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Chapter 1

Introduction

1.1 Overview: SPECTRE and Harmonic Balance

Though nonlinear time-domain circuit simulatorssuch as SPICE are well accepted

for use with low frequency analog circuits, there is very little use of such simulators at

microwave frequencies. In the microwave region, frequency-domain simulators are more

suitable for a number of reasons. First, microwave circuits contain a large number of

distributed components that are more easily analyzed in the frequency-domain. Second,

microwave circuits tend to be AC-coupled and are often narrow-band. Time-domain sim

ulation is very expensive for these circuits because the simulation must run long enough
for the initial transient to decay. Finally, most microwave measurements are made in the

frequency-domain.

Currently the most used technique for frequency-domain nonlinear circuit simula

tion is harmonic balance. Harmonic balance represents signals in the frequency-domain as

a collection of Fourier coefficients of sinusoids. Kirchoif's current law is formulated in the

frequency-domain and evaluated by considering the linear and the nonlinear devices sepa
rately. Linear devices can be evaluated directly in the frequency-domain. For an arbitrary
nonlinear device, there is no known way to compute the response directly in the frequency-
domain. Therefore, the excitation spectra of a nonlinear device is first transformed to the

time-domain sampled waveform. The device response is then evaluated in the time-domain,

and transformed back to the frequency-domain. Figure 1.1 shows this procedure. Since the

coefficients of the steady-state response form an algebraic function of the coefficients of the

stimulus, the nonlinear integro-differential equations that describe a circuit are converted



by harmonic balance into a system of nonlinear algebraic equations whose solution is the

steady-state response of the circuit.
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Figure 1.1: Nonlinear Device Evaluation Procedure. T~l and T represent the inverse and

forward Fourier transforms.

SPECTRE is a general purpose harmonic balance circuit simulator. It can cal

culate the DC operating point, perform linearized small-signal analysis and predict the

large-signal periodic and quasi-periodic steady-state response of nonautonomous circuits.

Currently the periodic and quasi-periodic steady-state response of circuits are analyzed us

ing different algorithms. The main difference is the Fourier transform being used. When

signals in circuits are periodic, the Discrete Fourier Transform (DFT) is used to perform

the forward and inverse Fourier transforms required by the procedure for evaluating nonlin

ear devices. DFT can not be used directly for quasi-periodic steady-state analysis because

using equally-spaced time points leads to a singularity in the transform matrix. The Al

most Periodic Fourier Transform (APFT) was introduced in [3] to overcomethese problems.

The APFT contains a built-in time-point selection algorithm to avoid ill-condition in the

transform matrix.

Recently, a new way of applying the DFT to almost-periodic circuits has been

proposed [1]. This method is based on scaling of the fundamental frequencies of the quasi-

periodic signals to avoid ill-conditioning. The DFT-based approach to the quasi-periodic

steady-state simulation improves the simulation time and provides better control of aliasing.

The effect of electronic noise in circuit performance is very important for the

design of analog circuits. Since the noise sources in circuits are small in magnitude, a

linearized small-signal analysis can be performed to analyze the effect of noise in a circuit.

The incorporation of a small-signal noise analysis extends the capability of SPECTRE to



analyzing electronic noise in circuits.

The main content of this report consists of the description of an approach using

harmonic balance with DFT for quasi-periodic signals and the small-signal noise analysis.

Chapter 2 presents the motivation, procedure, and results of the implementation of a quasi-

periodic steady-state analysis using DFT. The accuracy, computation time, and the resource

usage of this DFT based quasi-periodic steady state analysis are compared to those of the

APFT based quasi-periodic steady state analysis. Chapter 3 contains descriptions and

results of the small signal noise analysis in SPECTRE. Finally, the conclusion of this report

is included in Chapter 4.



Chapter 2

Harmonic Balance for

Quasi-periodic Signals with DFT

This chapter describes the implementation of a DFT-based quasi-periodic steady-

state analysis. Some definitions[1][4] and the motivation of this implementation are pre

sented first, followed by a description of the implementation. Finally, the accuracy, com

putation time, and resource usage of this implementation are compared with those of the

original APFT-based quasi-periodic steady-state analysis.

2.1 Definitions

• A waveform x is periodic with period T, if x(t) = x(t + T) for all t.

• A periodic waveform with period T that can be uniformly approximated by the sum

of at most a countable number of T- periodic sinusoids is of the form

oo

*(*) = ^2(xk cosukt + Xgsinwfct) (2.1)

where uk = 27rk/T, Xf, Xjf 6 R, and

f;ptf)2 +(**5)2]<oo (2.2)
Jb=o

• A waveform is almost periodic if it can be uniformly approximated by the sum of at

most a countable number of sinusoids.



• A signal that is almost-periodic over a set of frequencies fl is of the form

x(t) = ^2 (Xk cos"kt +Xjf sinukt) (2.3)
wfcgn

where 12 = { wo> wl, . . .}, and 2.2 is satisfied.

• If H is finite with 2T elements, it is denoted by ft/f. If there is a set of d frequencies

Ai, A2,..., Xd which are linearly independent, and ft is such that

ft = {u\u = fciAa + fciAi + ... + kdXd; h, *2,...,kd e Z} (2.4)

then ft is a module of dimension d and the frequencies Ai, A2,... , Xd are referred to

as the fundamental frequencies and form a basis ( called the fundamental basis) for

n.

• A quasi-periodic waveform is an almost periodic waveform over a set of frequencies 12

that is a module of finite dimension.

• Sampling Theorem[4]: For any sampling interval A, the Nyquist critical frequency

is given by fc = 1/(2A). If a continuous function h(t), sampled at an interval A,

happens to be bandwidth limited to frequencies smaller in magnitude than /c, i.e.,

if H(f) = 0 for all |/| > /c, then the function h(t) is completely determined by its
samples hn.

In order to make the process of finding the steady-state response of a circuit

tractable, it is necessary to truncate the signal frequencies to a finite set. In the periodic

steady-state simulation, only the first H harmonics of a signal are taken into account. In

the quasi-periodic case where there are two or more independent driving frequencies in a
circuit, two popular truncation schemes[l] are often used.

• Box Truncation: Only the first jff harmonics of each fundamental are considered.

With the box truncation, we have:

Q.K = {w|w = &1A1 + k2X2 + ... + kdXd;

\kj\ = 0,1,...,IT; for 1 < j < d; first nonzero kj positive}

(2.5)



where K = 1/2((2JT + 1) + 1 ) is the total number of frequency points considered.

Figure 2.1(a) showsthe result of a box truncation of orderthree for a signal with two

fundamentals.

• Diamond Truncation: The absolute sum of the indices kj is limited to be less than

H. With the diamond truncation, we have:

d

ftj<- = {w|w = k\Xi + fe2A2 +...+ kdXd\kj £ Z;^2\kj\ < R\ first nonzero kj positive}
i=i

(2.6)

where K = 2 ~d^ is the total number of frequency points considered. Figure 2.1(b)
shows the result of a diamond truncation of order three for a signal with two funda

mentals.

• f

(a) (b)

Figure 2.1: Two truncation schemes, the box (a) and the diamond (b) truncations.

2.2 Background and Motivation

With harmonic balance, the linear device equations are evaluated in the frequency-

domain and the nonlinear device equations are evaluated in the time-domain. When signals
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in the circuit are periodic, DFT is used to provide the needed conversion between the

two domains. Signals in the steady-state response of circuits like mixers are made up

of several sinusoids at possibly non-harmonically related frequencies, and so are almost-

periodic. Constructing transform matrices for almost-periodic signals with equally spaced

time points, such as those in DFT, cause singularity in the transform matrices. Therefore

DFT can not be used directly for almost-periodic steady-state simulation. The development

of the almost-periodic Fourier transform ( APFT ) extends the application of harmonic

balance to almost-periodic circuits by providing the Fourier transform of almost-periodic

signals.

The APFT can be described as follows. By considering a finite set of frequencies,

it is possible to sample a waveform at a finite number of time points and calculate its Fourier

coefficients. The Fourier transform F andits inverse F-1 can be viewed as matrices acting

on the sampled waveform and the Fourier coefficients. That is, a signal

*(*) = S (Xk cosa>jb* +Xjfsinu>fc*) (2.7)

can be sampled at S time points, resulting in a set of S equations and 2K —1 unknowns.

1 cos <jj\t\ sinwiii

1 cosu;i*2 sinu>i*2

1 coso>i*3 sina;i<3

1 cos wife sin.uj\ts

cosuK-iti sina;tf_iti

cos UK-iti sinUK-\t2

cosux-itz smuK-itz

coaujc-its smuK-its

X0

X?

X?

XK-\

Xjc-1

x(tx)

x(t2)

x(t3)

x(ts)

(2.8)

If wit's are distict, and if S = 2JT-1, this system is invertable for almost allchoices

of time points and can be compactly written as T^X = x. Inverting T-1 gives Tx = X.
Given a finite set ft*- of distinct frequencies a;*, and a set of time points, we say thatT and
T-1 are one implementation of the APFT[3]. For quasi-periodic signals, if the time points
are not chosen carefully, the matrices representing T and T"1 can be very ill-conditioned,
resulting in large numerical errors. Choosing equally spaced time points in the APFT is
a particular bad case because it typically gives condition numbers on the order of nl. To
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ensure the well-condition of the transformmatrices, the APFT is implemented by selecting

the time points in such a way that the rows of T"1 are nearly orthogonal[l].

The truncation of a set of analysis frequencies ft into a finite set of K frequencies,

ft#, introduces errors in the computation. The truncation eror is the error caused by the

fact that the Fourier coefficients of the frequencies omitted from ft are not actually zero.

Although these frequencies are neglected in the transforms, they still exist in the time-

domain samples x. Through the transforms, these omitted frequencies contribute errors in

the frequency components under consideration. This kind of error is referred to as aliasing.

The effect of aliasing in APFT is unpredictable. Consider the case where a quasi-

periodic signal over a frequency set ft, is truncated to a finite set of size K, ft#. We can

view APFT as a collection of K filters[3], each of which is responsible for computing one

Fourier coefficient. These filters take a sequence of 5 samples as input and output one

Fourier coefficient. Therefore the calculation of Fourier coefficients of interest depends on

all frequency components in ft. The response of a typical APFT coefficient filter is shown

in Figure 2.2 . For this filter, wo»wi» •••»w5> 6 ftK,W6,W7, ...,u>9 $ ft#-, and u>o, wi, ...,wg € ft.

The actual error due to aliasing is proportional to the response of the filter at frequencies

in ft but not in ftx- The error introduced by aliasing at a particular frequency of interest is

a weighted sum of the Fourier coefficient of each truncated frequency. The weights are the

magnitude of the filter response at each truncated frequencies. Whether or not the aliasing

error will affect the accuracy of the APFT depends on 1) the Fourier coefficients of the

truncated frequencies, 2) the transfer function (gain) of the filter response at the truncated

frequencies, and 3) the Fourier coefficients of the frequencies of interest. When the aliasing

error become large enough to overpower the actual Fourier coefficient, the APFT is no

longer accurate. This situation occurrs when the Fourier coefficients of the frequency of

interest is small, and that of the truncated frequencies are significant. Unfortunately there

is no regular pattern in the APFT filter response, therefore, it is very hard to control the

effect of aliasingin the APFT-based approach on the quasi-periodic steady-state simulation.

Whereas all frequencies within the range of interest are prone to aliasing errors in

the APFT approach, not every frequency of interest is affected by aliasing if DFT is used.

For example, suppose there are only two frequencies with significant Fourier coefficients

being truncated, then only two frequencies within the range of interest will be affected. In

the case of APFT, all of the frequencies of interest will be affected. This advantage of DFT

is mainly due to the regular pattern in which aliasing occurrs, shown in Figure 2.3. The
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aliasing pattern of DFT[4] can be viewed as the omitted frequencies folding back into the

frequency range with respect to the truncation frequency (i.e. the highest harmonic above

which the spectrum is truncated). Forcircuits that behave nearly linearly and are driven by

smooth input signals, the Fourier coefficients of the response tend to drop off rapidly in size

at upper harmonics. In this case, the aliasing only affects higher order frequencies, and its

effect drops as the order of frequency decreases when DFT is used. With the use of DFT,

the effect of aliasing can be controlled by choosing the order of the truncation method.

The gain in computation speed is another benefit of using DFT instead of APFT in

the quasi-periodic steady-state simulation. The use of APFT requires a costly initialization

procedure that is not necessary if DFT is used. APFT initialization requires a total of 5 3

operations to perform the time point selection, the formation ofT ~x, and the inversion ofr_1

to find T. In addition, the regular pattern of DFT can be exploited to accelerate the Jacobian

decomposition procedureby effectively using the harmonic Newton relaxation algorithm. In

general, the more linear the devices are behaving, the more the DC component dominates

the higher harmonics in the spectrum, and the faster the magnitude of the harmonics drop

off as the order of frequency increases. As a result, elements in the conversion matrix far

from the diagonal will be small compared to those on the diagonal. To reduce the density

of the harmonic Jacobian, these small terms far from the diagonal are ignored. Harmonic

Newton relaxation uses the 'guard harmonic' which is the smallest harmonic k such that its

magnitude is smaller than a certain threshold, to zero out all the higher harmonics. Though

the approximated Jacobian may reduce the rate of convergence, the gain in efficiency that

it provides in matrix decomposition can make up for this loss. DFT's regular aliasing
pattern preserves the diagonally dominent structure of the Jacobian for which the guard

harmonic method can be applied. In the APFT-approach, the unpredictable occurrance

of aliasing destroys the regular Jacobian structure that is needed for using the harmonic
Newton relaxation algorithm.

2.3 Implementation

In this section, we present mapping techniques to allow the use of DFT with

harmonic balance in quasi-periodic steady-state simulation. Consider a nonlinear resistor



CO COCO CO CO CO CO CO CO CO
0 1 2 3 4 5 6 7 8 9

Figure 2.2: Response of a typical APFT coefficient filter.
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aliased fourier transform

true fourier transform

Figure 2.3: The aliasing pattern of DFT.

with the following i-v characteristics:

— „,2i(v) = v (2.9)

Assumeit is driven by a voltage source, v = cos at + cos/3*. The response of this nonlinear
resistor is

i{v(t)) = 1+ 1/2cos(2at) + cos(at - fit) + 1/2cos(2/?t) (2.10)

Notice that the coefficient of each sinusoid is independent of the actual frequency a and
fi. This is because the nonlinearity in the circuit is algebraic. When evaluating nonlinear
devices, we are only interested in the spectrum of the device response, not the actual

frequencies. Therefore, we can choose the fundamental frequencies freely. If the chosen
fundamental frequencies axe multiples of some common arbitrary frequency, the resulting
signals will be periodic, and DFT can be used to perform the transformations. A scheme

which maps aquasi-periodic signal into aperiodic signal is presented in the following section.
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2.3.1 Mapping Scheme

This section presents schemes[l] that map quasi-periodic signals to periodic signals

by scaling the fundamental frequencies of the quasi-periodic signals. The main objective

is to construct a map that converts the harmonic indices of a two-tone signal into the

harmonic number of its corresponding periodic signal. Again, since the values of the actual

frequencies do not affect the Fourier coefficients, we only consider the order according to

which we place the Fourier coefficients of the frequencies into a spectrum. The mapping

scheme described below are specific to two-tone signals ( i.e. quasi-periodic signals with

only two fundamental frequencies). For signals with three or more fundamental frequencies,

specific mapping schemes need to be developed. Examples are used to demonstrate the

mapping procedure.

(a) 0>)

Figure 2.4: Two mapping schemes, the mapping scheme for the box (a) and for the dia-

mond(b) truncations.

Consider a set of frequencies that is truncated using the box truncation scheme.

It can be represented as

QK = {w|w = hXi + k2X2; 0<ki< JTi, |fc2| < #2, fa 7* 0 if k2 < 0} (2.11)

Let ct\ = 1 and a2 = Xi/[X2(2H2 + 1)] be the scaling factors of the two fundamentals. The
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correspondence of the original frequencies and artificial frequencies is given by

kXo = faa\Xi + k2a2X2 (2.12)

where

A° = 2^TI (2-13)
and

k = (25*2 + l)fa + k2 (2.14)

Figure 2.4(a) shows this map. The resulting scaled set of frequencies is equally spaced and

densely packed.

A set of frequencies that is truncated by using diamond truncation is of the form

SlK = {u\u = kiXi+ k2X2; \fa\ + |&2| <E,fa + k2> 0, fa # &2, if k2 > 0} (2.15)

Let ai = 1 and a2 = (Ai + JT)/[A2(2.S" + 1)] be the scaling factors of the two fundamentals.

The correspondence of the original frequencies and artificial frequencies is given by

kX0 = fciaiAi + fc2Q!2A2 (2.16)

where

A° = TU (2-17)
and

* = (H + l)*i + Hk2 (2.18)

This mapping scheme results in a densely packed and equally spaced frequency
set. Figure 2.4(b) illustrates this scheme.

The complete nonlinear devices evaluation procedure implemented for the use of

DFT is illustrated in Figure 2.5. First, the quasi-periodic node voltages are mapped by the
mapping scheme, denoted by M, into their corresponding periodic signals. The periodic

signals are then transformed into their time-domain sampled waveform by DFT, and the

device response isevaluated in thetime-domain and transformed back to frequency-domain.
The true spectrum of the response is recovered by the inverse map ( M-1).
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2.3.2 Dual Frequency Set Analysis Scheme

In the actual implementation of Spectre, the Fast Fourier Transform (FFT) al

gorithm is used for transforming periodic signals instead of DFT. To use FFT, the size of

the spectrum has to be an integer power of two (2n,ra G Z). Therefore, the number of

frequencies used for transformation is in general larger than the actual analysis frequencies.

Since the number of analysis frequencies determines the size of the conversion matrix which

in turn affects memory usage and speed of computation, it is wise to keep the number of

analysis frequencies as small as possible. As a result, a dual frequency set analysis scheme[7]

is used in our implementation. One frequency set is used for the analysis, and the other is

used for the transformation.

2.4 Results and Comparisons

This section presents the results of the DFT-based steady-state analysis. A few

test circuits are analyzed using both DFT and APFT, and their results are compared in

terms of the accuracy, computation speed, and memory usage. In the following section, we

first describe the procedure used to verity the correctness of the analysis results.

2.4.1 Verification Procedure

First, a simple nonlinear circuit is analyzed by hand to verify the correctness of

the analysis. Consider a nonlinear resistor with constitutive equation

i(v) = v4 (2.19)

This resistor is being driven by a voltage waveform

v(t) = Vi cos(wi*) + V2 cos(w2tf). (2.20)

The resistor responds with a waveform of

i(v(t)) = (3/8V14 + 3/2V?V? + 3/8V*) +

(3/2VJV2 + 3/2ViV23) cos^x + u2)t +

(3/2V?V2 + 3/2VaV23) cos(wi - oj2)t +

(l/2Vi4 + 3/2V?V22) cos 2wxt +



(1/2V24 + 3/2V?V22) cos2w2* +

Z/4V?V22 cos(2u;i + 2w2)< +

3/4V?V22 cos(2wi - 2u2)t +

l/2Vi3V2 cos(3wi +u2)t +

l/2Vi3V2 cos(3wi - u2)t+

l/2ViV23 cos(wi + Zw2)t +

l/2ViV23 cos(-wi + Zu2)t +

l/8Vi4cos 4wit + I/8V24 cos 4u2t

The spectrum consists of the following elements:

Idc = 3/8V? + 3/2V?V22 + 3/8F24

J(M) = 3/2Vi3V2 + 3/2ViV23

J(l.-1) = 3/2Vi3V2 + 3/2ViV23

7(2,0) = i/2Vi4 + 3/2V?y22

1(0,2) = 1/2V24 + 3/2Vi2y22

7(2,2) = 3/4V?V?

1(2,-2) = 3/4V2V22

7(3,1) = 1/2V?V2

7(3,-1) = l/2Vi3V2

7(1,3) = l/2ViVa3

7(-l,3) = l/2Viy23

7(4,0) = 1/8V4

7(0,4) = 1/8V4

19

(2.21)

(2.22)

where Idc is the dc term. I(fa, k2) is the spectral element at frequency u> = fau>i + fc2U>2-

The result for V\ = 1 and V2 = 1 is computed by hand and compared with the program

result to verity its correctness.
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In general, the circuits being analyzed are so complicated that it is impossible to

use hand calculation to verity the results of the analysis. Some alternative method is needed.

Using the same example as above, let's fix Vi at a constant value, and set V2 to a value that

is small compared to Vi. We denote Vi and V2 as the large-signal and small-signal input

voltage respectively. u\ and u2 are then the corresponding large-signal and small-signal

fundamental frequencies. Then

J(M) (X v2

J(l»-l) (X v2

7(2,0) (X V?

7(0,2) oc vi

7(2,2) oc vi

1(2,-2) a vi

7(3,1) oc v2

7(3,-1) oc v2

7(1,3) oc vi

7(4,0) oc v?
7(0,4) oc V*

(2.23)

By observation of equation 2.23, we arrive at the following relation: Given V2 << Vi

I(fa,k2) oc V2k* iik2^0

I(fa, k2) oc VJ\ n G Z, if k2 = 0

(2.24)

Equation 2.24 shows the relation between the Fourier coefficients and input signal voltages
through the harmonic index. This relation, resulting from the algebraic nonlinearity, pro
vides an alternative method for verifying the analysis results: In a quasi-periodic circuit
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driven by an input voltage signal Vi coswi* + V2coscj2t, if we fix Vi at a large constant
value, and sweep V2 logarithmically, the log-log plot ofI(ku k2) vs. V2 should be linear as
long as V2 « Vi. In the case where k2 = 0, the plot should be a flat line because the

Fourier coefficients are independent of V2. When k2 ^ 0, the plot should be a line of slope
k2. Therefore, from the log-log plot of 7(&i,fc2) vs. V2, we can see whether the analysis
result is correct. The range of V2 over which the log-log plot is linear defines the dynamic

range of the analysis. There are a number of factors that affects the dynamic range. First,

when V2 becomes comparable to Vi, Equation2.23 is no longer true. Therefore the plot will

deviatefroma straight line at large V2. Second, when aliasing errors become larger than the

actual Fourier coefficient, the plot will no longer be linear. Among all the frequencies that

are truncated, those frequency components that are pure harmonics of the large-signalfun

damental frequency are larger in magnitude compared to others. This is because they are

proportional to the power of large-signal voltage V\. Since these components have Fourier

coefficients that are independent of V2, they display a flat line on the log-log plot. Finally, a

computer's numerical resolution presents another lower limit to the size of V"2» and therefore

introduces nonlinearities at small V2.

2.4.2 Test Circuits and Their Results

This section presents four test circuits and their results from both DFT-based and

APFT-based quasi-periodic steady-state analyses. Since it is not feasible to perform hand

calculation on these circuits, the dynamic ranges of these circuits are observed and used

to verify the accuracy of the analyses. The dynamic ranges of the DFT-based periodic

steady-state analysis are compared to those of the APFT-based approach.

Test Circuit 1., shown in Figure 2.6 is an ideal polynomial conductor circuit. Test

Circuit 2 is a single stage bipolar junction transistor mixer circuit, shown in Figure 2.8.

Figure 2.10 shows Test Circuit 3 which is a simple diode mixer. Finally, Test Circuit 4,

the largest circuit among the four, is a GaAsFET traveling-wave amplifier (shown in Figure

2.16). The purpose of test circuit 4 is to checkthe performance of the DFT-based analysis

on large circuits. The dynamic range of this circuit shown in Figure 2.16 verifies that the

result is correct.

Figure 2.6 through Figure 2.16 shows the four test circuits and the plot of the

dynamic ranges of these circuits for the DFT and APFT-based approaches. From these
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plots, three characteristics are observed. First, regardless which Fourier transform is used,

the dynamic ranges of frequency components that are low in magnitude are smaller than

those with large magnitude. Second, the DFT-based analysis generally has a larger dynamic

range than the APFT-based approach at the same frequency. Finally, to study the relation

between the dynamic range and the order of truncation method, results with different

order of diamond truncation method were generated for the diode mixer circuit. These

results show that when the order of truncation is low, the dynamic range of the DFT-based

approach is larger than that of the APFT-based approach. As the order of truncation

method increases, the dynamic range of APFT-based approach improves and approaches

that of the DFT-based analysis.

The above observation shows that both APFT-based and DFT-based approaches

generate correct results. However, the DFT-based approach has a larger dynamic range

than the APFT-approach when aliasing is present. With a fixed order of truncation, the

number of frequencies truncated is fixed, so is the size of aliasing error. The smaller the

Fourier coefficient of a particular frequency of interest, the more it is overpowered by the

aliasing error. Therefore, frequencies with small Fourier coefficients have smaller dynamic

ranges regardless which type of Fourier transform is used. The reason why DFT-based

analysis generally provides larger dynamic range than the APFT-based approach can be

understood by comparing the aliasing pattern of these two Fourier transforms. When DFT

is used, the effect of aliasing can be viewed as those truncated frequencies folding backinto

the frequency range with a unity gain and being added to the frequencies within the range
considered. Therefore only a certain number of higher order frequencies of interest are

affected by aliasing. When APFT is used, the aliasing may affect any frequency element,

and the error is magnified according to the response of a particular filter which can be

greater than unity ( see Figure 2.3). As a result, for a given frequency of interest, the

Fourier coefficient is morelikely to be affected by aliasing if APFT is used, and hence the

dynamic range of APFT-based approach is smaller than that of the DFT-based approach.

As we increase the order of truncation, more frequency components are considered, and

those frequencies truncated are smaller in magnitude. The effect of aliasing is lessened
accordingly. As a result, the dynamic range of APFT-based analysis increases as the order
of truncation increases.
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2.4.3 Computation Time and Memory Usage

In addition to better control of aliasing, gain in computation speed is another

goal for implementing the DFT-based quasi-periodic steady-state analysis. Tables 2.1 and

2.2 show the computation time and resource usage for the diode test circuit and the bjt

mixer circuit with different order of diamond truncation. From these data, the DFT-based

analysis requires less computation time and less memory usage compared with the APFT-

based analysis. These data were generated on a VAX 8650. In Spectre, FFT is used. As

mentioned previously, using FFT requires the number of frequencies considered to be a

power of 2. In order to satisfy this requirement, the number of frequencies used in the

FFT-based approach are generally larger than used in the APFT-based approach. This

also increases the number of time points that needs to be evaluated per device. Therefore,

when the number of nonlinear devices in a circuit becomes large, the speedup may not be

as obvious.

H K time physical memory virtual memory
(FFT) (APFT) (FFT) (APFT) (FFT) (APFT)

3 13 7.65s 14.48s 475KB 483KB 759KB 741KB

4 21 23.48s 56.55s 628KB 610KB 978KB 938KB

5 31 61.9 s 178.05s 630KB 656KB 980KB 1MB

6 43 152.27s 471.08s 1.01MB 1.2MB 1.83MB 1.92MB

7 57 372.25s 1111s 1.05MB 1.33MB 1.83MB 1.99MB

Table 2.1: Computation time and memory usage for diode test circuit

H K time physical memory virtual memory
(FFT) (APFT) (FFT) (APFT) (FFT) (APFT)

3 13 2.77s 4.25s 554KB 576KB 779KB 741KB

5 31 7.65s 38.27s 694KB 773KB 1.04KB 1MB

7 57 19.12s 205.05s 1.16MB 1.43MB 1.92MB 2.05MB

Table 2.2: Computation time and memory usage for BJT mixer test circuit
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Figure 2.6: Test circuit 1. polynomial conductor circuit.
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Figure 2.7: Dynamic range plots of the polynomial conductor circuit.
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Figure 2.8: Test circuit 2. BJT mixer circuit.
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Figure 2.9: Dynamic range plots of the bjt mixer circuit.
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Figure 2.10: Test Circuit 3. diode mixer circuit.
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Figure 2.11: Dynamic range plots of the diode circuit with order 4 diamond truncation.
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Figure 2.12: Dynamic range plots of the diode circuit with order 5 diamond truncation.



DIAMOND TRUNCATION H = 6

LOG( MAG( OUT ) )

-2.00

-3.00

-4.00

-5.00

-6.00

-7.00 —

-8.00 —

-9.00

fft

-5.00 -4.00 -3.00 -2.00 -1.00

LOG( MAG ( C02) )

31

Figure 2.13: Dynamic range plots of the diode circuit with order 6 diamond truncation.
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Figure 2.14: Dynamic range plots of the diode circuit with order 7 diamond truncation.
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Figure 2.15: Test circuit 4. GaAsFET traveling wave amplifier.
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Figure 2.16: Dynamic range plots of the GaAsFET traveling wave amplifier circuit.
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Chapter 3

Noise Analysis in Spectre

3.1 Introduction '

The effect of electrical noise in circuits is important because it represents a lower

limit to the size of an electrical signal that can be amplified by a circuit without significant

degradation in signal quality. Therefore small-signal noise analysis is a useful capability for

SPECTRE.

Various noise sources and device noise models[8][9] are described in section 3.2.

Noise calculations and implementation details are presented in section 3.3. Finally, section

3.4 includes the results of a few test circuits.

3.2 Noise Sources and Device Noise Models

The noise phenomena considered here are caused by the small-current and voltage

fluctuations that are generated within the devices themselves. In general the current and

voltage fluctuations are specified in terms of their mean-square variations about the average

values. They axe written as i2 or v2. There are a number of sources of electrical noise. The

noise sources that are implemented in this small-signal noise analysis are:

• Shot Noise: Shot noise is associated with a direct-current flow and is present in diodes

and bipolar transistors. Shot noise has a mean- square value

? = 2qIDAf [A2] (3.1)
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where q is the electronic charge ( 1.6 x 10_19C), Id is the average value of the direct

current, and A/ is the bandwidth of the measurement (Hz).

• Thermal Noise: Thermal noise is due to the random thermal motion of electrons. In

a resistor R, the thermal noise can be represented as a series voltage generator or as

a shunt current generator. These representations are equivalent and they are

v2 = 4kTRAf (3.2)

? = 4kT^Af (3.3)
XL

• Flicker Noise: Flicker noise is a type of noise that is found in all active devices as

well as some discrete passiveelements such as carbon resistors. Flickernoise is always

associated with a flow of direct current and is represented as

1* = KrjgAf (3.4)

where A/ is a small bandwidth at frequency /, I is a direct current, K\ is a constant

for a particular device, a is a constant in the range 0.5 to 2, and 6 is a constant close

tol.

The implemented small-signalnoise analysis supports noise models of diode, resis

tor, bipolar junction transistors and junction field effect transistors. Figure 3.1 shows the

noise models for these devices.

3.3 Noise Calculations

For most applications, total output noise and input referred noise are more impor

tant than the individual device noise. The input referred noise can be calculated once the

output noise is computed. Since the noise sources are uncorrelated, they can be calculated

independently. The total output noise is then found by summing the noise contributions

from all the noise sources. If we convert each noise source to its equivalent mean-square

current noise, then the mean-square output noise voltage is given by

V£t = £ Z* * (3-5)
all noise sources
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where i2 is the individual mean-square current noise, and Z is the transimpedance from

noise source to output. To compute V2^, we need to calculate Z for each individual noise

source.

Since the noise sources present in a circuit are small in value, a linearized small-

signal analysis can be performed, the linearized current equations can be written as

Ye = I (3.6)

where Y is the node admittance matrix, e is the vector consisting of all node voltages and

possibly some branch currents, and I is the vector that contains current excitations at each

node. We can also rewrite Equation 3.6 as

e

Z

= ZI

= Y-1

and (3.7)

(3.8)

Z is called the node impedance matrix.

Assume all elements in the circuit are voltage controlled and there are n nodes in

the circuit, excluding the ground node. Then

ei

*£* = (em-e„)2

= e2 - e2

ai 'IN

ejv J |_ %ni • • • Znn J |_ «jv

Suppose the output voltage is taken from node m and n. Then

«1

= [(Zml - Znl)2 . . . (ZmN - ZnN)2 ]

lN

(3.9)

(3.10)

(3.11)

(3.12)

The only parameters in equation 3.12 that need to be solved for are the transimpedances,

represented by the vector x. Taking the transpose of Z and multiplying by u, the vector of
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all zeros but a 1 in position m and a -1 in position n, will provide us with what we need.

That is,

(Zml —Zni)

(ZmN - Zun)

= ZTu

Z\\ ... Zmi ••• Zn\ ... Zn\

Z\m ... Zmm ... Znm ... ZjVm

Zln ••• Zmn ... Znn ... ZjVn

Z\N ... £mJV — ^nM ••• Znn

(3.13)

(3.14)

-1

In general, we rarelysolveforY_1, therefore Z, directly. However, we can rearrange equation

3.14 as

x = ZTu

x = {Y-^fu

YTx = u

(3.15)

(3.16)

(3.17)

equation 3.17 is easy to solve using LU decomposition.

Once the mean-square output voltage noise is computed, the input referred noise

can be calculated by dividing the output mean-square noise voltage with the square of the

small-signal circuit gain.

While computing the total output noise of the circuit, the contribution from each

individual device is stored and ranked. Therefore, the user can monitor the devices which

contribute the most noise at the output.

3.4 Results

This section presents the results of a series of test circuits. Test circuits 1 through

3 are designed to test out individual device models. Test circuit 1, shown in Figure 3.1 is a

circuit for testing diode noisemodel. Test circuit 2, shownin Figure 3.2is a bipolar junction

transistor test circuit, Figure 3.3 shows test circuit 3, which is a test circuit for junction
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field effect transistor noise model. Test circuit 4 shown in Figure 3.4, is a current feed back

pair circuit which is used as an input stage for a low noise transimpedance amplifier. The

results of the above circuits agree with those generated by SPICE2.

V,
in

vbias

Figure 3.1: Test circuit 1. diode noise model test circuit.
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Figure 3.2: Test circuit 2. BJT noise model test circuit.
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Figure 3.3: Test circuit 3. JFET noise test circuit.
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Figure 3.4: Test circuit 4. current feed back pair circuit.



Chapter 4

Conclusions

The DFT-based periodic steady-state analysis and the small-signal noise analysis

have been successfully implemented in Spectre. A number of circuits have been tested to

verify the correctness of the above implementations.

The results of DFT-based periodic steady-state analysis axe compared with those

of the APFT-based approach which has been used for Spectre. The DFT-based approach

provides accurate results, faster computation time, more efficient memory usage, and better

control of aliasing. The ability to exploit the regular aliasing pattern of DFT is the main

reason why the above benefits can be achieved. In the implementation of the DFT-based

steady-state analysis, a dual frequency set approach is used. That is, the set of analysis

frequencies and the frequency set used by the Fourier transform are separated. The use

of the dual frequency set analysis is first motivated for the use of the FFT algorithm

because it generally requires a larger set of frequencies than the actual number of analysis

frequencies needed. Keeping the number of analysis frequencies small saves the time spent

in constructing and decomposing the Jacobian, and hence improves computation speed.

Since the noise sources in circuits are small in magnitude, a linearized small-signal

analysis can be performed to analyze the effect of noise in a circuit. Noise models for

resistors, BJT's, JFET's, and diodes are implemented. Results from the noise analysis are

in close agreement with those from SPICE2 noise analysis . The results of Spectre's noise

analysis can be interpreted by NUTMEG, a postprocessor. Given a circuit, the users can

also isolate devices that contribute the most noise.
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