Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

RITUAL
AN ALGORITHM FOR PERFORMANCE-DRIVEN
PLACEMENT OF CELL-BASED ICs

by

A. Srinivasan, K. Chaudhary, and E.S. Kuh

Memorandum No. UCB/ERL M91/47
28 May 1991

RITUAL
AN ALGORITHM FOR PERFORMANCE-DRIVEN
PLACEMENT OF CELL-BASED ICs

by

A. Srinivasan, K. Chaudhary, and E.S. Kuh

Memorandum No. UCB/ERL M91/47

28 May 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

RITUAL
AN ALGORITHM FOR PERFORMANCE-DRIVEN
PLACEMENT OF CELL-BASED ICs

by
A. Srinivasan, K. Chaudhary, and E.S. Kuh

Memorandum No. UCB/ERL M91/47

28 May 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Electronics Research Lab RITUAL

RITUAL

An Algorithm for Performance-Driven Placement of Cell-Based ICs

Abstract

In this paper we describe an efficient algorithm for obtaining a placement of cell-based ICs subject to performance
constraints. Using sophisticated mathematical techniques, we are able to solve large problems quickly and effectively. The
algorithm is very simple and elegant, making it easy to implement. In addition, it yields good results as we show on a set
of real examples. On the average, we are able to make 20% improvement in the wire delay of these examples with little or
no impact on the total Steiner tree wirelength. The acronym RITUAL represents the key idea of our technique: Residual
Iterative Technique for Updating All Lagrange multipliers.

1 Introduction

s interconnect wires on ICs are scaled to smaller dimensions, the performance of chips becomes

dominated by wire delay. Thus physical design tools of today need to address performance issues
at every stage of the design hierarchy. In this paper, we focus on performance-oriented placement.
Performance during the placement phase of physical design has been considered by many researchers
in the past and can be broadly grouped into two categories: net-based and path-based approaches.
Physical design is a net-based process, i.e., the physical design tools operate on nets and the objects to
which they connect. Timing constraints are inherently path-based, and such constraints place require-
ments on the total delay of a well defined sequences of modules and nets with.

Net-based approaches are discussed in [1]-[7],[15],[16]. In some net-based algorithms, weights are
assigned to nets to reflect the criticality of paths which may be determined by a timing verifier stati-
cally or dynamically. In other net-based approaches, a pre-timing analysis may be used to derive
maximum bounds on the sizes of the nets. The problem with net-based approaches is that there is no
guarantee that fixing bounds for a set of nets will not make another set of paths critical and individual
net bounds may be overconstraining.

In path-based approaches like [11], the path nature of timing constraints and the physical representa-
tion of the IC are unified in a single formulation. However the problem with the approach of [11] is
that it takes too long even on moderate-sized examples. The authors of [14] use a constructive method
of placing gates sequentially, with a cost function that tries to capture timing behavior, but cannot
guarantee satisfaction of the timing model. In [16], the authors defines regions for critical paths in
which all the modules on the paths must be placed, and then use constructive placement. This method
also can not guarantee the satisfaction of timing constraints and suffers from the sequential nature of
constructive placement.

Unlike previous approaches that used heuristic methods like net-weighting or placing bounds on net
lengths, we dynamically model timing behavior of all paths efficiently during placement thus remov-
ing the need for heuristics. Our timing model is based on net capacitance which is the ‘‘major
performance limiter’’ according to [8].

Page 1

Electronics Research Lab . RITUAL

2 The Mathematical Models

An IC may be viewed as a collection of modules (or cells) interconnected by nets that attach to the
modules at pins (or terminals). Let

M={m,..m} AN={n,.., ng}and 2={p,; .., pp},

respectively denote the sets of modules, nets, and pins. The modules can be categorized by function
as: combinational, synchronizing, primary input (PI), and primary output (PO). Let f represent the
number of primary inputs, and g represent the number of primary outputs; thus, there are M-f-g inter-
nal modules where an internal module is defined to be inside the periphery of the chip with freedom
to move.

2.1 Wirelength Model

Lctx ;and y . denote the x and y coordinates of pin p, on the chip. We use the following estimator for
the length of net n.

The estimate L_ is the square of the Euclidean distance between the pins on the net n. For the type of

_ 2 2
Ln = z ((xpi - xpj) +(ypi -)’m))
pi,pjeN

ICs we consider (small-cell ASICs), this estimate has been shown to be accurate by [14] and refer-
ences therein and has been widely used in practice. It is assumed that the pins of a module are located
at the center of the module and the module’s location is represented by a single (x, y) coordinate that
coincides with the center of the module on the chip.

2.2 Total Wirelength

With the assumption that the pins on a module and the module share the same location, the expression
for the estimate of the cost of a placement is

L=1/2 2 Cyltx;- x)*+ ;- 7)))

where C, represents the number of nets that modules m, and m, share. (x, y,) and (xj, yj) represent the
locations of m, and m,.

The modules are partitioned into two sets, fixed and movable. Fixed modules are IO pads or modules
that have been assigned a location on the chip, for example, clock pads. Movable modules have vari-
able x and y coordinates. The cost function can then be rewritten using matrix notation as

L(x,y) = 1/2(x Bx +y'By) + c'x +d'))

where x is a vector of the x-coordinates of the module locations and y is a vector of the y-coordinates.
¢ and d are contributions from fixed modules. B is a symmetric matrix with

B=D-C 3

where C = [c,] and D is a diagonal matrix withd; =Z._, c. If the modules cannot be partitioned into
dlsconnected subsets, then B is positive seml-defimtc (_ ee [i4]) In addition, B is almost always sparse

Page 2

Electronics Research Lab RITUAL

for practical gate-array and sea-of-gate circuits. This enables efficient numerical techniques to be ap-
plied to the matrix.

3 Timing Model

n this paper synchronous performance optimization is addressed. The long path problem is consid-
Iered and the related short path problem is ignored. The work could be extended to deal with both
problems. For simplicity it is assumed that edge-triggered synchronizing elements are used. The
methods described are generalizable to the case of level-sensitive latches.

Let a digraph D_(V,A) represent the integrated circuit in the timing domain. Let the vertex set V be in
one-to-one correspondence with the pins. Arc weights d(v, ,v) V (v. vj) € A denote the pin-to-pin
signal propagation delays, and arc directedness represents the direction of signal flow in the circuit.
Also, let A = A' U A" respectively model the signal behavior internal and external to all cells; thus,
internal signal arcs represent cell signal flow while external arcs represent net signal flow. A path v, is
defined by the sequence (v,, ..., v.) of vertices that lie on the path. The delay of module m, 1s charac-
terized by d(v, ,v) v \2 ,v) eA‘ and of net n, is characterized by d(v,,v.) A (v,v) € A . This
multiple-arc cell and net model permits more accurate modeling than smgle cell and net delay models
due to its greater flexibility. Associated with each path endpoint vertex is a required arrival time r..
Associated with each path starting point vertex is an actual arrival time a. The worst-case actual
arrival time a, is given by

a,=max {3 +d(v,v)|V (v,v) e A) e
The required arrival time ri is defined to be
r,=min (r,-dv,v) |V (v,v) e A} 5)

The quantities may be eomputed by a breadth-first search. Based on the calculation of actual arrival
and required arrival times for all v,, a slack s, may be defined as s, =T, - a. A negative value of s, for v,
indicates that a violation of a nmmg constraint has occurred.

Definition The timing of the chip is said to be feasible if and only if 5;20,Vv.eV.
3.1 The Long Path Timing Problem

The longest path delay through combinational logic corresponds to the earliest time at which the out-
puts settle. The relationship between the longest path delay T, the clock period CP, the skew to the
synchronizing clock pins T __, the set-up time of the synchromzmg elements T_, and the internal

clock to output delay T, of synchronizing elements is:
Cp2 Tlong + Tskew +T ck—Q + Tsu (6)

If equation 6 is not satisfied, then a long path timing problem exists in the design. A long path is
defined as follows:

Definition A critical long path ITis a path ¥ in which the sequence of vertices (v, ..., V), veS and
v, € E comprising the path all have slack values less than or equal to zero.

IT= (v, | 5;0Vvey)

Page 3

Electronics Research Lab RITUAL

Thus, a necessary and sufficient condition for the existence of no long path problem is 5,>0,Vv.e V.

4 Problem Formulation

his section describes a formulation that uses first-order delay functions for the arcs in D, and an
efficient representation for the resulting delay equations. Although the algorithm is easily gener-
alizable to arbitrary convex delay functions, the linear delay model is used for simplicity.

Let C, and C, denote the horizontal and vertical capacitance per unit length of the horizontal and
verucal interconnect wires respectively. Let R denote the output resistance of module m,. Let m, be a
fanout of m.. The wire delay between m, and m (and the arc weight d(v,, v.), v, v,) e AF 1s determined
by the followmg equation

d(v,, vj) =R, [C, Ix, - le +C,ly, - yjl] @)

Although this delay equation is non-linear, a mathematical device can be used to convert it to an
equivalent linear equation. This technique is described in a subsequent section. To simplify further
discussion, the following notation is introduced. Let

chll = [X]
y

be the combined vector of x and y coordinates of cell positions. Let w.__ denote the vertex actual
arrival time variables. Then

w =[]
Wli.me

is the 2M + P vector of all variables in the formulation of the problem. However, the extra (P) variables
corresponding to the arrival times do not enter into the cost function, so the value of the cost function
at any point is unchanged and the sparsity of the matrix representing the cost function is retained. Let

BOB
Q =|0BO
00B

be the combined (2M+P)x(2M+P) matrix for the cost function and let

- i

Then the cost function can be writen as
L= 12w Qw + b'w) (8)

The problem of minimizing wirelength subject to timing constraints be stated as:

minimize L (NLP)

subject to

a 2a +d(v.,v) Vv.,v)e A
J 1 1) 1)

a, <T, A4 v, € E

Page 4

Electronics Research Lab RITUAL

a >T Vves ©)
J s J
where d(v, , vj) is given by Equation 7.

Theorem 1 : If there exists at least one fixed module and the modules do not form disconnected
subsets, then X" Bxand yTB y are positive definite.

Corollary 1.1 : Any relative minimum of NLP is also a global minimum.

Corollary 1.2 : The satisfaction of the Kuhn-Tucker first-order optimality conditions are sufficient for
a point to be a global minimizer of NLP.

Active constraints at a point are defined to be those constraints that are satisfied with equality. Let A*
denote the vector function (possibly non-linear) of the active constraints at a global minimum w* and
VA* denote the associated Jacobian matrix. It is assumed that VA is well-defined in the feasible
region of the constraints. Corollary 1.2 states that there exist Lagrange multipliers A satisfying
V L(w*) + AVA*=(
AVA*= 0
A20 (10

provided w* is a regular point of the constraints, i.e., at w* the matrix VA* has full rank. In case the
constraints are linear, VA* = A* and the equations are:

VL(w*) +AA* = 0
AA* = 0
A 20 (11)

S Resolving Slot Constraints

A common requirement in most cell-based ICs is that the cells lie in slots or regular arrays. A
solution of NLP will yield a ‘‘placement’” that usually does not satisfy the slot requirements.
Such a placement has been called an ‘‘initial”’ or *‘global’’ placement. Several techniques have been
proposed to refine the global placement to produce a slotted final result [15], [14]. The technique that
we use is generalization of that proposed in [15]. The key feature of our technique is the highly effi-
cient method we use to solve the problem with slot resolution constraints in the presence of timing
constraints. The solution technique will be presented in a later section.

Let I’ and r’ represent the coordinates of the center of the chip. We first solve the global timing-
constrained placement problem with two additional constraints:

IINIZiemxi=rx
IMX, 5=

These constraints ensure that the cells are spread around the center of the chip. After this, we partition
the cells into four equal sized sets. This is done by first dividing the cells into two equal sized sets
along the y-direction and then subdividing each set into two subsets along the x-direction. Let the sets
be S, S,, S, and S,. We also divide the chip into four equal-sized regions and (r ry) denotes the
coordmate of the center of the ith region. Figure 1 shows an example with four regions and the sets of
cells in different shades after the solution. (Note that some cells from one region have migrated into

Page 5

Electronics Research Lab RITUAL

" another). Now, we add eight centering constraints to the constraint set to form a new problem NLP1.

8|2 . x = r, i=1,..,4

iesi’i

NS) 2y, =T, i=1,..,4

i€si

The effect of these constraints is to spread the cells out in the a @O
four directions. Note that unlike many other partitioning ap- *m :
proaches, a cell is not required to lie within its region. A cell = I

has freedom to migrate into any other region. This allows the L ®
algorithm greater flexibility in minimizing wirelength while = f------- R
still satisfying slot constraints. It also makes the partitioning &

of cells more flexible in that a cell may change partitions & :
later in order to reduce wirelength or satisfy timing :
constraints. Following the solution of NLP1, we perform | # : a
repartitioning of the cells into sixteen sets, giving thirty two : o
center of mass equations, and we the solve the new problem B :
NLP2 (with the timing constraints included). During the Figure 1: Cells after solution with eight parti
repartitioning, the old partition information is not consid- tioning constraints

ered and new partitions are generated based on current cell

locations. The solution and repartitioning process can be repeated to a level of granularity such that
one cell remains within each region. This technique effectively resolves the slotted array requirements
of cell-based ICs. '

6 Why do standard methods fail?

he number of constraints in NLP can be enormous even for problems of moderate size. There are

at least four active bounding-box constraints for each net and the Lagrange multipliers for those
constraints not on critical paths have zero value. Similarly, for every pin, there is one active timing
constraint - the one that corresponds to the maximum in equation 8. Again, the multipliers for the
timing constraints not on critical paths are zero. The number of active variables in conventional tech-
niques can be enormous. For a typical problem with 1000 cells and 3000 nets, the number of active
variables could be upto 18,000 and the active constraints could number 15,000. However, what makes
the problem even more difficult is that the constraint set is highly degenerate (see [9]). The effect of
degeneracy is that standard quadratic-programming algorithms flounder for many steps without im-
proving the objective function.

7 An Outline of the RITUAL

he key feature of our work is the method we use to solve the large-scale optimization problem in
a very efficient manner. An interesting feature of our approach is that the number of variables and
need to solve for any time is 2 XM where M is the number of cells. In addition we do not encounter the
degeneracy problem. We use a Lagrangian Relaxation method to solve the non-linear programming
problem (see [17] and further references therein) at every level of partitioning. By developing specific

Page 6

Electronics Research Lab RITUAL

techniques that take advantage of the structure of the timing and slot constraints and objective function
of NLP, we are able to solve the problem very efficiently.

Some of the features of the method are:
e Memory requirements are linear in the size of the problem
¢ An iterative technique that is very fast
¢ The problem can be solved to any desired accuracy
¢ Generalizable to arbitrary convex delay functions
e All critical paths are considered in a very efficient manner

¢ Slot resolution constraints are integrated in an efficient and consistent manner with the
timing constraints
¢ The problem is solved optimally at every level of partitioning

In this section we describe the general outline for solving NLP by residual iterative update of Lagrange
multipliers. The technique is specially suited to problems which are very easy to solve (or have special
structure) if the constraints or a subset of constraints is removed. For simplicity, we assume that the
constraint set is linear and the objective function is convex. Let the optimization problem be:

minimize f(x) subject to Ax<b (12)

Let A have m constraints. A Lagrangian problem is created from this by defining an m vector of
Lagrange multipliers A and adding the term A(Ax-b) to the objective function to obtain the following
Lagragian function

mix min f(x) + A(Ax-b) (13)

The general flow of the algorithm is:
1. Select some initial value for A.

2. Solve Equation 13. This is easy since for fixed A the problem reduces to an unconstrained
one (or if A is subset of the constraints, then it is easy to solve with the remaining simpler
constraints).

3. Update A _
4. Check for termination conditions and if the problem is not solved, go to step 2

In general, this recipe needs to be adapted to specific problems and steps step 2 and 3 require careful
consideration for different classes of problems. We have developed special techniques for step 2 and
3 which enable us to apply the algorithm successfully to the performance-driven placement problem.

7.1 Solving the Lagrangian
For the performance driven placement problem, the Lagrangian can be represented as:
minimize 1/2 w'Qw + A(Aw-b) (14)

where A is the matrix of timing and center of mass constraints. For any fixed value of A, say A* the
problem has a very simple solution.

W= QT V(awb)] (15)

Page 7

Electronics Research Lab . RITUAL

Note that Q is mdependent of cell locations. Thus, at every iteration, only the right-hand side of
Equation 15 changes. Q"' can be maintained in factored form (Cholesky factors are an excellent
choice, [9]). Most of the work at every iteration involves only “‘forward’’ and ‘backward’’ substitu-
tion which can be done extremely quickly for sparse factors. This is one of reasons for the substantial
speed of our algorithm.

7.2 Updating the Lagrange Multipliers

The method we use to update Lagrange multipliers from iteration to iteration is based on the subgra-
dient method for setting dual variables [17]. This technique starts with an initial value A2 and
iteratively applies the formula:

A“'= max {0,2°-t (AW -b) } (16)

In this formula, t_is a scalar step size and w" is the optimal solution for Equation 13 for A = A*. The
choice of t_is critical to the success of the algorithm because of the absolute valued delay constraints
and the procedure for computing them is explained in a following subsection. The convergence prop-
erties of such a method are described in detail in [17].

7.3 Computing t_

Suppose we are currently at a solution w". At this solution, for all the critical paths, we write the delay
as linear equations, removing the absolute values from Equation 7, switching signs wherever neces-
sary to ensure that all the terms are non-negative. For example if currently x, > x, and there is a critical
path passing from cell 3 to cell 2, we write x, - X3 otherwise, we write x3 - X,. Then, we update the
right hand side of Equation 15 and solve for we! . Now, we select the larg‘est value of t_such that a
term in one of the delay equations just changes sign. We update w*! and A accordihg to this value

of t,.
7.4 Updating critical path set

After solving for wl, we perform a fast timing analysis on the timing graph to determine the paths
that have become critical since the previous iteration and add them to the critical set with zero La-
grange multipliers. Note that because the timing equations (Equations (4), (5)) are stated in terms of
the worst case path passing through a cell, we need to add only the worst path through the cell. This
ensures that only a linear (in the size of the timing graph) number of equations ever need to be added
even though the actual number of critical paths may be very large.

8 The RITUAL

he algorithm is described in Figure 2. The work done per inner-loop iteration of the algorithm is

very little since it involves a right-hand side update which is O(M), one step of forward and
backward substitution to solve for the new value of w which is O(Ml) computing t, which is O(E),
where E is the number of edges in D_, and updating the critical paths, which can be done in OM+E).
Therefore, the work done per inner-loop iteration is O(M?). Note that the critical path set is continu-
ously updated as new paths become critical. For the linearized delay equations, this procedure
converges [17]. There is no theoretical bound on the number of iterations required for convergence of
the inner loop, however, we found that in practice, the number of iterations required per level was very
low - 200-400.

Page 8

) TUAL
Electronics Research Lab RITU

Figure 2: Flow of the algorithm

9 Resolving Slot Constraints in Practice

Ithough it is possible to add slot constraints as described in Section 4 till exactly one cell remains
in each region, we found that using a modification of that technique results in further improve-
ment in timing and wirelength.

We perform hierarchical partitioning until 10-20 cells remain in each region. Following this, we use
Linear Assignment (weighted bipartite matching) [20] to assign slot positions to the cells within each
region. We generate a cost matrix C with rows equal to the number of the cells in the region and as
many columns as the numbcr of slots in the region. An entry C, in the cost matrix is the cost of
assigning i" cell to the] " slot. For non-critical cells the cost is the sum of the Manhattan wire length
to the fanins and fanouts of the cell, where as for critical cells we only consider the critical fanins and
fanouts. Furthermore, the wire length for the critical cells is multiplied by the driving resistance of the
cells to make the cost propotional to the path slacks, and a user defined weigthing factor 3 to adjust
the relative importance of timing with respect to the wire length.The Linear Assignment assigns a slot
to each cell in such a way as to miminize the total cost .

Note that the solution is locally optimal for a region only with respect to the connections outside the
region, and does not guarantee to minimze the cost of connections within the region. The problem
could have been formulated as a Quadratic Assignment to handle the connections within the region
properly. However, the large run time for Quadratic Assignment makes it impractical for regions with
large number of cells. For regions with fewer cells, the effect of interconnection within the region is
small, and by repeating the Linear Assignment few times an improved solution can be obtained. A
further improvement in wirelength and timing can be obtained by allowing cells to migrate outside
their region. This is achieved by shifting the regions in x and y directions by half the region size at
alternate iterations as shown in Figure 4 and repeating the process until the improvement is small. The

Page 9

Electronics Research Lab

RITUAL

(a) (b)
Regions for linear assignment Regions for linear assignment
during even iterations. during odd iterations.
Figure 4

flow of the slot assignment algorithm is
shown in Figure 5. Although slot assignment
could be applied to any solution, we observed
that following RITUAL by slot assignment
yielded significantly better results than apply-
ing slot assignment directly.

10 Input/Output Assignment

Significant improvements in delay and wire-
length can be obtained by reassigning the
input and output locations on the boundary of

the chip. We perform this assignment by using Linear Assignment technique described in the previous
section to the inputs and output cells. After reassigning the inputs and outputs, we repeat the entire
optimization process. The flow of the complete performance-driven placement algorithm, SPIRITU-

AL is shown in Figure 6.

Figure 5: Flow of slot assignment algorithm

Figure 6: Flow of complete algorithm

Page 10

RITUAL
Electronics Research Lab

Example cells RITUAL Gordian

Without timing With Timing

delay wi delay wi delay wi
C1908 629 37.6 344 34.4 426 38.8 345
C1355 659 38.5 330 35.8 352 41.6 355
C2670 826 429 740 34.8 788 45.8 756
C3540 1137 62.7 919 51.1 1085 59.7 943
C5315 1337 38.7 1025 325 1135 43.0 1117
C7552 2253 457 1623 37.4 1774 474 1821
des 2591 512 2902 416 2989 47.9 3005
s5378 1377 27:3 1462 21.6 1679 27.3 1426
s15850 4446 78.7 5473 58.8 5563 86.6 5445

Table 1

Example cells RITUAL Gordian

Without timing With Timing

delay wi delay wi delay wi
C1908 629 1.0 1.0 0.91 1.24 1.03 1.00
C1355 659 1.0 1.0 0.93 1.07 1.08 1.08
C2670 826 1.0 1.0 0.81 1.06 1.07 1.02
C3540 1137 1.0 1.0 0.81 1.18 0.95 1.02
C5315 1337 1.0 1.0 0.84 1.10 1.11 1.09
C7552 2253 1.0 1.0 0.82 1.09 1.04 1.12
des 2591 1.0 1.0 0.81 1.03 0.94 1.04
$5378 1377 1.0 1.0 0.79 1.15 1.00 0.98
s15850 4446 1.0 1.0 0.75 1.02 1.10_ 0.99
Average 1.0 1.0 0.83 1.10 1.04 1.04

Table 2
11 Results

We implemented RITUAL in C on a DECStation 3100. The algorithm was tested on an ISCAS
set of benchmark examples using parameters for 1 micron CMOS technology. The examples
were generated by the logic synthesis system MISII [21]. The run time even for the largest example
with 4446 cells was less than 15 minutes of CPU time. The examples were partitioned to a level of
granularity such that 15-25 cells were left in each partition followed by the slot assignment algorithm
(IO pad assignment was not used for these results). We ran RITUAL with timing and without timing
optimization and compared the result with an industry standard placement package Gordian[19].
Gordian uses the quadratic wire length and slicing optimization and was developed at Siemens Inc. In
every case the timing was improved, and surprisingly, the wire length was also reduced for all large
examples (see Table 2.) The wirelength measure we used for comparison is the single-trunk steiner

Page 11

Electronics Research Lab RITUAL
A

B T s L E P YrenFy Py wtes
RN dThbeiee.,] s e i
i

H e dpa s -

H

2o

w
-]
,,,,, E: JAIRY \
Y :

o oo we cpa v b

IV AN SR NN A NN AN AN TS A NRE A VY P AR LAY AV o~ = A ANy es |
WAL o AN AR rRA Y

Max colay = 62.74 na [’ Max oeiay = 51.15 ns

& AL ussan -
i il ..M\.“L“.,n B

Figure 5: 1137 cell example (combinational) before and after timing optimization

/.
[
Y/
& s HEN {
L i |
AT R N 3
s | 5 TR
I
e
\\
\ K
\ -
i > ; i |
L 17y, T e——
Z Max colay = 78.60 ns / ' : Mz colay = 58.85 18

Figure 6: 4446 cell example (sequential) before and after timing optimization

tree approximation.

We observed an average of 18% improvement in the total delay over Gordian at the cost of 6% in-
crease in the wirelength. Compared to RITUAL without timing we observed 17% improvement in the
wire delay while wire length increased by 10%. RITUAL in the wirelength mode is about 4% better
in the wirelength and timing. A further improvement of 5-10% in the wirelength, with no degradation
in timing is observed when IO pad assignment is performed. Figures 5 and 6 show two large examples
without and with timing optimization. In the figures, the most critical paths are plotted along with the
bounding boxes for links whose bounding box is not determined by the link end points. Note that in

the sequential example the critical path terminates at a latch.
Page 12

Electronics Research Lab RITUAL

12 Conclusions and Future quk

‘ N Je have developed an efficient iterative technique for performance constrained placement of

cell-based ICs. The technique satisfies timing constraints along with slot requirements and
minimizes wirelength. It is shown to be effective on an array of standard benchmark examples. We are
working on integrating the package with standard routers and results will be published in the final

version of this paper.

Acknowledgements

The authors would like to acknowledge the support received for this research from SRC Grant 90-
DC-008 and NSF grant MIP88-03711.

References

[1] Michael Burstein and Mary N. Youssef, Timing influenced layout design., [EEE Proceedings of the 22nd Design
Automation Conference, pages 124--130, 1985.

[2] A. E. Dunlop, V. D. Agrawal, D. N. Deutsch, M. F. Jukl, P. Kozak, and M. Wiesel, Chip layout optimization using
critical path weighting. I[EEE Proceedings of the 21st Design Automation Conference, pages 133--136, 1984.

[3] M. Marek-Sadowska and S. P. Lin., Timing-driven placement, JEEE International Conference on Computer-Aided
Design, ICCAD-89, pages 94--97, 1989.

(4] R. Nair, C. L. Berman, P.S. Hauge, and E. J. Yoffa., Generation of performance constraints for layout., IEEE Trans.
Computer-Aided Design, CAD-8:860--874, August 1989.

(5] Yasushi Ogawa, Tatsuki Ishii, Yoichi Shiraishi, Hidekazu Terai, Tokinori Kozawa, Kyoji Yuyama, and Kyoji Chiba,
Efficient placement algorithms optimizing delay for high-speed ecl masterslice Isi’s., /EEE Proceedings of the 23rd De-
sign Automation Conference, pages 404--410, 1986.

[6] S. Teig, R. L. Smith, and J. Seaton, Timing-driven layout of cell-based ic’s, VLSI System’s Design, pages 63--73, May
1986.

(7 PK. Wolff, A. E. Ruehli, B. J. Agule, J. D. Lesser, and G. Goertzel, Power/timing: Optimization and layout techniques
for Isi chips, Journal of Design Automation and Fault-Tolerant Computing, pages 145--164, 1978.

[8] K. C. Saraswat and F. Mohammadi, Effect of scaling of interconnections on the time delay of visi circuits, /JEEE
Transactions on Electron Devices, ED-29:645--650, April 1982.

[9] P. Gill, W. Murray, and M. Wright., Practical Optimization., Academic Press, New York, New York, 1989.

(10] S. Prasitjutrakul and W. J. Kubitz, Path-delay constrained floorplanning: A mathematical programming approach for
initial placement, IEEE Proceedings of the 26th Design Automation Conference, pages 364--369, 1989.

[11] M. A. B. Jackson and E. S. Kuh., Performance-driven placement of cell-based ic’s., IEEE Proceedings of the 26th

Page 13

Electronics Research Lab RITUAL

Design Automation Conference, pages 370--375, 1989.

{12]R. S. Tsay, E. S. Kuh, and C. P. Hsu, Proud: A sea-of-gates placement algorithm, /EEE Design and Test of Computers,
pages 318--323, December 1988.

[13] Wilm Donath, R. J. Norman et. al , Timing driven placement using complete path delays, JEEE Proceedings of the
27th Design Automation Conference, pages 84-89, 1990.

{14] S. Sutanthavibul, E. Shragowitz, An Adaptive timing driven layout for high speed VLSI, IEEE Proceedings of the
27th Design Automation Conference, pages 90-95, 1990. '

[15] M. Terai ,K. Takahashi and K. Sato, A New mincut placement for placement algorithm for timing assurance layout
design, IEEE Proceedings of the 27th Design Automation Conference, pages 96--102 1990.

[16] I. Lin and D. Du , Performance-driven constructive placement, /EEE Proceedings of the 27th Design Automation
Conference, pages 103-105, 1990.

[17] Shapiro, Jeremy F., Mathematical programming : structures and algorithms, New York : Wiley, ¢1979.

[18] Luenberger, David G., Introduction to linear and nonlinear programming, Reading, Mass., Addison-Wesley Pub. Co.
[1973].

[19] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich, GORDIAN: VLSI placement by quadratic programming
and slicing optimization, IEEE Trans. on CAD, Volume 10, No. 3, pages 356-365, 1991.

[20] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, 1976.

{21] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, MIS: Multiple-level interactive logic optimi-
zation system, IEEE Trans. on CAD, Volume 6, No. 6, pages 1062-1081, 1987.

[22] A. Srinivasan, Algorithms for Performance-Driven Placement, UCB ERL Technical Memo M90/107, Electronics
Research Laboratory, University of California, Berkeley, CA 94720.

[23] Arvind Srinivasan, Kamal Chaudhary and Ernest S. Kuh, RITUAL: An Algorithm for Performance-Driven Place-
ment of Cell-Based ICs, Proceeding of the Third Physical Design Workshop, May 1991.

Page 14

