
Copyright© 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

RITUAL

AN ALGORITHM FOR PERFORMANCE-DRIVEN

PLACEMENT OF CELL-BASED ICs

by

A. Srinivasan, K. Chaudhary, and E.S. Kuh

Memorandum No. UCB/ERL M91/47

28 May 1991

RITUAL

AN ALGORITHM FOR PERFORMANCE-DRIVEN

PLACEMENT OF CELL-BASED ICs

by

A. Srinivasan, K. Chaudhary, and E.S. Kuh

Memorandum No. UCB/ERL M91/47

28 May 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

RITUAL

AN ALGORITHM FOR PERFORMANCE-DRIVEN

PLACEMENT OF CELL-BASED ICs

by

A. Srinivasan, K. Chaudhary, and E.S. Kuh

Memorandum No. UCB/ERL M91/47

28 May 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Electronics Research Lab RITUAL

RITUAL

An Algorithm for Performance-Driven Placement of Cell-Based ICs

Abstract

In this paper we describe an efficient algorithm for obtaining a placement of cell-based ICs subject to performance
constraints. Using sophisticated mathematical techniques, we areable to solve large problems quickly and effectively. The
algorithm is very simple and elegant, making it easy to implement In addition, it yields good results as we show on a set
of real examples. On the average, we are able to make 20% improvement in the wire delay of these examples with little or
no impact on the total Steiner tree wirelength. The acronym RITUAL represents the key idea of our technique: Residual
Iterative Technique for Updating All Lagrange multipliers.

1 Introduction

As interconnect wires on ICs are scaled to smaller dimensions, the performance of chips becomes
dominatedby wire delay. Thus physical design toolsof today need to address performance issues

at every stage of the design hierarchy. In this paper, we focus on performance-oriented placement.
Performance during the placement phase of physical design hasbeenconsidered by manyresearchers
in the past and can be broadly grouped into two categories: net-based and path-based approaches.
Physical design is anet-based process, i.e., the physical design tools operate on nets and theobjects to
which theyconnect. Timing constraints are inherently path-based, and such constraints place require
ments on the total delay of a well defined sequences of modules and nets with.

Net-based approaches are discussed in [1]-[7],[15],[16]. In some net-based algorithms, weights are
assigned to nets to reflect thecriticality of paths which maybe determined by a timing verifier stati
cally or dynamically. In other net-based approaches, a pre-timing analysis may be used to derive
maximum bounds on the sizes of the nets. The problem with net-based approaches is that there is no
guarantee that fixing bounds for a setof nets willnotmake another setof paths critical and individual
net bounds may be overconstraining.

In path-based approaches like [11], the path nature of timing constraints and the physical representa
tion of the IC are unified in a single formulation. However the problem with the approach of [11] is
thatit takes too long even on moderate-sized examples. The authors of [14] use aconstructive method
of placing gates sequentially, with a cost function that tries to capture timing behavior, but cannot
guarantee satisfaction of the timing model. In [16], the authors defines regions for critical paths in
which all the modules on the paths mustbe placed, and then useconstructive placement. This method
also can not guarantee the satisfaction of timing constraints and suffers from the sequential nature of
constructive placement.

Unlike previous approaches that used heuristic methods like net-weighting or placing bounds on net
lengths, we dynamically model timing behavior of all paths efficiently during placement thus remov
ing the need for heuristics. Our timing model is based on net capacitance which is the "major
performance limiter" according to [8].

Tagil

Electronics Research Lab . RITUAL

2 The Mathematical Models

An IC may be viewed asa collection of modules (or cells)interconnected by netsthatattach to the
modules at pins (or terminals). Let

5tf={ mv ..., mM}, 9£={ nv ..., nN } and 2>= {pp ..., pp},

respectively denote the sets of modules, nets, and pins. The modules can be categorized by function
as: combinational, synchronizing, primary input (PI), and primary output (PO). Let f represent the
number of primary inputs, and g represent the number of primary outputs; thus, there are M-f-g inter
nal modules where an internal module is defined to be inside the periphery of the chip with freedom
to move.

2.1 Wirelength Model

Let x .and y .denote the x and y coordinates of pin p. on the chip. We use the following estimator for
the length or net n.

The estimate L is the square of the Euclidean distance between the pinson the net n. For the type of

L =X((*.-;t.)2+(y .-y .)2)
n vv pi py vpi J py '

pi,pje*L

ICs we consider (small-cell ASICs), this estimate has been shown to be accurate by [14] and refer
ences therein andhas beenwidely usedin practice. It is assumed that the pinsof a module are located
at the centerof the module and the module's location is represented by a single (x, y) coordinate that
coincides with the center of the module on the chip.

2.2 Total Wirelength

With the assumption that the pins on amodule and the module share the same location, the expression
for the estimate of the cost of a placement is

L=1/2 Z C„((x. - x.)2 +(y. - y.)2) (1)

where C. represents the number ofnets that modules m. and m. share, (x., y.) and (*., yy) represent the
locations of m. and m..

i j

The modules are partitioned into two sets, fixed and movable. Fixed modules are IO pads or modules
that have been assigned alocation on the chip, for example, clock pads. Movable modules have vari
able x and y coordinates. Thecost function can then berewritten using matrix notation as

L(x,y) =l/2(xTBx +yTBy) +cTx +dT) (2)

where x is a vectorof the x-coordinates of the modulelocations andy is avectorof the y-coordinates.
c and d arecontributions from fixed modules. B is a symmetric matrix with

B = D-C (3)

where C =

disconnected

[cl and Dis adiagonal matrix with du =£. xc.. If the modules cannot be partitioned into
sd'subsets, then Bis positive semi-definite (see [1*4]). In addition, Bis almost always sparse

TagtZ

Electronics Research Lab RITUAL

for practical gate-array and sea-of-gate circuits. This enables efficient numerical techniques to be ap
plied to the matrix.

3 Timing Model

In thispapersynchronous performance optimization is addressed. The longpathproblem is consid
ered and the related short path problem is ignored. The work could be extended to deal with both

problems. For simplicity it is assumed that edge-triggered synchronizing elements are used. The
methods described are generalizable to the case of level-sensitive latches.

Let a digraph DT(V,A) represent the integrated circuit inthe timing domain. Letthe vertex set Vbe in
one-to-one correspondence with the pins. Arc weights d(v.,v.) V (v.,v.) e A denote the pin-to-pin
signal propagation delays, and arc directedness represents the direction of signal flow in the circuit.
Also, let A=A1 u AE respectively model the signal behavior internal and external to all cells; thus,
internal signal arcs represent cell signal flow while external arcs represent net signal flow. A path \|/, is
defined by the sequence (vs,..., v^ of vertices that lie on thepath. Thedelay of module m. is charac
terized by d(v.,v.) V (v.,v.) e A1 and of net n. is characterized by d(v.,v.) V (v.,v.) e A . This
multiple-arc cell and net model permits more accurate modeling than single cell and net delay models
due to its greater flexibility. Associated with each path endpoint vertex is a required arrival time r..
Associated with each path starting point vertex is an actual arrival time a.. The worst-case actual
arrival time a. is given by

a. =max {a. +d(v.,v.) IV(v.,v.) e A } (4)

The required arrival time ri is defined to be

r. =min {r. - d(v.,v.) IV(v.,v.) e A } (5)

The quantities may be computed by a breadth-first search. Based on the calculation of actual arrival
and required arrival timesfor all v., a slacks.may be defined as s.= r. - a.. A negative value of s.for v.
indicates that a violation of a timing constraint has occurred.

Definition The timing of the chip is saidto be feasible if andonly ifs. >0,Vv.e V.

3.1 The Long Path Timing Problem

The longestpath delay through combinational logiccorresponds to the earliest time at which the out
puts settle. The relationship between the longest path delay Tlon , the clock period CP, the skew to the
synchronizing clock pins Tkew, the set-up time of the synchronizing elements Tgu, and the internal
clock tooutput delay T./jfe of synchronizing elements is:

CP^T. +T. +T„ n + T (6)
long skew clk-*Q su W

If equation 6 is not satisfied, then a long path timing problem exists in the design. A long path is
defined as follows:

Definition A critical long path II is a path *F in which the sequence of vertices (v ,..., v), v e S and
vg e E comprising thepath all have slack values less than or equal to zero.

II={v. I s.<0Vv.<=y}

Tagt3

Electronics Research Lab RITUAL

Thus, anecessary and sufficientcondition for theexistence of no longpath problem is s. >0, Vv. e V.

4 Problem Formulation

This section describes a formulation that uses first-order delay functions for the arcs in DT and an
efficient representation for the resulting delay equations. Although the algorithm is easily gener-

alizable to arbitraryconvex delay functions, the linear delay model is used for simplicity.

Let Ch and Cv denote the horizontal and vertical capacitance per unit length of the horizontal and
vertical interconnect wires respectively. Let R. denote the output resistance of module m.. Let m. be a
fanout ofm.. The wire delay between m and m. (and the arc weight d(v., v.), (v., v.) e A is determined
by the following equation

d(v., v.) = R. [G Ix. - xJ + C ly. - yJ] (7)vr j/i,-hijv''i«'jJ

Although this delay equation is non-linear, a mathematical device can be used to convert it to an
equivalent linear equation. This technique is described in a subsequent section. To simplify further
discussion, the following notation is introduced. Let

Wcell" h
be the combined vector of x and y coordinates of cell positions. Let wtime denote the vertex actual
arrival time variables. Then

w =

lime

is the 2M +Pvectorof allvariables in the formulation of the problem. However, theextra(P) variables
corresponding to the arrival times do not enter into the cost function, sothe value of the cost function
at any point is unchanged and the sparsity of the matrix representing the cost function isretained. Let

Q =

[>]

BOB
0 B 0

L0 0 B J

be the combined (2M+P)x(2M+P) matrix for the cost function andlet

b =
c

d

LOJ

Then the cost function can be writen as

L=l/2(wrQw+bTw) (8)

The problem of minimizing wirelength subject to timing constraints be stated as:

minimize L (NLP)

subject to

a. ^a. + d(v.,v.) V(v.,v.)e A
a. £T Vv.e E

J e J

TagiA

Electronics Research Lab . RITUAL

a. £T Vv.eS (9)
J s j

where d(v., v.) is given by Equation 7.

Theorem 1 : If there exists at least one fixed module and the modules do not form disconnected
T Tsubsets, then x Bxand y By are positive definite.

Corollary 1.1: Any relative minimum of NLP is also a global minimum.

Corollary 1.2: The satisfaction of the Kuhn-Tucker first-order optimality conditions are sufficient for
a point to be a global minimizer of NLP.

Active constraints at a point are defined to be those constraints that are satisfied with equality. Let A*
denote the vector function (possibly non-linear) of the active constraints at a global minimum w* and
VA* denote the associated Jacobian matrix. It is assumed that VA is well-defined in the feasible

region of the constraints. Corollary 1.2 states that there exist Lagrange multipliers Xsatisfying
VL(w*) + XVA* = 0

XV A* = 0

X > 0 (10)

provided w* is a regular point of the constraints, i.e., at w* the matrix VA* has full rank. In case the
constraints are linear, VA* = A* and the equations are:

V L(w*) + XA* = 0

XA* = 0

X > 0 (11)

5 Resolving Slot Constraints

A common requirement in most cell-based ICs is that the cells lie in slots or regular arrays. A
solution of NLP will yield a "placement**that usually does not satisfy the slot requirements.

Such a placement has been called an *initial" or "global**placement. Several techniques have been
proposed to refine theglobal placement toproduce a slotted final result[15], [14]. Thetechnique that
we use is generalization of thatproposed in [15]. Thekeyfeature of our technique is the highly effi
cient method we use to solve the problem with slot resolution constraints in the presence of timing
constraints. The solution technique will be presented in a later section.

Let rx and r* represent the coordinates of the center of the chip. We first solve the global timing-
constrained placement problem with two additional constraints:

These constraints ensure that thecellsare spread around thecenterof thechip. Afterthis, wepartition
the cells into four equal sized sets. This is done by first dividing the cells into two equal sized sets
alongthe y-direction and then subdividing eachset into twosubsetsalongthe x-direction. Let thesets
be SQ Sr S2 and S3. We also divide the chip into four equal-sized regions and (rx, r.y) denotes the
coordinate of thecenterof the ith region. Figure 1 shows an example with fourregions and thesets of
cells in different shades after the solution. (Note that some cells from one region have migrated into

To£t5

Electronics Research Lab RITUAL

another). Now, we add eight centeringconstraints to the constraint set to form a new problem NLP1.

1/IS.IZ. c.x.=rx,

1 16 S1 Jl *

i=l,...,4

i=l,...,4

The effect of these constraints is to spread the cells out in the
four directions. Note that unlike many other partitioning ap
proaches, a cell is not required to lie within its region. A cell
has freedom to migrate into any other region. This allows the
algorithm greater flexibility in minimizing wirelength while
still satisfying slot constraints. It also makes the partitioning
of cells more flexible in that a cell may change partitions
later in order to reduce wirelength or satisfy timing
constraints. Following the solution of NLP1, we perform
repartitioning of the cells into sixteen sets, giving thirty two
center of mass equations, and we the solve the new problem
NLP2 (with the timing constraints included). During the Figure 1:Cells after solution with eight parti
repartitioning, the old partition information is not consid- turning constraints
ered and new partitions are generated based on current cell
locations. The solution and repartitioning process can be repeated to a level of granularity such that
onecellremains withineach region. This technique effectivelyresolves the slotted array requirements
of cell-based ICs.

6 Why do standard methods fail?

The number of constraintsin NLP can be enormous even for problems of moderate size. There are
at least four active bounding-box constraints for each net and the Lagrange multipliers for those

constraints not on critical paths have zero value. Similarly, for every pin, there is one active timing
constraint - the one that corresponds to the maximum in equation 8. Again, the multipliers for the
timing constraints notoncritical paths are zero. The number of active variables in conventional tech
niques can beenormous. For a typical problem with 1000 cells and 3000 nets, the number of active
variables could beupto 18,000 and the active constraints could number 15,000. However, what makes
the problem even more difficult is that the constraint set is highly degenerate (see [9]). The effect of
degeneracy is that standard quadratic-programming algorithms flounder for many steps without im
proving the objective function.

7 An Outline of the RITUAL

The key feature of our work is the method we use to solve the large-scale optimization problem in
averyefficient manner. An interesting feature of our approach is that thenumber of variables and

need to solve for any time is 2 xM where M is the number of cells. Inaddition wedonotencounter the
degeneracy problem. We use a Lagrangian Relaxation method to solve the non-linear programming
problem (see [17] and further references therein) atevery level of partitioning. By developing specific

•
•

- • ™
• *

•

S3

1

ss

SI

•

IS (CO

r..-.®.....~..n
D D

° a WO
♦

a

a

•

Page6

Electronics Research Lab t . RITUAL

techniques that take advantage of the structure of the timing and slot constraints and objective function
of NLP, we are able to solve the problem very efficiently.

Some of the features of the method are:

• Memory requirements are linear in the size of the problem
• An iterative technique that is very fast

• The problem can be solved to any desired accuracy

• Generalizable to arbitrary convex delay functions

• All critical paths are considered in a very efficient manner

• Slot resolution constraints are integrated in an efficient and consistent manner with the
timing constraints

• The problem is solved optimally at every level of partitioning

In this sectionwe describethe general outline for solvingNLP by residual iterativeupdateofLagrange
multipliers. The techniqueis speciallysuitedto problems which are very easy to solve (orhave special
structure) if the constraints or a subset of constraints is removed. For simplicity, we assume that the
constraint set is linear andthe objective function is convex. Let the optimization problem be:

minimize f(x) subject to Ax^b (12)

Let A have m constraints. A Lagrangian problem is created from this by defining an m vector of
Lagrange multipliers Xand adding the term X(Ax-b) to the objective function to obtain the following
Lagragian function

maxmin f(x)+ X(Ax-b) (13)
X x

The general flow of the algorithm is:

1. Select some initial value for X.

2. Solve Equation 13. This is easy since for fixed X the problem reduces to an unconstrained
one (or if A is subset of the constraints, then it is easy to solve with the remaining simpler
constraints).

3. Update X

4. Checkfor termination conditions andif theproblem is not solved, go to step 2

In general, this recipe needs to be adapted to specific problems and steps step 2 and 3 require careful
consideration for different classes of problems. We have developed special techniques for step 2 and
3 which enable us to apply the algorithm successfully to theperformance-driven placement problem.

7.1 Solving the Lagrangian

For the performancedriven placement problem, the Lagrangiancan be represented as:

minimize 1/2 wTQw +A,(Aw-b) (14)

where Ais the matrix of timing and center ofmass constraints. For any fixed value of X, say Xk the
problem has a very simple solution.

w^Q^ftW-b)] (15)

Ta£i7

Electronics Research Lab ._ RITUAL

Note that Q is independent of cell locations. Thus, at every iteration, only the right-hand side of
Equation 15 changes. Q" can be maintained in factored form (Cholesky factors are an excellent
choice, [9]). Most of the work at every iteration involves only *forward'' and "backward" substitu
tion which can be done extremelyquickly for sparsefactors. This is one of reasons for the substantial
speed of our algorithm.

7.2 Updating the Lagrange Multipliers

The method we use to update Lagrange multipliers from iteration to iteration is based on the subgra-
dient method for setting dual variables [17]. This technique starts with an initial value X° and
iteratively applies the formula:

Xk+l = max {0, Xk - t^Aw" -b) } (16)
In this formula, ^ is a scalar step size and w is the optimal solution for Equation 13 for X= X. The
choice of ^ is critical to the success of the algorithm because of the absolute valued delay constraints
and the procedure for computing them is explained in a following subsection. The convergence prop
erties of such a method are described in detail in [17].

7.3 Computing^

Suppose we are currently at a solution w . At this solution, for all the critical paths, we write the delay
as linear equations, removing the absolute values from Equation 7, switching signs wherever neces
sary toensure that allthe terms are non-negative. Forexample ifcurrendy x2 > ^ and there isacritical
path passing from cell 3 to cell 2, we write x2 - x3, otherwise, we write x3 - x2. Then, we update the
right hand side ofEquation 15 and solve for w +. Now, we select the largest value of^ such that a
term inone of the delay equations just changes sign. We update w + and X+ according tothis value

7.4 Updating critical path set

After solving for wk+1, we perform a fast timing analysis on the timing graph to determine the paths
that have become critical since the previous iteration and add them to the critical set with zero La
grange multipliers. Note that because the timing equations (Equations (4), (5)) are stated in terms of
the worst case path passing through a cell, we need to add only the worst path through the cell. This
ensures that only a linear (in the size of the timing graph) number of equations ever need to be added
even though the actual number of critical paths may be very large.

8 The RITUAL

The algorithm is described in Figure 2. The work done per inner-loop iteration of the algorithm is
very little since it involves a right-hand side update which is O(M), one step of forward and

backward substitution to solve for the new value of wWhich is0(M2), computing t, which is 0(E),
where E is the number ofedges inDr and updating the critical paths, which can be done in 0(M+E).
Therefore, the work done per inner-loop iteration is OOM2). Note that the critical path set is continu
ously updated as new paths become critical. For the linearized delay equations, this procedure
converges [17]. There is no theoretical bound on the number of iterations required for convergence of
the inner loop, however, we found that in practice, the number of iterations required per level was very
low - 200-400.

(Page 8

Electronics Research Lab

begin RITUAL
for level = 0 to njevels

partition cells into regions;
add partitioning constraints to constraint set;
initialize Lagrange multipliers;
while (max error in active constraints > e)

update rhs of Equation 15;
solve for w;

compute t;

update w and Lagrange multipliers;
update critical path set and signs of delay terms;

endwhile;

endfor,

assign cells to the slots using sIot_assignQ;
end RITUAL;

RITUAL

Figure 2: Flow of the algorithm

9 Resolving Slot Constraints in Practice

Although it is possible to add slot constraints as described in Section 4 till exactly one cell remains
in each region, we found that using a modification of that technique results in further improve

ment in timing and wirelength.

We perform hierarchical partitioning until 10-20 cells remain in each region. Following this, we use
Linear Assignment (weighted bipartite matching) [20] to assign slot positions to the cells within each
region. We generate a cost matrix C with rows equal to the number of the cells in the region and as
many columns as the number of slots in the region. An entry G. in the cost matrix is the cost of
assigning i cell to the j slot. For non-critical cells the cost is the sum of the Manhattan wire length
to the fanins and fanouts of the cell, where as for critical cells we only consider the critical fanins and
fanouts. Furthermore, the wire length for the critical cells is multiplied by the driving resistance of the
cells to make the cost propotional to the path slacks, and a user defined weigthing factor P to adjust
the relative importance of timing with respect to the wire length.The Linear Assignment assigns a slot
to each cell in such a way as to miminize the total cost.

Note that the solution is locally optimal for a region only with respect to the connections outside the
region, and does not guarantee to minimze the cost of connections within the region. The problem
could have been formulated as a Quadratic Assignment to handle the connections within the region
properly. However, the large run time for Quadratic Assignment makes it impractical for regions with
large number of cells. For regions with fewer cells, the effect of interconnection within the region is
small, and by repeating the Linear Assignment few times an improved solution can be obtained. A
further improvement in wirelength and timing can be obtained by allowing ce\\s to migrate outside
their region. This is achieved by shifting the regions in x and y directions by half the region size at
alternate iterations as shown in Figure 4 and repeating the process until the improvement is small. The

Tage 9

Electronics Research Lab RITUAL

/:«:.«*:«*:*!#£$#«$£«;«:*«:«:*: «#*****!*.*:• flow of the slot assignment algorithm is
shown in Figure 5. Although slot assignment
could be applied to any solution, we observed
that following RITUAL by slot assignment
yielded significantly better results than apply
ing slot assignment directly.

10 Input/Output Assignment

•

a&am
; .-.:;; .V.'..:;:..'.::, (I- ..-aIW^

Wf*ig&$^*J • -

(a)
Regionsfor linear assignment

during even iterations.
Regionsfor linear assignment

during odd iterations.

Figure 4

Significant improvements in delay and wire-
length can be obtained by reassigning the
input and output locations on the boundary of

the chip. We perform this assignment by using Linear Assignment technique described in the previous
section to the inputs and output cells. After reassigning the inputs and outputs, we repeat the entire
optimization process. The flow of the complete performance-driven placement algorithm, SPIRITU
AL is shown in Figure 6.

begin SLOT_ASSIGN
partition cells into regions based on RITUAL result;
while (improvement in wirelength)

for each region
construct cost matrix;

perform linear assignment;
update cell locations;

endfor,

shift regions on chip;
end while;

end SLOT ASSIGN;

Figure 5: Flow ofslot assignment algorithm

begin SPIRITUAL
for user specified number of times

RITUAL;

ICLASSIGN;

end for;

end SPIRITUAL;

Figure 6: Flow of complete algorithm

TagclO

Electronics Research Lab

Example cells RITU^

Without timing

delay wl

37.6 344

^L

With Timing

delay wl

Gordiar

delay

i

wl

C1908 629 34.4 426 38.8 345

C1355 659 38.5 330 35.8 352 41.6 355

C2670 826 42.9 740 34.8 788 45.8 756

C3540 1137 62.7 919 51.1 1085 59.7 943

C5315 1337 38.7 1025 32.5 1135 43.0 1117

C7552 2253 45.7 1623 37.4 1774 47.4 1821

des 2591 51.2 2902 41.6 2989 47.9 3005

s5378 1377 27.3 1462 21.6 1679 27.3 1426

s!5850 4446 78.7 5473 58.8 5563 86.6 5445

Table 1

Example cells RITUAL

Without timing With Timing

delay wl delay wl

Gordian

delay wl

CI908 629 1.0 1.0 0.91 1.24 1.03 1.00

C1355 659 1.0 1.0 0.93 1.07 1.08 1.08

C2670 826 1.0 1.0 0.81 1.06 1.07 1.02

C3540 1137 1.0 1.0 0.81 1.18 0.95 1.02

C5315 1337 1.0 1.0 0.84 1.10 1.11 1.09

C7552 2253 1.0 1.0 0.82 1.09 1.04 1.12

des 2591 1.0 1.0 0.81 1.03 0.94 1.04

S5378 1377 1.0 1.0 0.79 1.15 1.00 0.98

S15850 4446 1.0 1.0 0.75 1.02 1.10 0.99

Average 1.0 1.0 0.83 1.10 1.04 1.04

Table 2

11 Results

RITUAL

We implemented RITUAL in C on a DECStation 3100. The algorithm was tested on an ISCAS
set of benchmark examples using parameters for 1 micron CMOS technology. The examples

were generated by the logic synthesis system MISII [21]. The run time even for the largest example
with 4446 cells was less than 15 minutes of CPU time. The examples were partitioned to a level of
granularity such that 15-25 cells were left in each partition followed by the slotassignment algorithm
(IO padassignment was notused for these results). We ran RITUAL with timing and without timing
optimization and compared the result with an industry standard placement package Gordian[19].
Gordian uses thequadratic wire length and slicing optimization and wasdeveloped atSiemens Inc. In
every case the timing was improved, and surprisingly, the wire length was also reduced for all large
examples (see Table 2.) The wirelength measure we used for comparison is the single-trunk steiner

'Page 11

Electronics Research Lab
RITUAL

CTTfttwtacftgcSrefacofaatoaS

Figure 5: 1137 cell example (combinational) before and after timing optimization

Uow>f - ;a r,nr

Figure 6: 4446 cell example (sequential) before and after timing optimization

tree approximation.

We observed an average of 18% improvement in the total delay over Gordian at the cost of 6% in
crease in the wirelength. Compared to RITUAL without timing we observed 17% improvement in the
wire delay while wire length increased by 10%. RITUAL in the wirelength mode is about 4% better
in the wirelength and timing. A further improvement of 5-10% in the wirelength, with no degradation
in timing isobserved when IO pad assignment is performed. Figures 5and 6show two large examples
without and with timing optimization. In the figures, the most critical paths are plotted along with the
bounding boxes for links whose bounding box is not determined by the link end points. Note that in
the sequential example the critical path terminates at alatch.

(Page 12

Electronics Research Lab RITUAL

12 Conclusions and Future Work

We have developed an efficient iterative technique for performance constrained placement of
cell-based ICs. The technique satisfies timing constraints along with slot requirements and

minimizes wirelength. It is shown to be effective on anarray of standard benchmarkexamples.We are
working on integrating the package with standard routers and results will be published in the final
version of this paper.

Acknowledgements

The authors would like to acknowledge the support received for this research from SRC Grant 90-
DC-008 and NSF grant MIP88-03711.

References

[I] Michael Burstein and Mary N. Youssef, Timing influenced layout design., IEEE Proceedings of the 22nd Design
Automation Conference, pages 124-130,1985.

[2] A. £. Dunlop, V. D. Agrawal, D. N. Deutsch, M. F. Juki, P. Kozak, and M. Wiesel, Chip layout optimization using
critical path weighting. IEEEProceedings ofthe 21st Design Automation Conference, pages 133-136,1984.

[3] M. Marek-Sadowska and S. P. Lin., Timing-driven placement, IEEEInternational Conference on Computer-Aided
Design, ICCAD-89, pages 94-97,1989.

[4] R. Nair, C. L. Berman, P.S. Hauge, and E. J. Yoffa., Generation of performanceconstraints for layout, IEEE Trans.
Computer-Aided Design, CAD-8:860~874, August 1989.

[51 Yasushi Ogawa, Tatsuki Ishii, Yoichi Shiraishi, Hidekazu Terai, Tokinori Kozawa, Kyoji Yuyama,andKyoji Chiba,
Efficientplacement algorithms optimizing delay for high-speed eel masterslice lsi's., IEEE Proceedings of the23rdDe
sign Automation Conference, pages 404-410,1986.

[6] S.Teig, R. L. Smith, and J. Seaton, Timing-driven layout of cell-based ic's, VLSI System's Design, pages 63-73, May
1986.

[71 P.K. Wolff, A. E. Ruehli,B. J. Agule,J. D.Lesser, and G.Goeitzel, Power/timing: Optimization andlayout techniques
for lsi chips,Journal ofDesignAutomation andFault-Tolerant Computing, pages 145-164,1978.

[8] K. C. Saraswat and F. Mohammadi, Effect of scaling of interconnections on the time delay of vlsi circuits, IEEE
Transactions on ElectronDevices, ED-29:645-650, April 1982.

[9] P. Gill,W. Murray, andM. Wright, Practical Optimization., AcademicPress, New York, New York, 1989.

[10] S. Prasitjutrakul and W. J. Kubitz, Path-delay constrained floorplanning: A mathematical programming approach for
initial placementIEEE Proceedings of the26th Design Automation Conference, pages 364-369,1989.

[II] M. A. B. Jackson andE. S. Kuh., Performance-driven placement of cell-based ic's., IEEE Proceedings of the 26th

Tagt 13

Electronics Research Lab RITUAL

Design Automation Conference, pages 370-375,1989.

£12] R. S. Tsay, E. S. Kuh, and C. P. Hsu, Proud: A sea-of-gates placementalgorithm,IEEE Design andTestofComputers,
pages 318-323, December 1988.

[13] Wilm Donath, R. J. Norman et. al, Timing driven placement using complete path delays, IEEEProceedings of the
27th Design Automation Conference, pages 84-89,1990.

[14] S. Sutanthavibul, E. Shragowitz, An Adaptive timing driven layout for high speed VLSI, IEEEProceedings of the
27th Design Automation Conference, pages 90-95,1990.

[15] M. Terai ,K. Takahashi and K. Sato, A New mincut placement for placement algorithm for timing assurance layout
design, IEEEProceedings ofthe 27th Design Automation Conference, pages 96-102 1990.

[16] I. Lin and D. Du , Performance-driven constructive placement IEEE Proceedings of the 27th Design Automation
Conference, pages 103-105,1990.

[17] Shapiro,Jeremy F., Mathematical programming: structures andalgorithms, New York: Wiley, c1979.

[18] Luenberger, David G., Introduction to linear andnonlinear programming, Reading, Mass., Addison-Wesley Pub. Co.
[1973].

[19] J. M. Kleinhans, G. Sigl,F.M. Johannes, andK. J. Antreich, GORDIAN:VLSI placement by quadratic programming
andslicingoptimization, WEETrans, on CAD, Volume 10,No. 3, pages 356-365,1991.

[20] E.L. Lawler,Combinatorial Optimization: NetworksandMatroids, Holt Rinehart andWinston, 1976.

[21] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.Wang, MIS: Multiple-level interactive logic optimi
zation system,IEEE Trans, on CAD, Volume 6, No. 6, pages 1062-1081,1987.

[22] A. Srinivasan, Algorithms for Performance-Driven Placement, UCB ERL Technical Memo M90/107, Electronics
Research Laboratory, University of California, Berkeley,CA 94720.

[23] Arvind Srinivasan, Kamal Chaudhary and Ernest S. Kuh, RITUAL: An Algorithm for Performance-Driven Place
mentof Cell-Based ICs, Proceeding of theThirdPhysical Design Workshop, May 1991.

(Page 14

