
Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

FAULTS: AN EQUIPMENT MAINTENANCE

AND REPAIR TRACKING SYSTEM USING

A RELATIONAL DATABASE

by

David C. Mudie

Memorandum No. UCB/ERL M91/44

23 May 1991

FAULTS: AN EQUIPMENT MAINTENANCE

AND REPAIR TRACKING SYSTEM USING

A RELATIONAL DATABASE

by

David C. Mudie

Memorandum No. UCB/ERL M91/44

23 May 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

FAULTS: AN EQUIPMENT MAINTENANCE

AND REPAIR TRACKING SYSTEM USING

A RELATIONAL DATABASE

by

David C. Mudie

Memorandum No. UCB/ERL M91/44

23 May 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

FAULTS: An Equipment Maintenance and Repair Tracking System
Using a Relational Database'

David C. Mudie

Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, CA 94720

Abstract

FAULTS combines a forms-based user interface with a facility-wide relational database to
record equipment maintenance and repair events as they occur. The semantics of preventive
maintenance and repair events are formalized to create clear and unambiguous maintenance
reports.

Storing preventive maintenance and equipment failure information in a structured database has
several benefits. Accumulated information is automatically indexed to aid diagnosis of failures
as they occur. Equipment failure information isavailable to utility programs for display and sta
tistical analysis to produce summaries such as preventive maintenance intervals, mean time
between failures, predicted downtimes, performance trends, etc.

FAULTS is installed in the U.C. Berkeley Microfabrication Facility where it isused to manage
more than a hundred pieces of equipment. The FAULTS system has provided a significant
improvement inthe management ofpreventive maintenance and equipment repair information.

1. Introduction

1.1. What is the problem?
The current practice of equipment maintenance in the semiconductor industry consists of

three activities: equipment qualification, preventive maintenance, and field repair. Equipment
qualification includes a number of tests that must be completed before the equipment isreleased
to production. Preventive maintenance is conducted at regular intervals and consists of routine
inspection and cleaning. Unscheduled field repairs are often necessary during production to
resolve equipment malfunctions.

Today, most of the information concerning equipment qualification and preventive mainte
nance iscollected on paper records orin unstructured text files on acomputer. Operators ortech
nicians must refer to the appropriate records while perforrning maintenance. Information con
cerning field repairs, however, is usually managed in an ad-hoc fashion. Malfunctions are
reported orally orrecorded in unstructured text reports by the operators. Even when using acom
puterized paperless system such as COMETS [1] or the Berkeley Laboratory Information

t This research was supported by the National Science Foundation (Grant MIP-9014940) and Tlie Semicon
ductor Research Corporation, Philips/Signetics Corporation, Harris Corporation, Texas Instruments, National Sem
iconductor, Intel Corporation, Rockwell International, and Siemens Corporation with a matching grant from the
State ofCalifornia's MICRO program.

System [2], the causes and actions taken tocorrect malfunctions are lost in long unstructured text
files. Since this information has no formal structure, it is difficult to perform even simple
analysis to discover and correct common causes of malfunction.

1.2. What is the solution?

This paper presents a new scheme to manage information concerning equipment mainte
nance and repair activities. The system developed to implement this scheme was designed with
four goals in mind. First, the system must help facility management keep track of equipment
maintenance events as they occur. Second, thesystem should help maintenance technicians con
duct off-line equipment maintenance by reviewing previous maintenance cases. Third, the sys
tem must be usable and maintainable by equipment operators, maintenance technicians and
facility managers without need of assistance from expert programmers. Finally, the system
should cooperate with automated diagnostic systems by maintaining failure histories of equip
ment in the facility and by providing a mechanism that allows a diagnostic system to automati
cally schedule necessary maintenance tasks [3].

The new equipment maintenance system is known as the Berkeley FAULTS system.
FAULTS is a program that allows a user to interact with a relational database [4] through a
forms-based interface to record preventive maintenance and field repairs of manufacturing
equipment All information necessary to identify the type and cause of equipment failure, time
of occurrence, time of repair, etc. is stored in the relational database. Unlike existing paperless
systems, this information is organized in a structured representation sothatother application pro
grams can perform facility-wide analysis.

1.3. Related Work

The functionality of FAULTS is similar to that provided by Intel's CEPT system [5], a
comprehensive Equipment Performance Management tool built on top of WORKSTREAM [61,
a commercial CAM platform. The CEPT system coordinates WORKSTREAM's paperless WIP
management system with its own database of equipment knowledge to support maintenance
scheduling, analysis of equipment failures, and process monitoring for Statistical Process Con
trol.

1.4. Outline of Paper
The remainder of this paperdescribes thedesign andimplementation of FAULTS. Section

2 provides an example scenario demonstrating how the FAULTS system meets the first three
goals identified above. Section 3 describes the design of the FAULTS software system, includ
ing the data structures used to model maintenance and repair activity, and briefly discusses how
the implementation of these structures meets the fourth design goal of the system. Section 4
describes the success of FAULTS in a working environment, and identifies some possible exten
sionsto the system. Section5 concludes the paperwitha discussion of results.

2. An Application Example
This section presents anexample of how the FAULTS system is used during the lifetime of

a typical equipment repair event. In the Berkeley Microfabrication Facility, the lifetime of a
repair event (commonly referred to asaproblem) is marked bythree steps: reporting, diagnosis,
and clearing. Additionally, once an event is recorded, it may be analyzed by a diagnostic pro
gram or report generator.

2.1. Problem Reporting
During an LPCVD (low pressure chemical vapor deposition) processing step, Bob (the

operator) observes that the display terminal of the Tylan furnace controller ("TYCOM") on the
LPCVD furnace does not respond to his commands. Bob tries the "reset" command he knows,
but the TYCOM terminal still does not respond. Bob switches over to an ASCII computer termi
nal next to the malfunctioning controller, and invokes the FAULTS equipment maintenance sys
tem to report the problem.

Figure 1 shows the first screen of the FAULTS system. This screen is called the Equip
ment Status Board. Like other FAULTS screens, it is composed of an information display occu
pying most of the screen and a list of available operations on the bottom line. The Equipment
Status Board lists problems reported for all equipment in the facility. The StatusBoardcurrently
shows a problem on the LAM plasma etcher, but Bob's TYCOM problem has not yet been
reported. Bob executes the "New" command to report a new problem.

Bob is prompted for the name of the equipment he is working on ("tylanl6") and then is
asked to describe the malfunction he is reporting. FAULTS presents a menu of problems known
to occur on the LPCVD furnace tube, and Bob selects theentry mostdescriptive of his problem:
a "terminal" problem within the group of "tycom" errors. Figure 2 shows the screen during this

Equipment:
User:

Symptom:
Fault:

MICROLAB FAULT REPORTS

Use "JKFG and TAB to move around. Use ESC to execute a command.
Help StatusBoard Read Update Clear Delete New FlndOId : new

Fig. 1. The Equipment Status Board. Users can browse current problems, initiate a new report,
or examine old reports.

selection process. Escape commands are available if none of the menu items seem correct or if
Bob decides to cancel the report

When Bob has identified the observed symptoms ofhis problem, the screen changes tothat
shown in Figure 3. This screen confirms the information Bob entered, such as the name of the
malfunctioning equipment and the date the report is being filed. A short summary line is
automatically built from known information to help technicians identify this report at a glance.
Bob is prompted to type in free-form text comments so he can report on the particular cir
cumstances of thisfailure or describe symptoms notfound in theprevious menus.

When Bob is done entering comments, the report is released as a "pending" problem.
FAULTS adds the new report to the Equipment Status Board, and automatically notifies the
responsible technician and supervisor via electronic mail. Bob can also send "carbon copies" of
the report to himself or other operators of theequipment

2.2. Problem Diagnosis
Kate, the technician recently assigned to tylanl6, receives electronic mail describing Bob's

problem on the machine. Kate is unfamiliar with the TYCOM control system, so she invokes
the FAULTS system on her workstation and executes a command to find previous occurrences

PROBLEM DESCRIPTION

Equipment: tylanl6
Category: tycom

Details Name

disk-drive

recipe
standard-disk

terminal

tytalk

Description

problem with disk drive
problem with a standard recipe
problem reading the standard recipe disk
problem with display terminal
problem with SECS communication

Use MKFG and TAB to move around. Use ESC to execute a command.

Help Select Abort CantTeU NoneOfAbove More Less Match >: select

v*_

Fig. 2. Identifying problem symptoms. An operator observes a TYCOM malfunction (the con
trol screen has noresponse) and selects the terminal symptom from theTylan furnace menu.

r

REPORT INSPECTION

Report ID: 165 User: Bob Smith
Equipment: tylanl6 Tech:

">

Symptoms Reported: Q3-apr-199015:24:02
Diagnosed:

Cleared:
Fatal: yes

Faults

terminal

Comments

terminal problem on tylanl6 from Bob Smith (03-apr-199015:24:02)

User Comments:

Screendoesnot respond. Reset doesn't help.

IUse "JKFG and TAB to move around. Use ESC to execute a command.

Help Diagnose Symptoms Update Clear Delete End : end
>

Fig. 3. Completing a problem report. The report can be checked and modified by the operator
before it is released to the Status Board.

ofsimilar failures. The system locates several reports that may be relevant, as shown in Figure
4.

Kate browses the contents ofthe old reports, as shown in Figure 5, and learns that on apre
vious occasion the TYCOM display screen had locked up because of a faulty printed circuit
board in the controller. Armed with this knowledge, Kate inspects the furnace control system
and discovers that one ofthe circuit boards isindeed defective. She orders a replacement board
from the equipment manufacturer and is told that the new board will take four days to arrive.

Still within the FAULTS system, Kate records her diagnosis ofthe problem by choosing
from a menu of faults known to occur on theTylan furnace tubes, as Bobchose from a menu of
symptoms. This process is shown inFigure 6. Kate also enters a brief note stating that the fur
nace will remain down for another four days while waiting for the replacement part The revised
report is posted to theEquipment Status Board sooperators will be aware that thefurnace is out
of commission for the rest of the week.

2.3. Problem Clearing
A week later, the replacement board arrives. Kate fixes the controller and verifies that the

furnace tube isoperating normally. She enters the FAULTS system and executes a command to
clear the problem report. FAULTS prompts Kate to confirm her diagnosis of the faulty con
troller board, then asks her to type in more text comments describing the repair procedure and

MICROLAB FAULT REPORTS

Equipment: tylans
User:

Symptom: terminal (problem with display terminal)
Fault:

Subject

terminal problem on tylanl from John Doe(02-Jun-198814:17:26)
terminal problem on tylan4 from Joe User (16-aug-198912:34:56)

Use AJKFG and TAB to move around. Use ESC to execute a command.

Help StatusBoard Read Update Clear Delete New FindOId : findold

Fig. 4. Locating old reports. FAULTS queries the database for reports concerning the specified
symptom.

REPORT INSPECTION

Report ID: 97
Equipment: tylanl

User: John Doe
Tech: Steve Simpson

Symptoms

terminal

Comments

Reported:
Diagnosed: 02,

Cleared: 04-]
Fatal: yes

02-lun-198814:17:26
" |un-198816:01:17

un-198811:12:38

User Comments:

Display screen blacked out.

Diagnosed asMCB (microcomputer board) by Steve Simpson
Comments from Steve Simpson(04-Jun-1988 11:12:38):
I havereplaced a faultymicrochip in the board.
The equipment is up now.

Faults

MCB

Use "JKFG and TAB to move around. Use ESC to execute a command.
Help Diagnose Symptoms Update Clear Delete End : end

Fig. 5. Browsing aproblem report. This screens displays all the information concerning apar
ticular maintenance event. The text comments may bescrolled toread further.

PROBLEM DIAGNOSIS

Equipment: tylanl6
Category: CCM/electronlc-board-cage

Details Name Description

0

0

0

1

MCB

disk-I/O
memory-board
serial-I/O

microcomputer board
disk I/O board
RAM board

serial I/O board

Use "JKFG and TAB to move around. Use ESC to execute a command.

Help Select Abort CantTell NoneOfAbove More Less Match >: select

Fig. 6. Identifying equipment faults. Electronic-board-cage (defective electronic board cage)
was selected under the CCM (central control module) category. Finally, the technician chooses
MCB (defective microcomputer board)from the four choicesunder electronic-board-cage.

any peculiar circumstances of the repair. Kate notes that the replacement board took longer than
promised to arrive. When her comments are complete, FAULTS removes the report from the
StatusBoard and sendsout electronicmail announcing that the furnace is back in operation.

This example demonstrates the day-to-day use of FAULTS to manage current equipment
problems and to maintain a history of previousequipmentfailures. FAULTS also provides a set
of command screens to update die contents of each fault and symptom menu. This allows
qualified technicians to create new problem categories when the need arises, without support
from a database expert Each command screen in FAULTS has an accompanyingHelp screen
describing the command options available. (As an example, the help screen for the Equipment
Status Board is shown in Figure 7.) These on-line screens help novice users learn to operate the
system without a bulky manual.

2.4. Failure Analysis and Downtime Statistics
Information accumulated in the FAULTS databaseis available to independent analysis pro

grams as well as to human operators. One importantfunction of these programs is to summarize
equipment maintenance information. For example, facility managers often ask "How much
equipment downtime occurred in the last three months?", "How much money did we spend on
furnace maintenance last year?", and so on. Technicians frequently ask questions such as "What
was the failure last time this symptom was observed?" or "How often does the TYCOM

8

STATUS BOARD HELP

ESC-New will allowyou to posta new problem reportwithout leaving
"Browse" mode.

ESC-Match allows you to ignore reports you are not interested.
Enter a searchpattern, and all rowswithout this pattern in the
subject will be removed.

ESC-SetFault allows you to select a "fault" restriction for

ESC-FindOld.

ESC-SetSymptom allowsyou to selecta "symptom" restriction for
ESC-FindOld.

ESC-FindOld willretrieve allreports matching the restriction
fields as described above.

ESC-End leaves "Browse" mode.

^ NextPage(T) PrevPageCG) Find Top Bottom Help End

Fig. 7. Example ofa Help screen. Such a screen can be called up from any of the FAULTS
command screens.

controller fail on this furnace?" Since the information associated with each equipment mainte
nance event is stored in awell-defined relational format, analysis programs and report generators
can query the FAULTS database toproduce answers tothese questions.

Simple plotting of various statistics such as equipment downtimes and failure frequencies
(a "Pareto" chart) give concise visual summaries of the cleanroom operation. As an example,
Figure 8summarizes the failures that occurred on our Tylan furnaces during the last year.

3. Design and Implementation of FAULTS
This section discusses the design goals ofFAULTS, then outlines the implementation that

achieves these goals.

3.1. Design goals

The FAULTS system was initially conceived as atool to gather data for automated equip
ment diagnosis, but early on it became apparent that the data collected would be valuable to a
much wider set of applications. We identified four major design goals that must be met to to
support a wide range of application programs while making the process of data collection easy
for users. First, FAULTS should serve as a useful tool to track equipment failure and mainte
nance activities on the floor of the facility, so that managers and technicians can schedule repair
activities more effectively. Second, to faciliate problem diagnosis, FAULTS should provide a

Tylan6 fault frequency
occurences

5-

n
bank broken loadin/out pump exhaustfilter - ,A

rod malfunction fault

Fig. 8. Ahistogram showing fault frequencies on Tylan furnaces over the last year.

1

simple and efficient interface to allow retrieval and analysis of past equipment failures. Third,
FAULTS must be easy to learn and easy to use, and the system must not require supervision
from a database expert. This goal puts equipment experts in direct control of the equipment
knowledge base and reduces demand on the computer support staff. Finally, FAULTS should
provide a platform fordevelopment of other CIM packages that require access to thedatabase of
equipment history. Aconsistent application interface will allow many modules ofan integrated
CIM system to take advantage ofa single data set built and maintained by FAULTS.

3.2. Overview of components
Figure 9 presents a simple diagram of the way data is shared between applications in the

BLIS system, in which numerous programs access a single shared database. Use of a shared
database eliminates the problems of inamtaining integrity and synchronization between several
copies of the same data. In addition, sharing makes data from different applications available in
a central location foreasy cross-referencing. While the database is presented as a logical whole,
it can be physically distributed across a network ofdata servers for storage efficiency. Distri
buted database management tools make the details ofthis implementation transparent to applica
tion programs. [7]

Rather than "hardwiring" database query code directly into numerous application programs
within the FAULTS system, database manipulation code is confined to a single library ofreus
able routines called faultlib. The faultlib package is used by several database applications

10

Inventory

Fig. 9. BLIS database model.

CIM

DATABASE

Equipment
Scheduling

User

Authorization

(including the front-end user interface of FAULTS itself) to manipulate the FAULTS database
without knowledge of the data model's relational implementation. Figure 10 diagrams this
approach. For run-time performance efficiency, some FAULTS applications make special-
purpose queries directly to the database.

3.3. The FAULTS Data Model

The "Report Inspection" screen (Figure 5 in the previous scenario) gives some indication of
the amount of information associated with each equipment maintenance event that occurs in a
microfabrication facility. Details such as the date of the problem occurrence, the operator and
technician involved, and some description of the maintenance required must be captured and
stored for future analysis. To support efficient storage and retrieval of this information, a
record-keeping system must coerce the information surrounding each event into a clear and
unambiguous format. We derive this format by defining the semantics of an equipment mainte
nance event and identifying the information that must be captured. In this section, we describe
the data abstractions used byFAULTS torepresent anequipment maintenance event

For simplicity of design and management, an object-oriented data model was used to build
the FAULTS database. The data model consists offive major data types and the relationships
between objects of these types. These five data types are: labusers, resources, comments,

11

PM
Calendar

CIM
DATABASE

Fig. 10. Structural components of FAULTS

equiplib

reports, andfaultsymps. The first four items are straight-forward representations of the informa
tion associated with real-world objects. The fifth data type, faultsymps, models diverse equip
ment failure modes, faultsymps haveno real-world counterpart. The labusers and resources data
types contain many attributes used by accounting and control programs but not by FAULTS.
These unused attributes are omitted from this description of theFAULTS data model for clarity.
In this section, we present each of the five data types in turn and discuss the relationships that
exist between them. Figure 11 shows an Entity-Relationship diagram of the FAULTS data
model.

Labusers

A labuser is a person involved with the Berkeley Microlab. Administrative staff, techni
cians, and equipment operators are all labusers. Two attributes are stored about each labuser:

• name: First and last name of the user (e.g., "BobSmith").
• labuserID: A unique number to identifythis labuser.

12

COMMENT

(text, ID)

RESOURCE

(name, class, ID)

^^esource-f^>

LABUSER

(name, ID)

REPORT

(reptime, pending,fatal, ID,...)

FAULTSYMP

(name, descrip, parent, type, ID)

Fig. 11. Entity-Relationship Diagram of the FAULTS database.
Boxes indicate database objects
Italicsindicate attributes of an object
Diamonds indicate relationships between objects
An arrowhead follows a "many-to-one" relationship

Resources

A resource is an item that is used in the microfabrication process. In general, resources
include chemicals stocked by the facility, tweezers used to handle wafers, and many other items.
FAULTS is only concerned with resources classified as equipment. Three attributes are stored
about each resource:

• name: A briefname identifying theresource (e.g., "tylanl6").
• class: The general group this resource belongs to (e.g., "equipment").
• resource ID: A uniquenumber to identifythis resource.

Comments

A comment is a block of ASCII text of arbitrary length. Comments are used to store unfor
matted text entries for later retrieval. Two attributes are stored about each comment:

• text: The contents of this text block.

13

• commentID: A unique number to identify this comment

Reports
Each report represents a single equipment maintenanceevent. A report object stores all the

data unique to this event, such as the date of occurrence and current status. The report objea
also makes reference to the labusers and resources that may be associated with more than one
such event Hie following attributes are stored about each report:

• reptime: The date this event was entered into the system.
• diagtime: The date this event was diagnosed by a technician.
• cleartime: The date this event was cleared from the Status Board.
•pending: True if this event is still on the Status Board.
•fatal: True if this event prohibits operation of the equipment until cleared.
• repuser: A reference to the labuser who entered this event
• diaguser: A reference to the labuserwho diagnosed this event
• resource: A reference to the resource this event occurred on.

• comment. A reference to the comment storing text for this event
• reportID: A unique number to identify this report

Faultsymps
To cross-reference similarities between equipment maintenance events, FAULTS requires

a clear and unambiguous method to describe the nature of each such event We use a hierarchi
cal structure offault and symptom categories, with an entry for each situation that can occur.

The qualitative information that describes a maintenance event is divided into two concep
tual groups: faults and symptoms. A symptom is definedas an occurrence that may be observed
by an operator or diagnosis module when an equipment malfunctions. An operator might
observe the symptom that the motorized wafer boat has gotten stuck during a furnace run. A
fault is defined as the underlying cause behind an equipment malfunction. Faults are first
identified by a maintenance technician's diagnosis, then verified by the person who actually
repairs the equipment As an example, the "wafer boat stock" symptom might havebeen caused
by a "boat controller" fault

To avoid ambiguity of terms, operators and technicians must agree upon a standard termi
nology for each of the faults and symptoms that can occur on equipment FAULTS enforces
this standard by identifying each fault or symptom with a single descriptive keyword. Users
then select from a menu of known keywords, rather than describing the problem in their own
language. Each keyword is paired with a long description of the fault or symptom to aid user
recognition.

The faults and symptoms for a specific piece of equipment are logically grouped into
hierarchical categories to simplify the search for a particular entry. In order to avoidduplication
of information, hierarchies can be extended upward to include clusters of similar equipment
These hierarchical categories are developed by consulting with an expert technician for each
piece of equipment A technician with sufficient privileges can modify the hierarchy of
categories without leaving FAULTS if he discovers a problem category thatwas notforeseen by
theexpert Anexample of thesehierarchical structures is shown in Figure12.

When specialized equipment of the same type are grouped together in a cluster, the
corresponding specialized faults and symptoms are earmarked for that particular equipment

14

Cheating elementN
worn out ^J

Fig. 12. An example of faultandsymptom hierarchies.

boat loader^

\

boat loader^)

\

while others remain generic throughout the cluster. As an example, hierarchical categories are
created for a furnace cluster that contains 16 individual reactors. Among these, there are 10 dif
ferent kinds of reactors that use different sets of gases over various temperature and pressure
ranges. FAULTS will only display the fault and symptom entries appropriate to the reactor in
use.

15

Faults and symptoms share many of the same properties, so they are abstracted into a single
data type called afaultsymp. The following attributes are stored about a.faultsymp:

• name: The keyword name of this faultsymp.
• description: The long description of this faultsymp.
• type: The type of this faultsymp, either "fault" or "symptom".
•parent: A reference to this faultsymp's superior in die

hierarchy ofcategories.
•faultsymp ID: A unique number to identify this faultsymp.

Additionally, FAULTS recognizes a many-to-many relationship resource-fs that associates spe
cialized faultsymps with the equipment resources on which they occur, and a many-to-many
relationship report-fs that associates faultsymps with the reports they describe. While the data
model can associate many symptoms and many faults with each problem report, the FAULTS
user interface currently enforces a single-fault assumption: at most one fault can be associated
with each report. This restriction simplifies the data set for analysis by automated diagnostic
agents. If symptoms from several faults are reported together, a command is available to split
the symptoms between two or more reports, each with a single fault

3.4. The FAULTS Procedure Library
The data types defined above are stored in a commercial relational database (INGRES [8]).

This database contains a table to represent each of the five data types, along with numerous
index and cross-reference tables to define how data objects are associated with each other. To
insulate programs from the details of the database implementation, we created a library of inter
face procedures called faulUib. This library is used to achieve FAULTS' fourth major goal of
cooperation with other programs. This section describes the functional interface provided by the
faultlib library.

The faultlib library may be linked with ESQL/C application programs. Table 1 summar
izes the functions provided; use of these functions is detailed in Appendix A. Faultlib consists
of approximately 2800 lines of C and SQL.

3.5. User interface

The user interface to FAULTS is implemented in ABF [9]. This interface is a collection of
command screens, or frames, each with a form to display some data and a menu of operations
available. The form in each frame gathers information from the user and displays the result of
database queries. The menu of operations allows the user to invoke faultlib procedures on
appropriate data objects. For example, to clear a report on equipment "tylanl6," the user enters
the "Equipment Status Board" screen and moves the cursor onto the problem summary line for
tylanl6. She then executes the "Gear" operation to remove the problem from the Status Board.
If the report has been properly diagnosed, the FAULTS user interface will call the impend ()
operation in faultlib to remove it from the list of pending problems. Each frame has an accom
panying "Help" frame to describe the operations available, and an "End" or "Abort" operation to
leave the screen. Frames can be nested; in other words, executing an operation in one frame
may lead you into another to gather the appropriate data.

The user interface to FAULTS currendy is composed of twelve frames and ten high-level
procedures that group together common sequences of faultlib operations. The interface code

16

Managing faultsymps
newfs Create a new entry in fs tree
delfs Delete fs from tree

delhiddenname Unhide fs on named equipment or group
addhiddenname Hide fs on named equipment or group
faultroot Locate root of fs tree for named equipment
fspathname Write path name for fs into path
loadfstree Load f s & descendants into core
walkfstree Traverse a tree of fs loaded by loadfstree

Managing reports
newreport Create a new report
delreport Delete report and associations
clonereport Duplicate a report and associations
assocfs Associate fs with report
unassocfs Delete any association of fs with report
unassocall Delete all associations with this report
makesubject Generate a subject line for specified report
pendreport Mark report as "pending"
unpendreport Mark report as "cleared"
fatalize Mark report as "fatal"
unfatalize Mark report as "non-fatal"

Managing comments
newcomment Create a new comment
delcomment Delete a comment

clonecomment Duplicate a comment
setsubject Set the first line of a comment
opencomment Open a comment for appending
appendline Append text to open comment
closecomment Closes open comment

Managing equipment status
writereport Write a problemreport to concerned parties
writestatus Update status board for named equipment

Table 1. Functions provided in faultlib.

consists of approximately 2200 lines of OSL, the fourth-generation language used with ABF,
and 700 lines of C and SQL procedures.

3.6. Data Analysis Applications
Diagnostic systems use faultlib to initiate problem reports and query equipment history

without specific knowledge of the database structures. A prototype diagnostic system has been
developed for the LAM plasma etcher, to monitor equipment performance via a SECS

17

communication link and notify technicians when anomalous behavior is observed. [10] [11]
Other applications that use the faultlib library include "pmstat," an automatic maintenance
calendar to report "maintenance due" problems at regular intervals, and "faultrpt," a report gen
erator to compile statistics of fault frequency, equipment uptime, and mean time to failure, as
defined by the SEMI Guidelineon Equipment Reliability [12]. (As an example, Figure 8 above
shows the frequency of faults occuring on a Tylan furnance tube.) These faultlib applications
range in size from less than one hundred to over one thousand lines of C and SQL code.

4. Experience and Future Extensions
This section discusses our experience running FAULTS in a working fabrication facility

and presents some ideas for future development

4.1. User Feedback

When FAULTS was first installed in the U.C. Berkeley MicroLab, it met with mixed reac
tions from users and staff. "It's tooslow" was the most common complaint, followed closely by
"it's toocumbersome to use." During the first few months of use, we improved theperformance
of thesystem considerably bymcKlifying the data model implementation to more efficiendy han
dle a few common queries. We gained further improvement by storing free-form text blocks
direcdy in the UNIX filesystem rather than in a relational data table. Thischange reduced con
tention for thedatabase andallowed thetextto beretrieved more efficiendy.

While users were pleased with how quickly they were able to learn to use FAULTS,
several of the equipment operators felt that it was too much work to fill out the structured
reports, and they would have preferred to retain the free-form input style used by the previous
system. This feeling is exacerbated by the fact that these operators receive litde direct benefit
from the extra work of using FAULTS. The big payoff is for equipment technicians and lab
managers, who can predict downtimes more accurately and search the equipment history more
efficiendy. Previously, technicians had to check the Equipment Status Board, a Preventive
Maintenance Status Board, and their own electronic mailboxes to check on the condition of
equipment in the facility. FAULTS improved report management and integration with the
maintenance calendar allows thecondition of allequipment in thefacility to be summarized in a
single unified Status Board.

4.2. Data Collected

During sixmonths of operation, FAULTS has collected 1000 reports describing 500kinds
of failures on 100 pieces of equipment Since only five problem types per equipment have
occurred in this period, the equipment knowledge base is still rather sketchy. To make
FAULTS immediately useful for application prototyping and development of diagnostic tools,
we "seeded" the knowledge base with a full set of reports describing the average failures of a
LAM plasma etcherovera ten yearperiod. Thisfalse history is used as a test-bed for FAULTS
application programs, which will be ableto work accurately on otherequipment as thedatabase
history grows.

4.3. Managing the Knowledge Base
For the most part, the data screens and command options provided by FAULTS are easily

understood and readily used by staff members tocreate, edit, and destroy problem reports in the
database. Unfortunately, managing the fault and symptom trees has proven a more difficult task.

18

While the command interface itself is no more difficult to use, the abstract data structure is less
readily understood and the operations needed to edit the data are more complicated. Even when
users have grasped the tree structure underlying the fault and symptom categories, it is not obvi
ous when and how nodes or subtrees can be moved or deleted. We tried to compensate for these
difficulties with extensive "Help" documentation and command procedures that do extensive
error-checking before committing a change to the database. Most users are still hesitant to edit
the fault and symptom trees before being tutored by an experienced user.

4.4. Extensions

Clearly, we need a graphical interface to the FAULTS system. As XI1 display terminals
become more common in the facility, we would like to extend the FAULTS user interface to
take advantage of mouse input and bitmapped graphic capabilities. With a mouse, the keys
trokes used for command selection andtedious cursor positioning could be replaced with simple
point-and-click operations. Bitmapped graphics could be used to more effectively display the
reports generated by FAULTS, and a graphic direct-manipulation interface to the faultsymp
managementroutines should alleviate the comprehensiondifficulties discussed above.

We would also like to add more intelligence to FAULTS' report retrieval and problem
diagnosis functions. We are currentiy designing a case-based matching algorithm that will allow
FAULTS to automatically group similar reports together, and to calculate a measure of "close
ness" between two reports foruseduring problem diagnosis.

5. Conclusions

The Berkeley FAULTS system is fully implemented and used byequipment operators, lab
technicians, and administrative staff to record and analyze equipment maintenance activities
efficiently and effectively. Application programs use the FAULTS database for preventive
maintenance scheduling and automated malfunction diagnosis. FAULTS has been running as a
standard component of theBerkeley facility management software for thelast sixmonths.

Acknowledgements

I would like to thank Norman Chang, Gary May, and and the staff of the U.C. Berkeley
MicroLab for donating valuable knowledge, time, and patience to this project I would also like
to thank my research advisors Lawrence Rowe, Costas Spanos, and David Hodges for their sup
port and guidance.

6. Appendix A: Faultlib Functions

The faultlib library may be linked into an application program to supply the following C
functions:

Managingfaultsymps

int newfs(int type, int parent, char *name, char *desc)
Create a new entry in fs tree.
Returns 0 on failure, new id on success.

int del fs (int fs)
Delete f s from tree. May leave dangling associations

19

or orphaned children.
Returns 0 on failure, f s on success.

int delhiddenname(int fs, char *name)
Unhide f s on named equipment or group. Name may be a

regular expression to match several equipmentat once.
Returns count of rows deleted.

int addhiddenname(int fs, char *name)
Hide f s on named equipment or group. Name may be a regular

expression to match several equipment at once.
Returns count ofrows added.

int faultroot(char *eqname, char *type)
Locate root of fault or symptom tree for namedequipment

Type should be "fault" or "symptom".
Returns 0 on failure, id of root fs on success.

int fspathname(int fs, char *path)
Write path in fs tree from root to f s into path.
Returns 0 on failure, f s on success.

int loadfstree(int fs, int resource)
Load f s & descendants into core. If resource is non-zero,

fs's hidden on that resource are ignored.
Returns count of f s loaded.

int walkfstree(int fs, int (*previsit) (int), (*invisit) (int),
(*postvisit)(int))

A general purpose routine to traverse a treeof fs loaded by
loadfstree, rooted at the f s. If non-NULL,
callback functions previsit (), invisit (), and
postvi s it () are applied before visiting each node's children,
aftervisiting eachchild, and aftervisiting allof a node's children.
ID of the current fs node is passedas parameter to the callbacks.
If a callback returns non-zero, walk f stree () aborts traversal
and returns this status.

walkfstree () returns status code from callback, or 0 on successful
traversal.

Managing reports

int newreport(int report, int resource, char *reptime, int repuser,
•int comment)

Create a new report in the database using givenresource ID,
report time, and reportinguser. If report or comment
parameters are passed non-zero, these IDs will be assigned

20

to the new report If zero, new IDs will be generated.
Returns 0 on failure, new report ID on success.

int delreport(int report)
Delete report, associated comment, & fs associations from database.
Returns 0 on failure, report on success.

int clonereport(int report)
A new report is created from the original, inheriting these

attributes: resource, reptime, repuser, and fatal.
The original report's comment is copied (not shared),
and both comments are annotated to reflect the cloning,
fs associations are not inherited.

Returns 0 on failure, new report ID on success.

int assocfs(int report, int fs)
Associate f s with report.
Returns 0 on failure, report on success.

int unassocfs(int report, int fs)
Delete any associationof f s with report.
Returns 0 on failure, report on success.

int unassocall (int report)
Delete all associations with this report
Returns 0 on failure, report on success.

int makesubject(int report, char *text)
Generates a subject line for specified report,

basedon equipment,user, symptoms, andreport date
of report Subject returned in text.

Returns 0 on failure, 1 on success.

int pendreport(int report)
Markreport as "pending" (currently on status board).
Returns 0 on failure, report on success.

int unpendreport(int report)
Mark report as "cleared" from status board.
Returns 0 on failure, report on success.

int fatalize(int report)
Mark report as "fatal": equipment should not

be operateduntil problem cleared.
Returns 0 on failure, report on success.

int unfatalize(int report)

21

Mark report as "non-fatal": equipment can be operated
despite problem.

Returns 0 on failure, report on success.

Managing comments

int newcomment()

Creates a new comment

Returns 0 on failure, new comment ID on success.

int delcomment(int comment)
Deletes a comment from the database.

Returns 0 on failure, comment on success.

int clonecomment(int comment)
Copies all lines of specified comment
Returns 0 on failure, new comment ID on success.

int setsubject(int comment, char *text)
Set the first line ("subject") of a comment to text.
Returns 0 on failure, comment on success.

int opencomment(int comment)
Open a comment for appending. Only one comment may

be open at a time.
Returns 0 on failure, comment on success.

int appendline(char *text)
Append text to currentiy open comment
Returns 0 on failure, 1 on success.

int closecomment()
Closes currentiy open comment.
Returns 0 on failure, ID of closed comment on success.

Managing equipment status

int writereport(int report, char *mode, char *cc)
Write a problem report to concerned parties.

mode should be "new", "update", or "clear",
reflecting current problem status. Cc should be
NULLor a list of users to receive "courtesy copies"
of the problem report

Returns number of lines written.

int writestatus(int resource)
Update status board for pending reports on this equipment

22

If any reports are marked fatal, the equipment is locked;
otherwise, any equipment lock is removed.

Returns number of lines written.

Example ofUse

The following fragment of C code shows how the faultlib procedures can be used to mani
pulate the database. In this example, the automatic maintenance calendar is generating a
"maintenance due" report for a piece of equipment

/*

* Post a maintenance report for given equipment. Memo describes
* the maintenance to be performed.

* Returns new report ID on success, 0 on failure.
*/

int PostMaintenance(char *eqname, char *memo)
{

int resource;
int report;
int symptom;
int comment;
int userid;

char buf[BUFSIZ];

/*

* Fetch attributes for new report. MAINT_SYMP is a prefined symptom
* ID used to report maintenance events on all equipment. Then
* create new report, using pre-allocated comment ID.
*/

resource = getequipid(eqname);
symptom = MAINT_SYMP;
userid = getuid();
comment = newcomment();

report = newreport(0, resource, "now", userid, comment);
if (report <= 0) {

printf("ERROR: Can't create maintenance report for %s0, eqname);
return(0);

}

/*

* Indicate this is a maintenance report.
*/

assocfs(report, symptom);

/*

23

* Write out an informative report body. Create a subject based on
* report attributes, and include the memo to show what maintenance
* is due.

*/
makesubject(report, buf);
setsubject(comment, buf);
opencomment(comment);

appendline(buf);
appendline("");
appendline(memo);
appendline("");
appendline("This problem was reported automatically.");
appendline("");
closecomment();

/*

* Mark report to appear on Status Board.

*/

pendreport (report);

/*

* Notify concerned parties of new problem and update Status Board.
*/

writereport(report, "new", NULL);
writestatus(resource);

printf("Maintenance due on %s.\n", eqname);
printf("Posted report #%d to Status Board.\n", report);

return(report);

}

References

[1] COMETS Reference Manual, Consilium Inc., 1990.

[2] L. A. Rowe and C. B. Williams, AnObject-Oriented Database Design for Integrated Cir
cuit Fabrication, U.C. Berkeley Electronics Research Laboratory Memorandum M87/43,
1987.

[3] N. H. Chang, C.J. Spanos, Continuous Equipment Diagnosis Using Evidence Integration:
An LPCVD Application", IEEE Transactions on Semiconductor Manufacturing, February
1991.

[4] H.E. Korth, A. Silberschatz, Database System Concepts, McGraw-Hill Inc, 1986.

24

[5] P. Rampalli, A. Ramesh, N. Shah, CEPT - A Computer Aided Manufacturing Application
for Managing Equipment Reliability, Availability, and Maintainability in the Semiconduc
tor Industry, Proceedingsof the Ninth IEEE/CHMT International Electronic Manufacturing
Technology Symposium, 1990.

[6] WORKSTREAM Reference Manual, Consilium Inc, 1990.

[7] INGRES/NET User's and Administrator's Guide, Relational Technology Inc, 1989.

[8] INGRES/SQL Reference Manual, Relational Technology Inc, 1989.

[9] INGRES ABFI4GLReference Manual, Relational Technology Inc, 1989.

[10] G. S. May, C. J. Spanos, Automated Malfunction Diagnosis of a Plasma Etcher, Interna
tional Semiconductor Manufacturing Science Symposium, May 1991.

[11] G. S. May, Automated Malfunction Diagnosis of Integrated Circuit Manufacturing Equip
ment, U.C. Berkeley Electronics Research Laboratory Memorandum M91/33,1991.

[12] Book of SEMI Standards, Volume 2: Equipment Automation, Semiconductor Equipment
and Materials Institute Inc, 1987.

25

