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Abstract

A multiple-valued relation is a relation in which the input variables can assume more than

two discrete values. Multiple-valued relations arise quite naturally in many contexts. Using

characteristic functions to represent relations, we can handle the problem of minimizing

multiple-valued relations as a generalization of the conventional minimization problem of

regular functions. Our approach is based on a state-of-the-art paradigm for the two level

minimization of regular functions. We clarify some special properties of relations, in con

trast to functions, which must be carefully considered in realizing a high quality procedure

for solving the minimization problem. An efficient heuristic method to find an optimal

sum-of-products representation for a multiple-valued relation is proposed and implemented

in the program GYOCRO. It uses multiple-valued decision diagrams (MDD's) to represent

the characteristic functions for the relations. Experimental results are presented and com

pared with previous exact and heuristic Boolean relation minimizers to demonstrate the

effectiveness of the proposed method.
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Research Advisor
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Chapter 1

Introduction

1.1 Minimization of Multiple-Valued Relations

Research in logic minimization has been active over the past 40 years. Initial re

search was directed towards developing techniques to produce an optimum sum-of-products

representation of a Boolean function [13] and has evolved toward heuristic approaches for

designing programmable logic arrays (PLA's) [2, 9]. In the past 10 years, an increasing

amount of research has been in multiple-level logic minimization (e.g. [3, 6]). One of the

key features in the minimization process is the use of don't care sets and incompletely spec

ified functions. More recently, a theory of Boolean relations was introduced [4], in which it

was shown that don't cares of the traditional kind are insufficient to capture the complete

freedom for optimizing multiple output functions. It was claimed that this flexibility is fully

described with Boolean relations.

In parallel with this activity has been the minimization of multiple-valued functions

[11, 16], in which variables can assume more than two discrete values. The significance of

this problem is in its wide applications in areas such as PLA optimization [14] and state

assignment for finite state machines [7].

This paper is concerned with the minimization of multiple-valued relations, where

the input variables can take multiple values and the outputs are binary variables. A

multiple-valued relation R C D x Bm is a relation over the two sets D and Bm. The

output set Bm is the m dimensional Boolean space and the input set D is the Cartesian

product of n sets D\ x ••• x D„, where D, is a set of P, values, Di = {0,1, ••-P,- - l},

and Pi is a positive integer. Note that this includes the case where the outputs may also
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be multiple-valued since we can encode each multiple-valued output with a set of one-hot

variables. In addition, binary-valued input variables are a special case of multiple-valued

variables. The image of a minterm1 x G D by R is defined as r(x) = {y G Bm | (x,y) G R}

and may consist of multiple minterms of Bm. Our objective is to find a least cost implemen

tation (completely specified function) of a multiple-valued function f : D —> Bm compatible

with R, i.e. Vx G D : /(x) G t*(x), if such a function exists. In fact, a compatible function

exists if and only if r(x) is not empty for every x G D. A relation satisfying this condition is

called a well-defined relation. With this condition satisfied, R can be represented as a one-

to-many multiple-valued mapping r : D -* Bm. Furthermore, if r(x) can be represented

as a single cube for every xGD, the mapping r is an incompletely specified function, i.e.

one with don't cares. In this case, the minimization problem is reduced to the conventional

minimization of multiple-valued functions.

We represent a relation R C D x Bm as its characteristic function R : D x Bm —• B

such that i2(x,y) = 1 if and only if (x,y) G R. Hereafter, we make no distinction between

a relation and its characteristic function. The characteristic functions are represented by

multiple-valued decision diagrams (MDD's) [18]. An MDD is a data structure to handle

multiple-valued functions which employs binary decision diagrams (BDD's) [5] as the in

ternal representation. MDD's have the property of being canonical, and thus there is a

one-to-one correspondence between a relation and an MDD for the characteristic function

under a given order of the variables of D and Bm. We can complete set operations, such as

complementation, containment checking, and cofactoring, very efficiently using MDD's for

fairly large functions in many cases.

Multiple-valued relations arise in many contexts [1, 4, 12]. In fact, we should

emphasize that in many minimization problems, the situation is naturally formulated as a

multiple-valued relation. For example, the behavior of a completely specified finite state

machine is given by a function F:IxSxSxO->B such that F(i, p, ra, o) = 1 if and only

if the input i and the present state p causes the machine to evolve to the next state n and

produce the output o. F is a multiple-valued relation with the input set Ix S and the output

set S xO. For a given initial state, a set of equivalent states can be computed as a function

E : S x S —> B such that E(n,n) = 1 if and only if n and n are equivalent. Since a state

can be mapped to any of the equivalent states of the next state, we have the possibility of

*In this paper, we make no distinction between a minterm and an element of a set.
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implementing a more compact machine using the equivalent states. Namely, our objective

is to find a least cost machine compatible with the function F:IxSxSxO-*B such

that F(i,p, n,o) = 1 if and only if either F(i,p, n,o) = 1 or there exists a state n for which

F(i,p,n,o) = 1 and -E(n,n) = 1. F can be easily computed using MDD's. F provides

the complete family of finite state machines equivalent to the original machine under the

equivalent states. Similarly, F can be extended to include invalid states, which are defined

as a set of states not reachable from some initial set of states. Other problems of synthesizing

finite state machines, e.g. optimization of cascaded machines, can be formulated in a similar

way with multiple-valued relations.

Multiple-valued relations can be used even in the context of Boolean minimization.

Given an incompletely specified Boolean function represented as the on-set / : Bn —> Bm

and don't-care sets d : Bn —> Bm, the problem of finding a least cost implementation of

this function is formulated as the minimization problem for a relation F : B n x Bm —> B
m

given by F(x,y) = JJ((2/j = /^(x)) + d*J)(x)), where yj is the j-th output variable, fW

and dW are the J-th function of / and d respectively, and / = g designates an XNOR

operation between / and g. The formulation of Boolean minimization via a relation has an

advantage of handling the care sets and the don't care sets in a uniform way. In practice,

there exist cases where one can specify an incompletely specified function by an MDD of

the characteristic function for a relation in a more compact form than representing the care

set and the don't care set separately in a two level or a multiple-level form.

Therefore, for a given problem, wefirst formulate it using a multiple-valued relation

R. Then the existence condition of functions compatible with R is checked. If there is no

compatible function, the problem has no solution. Otherwise, we identify whether the

relation can be represented as an incompletely specified function. If this is the case, we

extract the care set and the don't care set from R to represent each in some required form,

e.g. a sum-of-products form, and invoke a conventional function minimizer (e.g. [14]) to

produce an optimal implementation. If, on the other hand, R cannot be expressed by an

incompletely specified function, we need to minimize the relation, i.e. find a least cost

implementation compatible with R.
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1.2 Overview

Somenzi et al. have proposed and implemented an exact minimization procedure

for binary-valued relations[17], with which an optimum sum-of-products representation com

patible with the relation is obtained. The key is that all the prime cubes of all the compatible

functions are generated and a binate covering problem is solved to find the best represen

tation. However, since the method is exact, it is expensive to complete the procedure both

in CPU time and memory space, so that only small examples can be handled.

Heuristic minimization of relations has been an open problem, even for binary-

valued relations. Ghosh et al. [8] proposed and implemented an approach for binary-valued

relations which makes use of test pattern generation techniques and heuristicaUy finds a two

level representation. The method is similar to two level minimizers for Boolean functions

(e.g. [2]) in the sense that procedures analogous to expand, irredundant, and reduce are

repeatedly applied as long as the cost decreases. However, unlike the most effective two

level minimizers that consider multiple variables to be expanded or reduced simultaneously,

only one variable is examined at a time. Thus the minimizer of [8] is more likely to get stuck

at a bad solution. This drawback is fatal for the method since the simultaneous expansion

of multiple variables implies the use of multiple faults, which could be very expensive to

detect. Furthermore, the method is a direct application of ATPG methodology to this

problem and little new theoretical analysis is provided to contrast some of the properties of

relations, which may be useful in the minimization process, to those of regular functions.

We propose a heuristic procedure for the minimization problem of multiple-valued

relations, which is based on a paradigm of the more advanced two level minimization tech

niques for regular functions. The goal of the procedure is to find a compatible representation

with the minimum number of the product terms. The final solution is obtained from an

initial representation by iterative improvement through reduce and expand procedures. In

the reduce procedure, each cube is maximally reduced while still maintaining the compat

ibility of the representation. In the expand procedure, each cube is maximally expanded

so that a maximal number of cubes in the current representation can be removed. We

present, in each procedure, some special properties associated with relations not found in

functions. These properties must be carefully accounted for while implementing a procedure

that is effective in achieving high quality results. We have implemented these algorithms

in a program called GYOCRO, a Japanese traditional tea with good taste, and provide
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experimental evidence of their effectiveness.

This report is organized as follows. In Chapter 2, terminology is defined and a brief

review of multiple-valued relations is provided. In Chapter 3, we describe how to identify

whether a given relation is an incompletely specified function as well as a procedure that

extracts the care sets and the don't care sets from the relation if it is a function. Chapter 4

presents the minimization procedure employed in GYOCRO in which technical details are

described for each sub-procedure along with supporting theoretical analysis. Experimental

results of the proposed method are presented in Chapter 5. Some potential modifications

of the algorithms are also discussed. Chapter 6 concludes the paper.



Chapter 2

Functions, Mappings, and

Relations

In this chapter, we describe the relation among functions, mappings, and relations,

and clarify when we need a procedure that is capable of minimizing relations directly. We

begin with the terminology.

2.1 Terminology

Definition 1 A multiple-valued relation R is a subset of D xBm. D is called the input

set of R and is the Cartesian product of n sets D\ x •••X Dn, where £),• = {0, •••, P, —1}

and Pi is a positive integer. Di provides the set of values that the i-th variable of D can

assume. Bm designates a Boolean space1 spanned by m variables, each of which can assume

either 0 or 1. Bm is called the output set of R. The variables of the input set and the

output set are called the input variables and the output variables respectively. R is

well-defined if for every xED, there exists y G Bm such that (x,y) G R.

Definition 2 For a given relation R and a subset A C D, the image of A by R is a set

of minterms y € Bm for which there exists a minterm xGi such that (x,y) G R, i.e.

{y | 3x G A : (x,y) G R}. The image is denoted as r(A). r(A) may be empty.

Definition 3 For a given relation RC Dx Bm, a multiple-valued function f : D -> Bm is

compatible with R, denoted f < R, if for every minterm x G D, /(x) G r(x). Otherwise

1In this paper, we make no distinction between a set and a space.
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/ is incompatible with R. Clearly, f < R exists if and only if R is well-defined.

Definition 4 For the i-th variable Xi of D, a literal of xt- is the characteristic function

of a subset 5,- of Di, and is denoted as xf\ 5,- may be empty. A product term p is a
Boolean product of literals of all the variables of D. Thusp is the characteristic function of

a subset of D.

Definition 5 For the j-th output function fld of f : D —• Bm, an algebraic sum-of-

products expression of fw is a union of product terms such that the resulting charac

teristic function is equivalent to fti). An algebraic sum-of-products expression of f is a set

of algebraic sum-of-products expressions for all the output functions.

Definition 6 For an algebraic sum-of-products expression of a function f : D —> Bm,

a cube is a product term p of the expression specified as a row vector with two parts,

c = [l(c)\0(c)]f where 1(c) = [J(c)i,---,/(c)„] and 0(c) = [0(c)i,---,O(c)m]. 1(c) and

0(c) are called the input part and the output part of c respectively. The i-th component of

1(c) represents a set of values contained in the i-th literal of p, and consists of Pi binary

bits. Each bit is called a part. The k-th part of I(c)i, k G {0, •••,P; —1}, is 1 if the i-th

literal of p contains the value k. It is 0 otherwise. For the output part, 0(c)j = 0 if p is

not present in the algebraic expression of f^h Otherwise, 0(c)j = 1. We denote M(c) as
a set of minterms of D contained in p. A set of cubes is called a representation.

For two cubes c and rf, c contains d if c has 1 for every part that d has 1. In

addition, c strictly contains d if they are not equal.

Throughout the report, we show examples of representations, in which all the

inputs are binary variables. For the sake of simplicity, we represent the input part of a cube

c as a n-tuple [J(c)i,• •',I(c)n] such that I(c)i takes 0 if the i-th literal of p takes a value

0, 1 if the i-th literal of p takes 1, and 2 if the literal takes both 0 and 1.

For a given representation T, a function /:£>—> Bm is uniquely defined, where an

algebraic expression of / is given by T. Thus we say that a representation T is compatible

with a relation R if the corresponding function / is compatible with R. Similarly, the

image of A C D by the representation T is the image of .A by a relation F given by

F = {(x,y) e D x Bm \y = f(x)}.

Definition 7 For a given relation R, a cube c is a candidate prime (or a c-prime) if

there exists a function compatible with R in which c is a prime implicant.
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Definition 8 For a given relation R and a compatible representation T, a cube c G T is

prime relative to T (or relatively prime in T) if for any cube c which strictly contains

c, a replacement of c with c in T results in an incompatible representation with R. A

representation T is relatively prime if T is compatible with R and every cube of T is

relatively prime in T.

Note that if c G T is relatively prime in T then c is a c-prime, but not the other

way around. We distinguish the notion of primality between relations and regular functions,

since in relations, the primality of a cube depends upon the other cubes of the representation

in which the cube is present. This is not the case for functions.

Definition 9 For a given relation R and a compatible representation T, a cube c G T is

redundant in T if removal of c from T maintains the compatibility of the representation

T —{c} with R. Otherwise c is irredundant. A representation F is irredundant if T is

compatible with R and every cube of J7 is irredundant.

2.2 Representations of Multiple-Valued Relations

Our objective is to find a least cost implementation of a function compatible with

a given multiple-valued relation. There are several ways to represent relations. One way is

to specify the image of x, r(x), for each minterm x G D, where r(x) is represented as an

algebraic expression. However, the size of the space required to represent a relation this way

is exponential in the number of the input variables, and thus the method is not adequate

in practice. Another way to represent a relation R is cubical representation. Let p be a

product term of the variables of Bn and c be the input part of the cubical specification of

p. Similarly, let q be a product term of the variables of Bm and d be the input part of the

cubical specification of q. Consider the pair C = [c\d\. Then R is represented as a set of

pairs {C = [c\d]} such that for each minterm x G D, the characteristic function of the image

of x by R is expressed as a set of cubes {d | x is covered by c}. In practice, R is represented

with a subset of C's described above, where we assume that if x G D is not covered by any

of the C's then it is assumed that the image of x by R is a minterm of Bm in which all the

output variables appear complemented.

We represent a relation R as its characteristic function R: Dx Bm —> B such that

£(x, y) = 1 if and only if (x, y) G R. We call the characteristic function a consistency
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function of the relation. The characteristic functions are represented by MDD's [18]. A

MDD is a data structure which employs BDD's [5] as the internal representations to express

multiple-valued functions. In Chapter 4, we present a heuristic minimizer for multiple-

valued relations which takes as input a consistency function of the relation represented as

an MDD. As we will see, various operations on relations can be handled efficiently using

the MDD operations. Among those, one of the key operations is a smooth (or existential

quantification) operation defined as follows.

Definition 10 Given a multiple-valued function f : D —> B and a set or a subset of the

input variables of f, Xk = {x\, •••,Xk}, the smooth of f by Xk is defined as

Sxk(f) = 5Xl(5X2(...SXfc_l(5Xfc(/))...)),

Pi-1

where SXi(g) = ^ g {j}, and g {j} is the cofactor ofg with respect to the literal x)3.
n i t

]=0

A cofactor of a multiple-valued function is accomplished on MDD's by performing the

BDD cofactor for the internal representations of the MDD's. The smooth operation can be

implemented efficiently on MDD's.

In Section 2.5, we will see that the characteristic function of a relation is computed

very easily in many applications.

2.3 Questions on Multiple-Valued Relations

A relation we consider in this report is one with binary output variables. In this

section, we consider the following two questions for the relations of this form. Namely,

1. whether a relation with multiple-valued outputs can be handled with the relations we

consider,

2. whether the minimization problem for a relation we consider can be transformed into

the problem of minimizing an incompletely specified function with multiple-valued

inputs and a single binary output.

The posing of the second question is motivated by the fact that the answer for this question

is yes if the given relation is in fact an incompletely specified function.
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2.3.1 Representations of Multiple-Valued Outputs

There are several contexts where the problem is formulated as the minimization

of a relation with multiple-valued outputs. We discuss how such a relation is handled

with a multiple-valued relation defined in this report, i.e. one with binary-valued outputs.

Specifically, we describe how we can represent a multiple-valued output in terms of binary

outputs using three encoding schemes known as the 1-hot encoding, the 0-hot encoding, and

the log-based encoding respectively.

Consider a relation T C DxE, where E is the Cartesian product oft sets E\X> —Et

where Ej consists of Lj integers, i.e. Ej = {0,- -,L3; —1}. An encoding is the process of

assigning a set of binary variables for each multiple-valued variable a j such that each value

of Ej is associated with a subset of the Boolean space spanned by the binary variables and

that the encoding is disjoint with the assignment for any other value of Ej.

The 1-hot encoding is an encoding scheme in which each multiple-valued variable

aj is represented by Lj binary variables (y$\ •••, yH ._!)) such that ctj —kGEj if and only
t

if yg' = l and y\3' = 0 for any i ^ k. This scheme requires ^ Lj variables to represent
3=1

all the variables of E. The 0-hot encoding is the same as the 1-hot encoding in which the

meaning of 1 and 0 for each encoded binary variable is switched.

Example 2.1 Suppose that Figure 2.1 is a specification of a relation Y C B2 XE with two

binary inputs x\, X2 and two multiple-valued outputs 0\ and a2, where both 0\ and 02 can

take three values. Then the transformed relation R C B2 X B6 with the 1-hot encoding is

shown in Figure 2.1.

TCB2xE R C B2 X B6

X\X2 (cruor2) X\X2 (y^^^^y?*^)
11

10

01

00

{(2, 1), (1, 0)}
{(1, 2)}
{(0, 1), (0, 2)}
{(1,0)}

11

10

01

00

{(0, 0, 1, 0, 1, 0), (0, 1, 0, 1, 0, 0)}
{(0,1,0,0,0,1)}
{(1, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, 1)}
{(0, 1, 0, 1, 0, 0)}

Figure 2.1: The 1-Hot Encoding of a Relation with Multiple-Valued Outputs

The log-based encoding is a scheme that represents a multiple-valued variable with

Lj values using pj binary variables, where pj is the smallest integer no less than log2Lj.



2.3. QUESTIONS ON MULTIPLE-VALUED RELATIONS 11

Each value of Ej is represented as a product term of the encoded variables such that two

product terms corresponding to two different values are disjoint and the Boolean union of

the product terms over all the values of Ej is the universe of the Boolean space spanned

by the encoded variables. Thus the minterm a of E corresponds to the set given by the

Boolean product of the product terms for the values of the variables of E in a. For the

transformed relation R of the original relation V, the image of a minterm x € D is given by

the union of the sets corresponding to the minterms of the image of x by T.

Example 2.2 Consider the same relation T used in Example 2.1. Since both a\ and a2

can take three values, each variable is represented by two binary variables. Let y± and y$'

be the encoded variables for oj. Suppose that 0, 1, and 2 are repreented as Y\ v* *Vi Vi »

and y[J' respectively, then the transformed relation R C B2 x B4 is obtained as shown in
Figure 2.2.

TCB2xE R C B2 x B4

X\X2 (<7l,CT2) X\X2 (yMUV)
11

10

01

00

{(2, 1), (1, 0)}
{(1, 2)}
{(0, 1), (0, 2)}
{(1, o)}

11

10

01

00

{(1,1, 0,1), (1,0,0, 1),(0, 1,0,0)}
{(0,1, 1, 0), (0, 1, 1, 1)}
{(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1)}
{(0, 1, 0, 0)}

Figure 2.2: The Log-Based Encoding of a Relation with Multiple-Valued Outputs

2.3.2 Transformation of Multiple Outputs to a Multiple-Valued Input

It is shown in [15] that the two-level minimization problem for an incompletely

specified function with multiple-valued inputs and binary-valued outputs can be equivalently

handled as the problem of minimizing an incompletely specified function with a single binary

output by treating the output part of the original function as 1-hot encoded variables for

a single multiple-valued variable. The newly defined incompletely specified function is

conceptually the characteristic function of the set of pairs of minterms of the inputs and

the multiple-valued output (x, a) such that x is mapped to a by the original function, but

the characteristic function explicitly uses don't cares.

We are interested in whether this equivalency holds for multiple-valued relations

with binary outputs. Specifically, the question is whether there exists an encoding scheme
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with which the output part of the relation can be treated as a single multiple-valued variable

such that there exists an incompletely specified function with a single binary output with

the inputs consisting of the original inputs and the newly defined multiple-valued variable

for which the two-level minimization problem is equivalent to the problem of minimizing the

original relation. As with the minimization of incompletely specified functions, we consider

whether the characteristic function can be well formulated for some encoding schemes. We

show that the encoding schemes described in the previous section, i.e. the 1-hot encoding,

the 0-hot encoding, and the log-based encoding, do not fall into this category.

Given a relation RC Dx Bm and an encoding scheme, our objective is to prove or

disprove that there is a single output function that has an additional multiple-valued input.

The new variable is obtained by encoding the output part of J2 by the given scheme. Our

requirement is, as with regular functions, that the two level minimization of the resulting

single function leads to a result that when interpreted correctly is a minimum of the original

minimization problem.

Suppose that we employ the 1-hot encoding. Let Y be the multiple-valued variable

for the outputs. Y can take m values, E = {0, •••, m -1}. A minterm of B m corresponds to

a set of values of E, i.e. a literal of Y. Thus the relation R maps a minterm x G D to a set

of literals of Y. Denote the set of literals as r(x). If Y is treated as an input variable, then

we need a function f : D x E —* B which defines the unique output value for every pair of

minterms of D and E. Thus, what is associated with each minterm x G D is a set of literals

of y, r(x). There must exist exactly one literal y G r(x) such that the pair of minterms

(x,a) € Dx E is mapped to 1 by the implementation obtained by minimizing / if and only

if a G y. Therefore, for a minterm (x, a) for which there exist literals y G r(x) and y G r(x)

such that a G y and a & y, the value of / depends upon which literal we are concerned

with. In order to understand this situation, let's divide the values of E into three sets as

follows. Let jF(x) be a set of values which are contained in all the literals of r(x), R(x.)

be a set of values which are not contained in any of the literals of r(x), and D(x) be the

rest of values. Then we see that the problem above does not arise if for an arbitrary subset

5 C jD(x), there exists a literal y G7"(x) which contains all and only the values of F(x) and

S. It is because in this case, we can set the output value of / for (x, a) to 1 if a G -F(x),

0 if a G i2(x), and 2 or don't care otherwise. If this condition holds for every xED, then

the function / is well formulated and the minimized result has a correspondence between

each x G D and exactly one literal of r(x). In this case, we know that by definition the
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original relation R C D x Bm is reduced to an incompletely specified function. However,

for a relation in general, the function / cannot be formulated. Therefore we cannot convert

R to a single output incompletely specified function with the 1-hot encoding scheme. The

same statement is claimed for the 0-hot encoding scheme.

Now let's consider the log-based encoding scheme. Namely, we treat each minterm

of Bm as a single value of a multiple-valued variable Y. Thus Y can take 2m values, denoted

as E. In this case, R maps each minterm x G D to a set of values of E. Denote this set of

values by r(x). If Y is treated as an input variable, then we need an incompletely specified

function / : D x E -> B such that for every xGD, there must exist exactly one value

a G r(x) for which (x, o) is mapped to 1 by the implementation obtained by minimizing /.

Thus we need to decide which value of r(x) must be chosen and once one of the values has

been selected, we must not choose any other value of r(x) with which x is mapped to 1.

This constraint cannot be handled in the conventional minimization problem. Therefore, we

cannot transform the minimization problem for a relation R to the problem of minimizing

an incompletely specified function with a single output and multiple-valued inputs.

As we have seen, any of the encoding schemes considered above cannot be used for

transforming multiple binary outputs to a single multiple-valued input. It is conjectured

that there is no encoding scheme with which the output part of the original relation can be

treated as a single multiple-valued variable such that there exists an incompletely specified

function with a single binary output and the newly introduced multiple-valued variable

as the additional input for which the two-level minimization problem is equivalent to the

problem of minimizing the original relation.

2.4 Functions, Mappings, and Relations

Given a multiple-valued relation R C D x Bm, a compatible function with jR exists

if and only if R is well-defined. Equivalently, R is well-defined if and only if 5y(i2(x,y)) is

the tautology in D, where R(x,y) is the consistency function of R and Y = {yi,--,ym}

is the set of variables of Bm. Thus well-definedness is easily checked on MDD's. With

this condition satisfied, R can be represented as a multiple-valued mapping r : D —> Bm

given by r(x) = {y G Bm \ (x,y) G R}, where we define a mapping as one which defines

at least one minterm of Bm for each minterm of D. In general, the mapping r is a one-

to-many mapping, and provides the complete family of functions compatible with R. If,
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Figure 2.3: The Minimization of Relations

in addition, r(x) can be represented as a single cube for every x G D, then r can be

expressed as an incompletely specified function[4]. Namely, the set D can be divided into

the On-set, the Off-set, and the Don't-care set for each output of r. Once these three

sets are obtained, our problem is reduced to the conventional minimization problem for

regular incompletely specified functions. A number of methods for solving this problem

have been proposed (e.g. [3, 6, 9, 13, 14, 16]). If, on the other hand, the mapping r cannot

be expressed as an incompletely specified function, we need a procedure that is capable of

handling the relation R directly. The relation among functions, mappings, and relations in

the minimization problem is illustrated in Figure 2.3.

In Chapter 3, we present an efficient procedure that identifies whether r can be

expressed as an incompletely specified function, as well as a procedure for extracting the

care sets and the don't care set from the consistency function R if it can represented as

a regular function. In this way, logic minimization can be viewed in a uniform fashion,

in which the minimizers for regular functions and those for general mappings are sitting

in parallel as sub-procedures of the entire problem that is originally formulated with the

consistency function of a relation.
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2.5 Applications of Multiple-Valued Relations

One can easily imagine applications of the problem of minimizing relations, or

general mappings, by taking into account the applications of the minimization of regular

functions. One such example is state assignment. Suppose a completely specified finite

state machine is given by the characteristic function FiIxSxSxO^B such that

F(i,p, n,o)= 1 if and only if the next state n and the output o are asserted by the input i

and the current state p. F is the consistency function of a multiple-valued relation with the

input set 5 X J and the output set 5 X 0, where the symbolic variable for 5 in the output

set are encoded with the 1-hot encoding scheme. In fact, we know that F can be expressed

in a form of a regular function since the given machine is completely specified. However, if

we are given a set of equivalent states by a function E : S x S -* B such that E(n, n) = 1 if

and only if the states n and n are equivalent, as well as a set of invalid states by a function

T : S —> B such that T(p) = 1 if and only if p is a state not reachable from some initial

set of states, then a set of machines equivalent to F under the equivalent states and the

invalid states is given by a function F:IxSxSxO->B such that F(i,p,n,o) = 1 if

and only if F(i,p, n,o)= 1 or T(p) = 1, or there exists a state n for which F(i,p, h,o) = 1

and E(n,h) = 1. The consistency function F is easily computed using MDD's as

F(i, p,n,o) = F(i, p,n, o) + T(p) + Sn(F(i, p, h, o)E(n, h)), (2.1)

where the last term designates the smooth of the intersection of F and E with respect to the

variables for 5 of the output sets of F and E. In order to obtain a least cost implementation

of a machine equivalent to the original one, we first find a least cost machine at the symbolic

level. Namely, our objective is to minimize the multiple-valued relation F.

Example 2.3 The case where the use of the equivalent states results in a representation

with less cost is illustrated in the following example. Suppose that a completely specified

finite state machine is given as shown in Figure 2.4, where each circle designates a state of

the machine and the label i/o associated with each arc implies that the input i and the state

associated with the tail of the arc causes the machine to produce the state shown on the head

of the arc and the output o. The minimized representation for this machine is shown in

Figure 2.5(a). If, in addition, we know that the state S3 and 54 are equivalent, then we can

further minimize the machine and obtain a better representation shown in Figure 2.5(b).
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Figure 2.4: Completely Specified Finite State Machine

Other applications where relations arise are abstracted in the following way. For

the sake of simplicity, we restrict ourselves for the binary-valued case. Consider the situation

illustrated in Figure 2.6. Let g : Bp —• Bq be a Boolean function, where Bp is a p dimensional

Boolean space. Let h : Bn —> Bq be a Boolean mapping, where the image of a minterm

x G Bn by h, h(x), may consist of multiple minterms. Let Br be the subspace spanned by

the variables common to both Bn and Bp. Br may be empty. For the orthocomplement

of Br in Bp, denoted as Bm, where m = p —r, consider the problem of finding a function

f :Bn -> Bm such that

VxGJ?n:<7([v,/(x)])G/i(x),

J s S 0

1 Si, s4 53 0

- 52 51 0

1 «3 54 0

0 Si 5l 1

0 53? 54 52 1

(a)

Si, S3, S4

52

51

531 54

(b)

53

51

51

52

0

Figure 2.5: Minimized Representations of the Finite State Machine

(2.2)
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Zl jzq'1

g(Xl,...,Xr,Yl,...,Ym) h(Xl,...,Xn)

;—;;—;r

Yl Ym m=p-r

f(Xl,...,Xn)

Tf
XI Xr Xr+1 Xn

Figure 2.6: Structure where Boolean Relation Arises

where v is the projection of x from Bn to Br. Our objective is to find an implementation

/ of least cost with the property (2.2), if such a function exists. Namely, considering a

relation R given by R = {(x,y) G Bn x Bm | </([v,y]) G /i(x)}, our problem is to find a

least cost implementation compatible with R. The relation R is computed as follows. Let

H : Bn x Bq —• B he the consistency function of the relation {(x,z) | z G h(x)}. We call H

the consistency function of the Boolean mapping h. Similarly, let G : Bp x Bq —> B he the

consistency function of g : Bp -> Bq. Then R(x,y) = 1 if and only if there exists z G Bq

such that 5"(x,z) = 1 and G([v,y],z) = 1. Therefore, we obtain R as

£(x,y) = 5z(G([v,y],z)J7(x,z)), (2.3)

where Z = {z\, •••,zq} is a set of the variables of Bq?

This problem naturally arises in several applications. One context is concerned

with "engineering changes", where one has built a piece of logic that implements a function

g with a highly optimized layout, only to encounter a specification change such that the

correct functionality must be h. One possibility for rectifying this situation is to build a

block of prelogic which sits between the inputs and the circuit already built. Equation (2.2)

2If his a Boolean function, then Rcan be computed directly as R(x,y) —JJ(0W)([v,y]) = h(j)(x)),

where g^ and h^ are the i-th function of g and h respectively.
i=i
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gives the condition for the function / of the attached block so that the resulting circuit is

functionally equivalent to h. A detailed discussion of the rectification problemcan be found

in [19]. Another context is the optimization ofhierarchical networks [4], where a network

with the functionality / feeds another network with the functionality g and the functionality

of the hierarchy is given by h. One wants to minimize the area of the network for / while

still keeping the functionality of the hierarchy. The existence of / is guaranteed in this

case. A similar situation arises in the multiple-level logic synthesis where the post-logic g

has been optimized first and it remains to find an optimum representation for the pre-logic



Chapter 3

Function Minimization and

Relation Minimization

As we have seen in Section 2.4, a multiple-valued relation may happen to be

an incompletely specified function. If this is the case, we should not invoke a procedure

developed for minimizing relations since the minimization of incompletely specified functions

is a simpler problem for which highly optimized software exists, and thus is completed more

efficiently with a procedure designed exclusively for regular functions. Therefore, we need

a method that identifies whether a given relation is an incompletely specified function. We

present one such method with which one can obtain, as a byproduct, the on-set, the off-set,

and the don't-care set if a given relation is an incompletely specified function.

The overall flow of the procedure is illustrated in Figure 3.1. The input of the

procedure is a consistency function of a well-defined multiple-valued relation RC. Dx Bm.

Hence there exists an associated mapping r(x). For an output variable yj, let F^) he a

set of minterms x E D such that yj appears not complemented in all minterms y G r(x).

Similarly, let Rlfi he a set ofminterms ofx GD such that yj appears complemented in all
minterms y Gr(x). Let D^ he the the remaining minterms of D. Thesesets are computed

as follows. Let s^ he a set of minterms x G D such that there exists a minterm y G r(x)

in which yj appears complemented. Let s23 he a set of minterms x G D such that there

exists a minterm y Gr(x) in which yj appears not complemented. Using MDD's, s[3' and
s\ are given by s\3' = Sy(R(x,y)yj) and s23' = Sy(R(x,y)yj), where Y is the set of

19
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procedure IDENTIFY(£(x ,y))

begin

T(x,y)«-1 >

for (each output yj){

Ftt) *-{xeD\ Vy G t-(x) : Vj ==1};
rU) <- {x G D | Vy G r(x): Vj =:0};

DM *-{xGjD x 0 {FV) l>*«)};
T(x,

}

if(T(x,y) =

y)«-T(x„yX^^w + iJO']h + D«);

s*(x,y)) return 1;

else return 0;

end

Figure 3.1: The Procedure to Identify if the Relation is Reduced to a Regular Function

output variables1. Then we obtain F& = ^s[j), R& = -is%\ and D& = s[j)s{23). Note
that the formulas for F^ and RW are valid if and only if R is well-defined. The proposed

procedure computes the three sets F^), R^\ and D^ for every output yj in parallel, and
m

then computes T(x,y) = JJ(ir^J^2/j +R^Vj +D^). Due to the following theorem, we can
3=1

identify if R is in fact an incompletely specified function by comparing R and T.

Theorem 3.1 A well-defined relation R(x,y) is the characteristic function of an incom

pletely specifiedfunction if and only if R(x,y) is equivalent to T(x,y).

Proof: Suppose .R(x,y) is the characteristic function of an incompletely specified function

C : D —> Bm. Then C is represented in terms of three functions, <p : D —> Bm, p : D —• Bm,

1In this paper, we make no distinction between a set and the characteristic function of the set.
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and 6 : D —> Bm such that for each j,

(a) VxeD: (<^>(x) ©p^(x))fj)(x) -r (pij)(x) ©tf<J>(x))^J>(x) = 1,
J 1 if^)(x) +^)(x) =l, (3.1)

(b) R(x,y)= l&yj= <
(0 ifpW(x) + «W(x)=l,

where y?^), p^\ and 0^ are the j-th function of (p, p, and 6 respectively, and (/ © g)

designates an XOR operation between / and g. Thus i2(x,y) is represented as R(x,y) =
m

JJ(^^2/j +P^Uj +S^). Now for an arbitrary minterm x GD, ifyj = 1in every minterm
i=i

y Gr(x), then <pW(x) = 1 and p^\x) = 6^\x) = 0. Similarly, if yj = 0 in every minterm

y G r(x), then p^J\x) —1 and <p(J\x) = 6^(x) = 0. If yj = 1 in some minterm of

r(x) and yj = 0 in another minterm of r(x), then 8^(x) = 1 and <pW(x) = p^(x) = 0,
since otherwise the property (3.1)-(a) is violated. Therefore, <p^\ p^3\ and 6^ are the

characteristic functions of F^J\ R^\ and D^ respectively. Thus T(x,y) is equivalent to

J2(x,y).

Conversely, suppose that R(x, y) is equivalent to T(x, y). For an arbitrary minterm

7T GD, let Jo(tt) he the set ofindices j such that tt GjR^. Similarly, let Ji(x) and J2(7r) be

the set of indices such that t Gf^ and tt G1?^ respectively. Let a be a minterm of Bm

such that yj = Hi j £ Ji(k), yj = 0 if j G Jo(ir), and j/j may be either 1 or 0 if j G J2(k),
m

where ^ is the value of the j-tla. variable of cr. Since i2(x,y) = JJ(.F^yj + R^Vj + D^),

we see that R(ir,a) = 1. Thus the image of tt by the relation R, r(ir), can be represented

as a single product term of the output variables such that the j-th. literal contains only 1

(respectively 0) if j G Ji(n) (respectively.; G Jo(n)) and it contains both 1 and 0 otherwise.

Since tt is arbitrary, the relation R is the characteristic function of an incompletely specified

function. •

Therefore, we can identify whether a given relation R is an incompletely specified

function by checking the equivalency between i2(x,y) and T(x, y).

Furthermore, by the proof of Theorem 3.1, we see that if R is an incompletely spec

ified function, then its on-set, off-set and the don't-care set are given by the F^'s, JZ^'s,

and jD^'s, respectively. Hence, having checked the well-definedness of a given relation R as

described in Section 2.4, we first employ the procedure described above. If the relation is an

incompletely specified function, we convert the F^'s, .R^'s, and D^'s to some required

form, e.g. sum-of-products form, and invoke a conventional minimizer for regular functions,
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e.g. Espresso[14], If it turns out that the relation is not reduced to a regular function, then

we minimize the relation directly using a relation minimizer, GYOCRO, presented in the

following section.



Chapter 4

GYOCRO: Minimization of

Multiple-Valued Relations

4.1 Problem Formulation and Overview

We consider the following problem: given a well-defined multiple-valued relation

R C D x Bm, find a representation T with the minimum number of product terms that

is compatible with R. We propose a heuristic procedure for the problem which takes as

input a consistency function of R represented by an MDD and computes a compatible

representation with a minimal number of product terms.

The procedure starts with computing an initial representation compatible with

the relation. Then three basic procedures, REDUCE, EXPAND, and IRREDUNDANT, are

iteratively applied as long as the cost decreases, where the cost is the number of the product

terms of the representation. Every procedure takes as input a compatible representation T

and the consistency function R for the relation.

In the REDUCE procedure, each cube c G T is reduced to a smallest cube c C c

such that T —{c} U{c} is compatible with jR, where F—SliT designates the replacement of

S Q ? by a set of cubes T. It is guaranteed at the end of the REDUCE procedure that for

every cube c in the resulting representation, any cube c with the condition above is equal to

c. The EXPAND procedure, in turn, takes each cube c6/ and replaces it with a relatively

prime cube containing c so that a maximal number of cubes in T can be removed. The

EXPAND procedure guarantees that every cube of the resulting representation is relatively

23
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prime. The IRREDUNDANT procedure makes the representation T irredundant. Specifi

cally, a cube c GT is removed if and only if T —{c} is compatible. Unlike the irredundant

procedure of Espresso [14], which computes a minimal cover of the current representation

for a regular function based on the concept of partially redundant cubes, our procedure is

dependent on the order that the cubes are processed. In fact, the procedure is a special case

of the REDUCE procedure since a redundant cube is reduced to nothing. However, our

experimental results show that use of IRREDUNDANT improves the computational time.

The overall procedure finally returns a relatively prime and irredundant representation.

4.2 Initial Representation

This section describes how to compute a compatible representation for a given

consistency function R(x, y) of a well-defined relation. Our procedure takes a representation

T, which is initially empty, and processes each output adding a set of new cubes to T. T

becomes compatible with R once all the outputs have been processed.

For an output variable yj, let F^ he a setofminterms x GD such that yj appears

not complemented in all minterms y of the image of x by R. Similarly, let R W he a set of

minterms ofx GD such that yj appears complemented in all minterms y Gr(x). Let D^
he the the remaining minterms of D. These are the same sets introduced in identifying if

a given relation is an incompletely specified function in Chapter 3, and thus are computed

in the same way described in the previous chapter. Once these three sets are obtained, a

two level minimizer formultiple-valued functions is invoked with F^, R^, and D^ as the

on-set, the off-set, and the don't-care set respectively, so that a minimal sum-of-products

representation Tj with n inputs and a single output is computed. Then Tj is converted to

a representation with n inputs and m outputs such that the input part is identical with

Tj and the output part has 1 only in the j-th component. The converted representation

is added to T. Once Tj is computed, the relation R is modified so that for every pair of

minterms (x,y) G R, yj appears complemented in y if and only if x is not covered by Tj.

Equivalently, R(x,y) is replaced by R(x,y)(Fj = yj), where (/ = g) designates an XNOR

operation between / and g. Fj is a set of mintermsof D coveredby Tj, whichis computed by

converting Tj to an MDD. Once all the output variables have been processed, a compatible

representation is obtained in a unwrapped form, i.e. each cube in the representation has

only one 1 in its output part.
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4.3 Computing a Consistency Function

REDUCE, EXPAND, and IRREDUNDANT procedures process one cube c G T

at a time. In each operation, we need to compute a consistency function of a function

corresponding to T —{c}, denoted as .Fc(x,y). A consistency function of a function / :

D -* Bm is a consistency function of a relation F = {(x,y) G D x Bm \ y = f(x)}.

Throughout the rest of the paper, we call Fc a consistency function of T —{c}. In general,

a consistency function of a representation T, denoted as .F(x,y), can be computed by

scanning all the cubes ofT to obtain the function f^ : D —• B for each output yj, followed
m

by setting F(x,y) = JJ(/^(X) —Vj)- This will be referred to later as the "first" method.
i=i

However, this method is time consuming, especially when the size of T is large. In fact,

•Fc(x, y) can be computed much easier by the following method if J1 is already available.

Let 5 be a subset of T defined asS={peT\p^c and M(p) n M(c) ^ <f>},

where we recall that M(p) is a set of minterms of D covered by the product term corre

sponding to the input part of p. Let Fs ' Dx Bm -» B he a function such that Fs(x,y) = 1

if and only if

. I 1 if 0(c)j = 1 and 3p G5 such that x GM(p) and 0(p)j = 1,
V? G {l,---,ro} : yj=<

y 0 otherwise,

where yj is the value of the i-th variable in y. Now we observe that for a minterm x 0 M(c),

the image of x by Fc is identical with the image of x by F. For a minterm x G M(c), on

the other hand, the value of yj of the image of x by Fc is identical with yj of the image

by F if 0(c)j = 0. If 0(c)j = 1 and there exists no p G T - {c} such that x G M(p) and

0(p)j = 1, then yj = 0. Otherwise yj = 1. Thus Fc(x,y) = 1 if and only if

i yj ifxG Af(c) and 0(c); = 1,
Vj6{l,---,m} : yj = <

y yj otherwise,

where yj is the value of the i-th variable in the minterm y such that Fs(x, y) = 1 and yj

is the value of the j-th. variable in the minterm y such that F(x, y) = 1. Therefore, using

additional variables T = {ti,---,tm} and Z = {z\, •••, zm} to represent F and Fs in terms

of (x, t) and (x, z) respectively, Fc(x, y) is computed as

Fc(x,y)= (-*M(c))F(x,y)+ S{TuZ)(M(c)F(x,t)Fs(x,z) IJ (Vj =*i) II (Vj = *j)l

(4.1)
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where Y/(c) = {j G{l, •••, m} | 0(c)j = 0}. In this way, Fc is computed from F by scanning

a subset of T.

According to our experiments, although the first method is slightly faster for small

examples such as 10 variables and 20 cubes, the CPU time for the second method is almost

invariant with the size of the representations and is much faster than the first method for

moderate sized examples, including one with 33 binary variables and 553 cubes, for which

the second method was 20 times faster.

The second method assumes that a consistency function F for T is available. The

computation of F is done once at the beginning of the entire procedure using the first

method. However, it must be updated whenever a cube of T is replaced by another cube

either in the REDUCE or the EXPAND procedure. As a converse of the second method, if

we have T,c G T, and a consistency function of T —{c}, Fc, then we can compute F(x, y)

as follows. For a minterm x G D, the value of yj of the image of x by F is identical with yj

of the image by Fc if x £ M(c) or x G M(c) but 0(c) j = 0. Otherwise yj = 1. Thus using

new variables T —\t\, •••,tm} to represent Fc in terms of (x, t), we obtain

F(x,y)= (-,M(c))Fc(x,y)+ ST(M(c)Fc(x,t) JJ VJ II (»i =**))• <4-2)
JtYdc) j€Y,{c)

In this way, each of the REDUCE, EXPAND, and IRREDUNDANT procedures takes as

an additional input a consistency function F for T, updates it whenever T changes, and

hands it to the succeeding procedure. Note that it is not necessary to update F in the

IRREDUNDANT procedure since if c is removed, then Fc becomes the consistency function

of the new representation.

4.4 Reduce Procedure

A reduction is an operation which takes a cube c and returns a cube c C c, where

c may be empty. A reduction is valid if the replacement of c with the reduced cube results

in a compatible representation with R.

Definition 11 For a given representation T compatible with R and a cube c G T, a cube

c~ C c is a maximally reduced cube for c in T if T —{c} U {c~} is compatible with R and

there exists no cube c~ C c~ such that T —{c} U {c~} is compatible.
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If a maximally reduced cube for c in T is c itself, we say c is maximally reduced.

The goal of the REDUCE procedure is to compute a compatible representation which

consists of maximally reduced cubes. It is known that if R is in fact an incompletely

specified function, i.e. r(x) can be expressed by a single cube for every x G D, then the

maximally reduced cube for c in T is unique. It is also known in this case that for any cube

c which is contained in c and contains the maximally reduced cube, the replacement of c

by c preserves the compatibility. Thus the maximally reduced cube is easily obtained by

randomly lowering one part at a time from 1 to 0 for c, followed by checking the compatibility

of the resulting representation, until no valid reduction is possible1. Therefore, a two level

minimizer for regular functions achieves the goal mentioned above by taking each cube and

replacing it with the uniquely defined maximally reduced cube.

The REDUCE procedure of the proposed method also processes one cube at a time

and replaces it by a maximally reduced cube. Thus we are interested in if the uniqueness

holds for relations.

4.4.1 Reduction of the Input Part

The following theorems calim that the reduction of the input part of a cube c£f

is completed in a similar way to the reduction for regular functions.

Theorem 4.1 Let T be a representation compatible with a relation R. The input part of a

maximally reduced cube for c G T is unique.

Proof: Suppose that there are two maximally reduced cubes c^ and c^2\ The objective

is to show that M(c^) = M(c^). We first show that M(c^) n M(c^) ^ <f>. Suppose

the contrary. Let c^ he any cube strictly contained in c^ obtained by reducing only the

input part ofc^\ c^ may be an empty cube. Let uj be any minterm included in M(c^) n

-iM(c^). Since c^ and c^ are disjoint, oj 0 M(c^). However, since T —{c} U{c^} is

compatible, the image of uj by T —{c} must be a member of r(uj). Thus a reduction from

cM to c^1) is valid, which is conflict. Therefore M(c^) and M(c^) are not disjoint.

Suppose that M(c^) £ M(c^). Let m be any minterm included in M(c^) n

-iM(c^). Let mj he the value of the j-th input variable in m. Let c^1) be the cube which

is identical with c^ except that I(c^)j = -irrij n I(c^)j, where j is an index such that

^ote that T is compatible with R if and only if F(x,y) C R(x, y).
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mj $ I(cW)j. Note that c^ is not an empty cube since otherwise I(c^)j n I(c^)j = <f>,
which implies M(c^) n M(c^) = <p. Since c^ is maximally reduced, T - {c} U{c^} is

not compatible. This implies that there exists a minterm tt GM(c^)f)-tM(c^) such that

the image of n by T - {c} is not a member of r(ir). However, we know that itj = mj, and

thus 7r £ M(cW). Since T - {c} U{c(2)} is compatible and since tt &M(c^), the image

oiir hy T —{c} must be a member of r(ir), which is a contradiction. Thus the assumption

that M(cM) ^ M(cW) is incorrect. •

Theorem 4.2 Given a relation R and a cube c€ T, where T is a representation compatible

with R, let c C c be a cube such that 0(c) = 0(c) and M(c) D M(c~), where c~ is a

maximally reduced cube for c in T. Then the reduction from c to c is valid.

Proof: For any minterm m G M(c), we have m G M(c). Since 0(c) = 0(c), the image

of m by T - {c} U {c} is equal to the image by T. For any minterm m G M(c) n ->M(c),

m £ M(c~). Thus the imageof m by T- {c} U{c} is equal to the image by T- {c} U{c"},

which is a member of r(m). Therefore, T - {c} U{c} is a compatible representation. •

Thus by fixing the output part of c, we can lower each part of 1(c) with the value

1 to 0, one at a time, and accept the reduction if the new representation is compatible

with J2. The unique input part of a maximally reduced cube is obtained once all the input

components have been processed. Note that c is redundant in T if there is a component

I(c)j in which every part is 0.

We can check the compatibility of the new representation as follows, without com

puting its consistency function. Let c be a cube which is identical with c except that a

single part of 1(c) has been lowered from 1 to 0. Let Q = M(c) n ->M(c). We see that

T— {c} U{c} is compatible if and only if for any minterm m GQ, the image of m by T- {c}

is a member of r(m). In terms of MDD's, T - {c} U {c} is compatible with R if and only

if Q = SY(R(x,y)Fc(x,y)Q).

4.4.2 Reduction of the Output Part

We have seen that the reduction of the input part is completed in a straightforward

way. Unlike the input part, however, the following example show that the output part of

the maximally reduced cube is not unique.
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Example 4.1 Suppose that a representation T shown in Figure 4-1 w compatible with

R, where part of its relations are shown in Figure 4-1- Then ej1' = [1021 | 1000] and
c\ ' = [1021 | 0110] are both maximally reduced cubes for c\ inT.

Representation T Relation R

cube Input Output x€B4 y€B4

c4

1021

1201

2021

2211

1110

0100

0001

0001

1011

1001

1101

1111

{1111, 0111, 1001}
{1111, 0111, 1101, 1001, 0001}
{0100}
{0001}

Figure 4.1: Example where a Maximally Reduced Cube is not Unique

Since we want to reduce c as much as possible, we want to find the smallest

maximally reduced cube, i.e. the maximally reduced cube with the minimum number of

l's in the output part. One difficulty to find such a cube is that the compatibility does

not necessarily hold for a cube which is contained in c and contains a maximally reduced

cube. For Example 4.1, although T and T - {ci} U{c\ '} are both compatible with R, for

p = [1021 | 1100] or q —[1021 | 1010], the replacement of c by either p or q results in an

incompatible representation. Thus the smallest maximally reduced cube may not be found

by greedily reducing the output part of c.

Now consider a cube c such that its input part is maximally reduced. We define a

feasible cube for c as follows: c* is feasible if T —{c} U{c*} is compatible with R, the input

part of c* is equal to that of c, and c* C c. The feasible cube with the minimum number

of l's in the output part is the maximally reduced cube we seek. For a set of components

Yh = {j G{l,'",m} | 0(c)j = l}, consider a Boolean space J?'**! defined by the output

variables of Yh. For a minterm y G S'y*l, we define a reduced cube c* for c with respect

to y as follows. The input part is equal to that of c, and 0(c*)j = 1 if and only if j G Y/,

and yj = 1. Let h : 2?!**! -» B he a function such that h(y) = 1 if and only if c* is feasible,
where c* is a reduced cube for c with respect to y. By definition, h(y) = 1 if and only if

the following property holds for every minterm x G M(c):

3yeBm: R(x,y) = 1, Vj€{l,---ro}: y3 =
Vj + Vj a jeYh,

yj if j#Yh,

where yj is the value of the j-th variable of the minterm yG5m such that .Fc(x,y) = 1.

(4.3)
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Let H : M(c) x B^ -» B he a function such that iT(x,y) = 1 if and only if

(4.3) holds for (x,y). Using additional variables T = {ti, •••,tm} and Z = {z\, •••,zm} to

represent R and jPc in terms of (x,z) and (x, t), H(x,y) is computed as

#(x,y) = S(TuZ)(M(c)i2(x,z)Fc(x,t) II (zj = (*i + »i)) II (*i = **))•
i€yh j*Yh

Observing that h(y) = 0 if and only if there exists x G M(c) such that IT(x,y) = 0, h(y)

is obtained as h(y) = ->(Sx(M(c)(-iH(x,y)))).

Note that h(y) is represented as a BDD, since the output variables are all binary.

Once h(y) is computed, the maximally reduced cube with the minimum number of l's is

obtained efficiently. In fact, the following theorem is analogous to a result of a BDD based

approach for the binate covering problem [12].

Theorem 4.3 The maximally reduced cube for c in T with the minimum number of 1 's is

given by the shortest path connecting a 1 leaf to the root of a BDD for the function h(y)

defined above, where the length of an edge of the BDD is 1 if the edge is a 1 edge and 0 if

the edge is a 0 edge.

Proof: For a reduced cube c* with respect to y, 0(c*)j = 1 if and only if yj =•!. Thus the

maximally reduced cube with the minimum number of l's is a reduced cube for y with the

minimum number of l's such that h(y) = 1. For any path from the root of the BDD for h

which ends with a 1 leaf, one can obtain a minterm y such that h(y) = 1, by setting yj = 1

only if the path contains a 1 edge incident with a node for yj. The number of l's of the

minterm is minimal among all the minterms represented by the path. Let y be the minterm

with the minimal number of l's associated with the shortest path P that ends with a 1 leaf.

The proof is done if we show that y has the minimum number of l's. Suppose that there is

another minterm y' such that the number of the l's of y' is less than that of y. Then there

exists at least one path in the BDD corresponding to y'. Let P' he the shortest such path.

Since the number of l's of y' is at least the length of P', P' must be shorter than P, which

is a contradiction. •

Therefore, once the input part of a cube c G T has been maximally reduced, the

smallest maximally reduced cube for c is obtained by computing a function h(y), followed

by performing a shortest path algorithm, which runs in linear time with respect to the

number of the nodes of BDD's.
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4.4.3 Reduce Procedure

We have shown how to compute a maximally reduced cube for each cube of T.

However, we want to compute a representation in which every cube is maximally reduced.

Due to a nature of sum-of-products representations for relations, a property of a cube like

maximal reduction, which may hold as some time in the reduction process, may cease to

hold when other cubes are subsequently reduced. We must deal with this difficulty which

does not arise for regular functions. This is illustrated by the following example.

Example 4.2 In Example 4>1> suppose c\ has been replaced by a maximally reduced cube

c\\ Ifwe have replaced C2 by its maximally reduced cube c2 = [1101 | 0100], then c^
can be further reduced to [1011 | 1000] while still keeping the compatibility of the resulting

representation.

One solution for this problem is to iterate the entire procedure, until no cube is

replaced by a smaller cube. Then at the end, it is guaranteed that every cube of the final

representation is maximally reduced.

As with regular functions, the result of this procedure depends upon the order

of the cubes to be processed. We order the cubes with the same strategy employed in

Espresso [2], in which the largest cube is processed first and the rest of the cubes are sorted

in increasing order of the number of mismatches (distance) of each cube against the largest

one.

4.5 Expand Procedure

The objective of the EXPAND procedure is to remove as many cubes as possible

from a given compatible representation. Furthermore, we want the final representation of

the procedure to consist of relatively prime cubes. The proposed procedure achieves this

goal by processing one cube at a time, in which the cube is expanded maximally so that a

maximal number of cubes are removed. An expansion is an operation which takes a cube c

and returns a cube c~D c. The expansion is valid if the replacement of c with c results in a

compatible representation. The result of the procedure is order dependent and we sort the

cubes in the order of decreasing size as in Espresso.

The procedure for each cube c€ T, EXPAND1, is designed as an extension of the

expand procedure of Espresso [2], and is illustrated in Figure 4.2. EXPAND 1 employs a
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covering matrix C which has been introduced in Espresso. C has (t + rn) columns and as

many rows as cubes of T —{c}, where t is the number of the parts of 1(c), which is given

by the sum of the number of values that each input variable can assume. Each element of

C, Cij, is defined as follows:

. fl if the j-th part of 1(c) is 0and the j-th part of I(T^) is 1,
Vj G {1,>-,t} : Cij = <

y 0 otherwise,

f 1 if 0(c)j = 0and 0(T^)j = 1,
Vj G{l,---,m}: Ciit+j) = <

y 0 otherwise,

where T^ is the i-th cube of T— {c}. The covering matrixallows us to handle each part ofc

in a uniform way, without making any distinction among the input or the output variables.

Throughout EXPANDl, we maintain two sets of columns of C, 1Z and C, where

TZ is initially a set of columns at which c has 1, and C is empty. 7Z is called a raising set

and C is called a lowering set. 11 is used to store the columns that have been raised, while

C maintains the columns that have been determined not to be raised.

4.5.1 The Maximal Feasible Covering Operation

Among all the operations of EXPANDl, the maximal-feasible-covering (MFC)

operation is the key, in which directions of expansion for c are determined, while other

operations are used to complete the procedure efficiently. The objective of MFC is to

expand c so that the maximum number of cubes of T —{c} are removed. Overall flow of

the operation is as follows. First, for each cube p G T - {c} corresponding to each row

of the covering matrix C, compute the smallest cube c*(p) such that T - {c,p} U {c*(p)}

is compatible. c*(p) may not exist. We choose the smallest such cube since we want to

leave freedom of expansion for eliminating other cubes. Note that c*(p) may not cover

p.2 If c*(p) exists, then we compute the maximum subset S(p) of T —{c,p} such that

T- {c,p} - S(p)u{c*(p)} is compatible. Once all the cubes corresponding to the rows of C

have been processed, and if no c*(p) exists, then we exit the operation. Otherwise, a cube

c*(q) with the maximum cardinality of S(q) is chosen. Then the rows of C corresponding to

the cubes of q U S(q) are removed and the consistency function for the new representation

except c is computed as Fc. Finally, the operation is exited with the set of newly raised

columns.

*In fact c*(p) may not cover even c, but we exclude this case in our procedure.
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procedure EXPANDl(c, T, R, F)

begin

Fc <— CFc(F, T); /* compute a consistency function for T —{c} */

C <- COVERINGJVIATRIX(c, T);

1Z <- {j | The j-th part of c is 1.};

£ *- 05

while(|ft| + |£| < (* + m) and C ^ <f>){

XE <- ESSENTIALS, Fc, R, 11, C);

C *- CUXE;

C <- ELM1(C, XE)\

J *- MFC(C, c, Fc, R, 11);

if(|J| = 0) J ^ EG(C);

ft <- ft U J;

C «- ELM2(C, J);

}
if(|ft| + \C\ < (t + m)) {11, C} ^ GREEDY(c, Fc, R, 1Z, C);

c «- RAISE(c, 11);

if(c has been expanded) F <— CF(FC, c);

end

Figure 4.2: EXPANDl
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Practically, it is expensive to accomplish these procedures completely and thus we

introduce some restrictions. First, S(p) is restricted to those covered by c*(p), and c*(q)

is chosen as the one that covers the largest number of c*(p)'s over all the p's. Thus we

do not compute S(p) at all and the rows of C covered by c*(q) are eliminated by another

operation. Now, we still need to update jPc once a cube c*(q) is chosen. Furthermore, in

order to compute c*(p) for each p G T —{c}, we need to compute a consistency function

for T —{c,p}. These consistency functions are necessary so that we can estimate the

functionality of T- {c, q} —S(q) U{c*(q)} (and T- {c,p} U{c*(p)}) without computing the

real consistency functions for the representations. However, we can observe that both of

these tasks are necessary because of the fact that c*(p) may not cover p. This is because if

c*(q) coversq as wellas all the cubes of S(q), then the functionality of T— {c, q}—S(q)l)c*(q)

is identical with the functionality ofT- {c}Uc*(g). Thus as long as the consistency function

for T - {c,q} - S(q) is used to estimate the functionality of the entire representation, the

consistency function for T —{c}, Fc, can be used as alternative. Note that Fc does not

reflect the functionality of T —{c,q} —S(q), but still the functionality of T —{c,q} -

S(q) Uc*(q) can be correctly estimated with the help of c*(q). The same statement holds

for the consistency function of T —{c,p}. Since Fc is already available, with the additional

restriction that c*(p) D p, the entire procedure of MFC can be completed without computing

consistency functions. Due to the enormous improvement in computational time, we employ

this restriction.

What remains in MFC is a computation of c*(p), the smallest cube containing both

c and p such that T —{c,p}U {c*(p)} is compatible with the relation R. The smallest cube

containing both c and p, denoted as c, is obtained by taking the part-wise union between

c and p [14]. In other words, if p corresponds to the i-th row of C, then for j G {l,••-,*},

the j-th part of 7(c) is 0 if and only if Cy = 0 and j £ ft, while 0(c)j = 0 if and only if

C,-(t+J-) = 0 and (t + j) £ ft for j G {l, ••-m}. If A is a regular function, then c*(p) = c
if T —{c,p} U c is compatible, otherwise c*(p) does not exist. For relations, however, it

is claimed, as with the REDUCE procedure, that there exist cases where an incompatible

representation becomes compatible by raising the output part of c. One sees that raising

the input part of c does not help since the image of a minterm for which the incompatibility

occurs is not changed unless either the output part of c or other cubes of T —{c,p} are

modified. Considering that the functionality of T - {c,p} U {c} is identical with that of

T - {c} U {c}, we define a feasible cube for c as a cube c* such that T - {c} U {c*} is
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compatible with R, the input part of c* is equal to that of c, and c* 3 c. Then our objective

is to find the smallest feasible cube for c.

This is done with a similar technique used in REDUCE. Let Y/ = {j G{l, •••, m] |

0(c)j = 0}, and consider a cube corresponding to a minterm y GB^ such that the input
part is identical with that of c and the j-th output part is 0 if and only if j G Y*/ and j/j = 0.

Let I : BW ->5bea function such that l(y) = 1 if and only if T - {c} U{c*} is compatible

with R, where c* is the cube corresponding to y. There is one-to-one correspondence

between a feasible cube and a minterm y such that l(y) = 1, and thus our objective is to

find the minterm y with the minimum number of l's in the output part for which l(y) = 1.

We see that l(y) = 1 if and only if the following property holds for every minterm x G M(c):

3yG5-: R(x,y) =1, Vj€{l,.-m}: yj =[ Vj +Vi lijeYh (4.4)
1 1 if3?Yh

where yj is the value of the j-th variable of the minterm y such that Fc(x, y) = 1. Then as

seen in the previous section, using a function L :M(c) x B^ —• B such that L(x,y) = 1 if

and only if (4.4) holds for (x,y), l(y) is computed as l(y) = ->(S x(M(c)(->L(x,y)))), where

L(x,y) is given by

£(x,y) = S{TijZ)(M(c)R(x,z)Fc(x,t) J] (zj = (tj + yj)) [J */). (4-5)

Note that, unlike REDUCE, l(y) may be tautologically zero. This is the case where there

is no feasible cube for c.

Now, as a variation of Theorem 4.3, it is claimed that if l(y) is not tautologically

zero, then the minterm y with the minimum number of l's such that l(y) = 1 is given by

the shortest path connecting a 1 leaf to the root of a BDD of /(y). Hence, the smallest cube

c*(p) containing both c and p such that T - {c,p} U{c*(p)} is obtained by computing /(y)

for a cube c, followed by performing a shortest path algorithm.

The restriction that c*(p) must cover p brings another contribution for efficiency:

once there is no such c*(p) for p at some time during the expansion of c, then there is no

hope that c*(p) exists in the future. Thus we mark a row of C corresponding to p if c*(p)

does not exist, so that a function l(y) for p is never computed for the rest of the procedure.

We note if we do not restrict c*(p) to coverp, then this does not hold for relations in general.

The following example illustrates the situation.
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Example 4.3 Suppose that a representation T is compatible withR in Figure4-3- Suppose

we are in the process of expanding c. There is no cube c*(p) D c such that T- {c,p}u{c*(p)}

is compatible, and thus p cannot be eliminated. On the other hand, q is eliminatedfrom T

if c is expanded to c^ = [110 | 101]. Then if c^ is further expanded to c^ = [112 | 101],
{c'2)} is a compatible representation and thus p is eliminated. Note that the expansion from

c to c^2) is not valid if q is present in T.

Representation T Relation R

cube Input Output xG B3 y eB3
c

P

q

110

121

112

001

101

010

110

101

111

{Oil, 101}
{000, 101}
{111, 001,101}

Figure 4.3: Example of Expansion for Binary-Valued Relation

4.5.2 EXPANDl

We have seen how to determine the direction of expansion for c in MFC. However,

no c*(p) might exist for any p £ T - {c}. In this case, an operation EG is invoked. If, in

addition, C is empty, then another operation GREEDY is called. Otherwise, as Espresso

does, the operation chooses a single column not in ft or £ with the maximum column count

in C. Then a set of columns obtained by either MFC or EG are included to ft. Now C

might have the rows that have a zero in every column not in ft or £. This means that the

cubes of T - {c} corresponding to these rows are covered by c if all the columns in ft are

raised. Thus these rows are eliminated by ELM2.

The operation ESSENTIAL finds essential columns. A column j £ {ft U£} is

essential if there is no feasible cube for a cube c in which all the columns of ft U {j} are

raised. This is checked by computing /(y) for c, and seeing if / is tautologically zero. Once

a set of essential columns are obtained, these are included in C. If there is a row in C that

has a 1 in one of the columns which have been included in £, then there is no hope that

the cube corresponding to the row is covered by expanding c. Therefore ELM1 eliminates

all such rows of C.

In case C becomes empty but some columns are not in either ft or £, GREEDY

is invoked, where we first examine for each such column of the input part at a time if the
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column is essential. If the column is not essential then it is put in ft, otherwise included

in C. Then for a cube c in which all the columns of ft are raised, we compute the largest

feasible cube for c, i.e. the feasible cube with the maximum number of l's in the output

part. Such a cube is obtained by computing the longest path to the 1 leaf of a BDD for

l(y) of c. Namely, the j-th column of the output part such that j £ C is included in C if

there is a 0-edge incident with a node for yj in the longest path. The rest of the columns

are put in ft.

Finally all the columns in ft are raised in c by RAISE and a consistency function

for the new representation is computed. The following theorem guarantees that at the end

of EXPANDl, c is prime relative to T.

Theorem 4.4 Suppose EXPANDl expands c to c+. Then c+ is prime relative to T —{c} U

{c+}.

Proof: Suppose for contrary that there exists a cube c++ D c+ for which T —{c} U{c++}

is compatible. Let j be any part at which c+ is lowered and c++ is raised. Then j was

added to C either by ESSENTIAL or GREEDY. In either case j was essential at that time.

Let c be the cube for which the existence of feasible cubes was examined for j. Note that

M(c++) D M(c). For a cube p = [1(c) \ 0(c++)], the image of any minterm x GM(c) by

T - {c} U {p} is equal to that by T - {c} U{c++}. Since there was no feasible cube for

c and pD c, there exists a minterm x G M(p) such that the image of x by T - {c} U {p}

is not a member of r(x). Thus T - {c} U{c++} is incompatible, which is a contradiction.

•

As with the REDUCE procedure, it is claimed that there is a case where relatively

prime cube in T may become non-prime by expanding another cube of T. Therefore, we

iterate the entire procedure, until no cube is further expanded. At the end of EXPAND,

we obtain a compatible representation in which every cube is prime relative to the repre

sentation.

4.6 Irredundant Procedure

In the IRREDUNDANT procedure, a compatible representation is made irredun

dant. The procedure takesone cube c at a time and checks if the representation T - {c} is

compatible. If this is the case, c is removed. The results of the procedure depends upon the
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order of the cubes, and the procedure processes them in decreasing order of size. However,

since the IRREDUNDANT procedure is always applied as a successor of the EXPAND

procedure which also sorts the cubes in the order of decreasing size and since the EXPAND

procedure is iterated until no cube changes, the cubes are already sorted when given as

input to the IRREDUNDANT procedure. Thus we do not sort them in this routine. The

IRREDUNDANT procedure is considered as a special case of the REDUCE procedure and

thus it is claimed that as with Example 4.2 an irredundant cube in T may become re

dundant once another cube is modified. Thus we iterate this procedure, until no cube is

removed. Note that the decreasing order of the cubes is preserved even if some cubes are

removed.



Chapter 5

Implementation and Results

The proposed procedure has been fully implemented in the program called GY

OCRO. The system computes an initial representation only if it is not given externally.

Once an initial representation has been verified to be compatible, the proposed procedure is

applied. We use the same data structure as Espresso-MV [14] to represent sum-of-products

expressions. In the EXPAND procedure, employing the techniques introduced in [14], we

have implemented the proposed algorithm by directly using a representation T instead of

a covering matrix.

We have tried some examples of binary-valued relations to the proposed procedure

and measured the CPU time required to complete the minimization. The results were

compared with the other two approaches [8,17] developed for binary-valued relations, where

the programs for both procedures have been provided to the authors. Table 5.1 shows the

number of the product terms and the CPU time (seconds) measured on a DECstation

5000 for all three methods. Exact is the exact procedure [17], Herb is a heuristic approach

proposed in [8] and GYOCRO is the proposed approach. The proposed approachperforms

quite well both in CPU time and results.

In order to speed up the proposed method, we tried a modification. In the original

procedure, each of the REDUCE, EXPAND, and IRREDUNDANT procedures is iterated

until no cube of the representation is replaced by a different cube, or is removed from

the representation. This is because we want to guarantee that every cube of the final

representations of these procedures is maximally reduced, relatively prime, and irredundant

respectively. We tried another way where each of these procedure is exited after a single

sweep of the representation. In this case some cubes of the final representation of the entire
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Name In Out

Exact Herb GYOCRO GYOCRO-I

Terms Time Terms Time Terms Time Terms Time

intl 4 3 5 15.94 8 0.2 5 0.65 5 0.39

int2 4 3 5 14.93 8 0.2 5 0.60 5 0.40

int3 4 3 7 1.87 8 0.2 7 1.79 7 1.04

int4 4 3 7 0.03 9 0.5 9 1.25 9 0.83

int5 4 3 7 0.18 8 0.6 7 1.96 7 0.59

int6 4 3 7 0.20 7 0.5 7 1.01 7 0.62

int7 6 4 time out 16 2.2 15 7.99 15 4.58

int8 4 3 8 0.02 8 0.4 8 3.12 8 1.71

int9 6 4 time out 23 2.9 14 8.75 14 5.18

intlO 6 4 25 42446.33 32 3.6 25 8.23 25 4.89

cl7a 5 3 5 0.51 5 0.5 5 0.82 5 0.67

cl7b 5 3 7 18.15 7 0.4 7 1.10 7 0.75

cl7c 5 3 12 8.08 13 2.4 16 3.40 16 1.97

cl7d 5 3 12 0.96 15 2.6 16 3.37 16 1.92

cl7e 5 3 5 0.49 5 1.2 5 1.73 5 1.09

cl7f 5 3 5 1.01 7 1.4 6 1.17 6 0.71

cl7g 5 3 7 0.26 7 0.5 7 2.39 7 1.49

cl7h 5 3 5 0.66 5 1.9 5 0.92 5 0.64

cl7i 5 3 13 0.85 14 1.7 15 2.89 15 1.68

shel 7 3 6 70.26 9 96.5 6 3.23 6 1.70

she2 5 5 time out 14 18.0 10 8.91 10 4.47

she3 7 4 time out 10 358.5 9 7.41 9 4.55

she4 5 6 time out 27 22.4 20 13.63 20 7.49

yosi 5 13 * * 16 19.6 11 77.43 11 52.99

gr 15 11 * * X X 53 453.94 53 224.68

b9 16 5 * * 452 1439.3 270 565.99 270 275.30

intl5 24 14 * * X X 131 1751.00 131 697.90

vtx 27 6 * * 424 1272.3 *
*

424 12596.52

ib 48 17 * * out of memory out of memory out of memory

*

X

: the

: the

method

method

las not bee

does not pr
a applied
oduce a c
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Table 5.1: Experimental Results
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procedure may not be prime relative to the representation or irredundant. However, we

note that every cube is guaranteed to be a c-prime since the cube was made prime relative

to some representation compatible with the relation. The results of the modified procedure

are shown in the last column of Table 5.1. The CPU time was improved roughly by a factor

of two and the results were precisely the same.



Chapter 6

Conclusion

We have considered the minimization problem of multiple-valued relations. We

have shown that the problem of minimizing multiple-valued relations are naturally described

with consistency functions, and have proposed a heuristic procedure which achieves the

minimizations using consistency functions. Based on the paradigm of a state-of-the-art

two level minimization technique for regular functions, in which a final solution is obtained

from an initial solution through expand and reduce procedures, we have described some

special properties of relations that do not hold for functions. These properties are easily

handled through consistency functions represented as MDD's. The proposed procedure has

been fully implemented in the program GYOCRO. The results are encouraging in the sense

that, for those examples where we know the minimum solution, our heuristic minimizer

reproduces the result most of the times or comes very close. On large examples where the

exact minimizer can not complete, our method outperforms the only other existing heuristic

binary-valued relation minimizer. Computing times are reasonable.
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Appendix A

GYOCRO: User's Manual

This chapter provides the user's manual for GYOCRO. GYOCRO has been de
veloped so that it can be used as either a stand-alone system or an internal package of
another system, e.g. misll [3]. In Section A.l, we present a general description on the use
of GYOCRO as a stand-alone system. Section A.2 describes the format of an input file that
GYOCRO takes. Section A.3 provides a manual for the internal use of GYOCRO, in wliich
we present interface data structure as well as a set of exported functions.

A.l System Description

GYOCRO takes as input a table format of a binary-valued (or multiple-valued)
relation, and produces a minimal sum-of-product expression compatible with the relation.
GYOCRO is used from a command line by specifying as follows.

gyocro [options] [filel] [file2]

GYOCRO reads the filel provided, performs the minimization, and writes the
result in the file2 (or standard output if file2 is not specified). The format of the output
file is a PLA format employed in Espresso [14]. The format of the input file is described
in Section A.2. GYOCRO automatically verifies that the minimized function is compatible
with the given relation. The command line options that GYOCRO can accept are listed
below.

-g By default, GYOCRO performs the modified version of the minimization procedure
which has been described in Chapter 5. With this option, the original minimiza
tion procedure is performed, and thus it is guaranteed that the minimized result is
relatively prime and irredundant.

-i With gyocro -i [filed] [filel] [file2], GYOCRO takes a sum-of-products expression spec
ified in fileO as an initial representation. The fileO must be given in a PLA format.
GYOCRO verifies whether the expression specified in fUeO is compatible with the
relation specified in filel before performing the minimization.
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-t With this option, GYOCRO first identifies whether the given relation is an incompletely
specified function. If this is the case, Espresso [14] is invoked to perform the mini
mization. Otherwise, the minimization procedure for relations is employed.

-c With gyocro -c [fileO] [filel] [fUe2], GYOCRO verifies whether a sum-of-products ex
pression specified in fileO is compatible with the relation specified in filel. If it is not
compatible and if fUe2 is specified, then the set of minterms of the inputs for which
incompatibility arises is written in file2 as a PLA format.

A.2 Input File Format

GYOCRO accepts as input a table format of a binary-valued or a multiple-valued
relation. This is described with keywords embedded in the input file to specify the size of
input and output variables.

The following four keywords are recognized by GYOCRO. If the given relation
is binary-valued, .i and .o are required, while .mv is required if the relation contains a
multiple-valued variable.

.i d The number of the input variables (d).

.o d The number of the output variables (d).

.mv num_var num_binary_var dl ••• dn The sum of the number of input variables and
the number of the output variables (num.var), the number of binary input variables
(numJbinary_var), and the size of each of the multiple-valued variable, where dn is
the number of output variables.

.e The end of the file.

A table format of a relation is a set of rows, where each row consists of the input
part and the output part. The input part and the output part may be separated by a
vertical bar |. Wefirst describe a table format for a binary-valued relation. An example of
a binary-valued relation in a table format is shown in Figure A.l. The input part of each
row corresponds to a product term of the input variables. Namely,each position of the input
part corresponds to an input variable where a 0 implies the corresponding input variable
appears as the complemented literal in the product term, a 1 implies the corresponding
input variable appears as the uncomplemented literal in the product term, and a 2 or -
implies the corresponding input variable does not appear in the product term. The output
part of each row consists of a set of strings separated by a space. Each string corresponds
to a product term of the output variables, and thus the length of the string is equal to the
number of the output variables. Each string can contain characters 0, 1, 2, and -, and the
characters are used in the same way with the input part. Therefore, each row consists of a
product term of the input variables and a set of product terms of the output variables. The
table format specifies a relation in such a way that for a minterm x of the input set, the
image of x by the relation is the sum of the product terms of the output variables for all
the rows whose input part covers x. One exception is that the image of x by the relation is
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.i3

.0 3

120 | 001 100

202 | 010

210 121

010 010 100

.e

Figure A.l: A table format of a Binary-Valued Relation

Input Output

000 {010}
001 {010}
010 {010,100,101,111}
Oil {000}
100 {001,100,010}
101 {010}
110 {001,100,101,111}
111 {000}
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Figure A.2: The Image of the Relation in the Previous Example

the minterm in which all the output variables appear as complemented literals if x is not
covered by any row of the table. The images for all the minterms of the relation shown in
Figure A.l is shown in Figure A.2.

A multiple-valued relation can be specified in a similar way. In this case, the
size of the relation must be specified using the keyword .mv. If the relation also contains
binary-valued variables, they should be given as the first variables for each row. Note that a
binary-valued variable can be specified as a multiple-valued variable with 2 values, so that it
is specified in an arbitrary place in the row. The binary variables are specified as described
above. Each of the multiple-valued variables is specified as a bit vector with the length
equal to the number of the values the variable can assume, where a 0 implies the variable
does not take the corresponding value in the product term corresponding to the row, and
a 1 implies the variable takes the value in the product term. A vertical bar | may be used
to separate multiple-valued variables. Figure A.3 shows the relation given in Figure A.l in
which the third input variable is treated as a multiple-valued variable with size 2.

A.3 GYOCRO for Internal Use

GYOCRO has been developed so that it can be used as an internal package of
another system, e.g. misll [3]. GYOCRO provides user friendly interface data structure
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.mv 4223

12 |10| 001 100

20 |H| 010

21 |10| 121

01 |10| 010 100

.e

Figure A.3: A table format of a Multiple-Valued Relation

and a set of exported functions. It employs stand-alone packages for BDD's and MDD's,
both of which have been developed at U.C. Berkeley. Documentation for these packages is
found in [10].

A.3.1 Data Structure

In order to use GYOCRO internally, the consistency function of the relation being
minimized and the information on the size of the relation must be provided. If the given
relation is binary-valued, then the consistency function is represented by a BDD. In this
case, a data structure br_t should be used. The entries of brJt are listed below.

1. bdd.t *cR;
The consistency function of the relation being minimized.

2. bdd_manager *mg; '
The manager of *cR.

3. unsigned int *Xvar;
The BDD ID's of the input variables of the relation. The size of Xvar is equal to the
number of the input variables, and the Xvar[i] specifies the ID of the BDD variable
corresponding to the i-th input variable.

4. unsigned int *Zvar;
The BDD ID's of the output variables of the relation. The size of Zvaris equal to the
number of the output variables, and the Zvar[?] specifies the ID of the BDD variable
corresponding to the j-th. output variable.

If the relation being minimized is multiple-valued, then the consistency function
is repreented by a MDD, and a data structure mvr_t should be used. The entries of mvr.t
is listed below.

1. mdd_t *cR;
The consistency function of the relation being minimized.

2. mdd_manager *mg;
The manager of *cR.
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3. int *Xvar;
The MDD ID's of the input variables of the relation. The size of Xvar is equal to the
number of the input variables, and the Xvar[i] specifies the ID of the MDD variable
corresponding to the i-th. input variable.

4. int *Zvar;
The MDD ID's of the output variables of the relation. The size of Zvar is equal to the
number of the output variables, and the Zvar[j] specifies the ID of the MDD variable
corresponding to the j-th. output variable.

The size of the relation, e.g. the number of the input variables, is specified by a
data structure brsize.t. There is an exported function that sets up the entries of brsizej.

In summary, if a binary-valued relation is minimized, one should provide br_t and
brsizej, while mvrj and brsizej must be given for minimizing a multiple-valued relation.

A.3.2 Exported Functions

A set of exported functions are listed below. In fact, most of the functions take
data structure different from brJ, mvr_t, or brsizeJt, and thus the user should convert the
original data structure to appropriate ones using converting functions.
brJ *

br-alloc()
Allocates a data structure br_t. It is the user's responsibility to set up the entries

of the data.

void

br_free(r)
brJt *r;

Frees up r. The consistency function cR and the manager mg are not freed.

mvr_t *

mvr_alloc()
Allocates a data structure mvrJ. It is the user's responsibility to set up the entries

of the data.

void

mvrJree(r)
mvrJ *r;

Frees up r. The consistency function cR and the manager mg are not freed.

brsizej *

set_brsize(b_nin, m_nin, mnum, nout)
int b_ninf m_nin, *mnum, nout;

Returns a data structure brsize_t with the number of the binary input variables
b_nin, the number of the multiple-valued variables m_nin, and the number of the output
variables nout. mnum is an array of integers with the size m_nin in which mnum[i] provides
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the number of the values that the i-th multiple-valued variable can assume.

void

brsize_free(size)
brsizej *size;

Frees up brsizej.

tbmvbrJ *

tbmvbr_alloc()
Allocates a data structure tbmvbrJ, which is used to read a relation specified as a

table format in a file.

int

read_mvbr(r, file)
tbmvbrj *r;
char *file;

Reads a relation specified as a table format in a file with name file to r. 0 is re
turned if the relation is successfully read. Otherwise 1 is returned.

void

tbmvbrJree(r)
tbmvbrj *r;

Frees up r.

mvbrJ *

brt2mvbrt(r)
brJ *r;

Converts brJ to a data structure mvbrj, which is used in most of the minimization
routines.

mvbrJ *

m vrt2mvbrt(r)
mvrJ *r;

Converts mvrJ to mvbrJ.

mvbrJ *

tbmvbrt2mvbrt(r)
tbmvbrj *r;

Converts tbmvbrj to mvbrJ.

void

mvbr_free(R)
mvbrJ *R;

Frees up R. The BDD manager used in this data structure is not freed in this func-
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tion. It is the user's responsibility to free the manager using a function of a BDD package.

psetJamily
mvbr_cfnc2pla( R, size)
mvbrJ *R;
brsizej *size;

Returns a compatible representation for the relation R in a PLA format used in
Espresso. This routine newly allocates cube data structure defined in Espresso and frees it
up at the end of the routine. Therefore, cube data structure allocated before calling this
routine will be destroyed.

int

mvjchk_compatible(F, R, cF)
pset.family F;
mvbrJ *R;
mddJ **cF;

Checks whether a representation F is compatible with the relation R. The con
sistency function of F is returned as cF. If the representation is compatible, 1 is returned.
Otherwise 0 is returned. It is assumed that cube data structure has been set up reflecting
the representation F.

int

gyocro(R, init_F, fnLF, iterate)
mvbrJ *R;
pset.family init.F, *fnLF;
int iterate;

Minimizes the relation R starting with an initial representation initJF. The min
imized result is returned to fnLF. If iterate is 0, a modified procedure that is completed
faster is used. Otherwise, the original procedure is invoked. If the minimization succeeds,
1 is returned. Otherwise 0 is returned.

int

teaJdentify(R, f, d, r)
mvbrJ *R;
pset.family *f, *d, *r;

Identifies whether the relation R is an incompletely specified function. If this is
the case, 1 is returned, and the on-set, the don't-care set, and the off-set will be retuned to
f, d, and r, respectively. Otherwise 0 is returned and null pointers are set to f, d, and r. It
is assumed that cube data structure has been set up reflecting the size of the input and the
output variables of R.

int

tea_party(R, size, init-F, fnLF, iterate, cube_set)
mvbrJ *R;
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brsizej *size;
pset.family initJ1, *fnLF;
int iterate, cube_set;

Minimizes the relation R starting with an initial representation init_F. The mini
mized result is returned to fnLF. The initial representation may not be given, in which case
init_F should be set to null. If cube-set is not 0, it is assumed that cube data structure
has been already set up reflecting the size of the relation R. Otherwise, cube data structure
is newly allocated. Unlike gyocro(), tea_party() identifies whether the relation R is a
function or not. If it is a function, espresso is invoked, otherwise gyocro is used. If the
minimization succeeds, 1 is returned. Otherwise 0 is returned.

void

mvbr_print_cover(F, fp)
psetJamily F;
FILE *fp;

Writes a representation F to a file fp. Failure occurs unless cube data structure
has been already set up reflecting the size of F.
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