes/sec, and audio data bases can quickly become very
large.

3) Many data bases will begin to include historical data.

Currently, most data bases do not remember the past history of
the state of the data base, managing only the current state instead.
Consequently, previously valid information is simply discarded.
However, many DBMS customers would like to keep the past
history of their data as well as the current data. For example,
several large department store chains retain sales transactions by
time of day by store for several months. The purpose of such his
torical data bases is to support managers running ad-hoc queries
to deduce buying patterns (i.e. pet rocks are out and barbie dolls
are in). Based on such information, they can rotate stock in their
stores and purchase new merchandise more effectively. A second
example is Federal Express which keeps on-line a IS day history
of all transactions. They would keep a longer history, but they are
limited by storage costs and system support.

In these cases, the DBMS client would prefer to keep a longer
and longer history. Such historical data bases may become
gigantic relative to data bases which only keep the current state
of an application. Moreover, the value of such data bases is
deducing information on business patterns. Hence, queries are
largely of the decision support variety, and the term data mining
has come to be associated with these sorts of applications.

4) Many data bases will begin to include text.

Proposals, annual reports, correspondence, etc. are increasingly
being generated using desktop publishing. Such documents are
natural candidates for inclusion in data bases where they can be
shared and portions reused. NSF is even stimulating this trend by
encouraging the submission of proposals electronically.

Moreover, text that does not exist in electronic form is still a can
didate for inclusion in data bases. It is possible to include such
text as image data, by recording the scanned images. The technol
ogy is already adequate to decode typewritten text in a scanned
image. Hence, it is likely that scanned images will be decom
posed into their constituent text for reuse and compression pur
poses.

Again, inclusion of text will create very large data bases. In
compressed form, a page of text requires about 2K bytes. Hence,
a data base of 2.5 million documents, each 200 pages long, will
require 1 terabyte of space.

5) Many data bases will begin to include maps

Many military data bases include detailed topographic maps of
theaters of interest. In fact, certain agencies have data bases
which are mostly maps, such as USGS and the Defense Mapping
Agency. In addition, many businesses would like to store a map
indicating the location of their employees, their customers, or the
current location of all their delivery trucks.

Topographic maps are collections of polygons, and become very
large if a moderate size area must be be covered with high resolu
tion. Any application with requirements for many maps, e.g.
vegetation, elevation, rainfall, etc. has very large storagerequire
ments.

6) Environmental and biological applications will require very
large data bases.

The environmental concerns that require addressing include glo
bal warming, ozone depletion, and acid rain. Studying any of
these issues requires a time-oriented data base, which includes
image and map data to be maintainedover a broad geographical
space. The resultwillbe verylargespatialdatabaseswhich may
require tertiary storage.

The human genome project will also require a very large data
base to be successful. If the project manages to map a complete
sequence for a human, the resulting data structure will be a tera
byte data base.

The net result of these observations is that we believe that the

size of many data bases will increase over the next few years by
severalordersof magnitude. Such data bases willbe measured in
terabytes instead of in gigabytes.

Moreover, it will typically be more cost effective to manage
such data bases utilizing a three level store including tertiary
memory, as demonstrated by the following analysis. Consider a
data base of 10**6 objects, each 10**6 bytes in size, and assume
typical 1990storageprices. Moreover, suppose we wish to max
imize the number of accesses per second per dollar and that 90
percent of the accesses go to 10 percent of the objects. Figure 1
outlines the resulting analysis for a collection of storage options.

Here we have indicated the cost per terabyte, the performance
of the technology measured by the number of 1 mbyte objects

that can be read per second, and the cost per access per second
per million dollars. Main memory is assumed to cost $100 per
megabyte and have 10 mbytes/sec bandwidth. Thereby it is lim
ited to 10 accesses per second.

The disk numbers are computed by assuming that a 300
Mbyte SCSI drive costs $3000 and can perform one access per
second. To store one terabyte, one requires 3300 such disks,
which can, in theory, perform.3300 accesses per second. How
ever, performance will be limited to 10 accesses per second by
the 10 mbyte/sec bandwidth supported by main memory. Realist
ically, perhaps half of that, 5 accesses per second, can be accom
plished, resulting in 0.2 accesses per second per million dollars.

The archive numbers assume 12" WORM technology, for
which a 325 gigabyte jukebox including the robotics costs about
$130,000. Each of three jukeboxes has two read/write stations
that can access a random platter and read a megabyte from it
about every 10 seconds. Therefore each station supports .1
accesses per second. A total of 6 stationsyields 0.6 accesses per
second and 1.5 accesses per secondper million dollars, nearlyan
order of magnitude better than the disk solution. Of course, other
jukeboxes are available using 5 1/4" technology and 9 tracktape
offeringdifferent capacities, bandwidth and cost.

The disk + archive solution assumes 1 terabyte of archive
with 100 gigabytes of disk as a cache. Therefore 90 percent of
the accesses go to the disk system; the remaining 10 percent to
the archive. Consequemly, this alternative gives a bit better than
90 percent of disk performance at 14 percent of the cost, and
therefore more than twice thecost-performance of an archive by
itself.

The lastrow supposes an8mm tape library of500tapes, each
storing 2 gigabytes. Assuming twotapedrives at$5000 each, the
cost of the drives plus media is about $14,000. If thetape library
is supported in a jukebox, then it becomes an example of an
archive solution. Therefore, we assume that a human must manu
ally find the desired tape and load it into a drive for reading.
Since the cost of an operator is not factored into our storage
costs, we assume that the ultimate user must walk to the machine
room and load the proposed tape, which we assume requires 6
minutes. With two drives, we obtain .0054 accesses per second
and .39 accesses per secondper milliondollars.

Hence, using both disk and an archive offers the best combi
nation ofcost and performance. The archive-only solution places
second with all other solutions far behind. Consequently, a
multi-level store in a DBMS canresult in dramatic improvement
in cost-performance if it can be effectively managed. The pur
pose of this proposal is to address this issue.

3. A MULTI-LEVEL STORAGE MANAGER

We assume that the storage systemconsistsof a collection of
L logical devices that form a rooted tree. Hence, there isa unique
root, called main memory, with zero or more direct descendant
devices, each of which can have zero or more descendants. More
over, these L devices can be on various computer systems in a
network. For the moment we will assume that L = 3 and denote

technology cost/ accesses/ accesses/sec
terabyte sec /million-

dollars

main memory $100,000,000. 10.0 0.1

disk $10,000,000. 5.0 0.2

disk + archive $1,400,000. 4.6 3.3

archive $400,000. 0.6 1.5

tape library $14,000. 0.0054 0.39

Cost and Performance of Storage Technologies

Figure 1

the devices by main memory, disk and archive, which are
assumed to be on a single computer system. The extension of our
proposal to L > 3 devices and to a distributed environment is dis
cussed in Section 6.

A multi-level storage manager must be able to address the
needs of the following clients:

1) real time applications which need sub-millisecond response
times for requests to a main memory data base along with con
ventional response times to disk based data. Persistentprogram
minglanguages are an exampleof this class of applications.

2) applications with mamouth data bases which need conven
tional response times to disk baseddata and reasonable response
times to archival data.

To address these needs, onecould either usea physical hierarchy
or a logical hierarchy. We first discuss this issue and then turn to
our specific proposal.

3.1. Physicalor Logical Hierarchy

The traditional way of viewing a multi-level store wouldbe to
generalize the physical block model used by current disk-based
systems. Current DBMSs and file systems assume that data
blocks resideon disk and that worthy blocks are placed in main
memory. Movement of blocksbetween mainmemory anddiskis
controlled by the buffer manager, which utilizes a replacement
policy based on how recendy each block has been touched and
perhaps other semantic information [SACC86, CHOU85]. The
generalization to a three level store is presented in Figure 2,
where datablocksresideon the archive, worthy blocks are placed
on the disk and very worthy blocks are placedin mainmemory.
Storage blocks would be moved in the hierarchy as access pat
terns change by a generalized buffer manager. Some work on
migration of whole files in such a three level store has been done
in [SMIT81].

Although a physical block model is appealing because of its
simplicity, we feel that it is inadequatefor the following reasons:

location contents

main memory very worthy blocks

disk worthy blocks
archive the rest of the blocks

Architecture of a Physical Three Level Store

Figure 2

1) Persistent programming languages need an object cache in
main memory with the property that pointers to other objects are
"swizzled". Specifically, a pointer to an object should be
represented as a unique identifier (UID) on disk but as a physical
pointer in main memory. Another simple example of an object
changing representation when it moves between levels is a vari
able length character string. It might be stored in main memory
as a pointer to a location in a heap containing a null terminated
string. However, on disk the string would be represented by a
length designator followed by the data. The physical block
model is inadequate because it does not support an object chang
ing representation when it move between levels.

2) A conventional relational DBMS maintains a main memory
cache of system catalog objects (e.g. open tables, scan positions,
etc.). In all systems we are familiar with, this cache is managed
as a separate main memory data base. Moreover, system catalog
objects have different representations in main memory and disk.
Again, objects must change representation when a table is
"opened" or "closed".

3) POSTGRES supports historical versions of objects on an
archive device. However, it carefully encodes an archive record
by differencing it against its predecessor. Again the object must
change representations when it moves between levels.

4) An application specific compression algorithm should be
applied to images when they are placed on disk or archive.
Moreover, when an image is fetched, it will sometimes be
appropriateto decode it (for example to display it) and sometimes
to leave it encoded (for example if the function to be applied to
the image can use the encoded format). Moreover, it is possible
that multiple levels of compression will be appropriate. For
example, one should spend a small number of seconds compress
ing an image when it is sent to the disk and a larger amount of
time when it is dispatched to the archive. Again, multiple
representation changes may be required.

5) Objects are usually accessed through secondary (or primary)
indexes. Such indexes can use direct physical pointers for main
memory objects, but must employ UIDs for disk based data.
Moreover, an AVL tree is an effective indexing scheme for main
memory data, but fails disastrously on disk-based data, and a B-
tree should be used instead. Hence, both the representation of an

index and its basic algorithm should change when objects move
in the storage hierarchy.

6) The degree of security controlling access to an object may be
different for the different storage levels. One reason to place data
in main memory is to ensure the highest possible performance.
However, a traditional DBMS runs in a different address space
from the application program. Hence, objects are not directly
accessible to an application; rather commands must be sent over
an interprocess message system and the result returned in the
same way. This overhead is expensive for main memory data,
and one might choose to allow the application program direct
access to the main memory data. Consequently, the physical
mechanisms used for access control to objects may vary from
level to level in the storage hierarchy.

Because the physical block model does not support data
objects or indexes changing representations or degreeof security
when theymove betweenlevels, we propose a more generallogi
cal model to rectify these deficiencies, as indicatedin Figure3.

Here, the right-most column indicates the archive data base
which is identical to the physical block model discussed earlier
and supports caching of worthy blocks at higher levels in the
storage hierarchy. However, thephysical blockmodelis general
ized by supporting additional columnsin the table. Each column
corresponds to a different representation for an object which is
appropriate for a specific storage device. Hence, there are three
representations possible in Figure 3, one appropriate for the
archive (A), one appropriate for the disk (D), andone appropriate
for main memory (M). Moreover, three different logical data
bases coexist, a main memory data base, a disk data base and an
archive data base, each of the latter two with caching at higher
levels of the hierarchy. Furthermore, an object may exist in any
of thesethreedata bases. Lastly, it is possible thatoneor moreof
these columns will not be used in a given application. In this
case, the model simply contains less columns.

This architecture is a generalization of traditional DBMSs,
which assume that all records are in disk format, D even if they
are cached in main memory. Main memory caching of system
catalogs in a different format then occurs outside the storage
manager using specialized code. It is also a generalization of the
POSTGRES storage system [STON87], which utilizes two dif
ferent representations fordisk andarchive objects. Hence, objects
are converted when they move between these levels. However,
POSTGRES has no support for main memory objects. Lastly, it
is also a generalization of commercial persistent object stores,
(e.g. the products from Ontologic, Object Design, Objectivity,
and Versant) whichusually "swizzle" pointers when an object is
moved from disk to main memory. Hence, they support two for
mats for objects, namely M and D, and convert between these
representations when objects aremoved. However, noneof these
products support an archive format.

location mam memory

data base

disk

data base

archive

data base

main memory main memory objects in
main memory format (M)

cache of disk blocks cache of archive blocks

disk disk objects in
disk format (D)

cache of archive blocks

archive archive objects in
archive format (A)

Logical Model of a Three Level Store
Figure 3

We now turn to our specific proposal for a storage manager
supporting the logical model.

32. The Storage Manager

The DBMS stores a set of instances (objects, tuples) of collec
tions (classes, tables). The instances of each collection may be in
the format appropriate to any logical device, and we can think of
theinstances in a particular format as forming a logical database.
Whena userqueryis submittedto this system,e.g:

retrieve (EMP.name) where EMP.age= 30

it must be executed againstsome subsetof the these logical data
bases. To optimize this process, we require a distribution cri
teria, for each collection which indicates the location of instances
among the three logical data bases.

Current persistent object stores, e.g. Orion [KIM90], maintain
a list of UIDs of instances in main memory, with the remainder
assumed to be in disk representation. Specifying which objects
arein mainmemory usinga list of UIDsis unduly restrictive. For
example, employees over 65 are retired and might be placed on
thearchive, while those under 30 might existin themain memory
representation and thoseover 30 in the disk representation. It is
very inefficient to require specifying suchpartitioning using lists
of UIDs. Notonly is it space inefficient, but also it does notper
mit optimization of queries. For example, finding employees
under 20 is a querywhichneedbe directed only to theobjects in
main memory representation; however unless the partitioning is
described semantically therewillbe no wayto figure thisout.

On the other hand, POSTGRES uses a semantic criteria to
specify the location of objects. Unfortunately, the criteria is
hard-coded to be:

disk representation: all objects valid at time = now
archive representation: other objects

A much better alternative wouldbe to allow a useror application
program or maybe even the DBMS itself to dynamically specify
thesemantic composition of objects at eachlevel through a gen
eral distribution criteria, and two possible approaches seem rea
sonable. First, we could require that the criteria for each device

be mutually exclusive and correct at all times. One such set of
criteria for EMP might be:

main memory representation: EMP where age >= 30 and
age < 60
disk representation: age < 30
archive representation: age >= 60

If the criteria form a partition, then any update or insert must be
installed in the correct data base before the installing transaction
commits. Moreover, certain queries need only be processed for
one data base. For example, to find the names of all 25 year old
employees, one need only query the disk data base. We will call
this form of operation synchronous, because the distribution cri
teria is dynamically kept correct for each device.

The other possibility would be to require the criteria to form a
partition as above. However, instead of guaranteeing that each
criteria is correct, the execution engine only guarantees that each
instance will be on its correct home device or on a device that is

an ancestor of its home device. In this case, each insert or
update can be installed on the main memory device, and then
moved asynchronously at some later time to a lower level. This
asynchronous mode of operation supports faster commit than
synchronous mode because modifications can be installed in main
memory. However, it has the disadvantage, that queries that
should be logically processed by device-i must be processed for
all ancestor devices in addition.

In a transaction processing environment, we can see the obvi
ous utility of asynchronous operation, while in a decisionsupport
application, the synchronous mode might be better. Therefore,
one might expect to support both modes of operation; however,
we choose to support only asynchronous operation. Because we
expect that each device is faster than its descendants by perhaps
one order of magnitude, a query to a specific device will gen
erally be much faster than the same query to any of its descen
dants. Hence, requiring each query to be processed by all ances
tors of a device may not be a significant burden.

Our storage architecture assumes a general purpose DBMS
whose query optimizer has been modified to produce the correct
number of queries to the various actual collections. Moreover,

we require a collection of background demons, one per logical
storage device, whichperformsophisticated storagemanagement
functions. Hence, we needa storage manager for main memory,
thedisk and the archive, and each storagemanager controls space
allocation on its device. Therefore, eachonecontrols thecaching
of blocks of lower level objects on its device and also controls the
asynchronous migration of objects from its data base to lower
level home data bases. To signify that this is much more than a
buffer manager, we term this software the vacuum cleaner.
Hence, the main memory vacuum cleaner is responsible for the
main memory buffer pool of disk blocks and archive blocks as
well as for reclaiming space in the main memory data base by
migrating instances to their home data bases. Of course the
vacuum cleaner must be able to identify instances to be moved,
so it must contain a complete execution engine. Also, when an
instance is moved, the vacuum cleaner must pass the affected
instance to a receiver for the target data base, who will install the
instance.

The last task of the vacuum cleaner associated with each dev

ice is to support dynamically changing the distribution criteria,
and there are two models of redistribution which we propose. The
first model is used by a specific application prior to executing a
query and supports temporary redistribution of instances, while
the second model is used by a data base administrator for per
manent redistribution. Denote the permanent distribution criteria
as {PERM(device)}, and consider a second temporary distribu
tion criteria, (TEMP(device)}. For each device, initially TEMP
= PERM.

A user can execute a query in one of two ways. First, he can
run the query directly as:

retrieve (target-list) where qualification

For example, he might want the names of employees with low
salaries as follows:

retrieve (EMP.name) where EMP.salary < 1000

The query optimizer will construct queries for those logical data
bases. which have a distribution criteria which intersects the

above qualification.

Alternately, he can temporarily move the data to a higher
level and then run the query. The syntax he requires is:

elevate objects where qualification to destination

For example, he might specify:

elevate EMP where EMP.salary < 1000 to main-memory

In this case, the distribution criteria changes as follows:

TEMP(destination) = TEMP (destination) union qualification
TEMP(other-levels) = TEMP (other-levels) minus
qualification

Elevation is performed synchronously with appropriate locking.
An elevate command to a lower level device serves little purpose
and will be ignored.

Therefore, if the application accessing the low salary employ
ees expects to access this set several times, it can perform the fol
lowing:

elevate EMP where EMP.salary < 1000 to main-memory

retrieve (EMP.name) where EMP.salary < 1000

This latter command sequence will cause qualifying instances to
be moved to main memory, which may require instance conver
sion, as well as insertions into main-memory access methods.
This overhead will be worth while only if the retrieved objects
will be subsequently accessed several times. In this case, the user
is requesting data with temporary locality of reference to be
elevated to a faster mode of access. When the user is finished

with this data, he can cause the data to be returned with a second

command:

return objects where qualification

This command will cause each vacuum cleaner to perform the
following steps:

1) Identify the instances to be moved from its device, j, to
device-i with the following query:

retrieve (collection-instances)
where qualification AND PERM(device-i)
and TEMP (device-j)

2) Asynchronously return the instances to their correct home.

3) Appropriatelyupdate TEMP for device-j.

Because we are dealing with a no-overwrite storage environ
ment, the following optimization can be employed for an
elevate-return sequence. When an elevate command is executed
the data can be copied to the destination, leaving the instances
also in the lower level data base. If the higher level objects are
not modified, then execution of a return command can cause
them to be discarded rather than returned. On the other hand, any
updates will result in new instances which require return. As a
result, only the new instances need be actuallymovedback to the
destination. The bookkeeping to support this is straightforward.
One need only record the time, TIME, of the elevation command.
When the return command is executed, the instances to be move

back to device-i can be identified by:

retrieve (collection-instances) where qualification
AND PERM(device-i)
and collection.valid-time > TIME

It is clear that users ofter move data to higher levels and then
forget to return them to a lower level when they are done. In this
case, the higher storage levels will become cluttered, causing two
significant disadvantages. First,space willbe takenup thatcould
be better used for caching blocks from lower levels of storage.
For example, space in main memory can be used either to store
mainmemory dataor to cachediskblocksor archive blocks. The
more space that is used for main memory data, the less space that
is available for the disk cache. This may mean that there is no
space for worthy disk blocks such as root nodes of B-trees, etc.
The second disadvantage is even more serious. If there is too
much main memory data, then data instances will be paged out to
a swapping device. In this case, a data base optimized for main
memory storage will actually reside partly on disk storage, and
the performance implications may be disasterous. For example,
main memory data may use AVL trees for an access method.

However, in [DEWI84] it is demonstrated that AVL trees per
form much worse than B-trees if any significant fraction of their
structure goes out to disk.

To alleviate this problem, we propose that each vacuum
cleaner be able to issue return commands on the user's behalf to

free up space if required. Traditional storage managers make such
placement decisions solely based on the time since the last access
to the object. In our environment, the sets of instances that have
been temporarily moved are of various sizes. Therefore, the
vacuum cleaner should make placement decisions based on both
the time since an instance satisfying the qualification has been
touched and by the total size of the set of instances. When
qualifications overlap, this will lead to errors, but it is an easy to
administer policy.

The above capability supports temporary movement of data
under user control from lower levels to higher levels. The data is
then returned to its permanent home under user control or
vacuumcleaner control. We now turn to a mechanism to support
changing the permanent distribution criteria, PERM.

Many users will not take advantage of the elevate command
because their individual accesses will not justify the cost of the
conversion of objects. However, the data base administrator
might notice that overall better performance would occur if
storage was rearranged. This requires a change in the permanent
distributioncriteria, PERM, and therefore we require the follow
ing move command:

move objects where qualification to destination

MovechangesPERMin the obviousway, i.e:

PERM(destination) = PERM (destination)
union qualification
PERM(other-levels) = PERM (other-levels)
minus qualification

Like the elevate command, movement of instances up the tree
occurs synchronously and down the tree asynchronously. How
ever, move differs from elevate in that movements of instances

are performed by actually deleting the instances from the source
data base and inserting them in the target data base, rather than
by copying them and subsequently invalidating the copies.
Because of this fact, a move command will cause the vacuum
cleaner fordevice-i to identify instances to be senttodevice-j by:

retrieve (collection-instances)
where qualificationAND NOT PERM (device-i)
AND PERM(device-j)

i.e. any temporary redistributions currently in effect can be
ignored.

We observe thatsome collections of objects tobemoved may
takesubstantial rearrangement time. For example, to movea one
gigabyte collection of objects fromarchive to disk requires about
83 minutes. It makes no sense to perform this rearrangement
synchronously, since the data in question would be unavailable
for a long period of time. To dealwith this issue, wepropose the
notion of a goaldistribution criteria, {GOAL (device)}. Thedata
base administrator can set a new goal at any time for any level
using the following command:

target objects where qualification fordestination

For example,

target EMP where EMP.salary < 500 for main-memory

The vacuum cleaner for device-i must find instances where:

PERM (device-i) AND NOT GOAL (device-i)

and asynchronouslymove them to the correct level with minimal
locking. Consider the case that there is a term in GOAL of the
form:

collection.attribute-1 operator-1 value-1

and that an ordering index such as a B-tree or AVL tree exists on
the field, attribute-1. If PERM does not include a clause that uses
attribute-1, then the vacuum cleaner records the above clause as

its movement goal. On the other hand, if PERM includes a
clause using attribute-1, e.g:

collection.attribute-1 operator-1 value-2

then, the storage manager has a movement goal of the form:

collection.attribute-1 operator-1 value-1
AND NOT collection.attribute operator-2 value-2

In either case, the vacuum cleaner can enter the indicated index

and identify small collections of records to incrementally move.
The required algorithms are sketched in [STON89] for a similar
problem, that of incrementally building secondary indexes.

We also propose that the same goal mechanism be used to
construct new indexes for instances, which require sufficient time
that synchronous index construction is not advantageous. Again
[STON89]contains detailed algorithms.

The last requirement is extensions to the» type system. We
assume an abstract data type (ADT) system of the form in
[STON86B]. Therefore, a user can construct a collection using
the syntax:

create collection-name (attribute-1 = type-1.

For example, the EMP collection could be constructed as follows:

create EMP (name = char16, address= point,
manager = EMP, age = int4, salary = int4)

This specification indicates the types that the user wishes to give
to the systemfor storage and receive back as answers to queries.
However, the types actually stored in the three collections, may
be different. To support construction of the various representa
tions, we propose the addition of the following commands:

use name-1 for name-2 on device-1

convert name-1 to name-2 using function-name

For example, the following specification supportsa main memory
representation of the char16 type:

use m-charl6 for charl6 on main memory
convert char16 to m-charl6 using make-string

Here, make-string is a previously registered function with an
argument of type char16 and a result type ofm-charl6.

When a create statement is processed, the DBMS must con
struct three actual create statements. To do so it identifies any
relevant collection of use statements for the types specified by the
user and utilizes them in the obvious way. If no use statement is

encountered, then the DBMS simply utilizes the type specified in
the user's create statement Whenever, a vacuum cleaner is
required to convert from one representation to another, it makes
use of information in a relevant convert statement to identify
which function to call.

An ADT system must support indexing for all three data
bases. Since each index may be specific to a level, then a user
must indicate a specific device in an index creation command as
follows:

create sal-index (EMP) on salary as B-tree for disk

If he leaves out the location clause, then the DBMS should

assume that the index is to be built for all devices.

The last extension we propose is to allow the data base
administrator to specify for each collection which of two security
modes he. wishes, trusted or secure mode. In either case, the

application program runs in a separate address space from the
DBMS. With trusted mode, objects in the collection are placed
in a segment which is shared between the DBMS and the applica
tion. Thereby, instances can be directly manipulated by the
application. Alternately, instances occur in a segment private to
the DBMS and records must be exchanged over an interprocess
message system.

Trusted mode allows very fast access by the application, espe
cially for main memory data. Once the application had identified
a collection of records by running a query to obtain their storage
addresses, subsequent accesses could be performed by direct
memory access.

33. How Many DBMSs

It might be argued that the above proposal is equivalent to
three DBMSs, one for each storage device, and that the software
complexity will be prohibitive. In this section, we claim that the
above proposal is only modest extra work on top of an extendible
DBMS such as POSTGRES. The main pieces of a DBMS are the
parser, planner, executor, access methods, utilities, and transac
tion management system, and we discuss each piece in turn.

The parser is the same one used for a traditional system. Con
cerning the planner, it must be extended for a tertiary memory
environment, and the modest extensions required are discussed in
Section 5. The executor must evaluate a query plan for each
instance fetched by the access methods. Given that our proposal
specifies representation issues within the ADT system, there is
essentially no extra work in this module, given that an ADT sys
tem has been constructed. Access methods may well be specific
to devices, and we envison ones optimized for each type of dev
ice. Clearly, there is extra effort required to add access methods;
however, if the DBMS has been designed along the lines of
[STON87] to allow indexes to be added, then there is no addi
tional complexity outside of the access methods. In the utilities,
there is low level code to support each device. However, if any
device comes with a reasonable file system, then such code
should be modest. Lastly, a single concurrency control system
must be used for all devices; hence no extra difficulties occur

here, and a no-overwrite storage manager obviates the need for

crash recovery code. The only requirement is a vacuum cleaner
for each device. Hence, we estimate that a three level DBMS is

much closer in complexity to a single extensible DBMS than to
three times that complexity.

it might be argued that a two level hierarchy is enough
because disk will be formatted the same way as the archive. In
some applications this may be true; however, we believe that an
architecture allowing N representations will be generally superior
to one allowing only two representations.

4. STORAGE AND INDEXING OF LARGE

OBJECTS

Becausevery large data bases will usually contain long fields,
we discuss their storage and indexing in this section. First, the
characteristics of archival memory that constrain the problem of
storinglong fields are discussed. Then, we discuss record storage
in this environment Lastly, functions may be very expensive to
compute, and the section closes with a proposal that addresses
this fact

4.1. Memory Characteristics

Li this section the abstract model for a three level store is con

sidered. The archive device consists of a collection of 2 or more

read/write stations onto which media platters can be loaded
from storage racks by mechanical robots. The load time for a
platter is dominated by the speed of the robotics, which is typi
cally 5-10 seconds in current devices. Once loaded, the time to
read or write any specific storage block depends on the charac
teristics of the device. For optical disks, access times vary from
10-100 msecs depending on how far the disk arm must move to
the desiredblock. For tape media the access time is on the order
of 1-100secondsdepending on what tape technology tape is used
(9track, 8mm, DAT) and how far into the tape the desired block
resides. Once located, a block can be read quickly as sequential
read speeds are usually 0.2 mbyteper second or higher. Hence,
tertiary store is characterized by the following parameters:

AP ~ platter switch time in seconds
AR - time to move to a random block on a loaded platter
in seconds.

AT ~ transferrate in bytes/seconce the desired information
is under the read head

For secondary memory, it will be useful to includethe follow
ing parameters:

DR - time to move to a random block on a magnetic
disk drive in seconds
DT ~ transfer rate in mbytes/sec once the desired
information is under the read head

Although it is possible to build an I/O controller which would
move archive blocks directly to the disk and back, we assume a
more conventional organization in which archive blocks are read
into main memory, m this case, we assume the existence of two
physical block sizes, Bl and B2, which are the units of transfer
respectively between the disk and main memory and the archive
and main memory. Presumably B1 is 4K bytes, whileB2 will be

a much larger value, say 64K or 128K.

4.2. Storage of Records with Long Fields

Clustering has been studied extensively with a disk as the
assumed storage device [CHAN89, KIM87]. Those studies try to
arrange a collection of records so that the number of physical
disk reads which must be performed to access a set of related
objects is minimized. Similar work assuming an optical disk as a
storage device is reported in [CHRI87].

The two popular forms of archives are ones using optical
disks and tapes. In tape systems, AR is the dominent time and
must be carefully optimized. On the other hand, in an optical
disk tertiary memory system, platter switches (AP) are a factor of
100 larger than seeks (AR), and will therefore dominate perfor
mance. Consequently, we believe that the important clustering
problem for this device is to arrange data records so as to minim
ize the number of platter switches when accessing a set of
records. Therefore, we assume that all the instances of each col

lection are allocated to a single home platter. As a result, queries
to a specific collection would be confined to a single media.
Since, the plattercapacity of most archives exceeds 3 Gigabytes,
this will support moderate size collections. Larger ones must be
horizontally partitioned [CERI84] to multiple platters by an
archive distribution criteria. We assume that the archive distri
bution criteria is a set of clauses of the form:

collection.fieldname operator value to platter-number

Should a user wish to cluster together instances of different col
lections, he can ensure that theyare allocated to the sameplatters
by carefully structuring the collection of archive distribution cri
teria.

Moreover, we also assume that instances of each collection
are stored with all short fields together in a record and all long
fields stored separately. To see intuitively the reason for this,
consider the following collection:

EMP (name, address, manager, age, salary, picture)

Here, the first five fields total perhaps 75 bytes, while the fifth
one is an imageof an employee and mightbe 1 megabyte. Now
consider the following queries:

A) retrieve (EMP.name) where EMP.age= 40

B) retrieve (EMP.picture) where EMP.name = "Joe"

Lithefirst query, a sequential scan of therecords will fetch only
the short fields and will access one record every 75 bytes
retrieved. Ontheotherhand, if all fields arestored contiguously,
then one record is fetched every 1,000,075 bytes. On the other
hand, queryB) requires an extraseek to fetch the longfield from
a separate place. However, this is very small relative to the time
required to read 1 mbyte. Hence, separate storage of long fields
dramatically accelerates queries which do not access them at a
very small performance penalty for those which do. The follow
ing analysis qualifies the required size of a field that necessitates
separate storage for disks and archives. A more careful analysis
only for disk storage has been done in [NAVA82].

Consider a collection of Nl instances, each with K fields, with
the i-th field appearing in a querywithprobability, Pi andhaving
a length in bytes of Li. Lastly, assume that the first j fields are
currently "short" and that a sequential scan is performed over the
collection which exists on the archive. In this case, the expected
I/O time is:

I/0=AR+N*ft{Li/AT)+Nl* 'if

(Pi)(AR+(B2/AT)(\Li/B2\))

Here, Ixl is the smallest integer greater than x. Now if the j-th
field is converted to separate status, the I/O time changes by:

Pj*AR+(Pj*B2/AT) \LjlB2\-LjlAT

Making the j-th field separate will thereby reduce I/O time if:

Lj/Pj-B2* \LjlB2\>AR*AT

Figure 5 indicates the size, Lj, required for various values of Pj to
store a field separately for both disk and archive devices based on
AR = .050, AT= .2 * 10 ** 6, DR = .030 DT = 1.0 * 10 ** 6, Bl
= 4KandB2 = 64K.

Since Pj is not always known in advance, a good rule of
thumb is to store every field separately if it is longer than twice
the disk block size and half the archive block size.

4.3. Functions on Long Fields

Functions in a large object environment may be very expen
sive to compute. For example, given the collection:

EMP (name, address, manager, age, salary, picture)

one might ask the query:

retrieve (EMP.name) where EMP.age > 50
and beard (EMP.picture) = "red"

In this case, beard, is a classification function operating on the
image of the employee and will take many thousands of instruc
tions to compute. Hence, the second term is vasdy more expen
sive than the first one in CPU time. Moreover, the function
beard may not require all the bits in a picture to perform the
classification; therefore it should be possible for the function to
selectively retrieve just the information it requires. Lastly, an
index on EMP.picturewill not accelerate the above query; rather
we require indexes on a function of EMP.picture.

Pj Disk Archive

.1 3.4K 7.4K

.3 13.8K 22.5K

5 31K 37K

Byte Size Required for Separate Storage
Figure 5

The following proposal addresses these requirements. When
a new type is registered with the DBMS, a single extra flag must
be supported in the type definition, namely LONG. This flag
denotes to the DBMS that the type in question is a candidate for
separate storage. For types which are not LONG, functions can
reference their arguments either by value of by reference. On the
other hand, functions on LONG types must use a special inter
face. Specifically, when a function on a LONG field is called, it
receives a magic cookie which is similar to a file descriptor. The
function can then use a library of routines to seek to a specific
location in the long object and then read or write a specific
number of bytes to or from a buffer. Hence, it receives an
abstraction for long fields that is the same as that of a file and can
buffer as much of the long field as desired. Unnecessary portions
of the long field never need be read from secondary or tertiary
memory.

We assume that qualifications have clauses of the following
forms:

1) collection,fieldname operator constant

2) function (collection.fieldname) operator constant

An example of the first form is

EMRsalary > 5000

Clauses of this sort have long been addressed by query optimizers
[SELI79], and the generalization to an abstract data type context
performed in [STON86B]. An example of the second form is:

beard (EMP.picture) = "red"

Such classification functions are very common, and example
functions for photographs include beard, glasses, hair color, large
nose, and scowl.

We assume that indexes are available for the abstract data

type fields present in any collection as in [STON86B]. However,
we also assume that indexes are generalized to be available on a
function of a data type. This idea was proposed in [LYNC88] in
the context of textual data, and there is little difficulty in imple
menting this generalization, as noted in [AOKI89]. Moreover,
[MAIE86] proposed essentially the same construct by suggesting
that the member sub-objects of a complex object be indexable.

We further assume that archive indexes are stored on the same

platter as the data they index. Moreover, they may be cached at
higher levels of the storage hierarchy and should be allowed to be
built incrementally.

The optimizer must deal intelligently with functions which are
very expensive to compute and/or fetch substantial portions of
long objects. Earlier, [STON86B] identified a collection of infor
mation which must be specified by the definer of each function.
This information is used by the parser and query optimizer to
process queries on ADT fields. In the proposed environment four
additional parameters must be added to this collection when a
function, f, is defined:

1) Fraction of archive blocks read ~ AB(f)

When a function is applied to a long field, this parameter

specifies the fraction of the blocks it expects to read from the
archive through the magic cookie interface.

2) Fraction of disk blocks read ~ DB(f)

In case the object is buffered on the disk or converted to disk
representation, the query optimizer can estimate the fraction of
the disk blocks that will be read using this parameter.

3) Fraction of bytes examined - FB(f)

This number represents the fraction of the bytes in a long field
that the function must examine. This quantity will be used in the
CPU computation to follow.

3) CPU time per byte ~ CPU_b(f)

Since classification functions are often extremely expensive to
compute, this parameter allows the optimizer to make a better
estimate of the CPU time to execute the function. This will also

be used in the CPU computation to follow.

4) CPU time per call ~ CPU_c(f)

There are occasional functions on short fields that are CPU inten

sive. For example, supposepasswordsare addedto the EMPcol
lection and stored in encoded form. Then, a system administrator
mightwant to executethe following command

retrieve (EMPjiame) where break(EMP.password)
= easy

to look for users with passwords that are too easy to break. In
this situation, the break function is extremely CPU intensive,
even though the password field is short.

With the above three parameters, the CPU time for applying a
function to an attribute can be estimated as:

CPU_c(f) + CPU_b(f) * FB(f) *
(expected length of the attribute)

If the definer of a function does not specify these parameters,
they would be defaulted to thevalues appropriate for short fields.
Reasonable values might be: AB = 1, DB = 1, FB = 1, CPU_b =
10 and CPU_c = 100.

5. QUERY OPTIMIZATION

The optimization framework in [SEU79] carriesover into the
environment of this paper with a few extensions and
modifications. This section discusses how the cost function must

change and how the space of plans to be considered must be
extended.

A traditional optimizer [SELT79] uses a cost function of the
form:

querycost = expected (I/Os) + Wl * expected
(records examined) (2)

These terms are respectively the expected number of I/O's and

the expected number of records examined, multiplied by a
conversion factor, Wl. When tertiary memory is considered, the
above formula must change to:

query cost = expected CPU time +
Wl * (DR + Bl / DT) * expected disk I/Os +
W2 * (AR + B2 / AT) * expected archive I/Os +
W2 * P * expected platter changes

Here, expected CPU time is estimated by multiplying the
expected number of records examined by the expected CPU time
per record. The second clause is the expected disk time in
seconds, and Wl is therefore the system-specific conversion rate
between CPU seconds and disk seconds. The third and fourth

terms together form the archive time, and therefore W2 is the
conversion rate between CPU seconds and archive seconds.

In our environment, each query will be decomposed into as
many as three actual queries, one to the main memory data base,
one to the disk data base and one to the archive data base. The

firstterm is the only one consideredfor the main memoryquery,
whilethe first two terms are consideredfor the disk query. Only
for the archive query are all terms considered.

An optimizer should therefore compute (3) for each possible
plan and then choose the expected cheapest one. However, in the
environment of this paper, the order of evaluation of clauses that
restrict the same collection must be carefully considered. For
example, consider the query

retrieve (EMP.name)where beard (EMP.picture)
= "red" and EMP^alary = 500

In the case that there is no applicable index, a conventional
optimizer will evaluate the two clauses on picture and salary in
randomorder. Since, the cost of evaulating

beard (EMP.picture) = "red"

is very large compared to

EMP.salary = 500

the optimizer should constructa plan wherebythe latter clause is
evaluated first Only for those instances with the correct salary
must the expensive computation be performed. Therefore, the
optimizer mustconsider the twodifferent orderings of theclauses
as separate plans.

In addition, when multiple clauses exist for a collection, a
traditional optimizer will process all of them at the same time in
some order. However, in this environment, the optimizer must
also considerprocessing the clauses separatedby other interven
ingoperations. Forexample, consider thefollowing query:

retrieve (EMP.name)
where EMP.salary = 500 and
beard (EMP.picture) = "red"
and EMP.dept = DEPT.dname

If an index on salary exists, a conventional optimizer would use
the clause

EMP.salary = 500

to access EMP records. Then, it would evaluate the clause

beard (EMP.picture) = "red"

for the employees with the correct salary. Finally, it would

perform the resulting join. However, it will almost always be
profitable to defer the clause

beard (EMP.picture) = "red"

until after performing the join. Unless every employee is in a
department, the tactic of delaying execution of costly functions
will be a winner.

Furthermore, the optimizer and execution engine must con
sider utilizing multiple indexes in evaluating multiple clauses on
a collection. For example, consider the query:

retrieve (EMPjiame)
where glasses (EMP.picture) = "gray"
and beard (EMP.picture) = "red"

Suppose there is an index on both

glasses (EMP.picture)

and

beard (EMP.picture).

In this case, a traditional optimizer will use the more profitable
index, say beard, and ignore the other one. Hence, it will evalu
ate

glasses (EMP.picture)

for each bearded employee. It is clearly significantly cheaper to
use both indexes and then perform an intersection on the result
ing lists of identifiers. This tactic, long used in information
retrieval environments, is not widely used in general purpose
DBMSs. Using this tactic, the above query can be completely
executed without evaluating either expensive function.

Therefore, in our environment, if an optimizer is given a
query with N clauses spanning K collections, there are as many
as N! different ordering of the clauses that merit consideration.
For each of these orderings there may be several different actual
plans to evaluate. Consequently, the search space grows dramati
cally relative to the space evaluated by a conventional optimizer.

For each possible plan, the optimizer must construct an esti
mate for (3) and then choose the expected cheapest one. We
need to extend [SELI79] with cost calculations for clauses
involving long fields, clauses involving expensive functions on
short fields, and costs for archival store access. We now treat
these topics in order.

Consider a clause C of the form:

f (long field) operator constant

If there is an index on

f (long field),

then this clause becomes a "normal" one and can be evaluated

using [SEU79]. Otherwise, the optimizer must estimate the fol
lowing constant:

CONST(C) = (expected number of instances examined) *
(expected field length)

Hence, the query optimizer must guess the number of instances
examined using classical mechanisms, and the average field
length is assumed available from the system catalogs. Moreover,
it must make two additional estimates for the long fields in each

collection:

diskfraction: the fraction of thebytesin the longobjects
present in the disk cache
m-mfraction: the fraction of thebytes in thelongobjects
present in the main memory cache

The archive fraction is one minus these two numbers. Of course,
the obvious restrictions on these numbers for the disk and main
memory data bases should be assumed.

As a result, the query optimizer can evaluate the cost of a
clause containing a long field as:

CPU time = CPU_c + CPU_b * FB(f) * cONST(C)
expected disk I/Os = (disk fraction) * DB(f) * CONST(C)
expected archive I/Os =
(archive fraction) * AB(f) * CONST(C)

CPU intensive functions on short fields are the second kind of

access to be individually accounted for. Here, the I/O will be
accounted for in the traditional metrics for the rest of the query
from [SELT79]. Only the CPU resources need be considered
separately, and CPU time for functions of short fields is the same
as that computed for long fields above.

We now turn to the cost calculations for operations to archival
storage other than long field access. A query plan consists of a
collection of query processing steps, each of which is a scan of a
collection, an indexed scan of a collection, a join of two collec
tions by iterative substitution, a join of two collections by merge
sort, or a join of two collections by hash join. The CPU time for
each plan operation can be estimated using conventional means.
The disk and archive I/O for sequential scans and indexed scans
can be computed by the optimizer using the disk fraction and
main-memory fraction for the short fields in a given collection.
The number of platter swaps required is one more than the
number of platters on which the collection resides.

For merge-sort or hash joins, it is clear that any required tem
porary collections should be allocated in main memory or on
disk. Hence, the archive need be read only during the initial scan
of both collections. After that standard disk-based formulas

apply. Furthermore, the total number of platter switches for each
collection is 1 plus the number of platters that each collection
occupies.

The last tactic is iterative substitution. For disk based collec

tions, the standard formulas apply. For archive collections, one
should only consider this strategy if there is an index on the inner
collection. Furthermore, if the inner collection is a multi-platter
collection, then there is a danger of one platter switch per outer
record. To avoid this disasterous overhead, iterative substitution
should only be considered if the inner collection is clustered on
platters in the same way as the outer collection. This requires
that both collections use the same field in the distribution criteria

used to partition the table. Li this case, the number of platter
switches is again 1 plus the number of platters for each collec
tion.

Based on these considerations, an optimizer can estimate the
cost for any given query plan according to (3) above and then
choose the expected cheapest one. However, there are at least two
optimization tactics that may be useful to reduce the search

space. First, it may be reasonable to automatically delay all
expensive clauses to the end of a query. Then, at the end of a
plan, they should be executed in ascending order of

function cost * clause selectivity

Second, it may be very desirable to perform multiple query
optimization. This tactic has been studied in a disk-based
environment when queries have overlapping terms in their
qualifications [SELL86, CHAK85]. Li our environment, it may
be desirable to group a large collection of queries into a bundle
and then make a sequential pass through the instances of a collec
tion processing all queries in parallel. Consider the following two
queries:

retrieve (EMP.name) where EMP.age > 40

retrieve (EMP.salary) where EMP.dept = "shoe"

If there are indexes on neither age nor dept, then a sequential
scan of EMP is required. In this case, both qualifications can be
economically checked in a single scan of the collection.

6. DISTRIBUTION AND ADDITIONAL STORAGE
LEVELS

In this paper, we have discussed a multi-level storage system
under the assumption that all logical devices are connected to a
single computer system. Obviously, one often wishes archival
memoryat a secure location perhaps a long distance from the rest
of the memory hierarchy. In addition, one may wish the root of
the tree to be on a user's workstation and the remainder of the

tree on a data server. This would result in fast access by a client
to the main memory data base on his machine and slower access
to the disk data base across the network. Such an architecture is

advocated in [CATT90].

First we discuss the changes necessary to our model to sup
port a tree of devices on several physical computer systems.
Then, we consider the implications of allowing the tree to
become a graph. This would happen, for example, if multiple
computer systems use the same remote archive.

To support multi-computer trees, we need only allow each
logical device in our model to be on a different physical com
puter. Then, the DBMS runs on the machine where the root node
is allocated. The vacuum cleaner for each storage device can
reside on the machine to which the storage device is attached
along with a recepient module as noted in Section 3. To support
this generality, there are only four major extensions required.
First, our model requires physical blocks to be cached higher at
higher levels of the storage hierarchy. Hence, blocks must be
moved between sites using some remote access protocol.
Second, the vacuum cleaner must be carefully programmed to
performremote copies and moves rather than local ones. Also, it
must lock blocks which are remoted cached, so that it does not

tamper with the consistency of these blocks. Third, commitinga
transaction in a no-overwrite storage manager requires globally
unique identifiers for transactions and saving the status of each
transaction when it commits or aborts. This requires a source of
unique identifiers for all machines as well as distribution of

transaction status to all machines using a two phase commit.
Lastly, the query optimizer must be extended to consider net
working costs in equation (3).

Using this model all query processing occurs on the computer
with the root node device. Data blocks are moved from other

sites as needed by the executor. On the other hand, if the applica
tion issues an elevate command followed by a query, then
specific instances will be moved between sites. Hence, our
model subsumes both of the models of data movement studied in

[DEWI90].

To support more than three logical devices, the query optim
izer must be generalized with knowledge specific to the addi
tional devices. To the extent that such devices are similar to the

disk or archive devices we have assumed, then there would be
modest extra optimizer work. On the other hand, a noticeably
different device would require optimizer modelling along the
lines of Section 5.

Our model requires that all query processing occur at the root
of the tree. However, it might be desirable to have an option
wherebycaching was disabled, and therefore, each computer sys
tem could process the portion of the query for its device. If a dis
tributed DBMS is available to process joins across collections on
different machines, then our model could be added to such

software. When we allow the tree to be generalized to a graph,
the same conclusion on the necessity of a distributed DBMS is
reached.

Current distributed DBMSs are one-dimensional, in that data
is partioned among a collection of co-equal machines. A distri
buted DBMS extended with our proposal becomes two-
dimensional. All root nodes form a conventional one-

dimensional distributed DBMS. Each root can propagate
instances to slower storage along a hierarchy of nodes. This
becomes the second dimension.

7. CONCLUSIONS

We have proposed an architecture for a multi-level storage
manager which integrates both main memory and archive data
bases into a common framework and substantially generalizes
many previous proposals. Specifically, it supports real-time
applications, thecaching requirements of persistent programming
languages, and the needs of applications with very large data
bases in a common framework.

Moreover, we have proposed the query optimization support
required for the resulting environment. Basically, the optimizer
must be extended to cope with:

1) the characteristics of the archive media
2) the desirabilityof storing long fields
in a separate location from short fields
3) the prospect of CPU intensive functions

and we have shown a methodologyto accomplishthese tasks.

Li order to turn a prototype like POSTGRES into the system
outlined in Section 3-5, the main steps required are:

1) support for a main memory data base

2) the possibilityof indexes on functions of an attribute
3) the replacement of a hard coded
distribution criteria with a general one
4) extending the optimizer as noted in Section 5
5) implementationof separate storage for long fields
6) rearchitecting the POSTGRES disk-to-archive
vacuum cleaner

7) implementation of a main memory vacuum cleaner

We are currently designing such a system, currently denoted
POSTGRES IL with these characteristics. The scope of distribu
tion support in POSTGRES II is also under study.

8. REFERENCES

[AOKI89]

[CATT90]

[CERI84]

[CHAK85]

[CHAN89]

[CHRI87]

[CHOU85]

[COME79]

[DEWI84]

[DEWI86]

Aoki, P., "Implementation of Extended
Indexes in POSTGRES," Electronics
Research Laboratory, University of Cal
ifornia, Technical Report 89-62, July
1989.

Cattell, R. and Skeen, J., "Engineering
Database Benchmark," Sun Microsys
tems, Technical Report, April 1990.

Ceri, S. and Pelagatti, G., "Distributed
Databases, Principles and Systems,"
McGraw-Hill, New York, N.Y., 1984.

Chakravarthy, U. and Minker, J., "Mul
tiple Query Processing in Deductive
Databases," University of Maryland,
Technical Report TR 1554, August
1985.

Chang, E. and Katz, R., "Exploiting
Inheritance and Structure Semantics for

Effective Clustering and Buffering in an
Object-oriented DBMS," Proc. 1989
ACM- SIGMOD Conference on

Management of Data, Portland, Ore.,
June 1989.

Christodoulakis, S., "Analysis of
Retrieval Performance for Records and

Objects Using Optical Disk Technol
ogy," ACM TODS, June 1987.

Chou, H. and Dewitt, D., "An Evalua

tion of Buffer Management Stockholm,
Sweden, August 1985.

Comer, D., "The Ubiquitous B-tree,"
ACM Computing Surveys, June 1979.

Dewitt, D. et. al., "Implementation
Techniques for Main Memory Data
Base Systems," Proc. 1984 ACM-
SIGMOD Conference on Management
of Data, Boston, Ma., June 1984.

Dewitt, D. et. al., "GAMMA: A High
Performance Dataflow Database

[DEWI90]

[GUTM84]

[HONG90]

[JARK84]

[KIM87]

[KIM90]

[LEHM86]

[LYNC88]

[MAIE86]

[MOSH90]

[NAVA82]

[SACC86]

Machine," Proc. 1986 VLDB Confer

ence, Kyoto, Japan, Sept. 1986.

Dewitt, D. et. al., " A Study of Three
Alternative Workstation-Server Archi

tectures for Object-oriented Database
Systems," Proc. 1990 VLDB Confer
ence, Brisbane, Australia, August, 1990.

Gutman, A., "R-trees: A Dynamic
Index Structure for Spatial Searching,"
Proc. 1984 ACM-SIGMOD Conference

on Management of Data, Boston, Mass.
June 1984.

Hong, W. and Stonebraker, M., "Parallel
Query Processing in XPRS," Memo
UCB/ERL M90/47, University of Cali
fornia, Berkeley, Ca., May 1990.

Jarke, M. and Koch, J., "Query Optimi
zation in Database Systems," ACM
Computing Surveys, June 1984.

Kim, W. eL al., "Composite Object Sup
port in an Object-oriented Database Sys
tem," Proc OOPSLA'87 Conference,

Orlando, Fla., Oct. 1987.

Kim, W. et. al., "Architecture of the

Orion Next-Generation Database Sys
tem," IEEE Transactions on Knowledge
and Data Engineering, March 1990.

Lehman, T. and Carey, M., "Query Pro
cessing in Main Memory Database
Management Systems," Proc. 1986
ACM-SIGMOD Conference on

Management of Data, Washington,
D.C., June 1986.

Lynch, C. and Stonebraker, M.,
"Extended User-Defined Indexing with
Application to Textual Databases,"
Proc. 1988 VLDB Conference, Los

Angeles, Ca., Sept. 1988.

Maier, D. and Stein, J., "Indexing in an
Object-Oriented DBMS," OGC Techni
cal Report CS/E-86-006, Oregon gradu
ate Center, Beaverton, Ore., May 1986.

Mosher, C. (ed), "The POSTGRES
Reference Manual, Version 2," Elec

tronics Research Laboratory, University
of California, Berkeley, Ca., Report
M90/53, July 1990.

Navathe, S. et. al., "Vertical Partitioning
for Physical and Distribution Design of
databases," Stanford University, Techni
cal Report STAN-CS-82-957, 1982.

Sacco, G. and Schkolnick, M., "Buffer

Management in Relational Database

[SELI79]

[SELL86]

[SHAP86]

[SMTT81]

[STON86]

[STON86B]

[STON87]

[STON89]

[STON90]

Systems," ACM-TODS, Dec. 1986.

Selinger, P. et. al., "Access Path Selec
tion in a Relational Data Base System,"
Proc 1979 ACM-SIGMOD Conference

on Management of Data, Boston, Mass.,
June 1979.

Sellis, T., "Global Query Optimiza
tion," Proc 1986 ACM-SIGMOD

Conference on Management of Data,
Washington, D.C., June 1986.

Shapiro, L., "Join Processing in Data
base Systems with Large Main
Memories," ACM TODS, Sept. 1986.

Smith, A., "Analysis of Long Term File
Reference Patterns for Application to
File Migration Algorithms", IEEE Tran
sactions on Software Engineering, July,
1981.

Stonebraker, M. and Rowe, L., "The
Design of POSTGRES," Proc. 1986
ACM-SIGMOD Conference on

Management of Data, Washington,
D.C., May 1986.

Stonebraker, M., "Inclusion of New
Types in Relational Data Base Sys
tems," Proc. 1986 IEEE Data Engineer
ing Conference, Los Angeles, Ca., Feb.
1986.

Stonebraker, M., "The POSTGRES

Storage System," Proc. 1987 VLDB
Conference, Brighton, England, Sept.
1987.

Stonebraker, M., "The Case for Partial

Indexes," SIGMOD RECORD, Dec.

1989.

Stonebraker, M. et. al., "The Implemen
tation of POSTGRES," IEEE Transac

tions on Knowledge and Data Engineer
ing, March 1990.

