
Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A CASE STUDY IN APPROXIMATE

LINEARIZATION: THE ACROBOT EXAMPLE

by

Richard M. Murray and John Hauser

Memorandum No. UCB/ERL M91/46

29 April 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A CASE STUDY IN APPROXIMATE

LINEARIZATION: THE ACROBOT EXAMPLE

by

Richard M. Murray and John Hauser

Memorandum No. UCB/ERL M91/46

29 April 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A CASE STUDY IN APPROXIMATE

LINEARIZATION: THE ACROBOT EXAMPLE

by

Richard M. Murray and John Hauser

Memorandum No. UCB/ERL M91/46

29 April 1991

A Case Study in Approximate Linearization:
The Acrobot Example

Richard M. Murray* John Hauser*
Electronics Research Laboratory Department of EE-Systems

University of California University of Southern California
Berkeley, CA 94720 Los Angeles, CA 90089-0781

murray@united.berkeley.edu hauser@nyquist.usc.edu

29 April 1991

Abstract

The acrobot is a simple mechanical system patterned after a gymnast
performing on a single parallel bar. By swinging her legs, a gymnast is able
to bring herself into an inverted position with her center of mass above the
part and is able to perform manuevers about this configuration. This report
studies the use of nonlinear control techniques for designing a controller to
operate in a neighborhood of the manifold of inverted equilibrium points.
The techniques described here are of particular interest because the dynamic
model of the acrobot violates many of the necessary conditions required to
apply current methods in linear and nonlinear control theory.

The approach used in this report is to approximate the system in such a
way that the behavior of the system about the manifold of equilibrium points
is correctly captured. In particular, we construct an approximating system
which agrees with the linearization of the original system on the equilibrium
manifold and is full state linearizable. For this class of approximations,
controllers can be constructed using recent techniques from differential ge
ometric control theory. We show that application of control laws derived in
this manner results in approximate trajectory tracking for the system under
certain restrictions on the class of desired trajectories. Simulation results
based on a simplified model of the acrobot are included.

'Research supported in part by an IBM Manufacturing fellowship and the National
Science Foundation, under grant IRI-90-14490.

*Fred O'Green Assistant Professor of Engineering

1 INTRODUCTION

Figure 1: Acrobot: an acrobatic robot. Patterned after a gymnast on a
parallel bar, the acrobot is only actuated at the middle (hip) joint; the first
joint, corresponding to the gymnast's hands on the bar, is free to spin about
its axis.

1 Introduction

Recent developments in the theory of geometric nonlinear control provide
powerful methods for controller design for a large class of nonlinear systems.
Many systems, however, do not satisfy the restrictive conditions necessary
for either full state linearization [7, 5] or input-output linearization with
internal stability [2]. In this paper, we present an approach to controller de
sign based on finding a linearizable nonlinear system that well approximates
the true system over a desirable region. We outline an engineering pro
cedure for constructing the approximating nonlinear system given the true
system. We demonstrate this approach by designing a nonlinear controller
for a simple mechanical system patterned after a gymnast performing on a
single parallel bar.

There has been considerable work in the area of system approximation
including Jacobian linearization, pseudo-linearization [10, 12], approxima
tion with a nonlinear system [8], and extended linearization [1]. Much of
the work on system approximation has been directed toward analysis and
the development of conditions that must be satisfied by the approximate
systems rather than on the explicit construction of such approximations.
Notable exceptions include the standard Jacobian approximation and the
recent work of Krener using polynomial system approximations [9]. Wang
and Rugh [12] also provide an approach for constructing configuration sched-

1 INTRODUCTION 2

uled linear transformations to pseudo-linearize the system (note that this
approach provides a family of approximations rather that a single system
approximation). Rather than using polynomial systems or families of linear
systems to approximate the given system, we approximate the given nonlin
ear system with a single nonlinear system that is full state linearizable.

We use as a guiding example the problem of controlling the acrobot (for
acrobatic-robot) shown in Figure 1. The acrobot is a highly simplified model
of a human gymnast performing on a single parallel bar. By swinging her legs
(a rotation at the hip) the gymnast is able to bring herself into a completely
inverted position with her straightened legs pointing upwards and her center
of mass above the bar. The acrobot consists of a simple two link manipulator
operating in a vertical plane. The first joint (corresponding to the gymnast's
hand sliding freely on the bar) is free to rotate. A motor is mounted at the
second joint (between the links) to provide a torque input to the system
(corresponding to the gymnast's ability to generate torques at the hip). A
life size acrobot is currently being instrumented for experimentation at U.C.
Berkeley.

The eventual goal in controlling this system is to precisely execute realis
tic gymnastic routines. Our modest initial goal is to understand and design
controllers capable of system control in a neighborhood of the manifold of
inverted equilibrium positions. That is, we would like to have the acrobot
follow a smooth trajectory while inverted, such as that shown in Figure 2.

This report presents a detailed study of the stabilization and tracking
for the acrobot. We begin with a complete, mathematical description of
the system in Section 2. The application of standard control techniques to
the acrobot is studied in Section 3. Section 4 briefly introduces the theory
of approximate linearization and develops a family of nonlinear controllers
using this theory. A comparison of these controllersagainst a standard linear
controller is given in Section 5. Finally, we discuss more general nonlinear
control problems and how our results for the acrobot can be applied to them.

The application of the methods presented here require substantial alge
braic computation. We have used Mathematica [13] to perform much of our
computation for us. We list in the body of this paper the specific Mathemat
ica files which were used to obtain or check indicated results. The listings
for these files can be found in the appendix.

1 INTRODUCTION

Figure 2: Motion of the acrobot along the manifold of inverted equilibrium
positions.

2 SYSTEM DESCRIPTION

2 System description

Considered as a mechanical system, the acrobot has unforced dynamics iden
tical to those of a two link robot. Using a Lagrangian analysis (see for
example [11]), the dynamics of the acrobot can be written as

M(0)0 + C(0,0)0 + G(0) =
0

where 0 —(0i,02) is the vector of relative joint angles as shown in Fig
ure 1, M is the (uniformly positive definite) inertia tensor, C contains the
Coriolis and centrifugal forces, G contains the effects of gravity, and r is
the torque applied between the first and second links. Using point mass
approximations, a simple analysis yields (acrobot.m)

where

M(0) =

C(0,0) =

G{9) =

a + b -f 2c cos 92 b + c cos 9<i
b + c cos 02 &

-csin 02 02 -csin 02(0i + 02)
c sin 02 0i 0

-dsin 0i - e sin(0i + 02)
esin(0i-r-02)

a — m\l\ + 7712/1
6 = 7712/2
c = 7712/1/2

Due to the presenceof rotary joints, these dynamics are highly nonlinear
and contain many important trigonometric terms. Defining

d = gmili + gmil\
e = #7712/2

x :=

(1)

(2)

(3)

we can write the system as a standard nonlinear system, affine in the control
u := r,

x = f(x) + g(x)u

where the system vector fields, / and g, are given by

0 \

M:= (-M-\C9 +G)) and 9{X) := (M-i (?) (4)

2 SYSTEM DESCRIPTION

Non-inverted positions

Inverted positions

Figure 3: Equilibrium points for 02 = a. In general the inverted equilibrium
points are in a separate component of the equilibrium set from the non-
inverted ones.

Since the system has a single input, we can find a one-dimensional set
of equilibrium points (e.g., inverted positions) that the system can achieve.
This set consists of all states where /(xo) + g(xo)uo = 0 for some input uq.
In particular, this is only true if

0 = 0

G(xQ) = (J)tto
and it follows from equation (4) that

wo = esin(0i + 02)
d sin 02 = -esin(0i+ 02)

We will refer to the input uq associated with an equilibrium point xq as the
trim. It is the DC offset needed to counteract the drift vector field, /, at xq.

The equilibrium set consists of one or more connected components. In
particular, if d = e, then we have one connected component, otherwise we
have two connected components. These two components consist of equilib
rium points where the center of mass of the system is above and below the
axis of the first joint, respectively. It is easy to see that if (0i,02) is an
equilibrium point, then (-0i, -02) and (ir ± 0i,7r ± 02) are also equlibrium
points (see Figure 3).

The kinematic and dynamic parameters for acrobot are given in Table 1.
Two sets of values are given. The first corresponds to an acrobot which has
an equilibrium set which is a single connected component (i.e., d = e). The

2 SYSTEM DESCRIPTION

Parameter Units Balanced Actual

Value Value

h m 1/2 1/2
h m 1 3/4

mi kg 8 7

7712 kg 8 8

9 m/s2 10 9.8

Table 1: Acrobot parameters. The balanced values correspond to a version
of the acrobot which has a connected equilibrium set.

2.0 -

^ 0.0
"5

Balanced Parameter*

-2.0 0.0 2.0

Inner Joint angle. 8,

4.0
Actual parameters

-2.0 0.0 2.0

Inner joint angle. 0(

Figure 4: Equilibrium points for acrobot. The left figure is the equilibrium
set using the balanced parameter values, the right plot using the actual
parameter values.

second set of values is the approximate parameter values for the physical
system at U.C. Berkeley. We have rounded units to rational numbers to
ease the computational burden. We shall use the former ("balanced") values
unless otherwise noted.

The equilibrium points for the two sets of parameters are shown in Fig
ure 4. For the "balanced" parameter values, the equilibrium set consists
of all 0i + \92 = 0, 0i + |02 = 7T, and 02 = ±t. This last set of points
corresponds to the case where the center of mass of the system is coincident
with the axis of the first joint, and hence every value of 9\ corresponds to
an equilibrium configuration. Note also that there is a gap in the range of
01 for which the "actual" system may be balanced.

3 LINEARIZATION TECHNIQUES 7

3 Linearization techniques

In this section we explore the application of linearization techniques to the
control of the acrobot. We distinguish between two different linearization
methods. The first is linearization about a point, in which we approximate
the vector fields / and g by their linearizations about an equilibrium point.
If the linearization is stabilizable to that equilibrium point, then in a suit
ably small neighborhood the nonlinear system can also be stabilized (by
linear feedback). A more recent technique is feedback linearization (see, for
example, Isidori [6]). This method uses a change of coordinates and nonlin
ear state feedback to transform the nonlinear system description to a linear
one (in the new coordinates).

3.1 Linearization about an equilibrium point

If we let (a?o» ^o) GR4 x R denote an equilibrium point for the acrobot, the
linearization about (xo,«o) is given by

z — Az + bv

where
z = x — Xo v = U — Uq

A=& (/(*) +9(x)u)\{x0iUo) b=g(x0)
We refer to this method of linearization as Jacobian linearization since it

replaces the system vector fields by their Jacobians with respect to x and
u evaluated at a point. The linearized system is completely controllable if
and only if

det 6 Ab •-. An~xb] #0 (5)

It is straightforward to check that the acrobot linearization is completely
controllable in a neighborhood of 0i = 02 = 0, 0i = 02 = 0 (straight up). At
this point

A =

0 0 1 0

0 0 0 1

ll

L ii

_ ami
hmi

g(limi+l1m2+hm.2)

0

0

0

0
llhmi

6 =

0

0

l\l2m\
^m1+(li+l2)2m7

3 LINEARIZATION TECHNIQUES

O

«

C)

A

\
A

Figure 5: Gravity coupling in the acrobot. By moving the center of mass to
one side of the vertical axis, we can cause the entire mechanism to rotate.

By smoothness, it follows that the system is controllable in a neighborhood
of the origin. We defer the analysis of points where controllability is lost
until later in this section.

Controllability for the acrobot can be givenphysicalinterpretation. Con
sider the case when the mechanism is pointed straight up, with its center of
mass directly above the pivot point (see Figure 5). We have direct control
of the relative angle of the second link. By moving the second link to the
left or right, we can force the center of mass to lie on either side of the pivot
point and thus force the whole mechanism to rotate. This use of gravity is
crucial in achieving control since equation (5) is not satisfied if g = 0 (Ab is
zero).

A second effect which occurs is inertial coupling between the first and
second links. Since the motor exerts a torque on the second joint relative
to the first joint, pushing the second joint in one direction causes the first
joint to move in the opposite direction. This phenomenon is seen in the
linear model by the presence of a right half plane zero; the transfer function
between the hip torque and the angle of the first joint (using the balanced
parameter values from Section 2) is:

3(*+2>/D (* - VD
4(s4 - 60s2 + 400)

Solving for the poles of this transfer function verifies that the acrobot is
open loop unstable.

We now return to the question of controllability and investigate equilib
rium points at which the linearization is notcontrollable. Figure 6 shows a
plot of the determinant of the controllability matrix in equation (5) versus

3 LINEARIZATION TECHNIQUES

Figure 6: Determinant of controllability matrix versus 02- The plot on the
left corresponds to the balanced parameters and the plot on the right to the
actual parameters.

the hip angle of the acrobot. We see that the system is controllable except
at points where 02 = ±tt. Physically this configuration corresponds to the
second link of the acrobot pointing back along the first. In this configura
tion, the balanced acrobot can swing freely about the axis of the first link
and remain in an equilibrium position.

So far our discussion has centered about using a linear controller for sta
bilization; our real interest is in trajectory tracking. We begin by reviewing
trajectory tracking for a linear system

x = Ax + bu

We assume the system is completely controllable and we wish to track a
desired state trajectory X&. Without loss of generality we can assume that
(A, 6) are in controllable canonical form, i.e. a chain of integrators. In this
case the system can be written as

X\ — x2

£2 = £3

Xn_i — xn

xn = u

where we have placed all poles at the origin to simplify notation.
If xd(-) is a desired trajectory which satisfies xd = Axd -f bud for some

ud (i.e., xd is achievable) then we can follow this trajectory by using

u = x:

3 LINEARIZATION TECHNIQUES 10

when xd(Q) —x(0). This choice of inputs corresponds to injecting the proper
input at the end of the chain of integrators which model the system.

To achieve trajectory tracking even if our initial condition does not sat
isfy xd(0) = x(0) we introduce the feedback control law

u = i* + ai(*2 - xn) + •••+ an{x{ - xx)

and the error system satisfies

e(n> + aie(n_1) + •••+ ane = 0 e = x — x

By choosing the a's so that the resulting transfer function has all of its poles
in the left half plane, e will be exponentially stable to 0 and the actual state
will converge to the desired state.

In the case of a linearized system, the linearization may not be a good ap
proximation to the system for arbitrary configurations. Since we linearized
about a single point, we can only guarantee trajectory tracking in a suf
ficiently small ball of states about that point. There are several methods
for circumventing this problem; one of the most common is gain scheduling.
To use gain scheduling, we design tracking controllers for many different
equilibrium points and choose our gains based on the equilibrium point(s)
to which we are nearest. In fact, this can be done in a more or less contin
uous fashion using a technique called extended linearization [12]. The basic
restriction is that the desired reference trajectory must be slowly varying.

3.2 Feedback linearization

Given a nonlinear system

x = f(x) + g(x)u (6)

it is sometimes possible to find a change of coordinates f = <f>{x) and a
control law u —a(x) + (3(x)v such that the resulting dynamics are linear:

f = A£ + bv

In such cases we can control the system by converting the desired trajec
tory or equilibrium point to our new coordinates, calculating the control v
in the that space, and then pulling the control back to the original coordi
nates. If such a change of coordinates and feedback exists, we say that (6)
is input/state linearizable.

3 LINEARIZATION TECHNIQUES 11

The conditions under which a general nonlinear system can be converted
to a linear one as described above were formulated independently by Jakub-
cyzk and Respondek and Hunt, Su and Meyer. For the single input case,
the conditions are given by the following theorem.

Theorem 1 ([7, 5]) The system (6) is input/state linearizable in an open
set U if and only if

(i) dim span{<7, adjg, •••,aav}~1g}(x) = nyVx £ U
(ii) span{<7, adjg, •••, adl~2g} is an involutive distribution on U

where acfjg is the iterated Lie bracket [/,•••, [f,g] •••]•

The first condition is a controllability test and agrees with the linearization
when evaluated at an equilibrium point. The importance of the second
condition is more subtle.

If condition (ii) is satisfied, then there exists a smooth h:Rn —*• R such
that

dh

dx
g ad/$f...adr-20 =0 (7)

This can be seen by applying Frobenius7 theorem: since the distribution is
involutive, there exists a foliation such that the tangent space to each leaf
of the foliation is spanned by the distribution restricted to that leaf. Since
the leaves have dimension n —1, there exists a scalar valued function h such
that the leaves are defined by h~1(a) for a € R. Equation (7) is essentially
saying that the gradient of h is perpendicular to the leaves.

The standard approach in feedback linearization is to use h to define the
required change of coordinates. For single input systems we define

<f>i{x) = h(x)
<k(x) = Vflh(x)

where Lfh = |£/ is the Lie derivative of h in the direction /. The condi
tion in equation (7) guarantees that the input will not appear until the nth
derivative. Setting f = <f>(x), our new equations are

fi = fi+i i=l,---,n-l
£n = a(x) + b(x)u

and by using u = b~1(—a + v) we have a linear system (in Brunowsky
canonical form).

3 LINEARIZATION TECHNIQUES 12

Trajectory tracking for such a system is exactly as in the linear case.
However, since we have converted the model to a linear one instead of ap
proximating it, we do not need to stay close to any particular equilibrium
point. Thus in an open set U in which the feedback linearizability equations
are satisfied, we can achieve exponential trajectory tracking.

To check the involutivity condition for the acrobot, we must verify that
the vector fields

[9, ad/y] [g, adjflr] [&dfg, ad2^] (8)
lie in the distribution

A = span{p,ad/^,adyfif}

This can be done by checking that the determinant of a matrix (which is
a function of a;) is zero. It can be verified (exact.m) that the determinant
obtained using A and the second expression in equation (8) is nonzero.
Hence the system is not input/state linearizable.

A less restrictive class of systems is the class of input/output linearizable
systems. A major difficulty is the possibility of introducing unstable internal
dynamics, called zero dynamics. Since there is no predefined output function
for acrobot, it might be possible to define an output such that the system
is input/output linearizable and has stable zero dynamics. In this case
we could again achieve trajectory tracking by relying on the stable zero
dynamics to control unobservable states. Finding such an output function
is nontrivial. Both of the obvious output functions (0i and 02) have unstable
zero dynamics. As we saw with the Jacobian linearization, if we use 0i as
the output, we obtain a right half plane zero in the linearized system. The
effect of this right half plane zero is also present in the nonlinear system.
The input /output linearizing feedback cancels this zero with a pole at the
same location and results in unstable zero dynamics. Similar problems occur
when using 02 as the output.

To summarize, we have shown that the acrobot is stabilizable about
most equilibrium points (all but a set of measure 0) using static linear state
feedback. This simple approach is not suitable for trajectory tracking, al
though gain scheduling and related approaches might be used to improve
performance. The more global method of input/state linearization via state
feedback cannot be applied to acrobot since the system is provably not in
put/state linearizable. In the next section we investigate the use of approx
imate linearization techniques to recover some of the desirable properties of
feedback linearization for systems which do not meet the necessary restric
tive conditions.

4 APPROXIMATE LINEARIZATION 13

4 Approximate linearization

In the previous section we showed that the acrobot dynamics are not exactly
linearizable by state feedback. In this section we apply the technique of
approximate linearization to the acrobot. Briefly, we wish to find vector
fields / and g which are close to our original vector fields but which satisfy
the exact Unearizability conditions. We then proceed to design a controller
for the approximate system and apply it to the actual system.

The usual method of approximate linearization is slightly complicated
in the case of the acrobot for two reasons: we do not have a natural output
function and we wish to track trajectories near a manifold of equilibrium
points rather than near a single point. This chapter presents a methodology
for designing a controller for a system of this type. Briefly, we will proceed
in the following manner:

1. Parameterize the controllable equilibrium manifold, £, as (xi, 0, •••, 0).

2. Construct a smooth output, h(x), such that the linearized system at
each equilibrium point has relative degree n.

3. Using h, construct approximate vector fields / and g such that they
approximate / and g along the equilibrium manifold and the approx
imate system is exactly linearizable.

4. Using / and g, design a tracking controller for the approximate system
and apply the resulting controller to the original system.

We begin with a brief review of approximation theory using the presentation
in Hauser et. al. [3] as a guide.

4.1 Review of approximation theory

We consider systems of the form

i = f(x) + g(x)u , .
y = h(x) w

The system is input/output linearizable with relative degree n in a neighbor
hood U if and only if for all x € U

(i) LgLif1h(x) = 0 i =l,...,r-l
(ii) LgLnf1h(x)^0

4 APPROXIMATE LINEARIZATION 14

where Ljh = |§/ is the Lie derivative of h in the direction /. These
conditions are equivalent to the exact linearization conditions in Theo
rem 1 of the previous section. That is, || annihilates the distribution
{(j,ad/(7,«««,ady~2<7}. As before, we use the output £ = h(x) and its first
n derivatives to define a new set of coordinates. Using this new set of co
ordinates, the input/output map is given by the linear transfer function
l/sn.

If the input/output conditions are not satisfied, then we can still use
this basic construction as a method for generating approximate vector fields
which do satisfy the conditions, at least in a neighborhood of a controllable
equilibrium point. Since the behavior of the nonlinear system about an
equilibrium point is determined by its linearization, any approximate system
should agree with the linearized system at an equilibrium point (x0,uo).
That is, the approximate vector field f + gu should agree to first order with
the original vector field / -f gu, when evaluated at the equilibrium point. In
particular, this implies that the relative degree of any approximate system
should agree with the relative degree of the linearization. This motivates
the following definition: the linearized relative degree of a nonlinear system
in a neighborhood of an equilibrium point xq is the relative degree of the
linearization about xq. We use this concept to construct an approximate
system which has relative degree equal to the linearized relative degree of
the original system.

A key concept is that of higher order. A function tp(x) is said to be
higher order at xo if the function and its first derivative vanish at xq. More
generally, a function is order k at xq if the function and its first k derivatives
vanish at $o, and first order if only the function itself is zero at xq.

Let xo be an equilibrium point of a nonlinear system with uo the input
required to hold the system at the equilibrium point. Suppose the linearized
relative degree of the system about xq is n. Then we can define an approx
imate system in a neighborhood of (xq, «o) as follows: set

4>i(x) = h(x) - i>0(x)

where Vo is any function that is higher order at xo. For t = 2, • • •,n, set

<f>i(x) = Ls<j>i-i(x) + uQLg<t>i-i(x) - ipi-i(x)

where ^,(x) is higher order at xo. It can be shown that <f> is a local diffeo-
morphism and hence defines a valid change of coordinates. If we write the

4 APPROXIMATE LINEARIZATION

6

/TT/TT/fr/

i>(x,y)
higher order nonlinear terms

15

Figure 7: Approximate linearization viewed as a chain of integrators with
nonlinear perturbations (from [HKS89]).

system dynamics in this new set of coordinates, we get a chain of integrators
with nonlinear perturbations (Figure 4.1).

To see how this procedure produces an approximate system, we pull
back the Brunowsky canonical vector fields through the diffeomorphism <j>
to produce the approximate vector fields:

-l
f = [D4>]

<h(x)

<f>n(x)
0

-l
9 = [D4>\

By construction, the approximate vector fields are input/output linearizable
with relative degree n. Furthermore, the vector fields agree with the original
vector fields to first order at xo since we only throw away higher order terms.

There is a great deal of freedom in choosing the approximation; this
freedom is manifested through the choice of the ^t's. If the system were
input/output linearizable, then we could have chosen ifii to be zero at each
step and we would have exactly the change of coordinates produced in the
exact linearization procedure. Another interesting case is when we choose
ij>i to include all second order and higher terms; in this case our approximate
system is equivalent to the Jacobian linearization. In general, however, it
is not clear which terms to ignore in selecting coordinates. Currently the
choice of approximation is a matter of engineering judgement.

Using the approximate system, we can construct an exactly linearizing
control law which is capable of trajectory tracking. In our new coordinates,

4 APPROXIMATE LINEARIZATION 16

f = <f>(x), the system has the form

& = Zi+i + 4>i(x) + #i(x)(u - u0)
in = Lf<f)n(x) + Lg4>n(x)u + lj>n(x) + 9n(x)(u - Uq)
y = 6 + 4>o(x)

where each 0,- is at least uniformly first order at xo- With analogy to the
exact linearization case, we choose

u=j-itm (-WnW +y™ +«»-i(»in"l) -£») +•••+«o(w - &))LgVnW ^ '
(10)

where sn + an_isn_1 H h «o has all its zeros in the open left half plane.
Let

and define the tracking error as

This error vector encodes the deviation of the actual system trajectory from
the desired trajectory of the approximate system.

For € sufficiently small and desired trajectories which are e-near xo and
sufficiently slow, the control law (10) results in approximate tracking of
the desired trajectory [3]. Thus we can approximately track any trajectory
which remains close to the equilibrium point and is slowing varying. A more
explicit (and more general) formulation is presented in Section 4.4.

4.2 The equilibrium manifold

In our application, we are not interested in motion near a single equilibrium
point, but rather motion near a set of equilibrium points. Given a general
single input system, the equilibrium points are those xo for which /(xo) +
g(xo)uo = 0 for some uq € R. We define S to be the set of all equilibrium
points, xo, such that the linearized system is controllable about xo.

Theorem 2 S is a manifold of dimension 1.

Proof. Consider first the set £XjU of all pairs (xo, wo) such that /(xo) +
<jr(xo)wo = 0 and the system is controllable at xo. Controllability is deter
mined by taking the determinant of a set of smooth functions and hence

4 APPROXIMATE LINEARIZATION 17

•Xi

x£

Figure 8: Projection of the equilibrium points onto the state space [10].

there exists and open ball N B (xo,wo) such that all equilibrium points
(x', u') G N are also controllable. Let U be the union of all such N over
£x,u. Then U is open and £x,u C U. Define the map F: U C Rn+1 -* Rn
given by F:(x,u) \-+ f(x) + g(x)u. At any controllable equilibrium point,
F(xo,uo) = 0 and the Jacobian of i*1,

DF(x0,u0) = (Df(x0) + u0Dg(x0),g(xo)) = (A0,60),

is full rank. Hence 0 is a regular value of F and ir_1(0) = £X)U is a subman-
ifold of Rn -f 1 of dimension (n + 1) - n = 1.

It remains to show that the projection is also a manifold. There are two
things that can go wrong: the manifold can be tangent to the projection
direction or the manifold can cross over itself. These situations are shown

in Figure 8. These singularities can only occur if uo cannot be written as a
function of xo. However, at any equilibrium point

f(xo) + g(x0)u0 = 0

and wo is not unique only if </(xo) = 0. This contradicts controllability and
hence uq is a unique function of xo and neither of the situations in Figure 8
can occur. D

We call S the controllable equilibrium manifold and will often refer to it
simply as the equilibrium manifold (as opposed to the set of all equilibrium

4 APPROXIMATE LINEARIZATION 18

or operating points). In general £ consists of one or more connected compo
nents. For the acrobot there are always two components, consisting of the
inverted and non-inverted equilibrium points.

While motion on the controllable equilibrium manifold is not possible
(since by definition x = 0 on the manifold), motion near the manifold can
be achieved. In constructing an approximate system, we wish to do so in a
way that keeps the approximation close at equilibrium points. Thus we want
to throw away terms which are higher order on the equilibrium manifold (i.e.,
terms whose value and first derivative vanish on S) while keeping terms that
vary along the equilibrium manifold.

In order to construct such an approximation, it is convenient to change
coordinates so that the equilibrium manifold has a simple form. A particu
larly convenient choice of coordinates is one in which points on the equilib
rium manifold have the form (xi, 0, • ••, 0). We can always find a parameter
ization of the equilibrium manifold which has this form in a neighborhood
of a controllable equilibrium point, since £ is a one dimensional manifold.

For the acrobot, we have chosen to parameterize the equilibrium man
ifold using the hip angle. For the second configuration variable we use the
angle of the center of mass of the system—this must be zero at all inverted
equilibrium points since the center of mass must lie directly above the axis
of the first link. We complete the state with the velocities of the two con
figuration variables. These calculations are contained in (equilibrium.m).
The resulting change of coordinates (see Appendix A) is:

Xi = 02

*2 = 01 +

*3 = Xi

X4 = x2

e sin 02
y/d* + e2 + 2edcos92

Other parameterizations are possible. For example, one might choose
the x and y components of the system center of mass as the configuration
variables. Unfortunately, the parameterization is singular about the straight
up position, just as it is for a two-link robot manipulator. Another advantage
of the parameterization we chose is that it simplifies some of the calculations.
In particular, for the balanced system parameters mentioned in Section 2,
the angle of the center of mass is simply 0i + \9% whereas x^ and ycm
involve trigonometric functions. This is the original motivation for defining
the "balanced" set of parameters.

4 APPROXIMATE LINEARIZATION 19

4.3 Constructing an (artificial) output function

In the approximation theory presented above, an output function was used
to construct the approximate system. In some applications, the system pos
sesses a natural output function that can be used for this purpose. However,
in the case of the acrobot, no suitable output function is given so we must
construct one. In this section we present a technique for doing so. As usual,
we begin by considering the linear case.

Suppose we are given a controllable linear system

x = Ax + bu

and we are asked to find an output

y = ex

which is suitable for stable trajectory tracking. By this we mean that it is
easy to design a controller to make y(t) track a desired trajectory yd(t) while
maintaining internal stability of the system. If the system is in Brunowsky
form (i.e., a chain of integrators), then a natural output function is the
output from the last integrator. This insures that the system has no zeros
sothat y(t), y(t),..., y^n~^(t) can beused as the n coordinates ofthe system
state. In particular, if the output y(t) converges to a constant value, then
the system will converge to an equilibrium point.

To construct this output when the system (A, b) is not in Brunowsky
canonical form, we note that the relative degree of the system is given by
the largest r such that

cAi~1b = 0 t = l,...,r-l
cAr~lb # 0

Since we want the relative degree to be n (no zeros), we require that

b Ab ••• An~2l = 0. (11)

Thus, any c ^ 0 in the (1-dimensional) null space indicated by equation (11)
defines an output such that the system (c, A, 6) has relative degree n.

We now return to the nonlinear system

x = f(x) + g(x)u

4 APPROXIMATE LINEARIZATION 20

with the goal of constructing an output

y = h(x)

to use in constructing an approximate system for control design. If the sys
tem with output is input/output linearizable with relative degree n around
xo then the system is linearly controllable and satisfies the nonlinear analog
to (11) given by

= 0—[g ad/i7 ... ad? 2<
for all x in a neighborhood of xo- In other words, the system is input/state
linearizable—it satisfies the conditions of Theorem 1. Since many systems
such as the acrobot are not input/state linearizable, we look to approxima
tion. Our problem is one of finding a function h and approximate vector
fields / and g such that

^[g ad7£ ... ad^]=0 (12)
for all x in a neighborhood of xo or, more generally, in a neighborhood of
the equilibrium manifold.

Since it is extremely difficult to directly modify the vector fields /, g so
that the system is exactly input/state linearizable, we will first construct the
output function h and then use the approximate linearization methodology
to construct / and g. The basic idea is to find a function h that satisfies
equation (.12) at each point on the equilibrium manifold. Provided that the
original and approximate systems agree to first order on the equilibrium
manifold, the ad-chains of the two systems will span the same subspace at
each point on the equilibrium manifold, that is,

span{#, ad/0, •••, ad""2^} =span{£, adj£, •«•, &tfj~2g}

for x G £. In fact, these calculations can be done directly with the lin
earization of the original system on the equilibrium manifold. This point is
somewhat subtle, so we describe it in detail.

We will assume that coordinates have been chosen such that the equilib
rium manifold £ has been straightened out so that each x G £ has the form
(x1}0,.. .,0). Let xe(xi) and ue(x\) denote the state and control for each
equilibrium point (xi, 0,..., 0) on £, that is,

xe(xi) = (xi,0,...,0)

4 APPROXIMATE LINEARIZATION 21

and we(«) is such that

f(xe(xi)) + g(xe(xi))ue(xi) = 0

for each xi such that xe(xi) G £.
Suppose, at first, that we trim the drift vector field

f(x):=f(x) + g(x)uc(x)

where uc(-) is any control satisfying uc(xc(xi)) = ue(x\). The linearization
of the trimmed system along the equilibrium manifold is then given by

i = A(x\)z + b(x\)v

where

^(*i) •= ^e(xi)) +uc(xe(x1))^(xe(x1)) +g(xe(x1))^(xe(xl))
= E(*e(*l)) + We(Xi)|j(xe(x1)) + <7(*c(xi))^f(xe(Xi))

6(xi) := g(xe(xi))

In this case it is easy to verify that

ad^(xe(xi)) = (-i(xi))J6(xi)

Thus, letting c(-) be the derivative of the yet to be constructed output
function h along the equilibrium manifold,

c(xi) := ^(xe(xi)),

equation (12) (for the trimmed system) evaluated along £ takes the form

c(xi)[6(x!) I(xi)6(xi) ••• i(xi)n"26(xi)] =0 (13)

The equation has a smooth solution c(-) on £ since the system is, by def
inition, linearly controllable at each of these points. Unfortunately, this
linearization depends on the choice of the trim function uc(-). Certainly,
one does not expect that the choice of the trim function can materially
affect the directions in which the system can be controlled. Additionally,
since we plan to do symbolic calculations to construct the output function,
we seek the simplest expressions for these objects.

4 APPROXIMATE LINEARIZATION 22

Note that the actual trim ue(xi) needed at an equilibrium point is
uniquely defined. If, at a given equilibrium point xe(xi) we freeze the trim
ming control uc(x) = ue(xi) then the linearization will be given by

z = A(xi)z + b(x\)v

where

^(*l) '= H(*e(»l)) +««(*l)fe(*e(Xl))
Note that A(xi) ^ A(xi) due to the presence of the ^ term. In fact,

— duA(xi) =A(xi) +6(xi)-^(xe(xi))

The following lemma shows that we can use the well-defined expression A(-)
for our calculations in place of the somewhat arbitrary expression A(-).

Lemma 1 Given A(-), &(•), and A(-) as defined above,

span{6(xi),...,A(xi)i-26(xi)} = span{6(xi),- ••,A(xi)J"26(xi)}

/or; = 2,3,....

Proof. The lemma is trivially true if j = 2. Suppose the lemma holds
for j < k.

A(x1)k+H = (A(xi) +5r(xe(xi))^(xe(xi)))l(xi)fc6(xi)
= A(xi)A(x!)*6(xi) +6(xi)[^(xc(x1))A(xi)fc6(x1)]

The first term is contained in span{6(xi), •••, A(xi)fc+16(xi)} since

^(xi^xi) Gspan{6(xi),.-.,A(xi)/:6(xi)}

The second term is a multiple of 6(xi) and hence it is also in

span{6(xj), •••,A(xi)*+16(xi)}.

D

Thus we see that the derivative c(«) of our output function /i(-) solves
the equation

c(x!)[&(xi) A(xi)60 ••• A(x1)n~2b(x1)]=0 (14)

4 APPROXIMATE LINEARIZATION 23

It is clear that c(xi) = (ci(xi),- -.,cn(xi)) (viewed as a differential one-
form) is integrable. Indeed, we integrate

dh(x) = ci(xi)dxi H h cn(xi)dxn

to get

h(x) = / ci(xi)dxi +c2(xi)x2 +•••+cn(xi)xn
Further, since xi parameterizes the equilibrium manifold, we have the fol
lowing useful fact:

Lemma 2 Suppose that c(xi) ^ 0 solves (14) with xe(xi) G £. Then
ci(xi) f 0.

Proof. By Lemma 1, we may assume that f(x) = 0 for x G £• Since the
system is linearly controllable on £, the vectors

{6(xi), A(X!)6(X!), •••, A(x1)n~2b(x1)}

are linearly independent and c(xi) lies in the left null space of these vectors.
It suffices to show that e1 = (1,0, •..,0)r is linearly independent of these
vectors since this implies ci(xi) = c(xi) •e1 ^ 0. But we see that

A(Xl) •el =§f(x)
Cxi Xc(xi)

and this last expression is zero since since f(x) = 0 along the equilibrium
manifold, parameterized by x\. Hence e1 is in the null space of Ao and the
vectors bo, Ao&o? •••, A[}~2&o are not in the null space of Ao since

{Ao&c-.^Ag^&o}
are also linearly independent by the controllability assumption. Therefore
e1 is linearly independent of {6o, Ao&o» •••»AJ~26o} and ci(xo) = Co •e1 ^ 0.
D

Given this fact, we can write

dh(x) = ci(xi)dxi + c2(xi)dx2 + r cn(xi)dxn
= <**i +gfeW +...+$fi}d*„
= dxi + c2(xi)dx2 + ". + cn(xi)dxn

h(x) = Xi+c2(xi)x2H + cn(xi)xn

Any h which matches this expression to first order is also a valid output
function, with linear relative degree n. For the acrobot, the output function
which results from the above calculation is (output.m)

h(x) = xi + (6 + 4 cos Xi)x2

4 APPROXIMATE LINEARIZATION 24

4.4 Approximate tracking near an equilibrium manifold

We can now extend the approximation procedure presented in Section 4.1 to
construct a controller which tracks slowly varying trajectories near an equi
librium manifold. To do so, we extend the concept of a higher order function.
We say a function is uniformly higher order on a manifold (parameterized
by xi) if it is higher order in (x2, ••-,xn). Thus in the approximation pro
cedure, we will ignore terms which are small near the equilibrium manifold,
while keeping terms that vary along the manifold. This section details that
procedure and concludes with a proof of approximate tracking for control
laws constructed in this manner.

It will be convenient at this point to assume that /(xo) = 0 for xo G £.
Although we took pains to avoid making this assumption in the previous
section, the benefit of allowing /(x0) ^ 0 is outweighed here by a tremen
dous increase in notation. We therefore assume that any nonlinear trim is
included in the drift vector field. This can be accomplished in many ways,
the simplist of which is to define

f(x) = f(x) - g(x)ue(xi)
V = u —ue(x\)

and write our system as

x = /(x) + flf(x)v
y = h(x)

Suppose the linearized relativedegree of the system (/, #) with respect to
an output function h is n on an equilibrium manifold £ = {(a?i,0,•••,0)}.
Assuming J(xq) = 0 for Xo G £, we define a new set of coordinates f =
<t>(x) G Rn:

<f>i(x) = h(x)-ipo(x)
<f>2(x) = Lj<f>i(x) - i)X(x)

<j>n(x) = Lj<j>n_i(x) - rpn-i(x)

where each if>i(x) is uniformly higher order on £. The system dynamics in f

4 APPROXIMATE LINEARIZATION 25

coordinates are

ii = 6 + tfi(*) + *i(*>

tn-l = Zn +1>n-l(x) +9n_!(x)v (15)
£n = i/^n(^) + ^n(a?> + V'n(^) + 0n(a;)v

y = 6 + V>o(*)

where each 0,(x) is at least uniformly first order on £. As in the previous
approximation procedure, the choice of ip allows considerable freedom in
constructing the approximation. Since the linearization is controllable on £
and f|(x) satisfies (14), it follows that Lg<j>n(xo) ^ 0 for x0 G£.

Because the functions ^,- are uniformly higher order on £ and the func
tions 0,- are at least uniformly first order on £, the approximate system

6 = 6

in-l = fn (16)
f„ = Lj<t>n(x) + Lg<j>n(x)v

y = &

is a uniform system approximation of (f,g) on 5 [4]. To provide approximate
tracking control for the true system (15), we will use the exact asymptotic
tracking control law for the approximate system (16), namely,

1
v =

Lg<f>n(x)

where

n-l

E
t=0

-Lju*) +»?'(«) +E «w(yS° - *+i(»)) (17)

sn + an-1371"1 + •••+ ai5 + ao (18)

is a Hurwitz polynomial. As before, we define £d(t) to be the state trajectory
for the approximate system induced by the desired output, &*(•),

it(0 == rf"l,W
We then expect that the tracking error

e{t) := td(t) - f(*)

4 APPROXIMATE LINEARIZATION 26

will remain bounded for reasonable trajectories. In fact, we will see that the
size of the tracking error will be influenced by how far the desired trajectory
strays from the equilibrium manifold.

Since the approximate system (16) is a uniform system approximation
of the true system (15) around £, we would expect that the approximation
would be valid on, for instance, a cylindrical neighborhood of £ given by

C€(€):={t:*i(e€,\\Z-*iC\\<*}

where ?rif := (fi,0, ...,0) and e is sufficiently small. We make use of the
following fact: it is always possible to choose £' C £ so that a given function
A(f) that is uniformly order p on £ will satisfy

ia(oi < km - Tier

for all f G Ce(£'), 0 < e < 1. For example, let A(f) = &$• Choosing
£' = {i G&2 : |(i| <K,(2 = 0} will guarantee the X(() < Kg on Ce(£')»
0 < € < 1.

The following theorem shows that such a control law can indeed provide
the desired result and provide stable approximate tracking in the neighbor
hood of the equilibrium manifold.

Theorem 3 Suppose (f,g) is linearly controllable at xo and let £ be the
manifold of linearly controllable equilibrium points. Further assume that
f(xe) = 0 for xe G £. Then, there exists a manifold £' C £, a change
of coordinates £ = <f>(x), and an € > 0 such that the approximate tracking
control law (17) results in stable approximate tracking provided £d(t) GCt(£')
and \y^{t)\ < efor t > 0, and ||e(0)|| < e. Furthermore, the tracking error
will be of order €2.

Proof. Construct a system approximation as detailed above. For conve
nience, define

(0 = (^i().'"AW)U-i(«)
(t) = ('i(),"-A0O)U*-i(,)

The closed loop system given by (15) and (17) can be written as

where A is a Hurwitz matrix with characteristic polynomial (18).

4 APPROXIMATE LINEARIZATION 27

As discussed above, we may take £' to be such that

IWOII < *illf-*i€lla
110(011 < *i||€-*rfll

||£/<M0II < Mf-nfll

for f GCs(£')j S < 1, and some ki < oo. Since Lg<f>n(x) is nonzero on £, we
can also require that £' and S be such that

< k2
LgM0

for f GCs(£') and some &2 < oo. Using these bounds plus the fact that

ite-*i*ii<iwi+€

(by choice of yd(-)), it follows that there exists k^ < oo such that

IW0 + «(«HI<*3(Nla + « + €2)

where f GCs(£').
Choose the Lyapunov function

V = eTPe

where P > 0 solves ATP+PA = -/. Differentiating V alongthe trajectories
of the closed loop system, for f GCs(£') and some A?4 < oo,

V = -||e|p + 2erP(^) + 9(e)(«-«o(«)
< -||e|f + *4l|e||(l|e||2 + <||e|| + £2)
< -lllell2 - (| - MII'll +«))IMIa " (111*11 - *«2)2 + *?<*

If ||e|| < 25— e, we have

and hence V is strictly negative whenever 2k4€2 < \\e\\ < ^ -e. By making
e sufficiently small, we can guarantee that e(t) will converge to a ball of
order e2 for all ||e(0)|| sufficiently small. Note that the above analysis is
valid since

||£-ir10|<€ + sup||e(O||<*<l

is satisfied when e and ||e(0)|| are sufficiently small, and hence £(t) G Cs(£')
under these conditions. D

4 APPROXIMATE LINEARIZATION 28

Corollary 3.1 If there is a time t\ > 0 such that the desired output trajec
tory becomes constant, i.e., yd(t) = J/i, t > t\, then the trajectory tracking
error e(t) will converge to zero and the system will converge to the constant
operating point f = (3/1,0,..., 0).

As we mentioned above, it is possible to extend this analysis such that
/(xo) = 0, xo G £ is not required. Although removing this assumption
can unnecessarily complicate the analysis, there is one special case which is
illuminating. If we choose a change of coordinates such that u never appears
in the derivatives X/+^tt<^t-, we do not need to assume that /(xo) = 0. In
this special case we can choose

<f>i(x) = I/&_i(x) - ^,_i(x)

and no 0t_i term appears in the corresponding & since the input does not
appear (by choice of V>)« It turns out that for the approximations constructed
for the acrobot, the input never appears and hence we can make use of
this simplification and avoid the additional computational burden assocaited
with calculations involving / = / + gu$. It is important to note that this
simplification is not generic and may fail to hold for specific systems.

The next chapter gives details on the results of applying this controller
formulation to the acrobot.

5 CONTROLLER COMPARISONS AND DISCUSSION 29

5 Controller comparisons and discussion

In this section we present comparisons of a linear and nonlinear controllers
for acrobot. We present three controllers, representing various system ap
proximations: linearization about a point, linearization about the equilib
rium manifold, and uniformly higher order approximation. In order to prop
erly adjust for gains, we have in all cases converted the systems into (approx
imate) Brunowsky canonical form and then applied the appropriate design
criteria. The output function for each controller is the one derived in Sec
tion 4.3, which gives linearized relative degree n = 4 along the equilibrium
manifold. Also, except as noted, we have used the special set of parameters
for acrobot which makes the equilibrium coordinates trivial. For simplicity,
we refer to the controllers as linear, gain-scheduled, and nonlinear.

The linear controller was constructed by linearizing the acrobot about
the completely inverted position, 0X = 02 = 0 (linear.m). This configura
tion is roughly in the center of the operating region which we considered.
The controller is implemented as a linear tracking controller (see Section 3.1)
using "balancing" coordinates (i.e., the equilibrium manifold is parameter
ized by xi).

The gain-scheduled controller is similar to the linear controller, except
that all calculations are carried out as a function of xi, the projection of
the state onto the equilibrium manifold (schedule.m). The controller is
constructed using a change of coordinates which ignores all second order and
higher nonlinearities in the variables X2,X3, X4. In that set of coordinates
we choose the gains to set the pole locations appropriately. This controller
is similar to the controllers described by [10, 12].

The nonlinear controller is constructed using a change of coordinates
which throws away higher order terms (approximate.m) in the system ve
locities, X3, x4. Thus terms of the form X3 sin X2 are not thrown away in this
approximation. Furthermore, all nonlinearities are kept in the calculations
of Lf<f>n and Lg4>n.

The gains for each controller were chosen using the same design crite
ria. We placed all poles of the (approximating) closed loop system at -3.5.
This choice represented a compromise between performance and stability.
Because the acrobot is operating in an inverted position, large overshoots
can move the state out of the region of stability. Other pole locations have
been tested, but are not presented here.

All simulations were generated using a Mathematica simulation package
that converted system descriptions into C source and generated an exe-

5 CONTROLLER COMPARISONS AND DISCUSSION

0.15 | . 1 . r

"3 -0.05

-0.15

linear

schedula

nonlinear

0.0 1.0 2.0 3.0 4.0 5.0

time

3.0 I . 1 . 1 - 1 • r

o. 2.0

E 1.0

9 0.0

-1.0 j . L j i L

0.0 1.0 2.0 3.0 4.0 5.0

time

30

Figure 9: Stability comparison. The left plot shows the ange of the second
joint, xi = 02. The right plot showls the angle of the center of mass of the
system, X2 = 0i + \92.

cutable simulation program. A variable step size Runge-Kutta integrator
was used to integrate trajectories.

5.1 Stabilizing controllers

For regulation to an equilibrium point, the system performance is similar for
all three controllers (stability.m). The region of attraction is not notice
ably different though the linear system converges somewhat more slowly.
This is due to the fact that the linear controller sees a reduced effective

gain at system configurations away from the nominal operating point. In
contrast, the nonlinear controllers provide instantaneous gain scheduling at
each position near the equilibrium manifold. This phenomenon is clearly
shown in figure 9 where the initial position was given by 0i = 0, 02 = .2 and
regulation to 0i = 02 = 0 was desired.

A slice of the region of stability is shown in Figure 10. This slice shows
the set of initial conditions with 0i = 02 = 0 which converged to the ori
gin. The region of stability is roughly uniform size about the equilibrium
manifold.

5 CONTROLLER COMPARISONS AND DISCUSSION

Linear

Nonlinear

Figure 10: Region of attraction (0 = 0 slice)

31

Jthl

5 CONTROLLER COMPARISONS AND DISCUSSION 32

5.2 Tracking controllers

A more striking difference in controller performance is apparent when we
attempt to track a trajectory (tracking.m). As evident from Figure 11,
the nonlinear controllers had significantly better output tracking capability.
A large part of the linear controller error results because a strictly linear
controller cannot calculate the input necessary to hold the nonlinear sys
tem at more than one operating point (this requires a nonlinear function
or table lookup). The nonlinear controllers, however, directly provide the
instantaneous nonlinear trim needed at each different system configuration
along the equilibrium manifold.

5 CONTROLLER COMPARISONS AND DISCUSSION

3
a.

2.0

-1.0

-2.0

0.0

0.20

0.00

-0.20

-0.40

-> r

2.0 4.0 6.0

time

8.0

linear

schedule -

nonlinear

33

10.0

linear

schedule

nonlinear

10.0

Figure 11: Tracking comparison. The upper plot shows the value of the
output function, fi = /i(x), as it tracks a sinusoidal reference trajectory of
magnitude 1 and frequency u = 1 rad/sec. The lower plot shols the error
between the desired and actual output trajectories.

5 CONTROLLER COMPARISONS AND DISCUSSION 34

5.3 Tracking with the UCB acrobot parameters

Figure 12 shows a comparison of the three controllers using the parameter
values associated with the UC Berkeley acrobot (see Table 1). For this set
of parameters, the equilibrium set has two distinct components.

For the simulation in Figure 12 it is not clear that the nonlinear con
troller is improving the tracking error. However, if we slow down the desired
trajectory, the improvement is more apparent, as shown in Figure 13. This
improvement is not unexpected, since one of the conditions of the Theorem 3
was that the trajectory be slowly varying.

5 CONTROLLER COMPARISONS AND DISCUSSION 35

o

t
93

"3
Q.

3
O

1.0

-0.5

-1.0

0.0

0.05

0.00

-0.05

-0.10

0.0

5.0

5.0

10.0

time

linear

schedule -

nonlinear

15.0 20.0

T ' 1 r

10.0

time

linear

schedule

nonlinear

15.0 20.0

Figure 12: Tracking comparison for UCB acrobot parameters using a fast
trajectory. The upper plot shols the output trajectory and the lower plot
shows the output error. The frequency of the reference trajectroy is u —
0.5 rad/sec.

5 CONTROLLER COMPARISONS AND DISCUSSION 36

o

t
<o

•*-•

3
a.

*->

3
O

1.0

0.5 -

-0.5

-1.0

0.0

0.020

0.000

-0.020

-0.040

-0.060

0.0

5.0

5.0

T ' r

10.0

time

10.0

time

linear

schedule

nonlinear

15.0 20.0

linear

schedule -

nonlinear

15.0 20.0

Figure 13: Tracking comparison for UCB acrobot parameters using a slow
trajectory. The frequency of the reference trajectory is u —0.25 rad/sec.

5 CONTROLLER COMPARISONS AND DISCUSSION 37

5.4 Discussion

The acrobot is an example of a system which violates many of the usual
assumptions which are required for defining nonlinear control laws. In par
ticular, there is no natural output function and the system is not exactly
linearizable. This report presents a constructive technique for designing
nonlinear controls for such systems. The simulations indicate that such non
linear control laws can improve system performance, particularly trajectory
tracking.

There are still many open issues to be resolved in constructing controllers
for systems such as the acrobot. Due to the freedom in choosing the system
approximation used to construct the control law, the performance of the
overall method depends on the skill of the engineer in choosing a good
approximation. Understanding how the choice of a given approximation
affects the controller performance would be of great benefit in improving
the results presented here. Unfortunately, there are currently very few tools
in this area of approximation theory. Our own experiments with the acrobot
indicate that intuition in this area is often misleading.

Another concern is the effect of the system approximation on the size of
the region of stability. As mentioned in the introduction, for the acrobot it is
desirable to make the regions of stability for a controller as large as possible
in order to simplify the task of moving from the rest configuration to an
inverted equilibrium point. But as the simulations of this section show (in
particular, see Figure 10), the nonlinear controllers constructed here result
in a small decrease in the region of attraction, at least in the slice of the state
space presented. Once again, tools for analyzing the regions of attraction
for a nonlinear system are not well developed.

A BALANCING COORDINATES FOR THE ACROBOT 38

Figure 14: Acrobot center of mass geometry. The center of mass is located
on the line between the first and second link.

A Balancing coordinates for the Acrobot

In this appendix we derive the equations for the angle of the center of mass of
the acrobot as a function of the joint angles. Figure 14 shows the geometry
of the problem. The relationship between the center of mass, a, and the
joint angles is

where 6 is a function only of 92. The following identities hold for the triangle:

a = 7T - 02

C = /i

To calculate 6 given 92 we appeal first to the law of sines:

B

ffl2

sin a sin 6 sine A

A can be determined by using the law of cosines:

A2 = B2 + C2-2BCcosa

Putting all of the equations together yields the desired formula

_i 7712/2 sin 02

sin 6 =
J9sina

6 = sin"

Jl\m\ +(mi + m2)2/i +2/i/2m2(mi +m2) cos02
(20)

A BALANCING COORDINATES FOR THE ACROBOT 39

Figure 15: 6 versus 02 for the UC Berkeley Acrobot.

Using this equation and equation (19) gives the diffeomorphism between
(0i,02)and(02,<r).

A plot of 6 as a function of 02 for the UC Berkeley Acrobot is show
in Figure 15. It is clear from this picture that for 02 < 7r/2, b is well
approximated by a simple Unear function. The slope of equation (20) at the
origin is given by

l2m2

h™>\ + (l\ + l2)m2

B Mathematica listings

This appendix contains Ustings for the Mathematica code used to analyze
the acrobot. The following files are included

acrobot .m

approximate.m
attraction.m

balance.m

compare.m

equiHbrium.m
exact,m

Unear.m

Unearize.m

output.m

schedule.m

stabiUty.m
tracking.m

dynamic equations for the acrobot
approximate Unearization
calculate region of attraction for control laws
change of coordinates to "balancing" coordinates
generate controUer comparisons
parameterization of the equiUbrium manifold
check involutivity conditions for feedback Unearization
Unear controller definition

Unearization calculations

construct an artificial output function
gain-scheduled controUer
stabiUty simulations
tracking simulations

Simulations for the acrobot were performed using a Mathematica-based
simulation program, Simulate.m. Listings for Simulate.m are not included
here; for further information, contact the authors.

40

c acrobot.m Fri, May 3,1991 3:17:30 pm m urray@bistro.berkeley.edu

(* acrobot.m - dynamic equations for Acrobot *)
Needs ["Jac"*] ;
<<Trlgonometry.m (* trigonometric simplification *)

(* Unprotect the C(] function for Mathematica 1.2 *)
Unprotect[C]; C = .;

(* Short function for makeing lists of rules *)
SetAttributes[listRule, Listable];
listRule(lhs_,rhs_] :=Rule(lhs, rhs];

(*
* Dynamics
*

* We use the following definitions in deriving the equations of motion:
*

* link 1: angle = thetal (from vertical); length = 11; mass = ml
* link 2: angle = theta2 (from link 1); length = 12; mass = m2
*

* a = ml 11"2 + m2 11*2

* b = m2 12*2

* c = m2 11 12

* d = g (ml 11 + m2 11)
* e = g m2 12
*

* Rather than let mathematica spin Its wheels on Lagrange's equtaions,
* we calculate them out by hand and write the dynamics in the same form
* as we usually use for robot dynamics (i.e. use mass and coriolis terms)
*>

SetAttributes[{a,b,c,d,e}, Constant]
SetAttributes[{ml,m2,11,12,gr), Constant)

(* define a function to substitute original parameters into an expression *)
phys[x_l := x /. { a -> ml 11A2 + m2 11*2, b -> m2 12"2,

c -> m2 11 12, d -> gr (ml 11 + m2 11), e -> gr m2 12 }

(* define another function which actually uses *balanced* acrobot numbers *)
balance[x_] := phys[x] /. {ll->l/2, 12->1, ml->8, m2->8, gr->10)
real[x_] := phys[x] /. (ll->l/2, 12->3/4, ml->7, m2->8, gr->98/100)

(* the default set of parameters is the balanced set *)
num[x_] := balance[x];
Num[x_] := N[num(x]];

(* Shorthand vectors *)
q := {xl, x2}
w := {x3, x4)
x := (xl, x2, x3, x4}

(* mass matrix and coriolis matrix *)
(* use relative coords for second link *)
M[q_] := {(a + b + 2 c Cos[q[[2]]], b + c Cos[q[[2]]]), {b + c Cos[q([2]]], b)}
C[q_, w_] = {

{-c Sin[q[[2)]] w((2]], -c Sin[qt[2]]] (w[[l]] + w([2]])},
(c Sln[q[[2]]] w[[l]], 0)

)

(* Gravity and friction *)
v[q_] := d Cos(q([l]]] + e Cos[q[[lJ] + ql[2)])
G(q_] := Jac[v(q), q]

(* Nonlinear vector fields *)
f[q_, w_] := Join(w, -Inverse[M(q]] . (C[q,w).w + G(q))];
f({xl , x2 , x3 , x4)] = f[(xl, x2), {x3, x4)];

glq_, w_) := Joln[{0,0), Inverse(M(q]].(0, 1));
g[{xl , x2 , x3 , x4)) = g[(xl, x2), (x3, x4)];

Page 1/1 D

r~
approximate.!!! Mon, Apr 8,1991 7:33:56 pm murray@bistro.berkeley.edu Page 1/1)

* Approximate linearization
*

* Now we generate the change of coordinates which linearizes a
* system with approximately the vector fields that we have.

*)

Print["calculating linearizing transformation"];

(* New coordinates after this transformation *)
z = (zl, z2, z3, z4);

(* Rule to kill off higher order terms *)
horule = {y2 y3 -> 0, y2 y4 -> 0, y3 y4 -> 0, y2A2->0, y3"2->0, y4A2->0),

phil = he;
Print["phil: LeafCount(phil), " terms"];

phl2 = Together[Expand[LieDffy, phil, y]] /.
Print["phi2: ", LeafCount[phi2], " terms"];

phi3 = Together[Expand[LieDffy, phi2, y]] /.
Print["phi3: ", LeafCount[ph!3], " terms"];

horule];

horule];

phi4 = Together[Expand(LieD[fy, phl3, y]] /. horule);
Print[nphi4: ", LeafCount[phl4], " terms"];

(* Calculate the feedback law for stabilization *)
ay = Together[Expand[LieD(gy, phi4, y)] /. horule];
Print["ay: ", LeafCount[ay], " terms"];

by = Together[Expand[LieD[fy, phi4, y)] /. horule);
Print("by: ", LeafCount[by], " terms"];

Print("building nonlinear simulation"];

appreduce[expr_] := N[expr /.
(betaOIyl) -> betaOv, betal[yl] -> betalv,
beta2[yl] -> beta2v, beta3[yl] -> beta3v), 16]

BuiIdSystem[non11near,
States[x];
Derivs[(dxl, dx2, dx3, dx4}];
Inputs[(u)];
Outputs[z];
Outputs[(xiId, xi2d, xi3d, xi4d)];

Local(y); (* balance and linearizing coordinates *)
Local[(v)]; (* linearized input *)
Local[(tl,t2)]; (* coriolis, gravity and input terms *)
Local[(hl,h2,h3,h4,h5)]; (* the output function and derivatives *)
Local[(betaOv, betalv, beta2v, beta3v)];

(* Default gain parameters *)
Params[(Kl=150.0625, K2=171.5, K3=73.5, K4=14)];
Params[(amplltude=0, offset=0, omega=l)];
Paramsf(type=0)]; (* input waveform *)
Params[(alphal=0.4397)); (* slope of the eq mfd *)
Params[(alpha3=0.00108799)];
Params[(alpha5=-0.0018839)];
Include["acrotraj.c"]; (* trajectory generator *)

(* Turn off the simulation if things go crazy *)
InlineC["if(fabs(xl) > 3 II fabs(x2) > 3) exit(3);"];

(* Start by converting the state to balancing coordinates *)
y = num(phiB(x) /. (betaOJex] -> beta[ex], betal(ex_) -> dbeta(ex))]

(* Figure out the equilibrium mfd (beta) values *)
betaOv = alphal * yl + alpha3 * Power[yl,3] + alphaS * Power[yl,5);
betalv = alphal + 3 * alpha3 * yl*yl + 5 * alphaS * Power[yl,4);
beta2v = 6 * alpha3 * yl + 20 * alpha5 * Power[yl,3);
beta3v = 6 * alpha3 + 60 * alpha5 * Power[yl,2);

(* Now got to linearizing coordinates *)
z = appreduce[(phil, phi2, phi3, phi4)];

(* Trajectory update *)
InlineC("acroTrajectory((int) type, t, omega, amplitude,

offset, &hl,&h2,&h3,Sh4,&h5);");

(* apply the control law *)
v - h5 - (Kl, K2, K3, K4} . (z - (hi, h2, h3, h4)) ;
u = appreduce[(-by + v) /ay);

(* Acrobot dynamics - using the equations from above *)
(tl, t2) = Num[-C[q, w].w - G(q] + (0, u));
(dxl, dx2) = w;
(dx3, dx4) = Num[Inverse[M[q)] . (tl, t2)];

(* Store the desired and actual trajectories in transformed coords *)
(xild, xi2d, xi3d, x!4d) = (hi, h2, h3, h4);

a attraction.m Tue, Sep 4,1990 9:48:04 am

(*
* attraction.m - figure out the region of attraction by numerical simulation
*

* Richard M. Murray
* June 13, 1990
*

*)

VectorCheck[system_, lnterval_, vector_, min_, max_, eps_] :=
Block[

(scale, good = min, bad = max, result),

For[scale = min, bad-good > eps, scale = good + (bad-good)/2,
(* Simulate the system and see if it is stable *)
result = Simu(system, interval, Initial->N[(scale vector))];

(* Reset good or bad depending on the result *)
If [SameQ[result, ()), bad = scale, good = scale];

];
good

1

VectorMax[system_, theta_) :=
Block(

(x = Cos(theta), y = Sin(theta)),
Print["theta = ", theta);
(x, y) * VectorCheck[system, (0,10), (x,y,0,0), 0.0, 1.0, 0.01)

]

Parm[linear, amplltude->0);
Parm[nonllnear, amplitude->0];
LNdata = Table[VectorMax[linear, (i-1) 2 Pi / 16], (1, 1, 17}];
NLdata = Table[VectorMax[nonlinear, (i-1) 2 Pi / 16], (1, 1, 17)];

graph = Show[
Graphics!

(Line[NLdata), Dashing[{.02,.02)), Line[LNdata),
Text("Nonlinear", Scaled((0.1,0.035)], (-1,0)],
DashingUl}], Line[{Scaled[{0, 0.035)], Scaled!(0.075,0.035)))],
Text["Linear", Scaled[(0.1,0.070)], (-1,0)],
Dashing[(.02, .02)], Line!(Scaled!(0,.070)), Scaled[(0.075,.070)])]),
Axes->Automatic, AxesLabel->("thl", "th2"), PlotRange->All

Display["attraction.mps", graph];

murray@bistro.berkeley.edu Page 1/1)

balance.m Tue, Apr 2,1991 9:48:55 pm

(*
* balance.m - Change of coordinates to "balancing" coordinates
*

* We now construct a change of coordinates y = phiB(x] so that the
* equlibrium manifold is just (yl, 0, 0, 0).
*

* This construction assumes we are using idealized coordinates. This
* is also a good approximation for non-ideal coordinates (see ERL appendix)
•

*)
Print("calculating balancing coordinates");

y := (yl, y2, y3, y4)
phiB[x List) := (x[[2]], x[[l]) + 12 m2 x[[2]) / (11 ml + (11 + 12) m2),

x[[4]], x[[3]] + 12 m2 x[[4]] / (11 ml + (11 + 12) m2)}
ihpB[y List] := (y[[2]] - 12 m2 y([l]) / (11 ml + (11 + 12) m2), y[[l]],

y[[4]] - 12 m2 y[[3]] / (11 ml + (11 + 12) m2), y[(3)])

(* Push the vector fields through the change of coordinates *)
(* This is slightly simplified since the coordinate change is linear *)
fBy = Together! Jac[phiB[x], x] . f[ihpB[y])];
gBy = Together! Jac[phiBtx], x] . g[ihpB[y])];

(* Figure out what the equilibrium input must be in order to balance *)
(* See equilibrium.m for comments *)
eqrule = listRule[Last[y], 0);
ue = (u -> num[-m2 12 gr Sin(xl+x2] /. listRule(x, ihpB(y]] /. eqrule]);

murray@bistro.berkeley.edu Page 1/1 3

c compare.m Frl, May 3,1991 9:45:24 am

(•
* compare.m - generate plots for the controller comparisons chapter
*

* Richard M. Murray
* August 31, 1990
*

* All simulations generated by this file use the *real* values of acrobot
* instead of the ideal values. (RMM 4/2/91)

*)

(* Read in the basic description of acrobot *)
<<acrobot.m

(* Express vector fields in equilibrium coordinates *)
(* Use special routine optimized for balanced parameters *)
<<balance.m

(* Use a linear approximation to the equlibrium manifold *)
(*
Clear[alphal] (* alphal = eq mfd slope (keep symbolic) *)
Print["using approximate balancing coordinates"]
<< appbalance.m
« appoutput.m (* read a save output function *)
*)

(* Generate the output function used by all controllers *)
« output.m
he = FindOutput[fBy, gBy, ue, y]

(* Desired trajectory; set amplitude = 0 for setpolnt tracking *)
desired = amplitude Sin[omega t] + offset;
SetAttributes[(amplitude,offset, omega). Constant);

(* Build the individual systems *)
« Simulate.m

« linear.m

« schedule.m

<< approximate.m

Print("Using lsoda integrator")
Map[SetOptions[#, Method->lsoda)fi, (linear,schedule,nonlinear)]

(* Mathematica generated plots *)
(* Run this manually; It takes a while to finish *)
(* « linearize.m *)

(* Now run the simulations for each part of the chapter *)
(* These should be run manually since they take a while *)
(* « stability.m *) (* set point stability *)
{* « attraction.m *) (* region of attraction *)
(* « tracking.m *) (* tracking comparisons *)
(* « poles.m *) (* effect of moving poles *)

murray@bistro.berkeley.edu Page 1/1 D

c equilibrium.m Tue, Apr 2,1991 9:45:04 pm

(*
* Change of coordinates to "balancing" coordinates
*

* We now construct a change of coordinates y = phiB[x] so that the
* equllbrium manifold is just (yl, 0, 0, 0). This construction holds
* for general parameter values.
*

*)
Print("calculating balancing coordinates"];

y := (yl, y2, y3, y4)
phiB[x List] :=

Block"(
(* Use the law of cosines to get the inner angle *)
(thl, th2, beta),
beta = -ArcSln[Sin[th2) /
Sqrt[l + (ml+m2)A2 11A2 / (12 m2)A2 + 2(ml+m2)ll Cos(th2] / (12 m2)]];

(* Now figure out the coordinates + velocities *)
(x((2]], thl-beta, x[[4]], Jac[thl-beta, (thl, th2)) . x[[(3,4}]]} /.
(thl->x[[l]], th2->x[[2]]}

)

ihpB[y List] :=
Block"!

(* Use the law of cosines to get the inner angle *)
(sig, th2, beta),
beta = -ArcSint Sin(th2) /

Sqrt[l + (ml+m2)A2 11"2 I (12 m2)A2 + 2(ml+m2)ll Cos[th2] / (12 m2)]];

(* Now figure out the coordinates + velocities *)
(y[[2)]+beta, y[[l]], Jac[sig+beta, (th2, sig}) . y(((3,4}]], y[[3])} /.
(th2->y[[l]], sig->y[[2]]}

]

(* Push the vector fields through the change of coordinates *)
acroSimplify[e_] := Together[Expand[num[e]]]
fBy = acroSimplify[(Jac[phiB[x), x) . f[x]) /. listRule[x, ihpB[y]]J;
gBy = acroSimplify[(Jac[phiB[x), x] . g(x]) /. listRule.Ix, ihpB[yl]];

(*
* Figure out what the equilibrium input must be in order to balance
*

* This used to be a linear equation, but the general acrobot doesn't
* support that. Fortunately, we can write down the solution in closed
* form In the original set of coordinates.
*

* Old code:

* solns = Solve((fy + gy u //. eqrule) == 0, u];
* If[Length(solns] != 1,
* Print["Can't solve equations for equilibrium input\n"]; ue = 0,
* ue = solns![1]]];
*

*)
eqrule = UstRulelLast (y), 0];
ue = (u -> num(-m2 12 gr Sin[xl+x2] /. listRule[x, ihpBty]] /. eqrule]};

murray@bistro.berkeley.edu Page1/1 I

c exact.m

* exact.m - check involutlvity conditions for acrobot
*

* Richard M. Murray
* August 30, 1989

Sat, Jun 2,1990 11:37:33 pm

Needs("Jac%");
Print("calculating brackets")

(* We have to use numerical values here to make the computation work *)
fO = Factor[Together[num[f(x)])]; Print["f: ", LeafCount[fO]);
cl = Factor[Together[num[g[x)]]]; Prlntfg: ", LeafCount[cl)];
c2 = Factor[Together[Lie[fO,cl,x])]; Print["(f, g): ", LeafCount[c2]];
c3 = Factor[Together[Lie[fO,c2,x])]; Print["(fA2, g] : ", LeafCount[c3]]

Print("checking involutlvity")
c4 = Factor[Together[Lie[cl, c2, x])];
dl = Together[Det((cl, c2, c3, c4})];

(* This calculation takes a while *)
c5 = Factor[Together(Lie[c2, c3, x]]);
d2 = Together[Det[(cl, c2, c3, c5))];

c6 = Factor(Together[Lie[cl, c3, x]]];
d3 = Together[Det[(cl, c2, c3, c6)]];

Print("dl = dl];

Print("d2 = ", d2];

Print("d3 = ", d3];

murray@bistro.berkeley.edu Page 1/1 D

c linearjn Mon, Apr 8,1991 7:46:26 pm

(*
* Linear simulation
*

* Just use state static feedback to try to control the system

*)

Print["building linear simulation"];

(* New coordinates after this transformation *)
z = (zl, z2, z3, z4);

AO = num(Jac[f[x], x] /. (xl->0, x2->0, x3->0, x4->0}];
bO = num[g(x) /. (xl->0, x2->0, x3->0, x4->0)];
cO = num[Jac(he /. listRule[y, phiB[x]], x) /.

(xl->0, x2->0, x3->0, x4->0}] /. (alpha3->0, alpha5->0} /.
(betaO[yl_) -> alphaO yl, betal[yl_] -> alphaO, beta2(yl_] ->0} /.
(num[alphaO->12 m2 / (11 ml + (11 + 12) m2)]}

(* Define linear change of coordinates (=> we can use the same gains) *)
BuildSystem[linear,

States[x];
Derivs[(dxl, dx2, dx3, dx4});
Inputs[(u)];
Outputs[z];
Outputs[{xiId, xi2d, xi3d, xi4d}];

Local[y];
Local[(v}];
Local[{tl,t2}];
Local[(hi,h2,h3,h4,h5}];

(* balance and linearizing coordinates *)
(* linearized input *)
(* coriolis, gravity and input terms *)
(* the output function and derivatives *)

Params[(Kl=150.0625, K2=171.5, K3=73.5, K4=14}];
Params[(amplltude=0, offset=0, omega=l}];
Paramsf(type=0)]; (* input waveform *)
Include("acrotraj.c"); (* trajectory generator *)

(* Turn off the simulation if things go crazy *)
(* InlineC["printf(\"xl = %g, x2 = %g\n\", xl, x2);"]; *)
InlineC["if(fabs(xl) > 3 || fabs(x2) > 3) exit(3);"];

(* Now got to linearizing coordinates *)
z = (cO.x, cO.AO.x, cO.AO.AO.x, cO.AO.AO.AO.x);

(* Trajectory update *)
InlineCfacroTrajectory ((int) type, t, omega, amplitude,

offset, Shl,Sh2,&h3,&h4,«h5);");

(* apply the control law *)
v = h5 - (Kl, K2, K3, K4) . (z - (hi, h2, h3, h4}>;
u = (-cO.AO.AO.AO.AO.x + v) / (cO.AO.AO.AO.bO);

(* Acrobot dynamics - using the equations from above *)
(tl, t2) = Num[-C[q, w].w - G[q] + (0, u}];
(dxl dx2) = w;
(dx3! dx4) = Num[Inverse[M(ql] . (tl, t2}];

(* Store the desired and actual trajectories in transformed coords *)
(xild, xi2d, xi3d, xi4d} = (hi, h2, h3, h4);

murray@bistro.berkeley.edu Page 1/1 J

G linearize.m Thu, May 2,1991 5:32:35 pm

(*
* linearize.m - check out the linearization of acrobot
*

* Richard M. Murray
* June 2, 1990
*

*)

(* Figure figure out the linearization about the vertical equilibrium point *)
AO = num[Jac(f[x], x] /. (xl->0, x2->0, x3->0, x4->0}];
bO = num[g[x] /. (xl->0, x2->0, x3->0, x4->0}];

(* Controllable ??*)
Print("Linear controllability = ", Det[(bO, AO.bO, AO.AO.bO, AO.AO.AO.bO))];

(* Now figure out the points at which we loose controllability *)
uA = real[Jac[f[x], x] /. (xl->-x2/2, x3->0, x4->0});
uB = real[g(x] /. (xl->-x2/2, x3->0, x4->0}];

bA = balance(Jac[f[x], x] /. (xl->-x2/2, x3->0, x4->0}];
bB = balance(g[x) /. (xl->-x2/2, x3->0, x4->0}];

balDet(v_] :=
Det[Map[N[# /. x2->v]fi, (bB, bA.bB, bA.bA.bB, bA.bA.bA.bB}]);

balSigma[v_] :=
SingularValues[

Map[N(# /. x2->v]fi, (bB, bA.bB, bA.bA.bB, bA.bA.bA.bB)]
)!(2]];

ucbDet(v_) :=
Det[Map(N[# /. x2->v]fi, (uB, uA.uB, uA.uA.uB, uA.uA.uA.uB))) ;

ucbSigma[v_] :=
SingularValues[N[(uB, uA.uB, uA.uA.uB, uA.uA.uA.uB) /. x2->v]][(2)];

ucbGraph = Plot[ucbDet[x2], (x2, -Pi, Pi}]
Display("ucbctrl.mps", ucbGraph]

balGraph = Plot[balDet[x2], (x2, -Pi, Pi}]
Display["balctrl.mps", balGraph]

murray@blstro.berkeley.edu Page1/1 j>

putputm Fri, Aug 31,1990 9:22:13 am

* Determination of the output function
*

* We now calculate the output function by using the linearization along
* the equilibrium manifold (y2 = y3 = y4 =0). This makes use of
* a special set of parameters to simplify calculations, so from here
* on out, all of the calculations are numerical.
*

*)

FindOutput[fBy_, gBy_, ue_, y_] :=
Block[

(Ae, be, ce, W, 1),
Print("determining output function"];

(* Get the vector fields and evaluate them *)
(*! These are required by functions outside of this one !*)
fy = num[fBy];
gy = num[gBy];

(* Make a rule to evaluate an expression at an equilibrium point *)
eqrule = listRule[Rest[y], 0];

(* Now figure out what the linearization is along the eq manifold *)
Print[" calculating linearization along eq manifold");
Ae = Jac[fy + gy u, y) /. ue //. eqrule;
be = gy //. eqrule;

(*
* Originally we calculated the output function by using the controllable
* canonical form of the linearized system. Now we know better, so we
* just look at the null space of the controllability matrix
*

*)
Print[" null space calculation"];
W = (be);
For[i = 2, 1 < Length[be], ++1, W = Join[W, (Ae.Last[W]))];
ce = Together! NullSpacelW][[1]]];

(* Return the normalized output function *)
Together! ce/ce((l)]] . y

murray@bistro.berkeley.edu Page 1/1 D

(schedule.m Wed, May 22,1991 11:03:00 am murray@bistro.berkeley.edu Page 1/1

(*
* Gain scheduling
*

* Now we generate the change of coordinates which linearizes a
* system with approximately the vector fields that we have.
*

*)

Print("calculating linearizing transformation"];

(* New coordinates after this transformation *)
z = (zl, z2, z3, z4);

(* Rule to kill off higher order terms *)
horule = (y2 y3 -> 0, y2 y4 -> 0, y3 y4 -> 0, y2A2->0, y3A2->0, y4A2->0);

normal[expr_SeriesData] := Normal(expr);
normal[expr_] := expr;

expand[expr_] := Expand[normal[Series[expr, (y2,0,l)]]]
reduce[expr_] := Together[expand[expr] /.
horule //. (Hold[Normal[aj]->a)];

(* Build the transformation; use Taylor series to get linear truncation *)
phil = reduce[he];
Print["phil: ", LeafCount[phil], " terms"];

phi2 = reduce[LieD[fy, phil, y]]
Print["ph!2: ", LeafCount[ph!2], terms"];

phl3 = reduce[LieD[fy, phi2, y])
Print("phi3: ", LeafCount[phi3], " terms"];

phi4 = reduce[LieD(fy, phi3, y)]
Print("phi4: ", LeafCount[phi4), " terms"];

(* Calculate the feedback law for stabilization *)
(* Truncate the linear terms *)
ay = reduce(LieD(gy, phi4, yj);
Print["ay: ", LeafCount[ay], " terms");

by = reduce[LieD(fy, phl4, y]);
Print["by: ", LeafCount(by), " terms"];

Print["building schedule simulation"];

BuildSystem(schedule,
States[x];
Derivs[(dxl, dx2, dx3, dx4}];
Inputs!(u)];
Outputs[z];
Outputs I(xild, xi2d, xi3d, xi4d}];

Local[y]; (* balance and linearizing coordinates *)
LocalI(v)J; (* linearized input *)
Local[(tl,t2)]; (* coriolis, gravity and input terms *)
Local[(hi,h2,h3,h4,h5}]; (* the output function and derivatives *)
Local((betaOv, betalv, beta2v, beta3v});

(* Default gain parameters *)
Params((Kl=150.0625, K2=171.5, K3=73.5, K4=14}];
Params((amplitude=0, offset=0, omega=l});
Params[(type=0)); (* input waveform *)
Params((alphal=0.4397}] ; (* slope of the eq mfd *)
Params[(alpha3=0. 001087 99));
Params[(alpha5=-0.0018839)} ;

Include("acrotraj.c"); (* trajectory generator *)

(* Turn off the simulation if things go crazy *)
InlineC["if(fabs(xl) > 3 II fabs(x2) > 3) exit(3);"];

(* Start by converting the state to balancing coordinates *)
y = num(phiB[x) /. (beta0[ex_] -> beta(ex], betal[ex] -> dbeta[ex]});

(* Figure out the equilibrium mfd (beta) values *)
betaOv = alphal * yl + alpha3 * Power[yl,3] + alpha5 * Power[yl,5];
betalv = alphal + 3 * alpha3 * yl*yl + 5 * alpha5 * Power[yl,4];
beta2v = 6 * alpha3 * yl + 20 * alphaS * Power[y1,3];
beta3v = 6 * alpha3 + 60 * alpha5 * Power[yl,2];

(* Now got to linearizing coordinates *)
z = (phil, phi2, phi3, phi4);

(* Trajectory update *)
InlineC("acroTrajectory((int) type, t, omega, amplitude,

offset, Shl,fih2,fih3,sh4,sh5);"];

(* apply the control law *)
v = h5 - (Kl, K2, K3, K4} . (z - (hi, h2, h3, h4}) ;
u = (-by + v) / ay;

(* Acrobot dynamics - using the equations from above *)
(tl, t2} = Num[-C(q, w].w - G[q] + (0, u}];
(dxl, dx2} = w;
(dx3, dx4} = Num(Inverse[M[q)] . (tl, t2}];

(* Store the desired and actual trajectories in transformed coords *)
(xild, xi2d, xi3d, xi4d) = (hi, h2, h3, h4);

(tracking.m Fri, May 3,1991 10:05:57 am

(* Tracking simulations *)
Parm[schedule, amplitude->l, offset->0, omega->l, type->0]
Simu[schedule, (0, 20, .02}, Output->"tracking.sch", Initial->(0, 0, 0, 0)]

Parm[nonlinear, amplitude->l, offset->0, omega->l, type->0]
Simu [nonlinear, (0, 20, .02), Output->"tracking.nlc", Inltial->(0, 0, 0, 0)]

Parm[linear,
Simu[linear,

amplitude->l, offset->0, omega->l, type->0]
(0, 20, .02), Output->"tracking.lin", Initial->(0, 0, 0, 0)]

murray@bistro.berkeley.edu Page 1/1)

i stability.m Fri, May 3,1991 9:53:40 am

(* Simulate the system with some various starting points *)
Parm(nonlinear, Kl->150.0625, K2->171.5, K3->73.5, K4->14]
Parmjnonlinear, amplitude->0, offset->0)
(*
Simu[nonlinear, (0, 10), Output->"nonlinear.l", Initial->(0, 0.01, 0, 0}]
Simu[nonlinear, (0, 10), 0utput->"nonlinear.2", Initial->(0.01, 0, 0, 0)]
Simu[nonlinear, (0, 10), 0utput->"nonlinear.3", Initial->{-0.02, 0.03, 0, 0)]
Simu[nonlinear, (0, 10), Output->"nonlinear.4", Initial->(0.1, 0, 0, 0}]
M
Simu[nonlinear, (0, 5, .02), Output->"stabllity.non", Initial->(0, 0.2, 0, 0}]

(* Simulate the system with some various starting points *)
Parm(schedule, Kl->150.0625, K2->171.5, K3->73.5, K4->14]
Parm[schedule,

(*
Simu(schedule,
Simu[schedule,
Simu[schedule,
Simu(schedule,

*)
Simu[schedule, (0, 5, .02), Output->"stability.sch", Initial->{0, 0.2, 0, 0})

amplitude->0, offset->0]

(0, 10), Output->"schedule.l",
(0, 10), Output->"schedule.2",
(0, 10), Output->"schedule.3",
(0, 10), Output->"schedule.4",

Initial->{0, 0.01, 0, 0))
Initial->{0.01, 0, 0, 0}]
Initial->{-0.02, 0.03, 0,
Inltial->{0.1, 0, 0, 0}]

(* Simulate the system with some various starting points
Parm[linear, Kl->150.0625, K2->171.5, K3->73.5, K4->14]

amplitude->0, offset->0]

10), Output->"linear.l",
10}, Output->"linear.2",
10}, Output->"linear.3",
10}, Output->"linear.4",

')

Initial->(0, 0.01,
Initial->(0.01, 0,
Initial->(-0.02, 0
Initial->{0.1, 0,

0, 0)]
0, 0)]
03, 0,

0, 0)]
0}]

0}]

Parm[linear,

l

Simu[linear,
Simu[linear,
Simu(linear,
Simu[linear,

*)
Simu(linear,

(0,
(0,
(0,
(0,

(0, 5, .02), Output->"stabillty.lln", Initial->{0, 0.2, 0, 0}]

Null

murray@blstro.berkeley.edu Page 1/1 D

REFERENCES 42

[13] S. Wolfram. Mathematica: A System for Doing Mathematics by Com
puter. Addison-Wesley, 1989.

REFERENCES 41

References

1] W. T. Baumann and W. J. Rugh. Feedback control of nonlinear systems
by extended linearization. IEEE AC Transactions, 31:40-46, 1986.

2] C. I. Byrnes and A. Isidori. Local stabilization of minimum-phase non
linear systems. Systems and Control Letters, 11:9-17, 1988.

3] J. Hauser, S. Sastry, and P. Kokotovic. Nonlinear control via approxi
mate input-output linearization, the ball and beam example. Technical
Report ERL, Department of EECS, University of California, Berkeley,
1989. To appear in IEEE Transactions on Automatic Control, 1991.

4] John Hauser. Nonlinear control via uniform nonlinear system approx
imation. In IEEE Control and Decision Conference, 1990. To appear
in Systems and Control Letters, 1991.

5] L. R. Hunt, R. Su, and G. Meyer. Global transformations of nonlinear
systems. IEEE AC Transactions, AC-28(1):24-31, 1983.

6] A. Isidori. Nonlinear Control Systems. Springer-Verlag, 2nd edition,
1989.

7] B. Jakubczyk and W. Respondek. On linearization of control sys
tems. Bulletin de L'Academie Polonaise des Sciences, Serie des sci
ences mathematiques, XXVIIL517-522, 1980.

8] A. J. Krener. Approximate linearization by state feedback and coordi
nate change. Systems and Control Letters, 5:181-185,1984.

9] A. J. Krener, S. Karahan, M. Hubbard, and R. Frezza. Higher order
linear approximations to nonlinear control systems. In IEEE Control
and Decision Conference, pages 519-523, 1987.

[10] C. Reboulet and C. Champetier. A new method for linearizing non
linear systems: the pseudolinearization. International Journal of Con
trol, 40:631-638, 1984.

[11] M. W. Spong and M. Vidyasagar. Dynamics and Control of Robot
Manipulators. John Wiley, 1989.

[12] J. Wang and W. J. Rugh. On the pseudo-linearization problem for
nonlinear systems. Systems and Control Letters, 12:161-167, 1989.

