
Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE POSTGRES TUTORIAL

by

Greg Kemnitz and Michael Stonebraker

Memorandum No. UCB/ERL M91/34

26 April 1991

THE POSTGRES TUTORIAL

by

Greg Kemnitz and Michael Stonebraker

Memorandum No. UCB/ERL M91/34

26 April 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

THE POSTGRES TUTORIAL

by

Greg Kemnitz and Michael Stonebraker

Memorandum No. UCB/ERL M91/34

26 April 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

THE POSTGRES TUTORIAL

Greg Kemnitz and Michael Stonebraker

EECSDepartment

University ofCalifornia. Berkeley

Abstract

The POSTGRES project undertook to build a next generation DBMS whose purpose was torectify
the known deficiencies in current relational DBMSs. This system, constructed over a four year period by
onefull time programmer and3-4parttime students, is about 180,000 lines of C. POSTGRES is available

free ofcharge and isbeing used by perhaps 100 sites around the world. This tutorial describes the major
concepts ofthe system and attempts toprovide an accessable path into using the system. As such, ittries to
give examples ofthe use of the major constructs, so abeginning user does not need to delve immediately
into the reference manual.

1. INTRODUCTION

Traditional relational DBMSs support a data model consisting ofa collection ofnamed relations,
each attribute of which has aspecific type. In current commercial systems possible types are floating point
numbers, integers, character strings, money, and dates. Itiscommonly recognized that this data model is
insufficient for future data processing applications.

POSTGRES tried to build a data model with substantial additional power, yet requiring the under
standing of as few concepts as possible. The relational model succeeded in replacing previous data models
in part because ofits simplicity. We wanted to have as few concepts as possible so that users would have
niinimum complexity to contend with. Hence, POSTGRES leverages the following four constructs:

classes

inheritance

types

functions

In Section 2we indicate how to construct aPOSTGRES data base and the ways of interacting with one.

Ibis research wax sponsored by fee Defense Advtnced Rc««ichI¥ojecttAgaicy through NASA GiwttlUC 2-530 and by the
Anny Research Office through Gram DAALO3-87-K-0083.

Then, inSection 3 weindicate the POSTGRES notion of classes and give examples of thequery language,

POSTQUEL, which demonstrate traditional relational query language capabilities suchas restrictions and

joins. We also explain how to use functions and operators thathave been defined to POSTGRES. After

completing this introductorytutorial,you may want to read throughthe advanced tutorialin Partn, and if

you intend to handlethe dutiesof a DBA, you shouldlook at Part EL Part IV of the tutorial package is

intended for developers and if you intend to browse die POSTGRES source code, you should have a look

at that as well.

The POSTGRES DBMS has been under construction since 1986. The initial concepts for the system

were presentedin [STON86] and the initialdatamodel appeared in [ROWE87]. The first rule system that

we implemented is discussed in [STON88] and the storage managerconcepts are detailed in [STON87].

The first "demo-ware" was operational in 1987,and we released Version 1 of POSTGRES to a few exter

nal users in June 1989. A critique ofVersion 1 ofPOSTGRES appears in [STON90]. Version 2 followed

in June 1990, and it included a new rules system documented in [STON90B], We are now delivering Ver

sion 2.1, which is the subject of this tutorial. Furtherinformation on this system can be obtained from the

reference manual [MOSH91] and the above mentioned papers.

2. CREATING A DATA BASE

Once POSTGRES has been installed at your site by following the directions in the release notes, you

can create a data base, foo, using the following command:

%createdbfoo

POSTGRES allows you to create any number of databases at a given site and you automatically become

the data base administrator of the data base just created. Database names must have an alphabetic first

characterand are limited to 16 characters in length.

Once you have constructed a data base,thereare four ways to interact with it Firstyou canrun the

POSTGRES terminal monitor which allows you to interactively enter,edit, and execute commands in the

query language, POSTQUEL. Second, you can interact with POSTGRES from a C program by usingthe

Tibpq" subroutine call facilities. This allows you to submit POSTQUEL commands from C and get

answers and status messages back to your program. This interface is discussed in the "libpq" sectionof the

reference manual and is treated further in Section XXX of this tutorial The third way on interactingwith

POSTGRES is to use a facility called "fast path", which allowsyou to directlyexecute functions storedin

the data base. This faciltiy is described in SectionYYY of this tutorial Lastly, POSTGRES is accessible

from the PICASSO programming environment PICASSOis a graphical userinterface (GUI) toolkit that

allowsa user to build sophisticated DBMS-oriented applications. PICASSO is descried in a collection of

reports [WANG88, SCHA90] and is not treated further in this tutorial

The terminal monitorcanbe activatedforany databaseby typing the fnmirand*

%monitorfoo

As a result, you will be greatedby the followingmessage:

Welcome to the C POSTGRES terminal monitor

Go

The "Go" indicates the terminal monitor is listening to youand youcantypePOSTQUEL commands intoa

workspace maintained by themonitor. The monitor indicates it is listening by typing * asa prompt Print

ing the workspace canbe performed by typing

and it can be passed toPOSTGRES for execution by typing:

*S

If you make atyping mistake, you can move tothe vi text editor bytyping:

*Se

Hie workspace will be passed to the editor, and you have the full power of vi to make any necessary
changes. Whem you are ready toreturn toPOSTGRES, simply type:

wq

and you will be returned to the monitor. To quit the monitor and return to UNIX, simply type:

*q

andthe monitorwill respond:

*I live to serve you.

•GoodBye

%

For acomplete collection of monitor commands, consult the "monitor" section of the reference manual

If you are the data base administrator for adata base, you can destroy itusing the following UNIX
command:

%destroydb too

3. CLASSES and the Query Language POSTQUEL

3.1. Basic Capabilities

In order to begin using POSTGRES, create the foo database as described in the previous section and

then enter the terminal monitor. The fundamental notion in POSTGRES is that of a class, which is a

named collection of instances of objects. Each instancehas the samecollectionof named attributes, and

each attribute is of a specific type. Moreover, each instance has a unique (never-changing) identifier

(OID).

A user can create a new class by specifying the class name,alongwith all attribute namesandtheir

types, for example.

♦create EMP (name= cl2, salary» float8, age= int4, dept=cl2)

♦createDEPT (dname = cl2, floor = im4)

So far, the create command looks exactly like the create statement in a relational system. However, we

will presently see thatclasses haveproperties that are extensions of dierelational model,so we use a dif

ferent word to describe them.

To populate a classwith instance, onecanusedieappend command as follows:

♦append EMP(name ="Joe", salary = 1400., age=40,dept« "shoe")

♦append EMP(name="Sam",salary = 1200., age=29,dept="toy")

♦append EMP(name="Bill",salary = 1600., age=36,dept="candy")

*Ng

This will add 3 instances to EMP, one for each command.

The EMP class canbe queries withnormal selection andprojection queries. For example, to find the

employees under 35 one would type:

♦retrieve (EMP.name) where EMPage < 35

Notice thatparentheses are required around the target list of returned attributes. Like QUEL, POSTUEL

allowsyou to return computations in the targetlist as long asthey aregiven a name,eg:

♦retrieve(result=EMP^alary / EMP.age) whereEMP.name= "Bill"

Moreover, like QUEL, any retrieve query can be redirected to a new class in the data base and arbitrary

boolean operators (and, or, not) are allowed in any query:

♦retrieve into temp (EMPjiame) where EMP.age< 35 and EMP^alary > 1000

Joins are done in POSTQUEL in essentially the same way as QUEL. To find the names of employees

which are the same age, one could write:

♦retrieve (El .name, E2.name)

♦fromEl in EMP, E2 in EMP

♦whereEl.age = E2.age

♦ and El.name !«= Elname

In this case both El and E2 are surrogates for an instanceof the class EMP and range over all instances of

the class. A POSTQUEL query can contain an arbitrary number of class names and surrogates. The

semantics of such a join are identical to those of QUEL, namely the qualification is a truth expression

defined for the cartesian productof the classes indicated in the query. For those instances in the cartesian

product forwhich the qualification is true,POSTGRES must computeandreturn the targetlist

Updatesareaccomplishedin POSTQUEL usingthe replace statement e.g:

♦replace EMP (salary= E^alary)

♦from E in EMP

♦whereEMPjiame = "Joe" and E name = "Sam"

This command replaces the salary of Joeby thatof Sam. Lastly, deletions aredoneusingthe delete com

mand, as follows:

delete EMP where EMP^alary > 0

Since all employees have positive salaries, this command will leave the EMP class empty.

3.2. Advanced POSTQUEL

In this section we willillustrate thePOSTGRES notions of inheritance, user-defined operators, user

defined functions, complex objects, and time travel Starting with the foo class firom theprevious section,
re-append the threepersonswho were just deleted.

Now create a second class STUD.EMP, as follows:

♦create STUDJEMP (location=point) inherits EMP

In this case, an instance of STUDJEMP inherits all data fields from its parent, EMP, namely name, salary,

age,anddept Moreover, studentemployees have an extra field, location, that indicates their address as a

(longitude, latitude) pair. In POSTGRES a class caninherit from zeroormoreotherclasses, andtheinher

itance hierarchy is thereby a directed graph in general. Moreover, in POSTQUEL a query can either refer

ence all instances of aclass orallinstances of aclass plus all of itsdescendants. For example the following

query finds the employees over 40:

♦retrieve (E.name) from E in EMP whereRage >40

On theotherhand,ifone wantedthe namesofall student employees oremployees over40, the notation is:

retrieve (E.name) from E in EMP* whereRage >40

Here the ♦ after EMP indicates that the query shouldbe run over EMP and all classes below EMP in the

inheritance hierarchy. This use of ♦ allowsa user to easilyrun queries over a classand all its descendent

classes.

Notice that locationin STUDJEMP is not a traditional relational datatype. In POSTGRES an instal

lation can customize POSTGRES with an arbitrary number of user-defined data types as explained in

Section ZZZ of this tutorial. In addition, POSTGRES can be customized with three kinds of user defined

functions:

operators

C functions

POSTQUEL functions

and we illustrate their use in this section. Definition of these functions is deferred to Section 2.1.

Suppose a new operator for points has been defined, !*, which comparestwo points and returnstrue

if the first point is "northoF die secondpoint In this case,the usercan find all the studentemployeeswho

live north of the point (5.0,5.0) as follows:

♦retrieve (STUDJsMPjiame) where STUDJEMPJocation T "(5.0,5.0)"

User defined operators such as P can be used in any POSTQUEL query wherever an operatoris syntacti

cally valid. There is no requirement that a constantbe on one side of the operator. For example the fol

lowing query findsall the student employees who live northofJoe.

♦retrieve (SI.name) from SI in STUDJEMP, S2 in STUD_£MP

♦wherewhere SI.location !* S2.1ocation and S2jiame « "Joe"

Operators areautomatically optimizedby POSTGRES; hence if there is anefficient access path thatallows

solution to the above queries, then it will be used.

The second class of functions available in POSTGRES are functions coded in the porgramming

language, C, which have been registered to POSTGRES. Suppose a function, distance, has been

registered which accepts an argument of type point and returns a floating point number which represents

thedistance from the pointto the origin of the co-ordinate system. Any usercanthenutilizeHig^my. in a

queryas illustrated in the followingexample:

retrieve (STUDJEMPjiame) wheredistance (STUD.EMPJocation) >5.0

Thisquery finds thestudent employees wholive more than 5 mitesfrom theorigin.

C functions can also haveanargument which is aclass name, eg:

♦retrieve (EMPjiame) where overpaid(EMP)

Inthis case overpaid has an operand of type EMP and returns aboolean. A functions whose argument isa

class name is autmomatically inherited down the class hierarchy inthe standard way. Hence, overpaid is

automatically available for theSTUDJEMP class. Therefore, the following query is also valid:

♦retrieve (STUD_EMPjiame)where overpaid (STUDJEMP)

Insome circles such functions are called methods. Moreover, overpaid can either beconsidered asa func

tion using the above syntax oras a new attribute for EMP whose type is the return type of the function.
Using the latter interpretation, the user can restate the above query as:

retrieve (STUDJEMPjiame) where STUDJEMRoverpaid

Hence, overpaid is interchangeably a function defined for each instance of EMP or a new attribute for

EMP. Thesame interpretation of such functions appears in IRIS [FISH90].

C functions are arbitrary C procedures. Hence, they have arbitrary semantics and can run arbitrary
POSTQUEL commands during execution. Therefore, queries with C functions in the qualification cannot
be optimized by the POSTGRES query optimizer. For example, the above query on overpaid student
employeeswill resultin a sequential scanofall instances of the class.

The third kind of function available in POSTGRES is POSTQUEL functions. Any collection of
commands inthe POSTQUEL query language can bepackaged together and defined as a function, which is

assumed to return a collection of instances. For example, the following function defines the high-paid
employees:

♦define function high-pay returns EMPas

♦retrieve (EMPjdQ where EMP.salary >50000

POSTQUEL functions can also have parameters, for example:

♦define function large-pay(int4) returnsEMP as

♦retrieve (EMP.aU)where EMP.salary> $1

Moreover, since POSTQUEL functions return sets of instances, they are die mechanism used to assign

valuesto compositeobjects. Forexample,consider extendingtheEMPclasswith a manager field:

♦add to EMP (manager=EMP)

Here,we have added an attributeto the EMP classwhich is oftype EMP, le. it has a value which is zero or

more instancesof the class EMP. Specifically, the valueof the manager field is intended to be an instance

ofEMP which is the manager of the indicated employee. Since the value of managerhas a record-oriented

structure, we call it a composite object We will now illustrate assigningvalues to instances of manager.

First we will define the function mgr-lookup:

♦define functionmgr-lookup(cl2) returnsEMP as

♦retrieve (EMP.all) where EMP.name = DEPTjnanagerand DEPTjiame=$1

This function canbe usedto assign values to themanager attribute m theEMPclass, forexample:

♦append to EMP(name ="Sam", salary m1000, age=40, dept="shoe", manager « mgr-lookup ("shoe"))

A user can query a compositeobjea by using a cascaded dot notation. Forexample, to find the name of

the manager of Joe, one could write:

♦retrieve (EMP.manager.name) where EMPjiame = "Joe"

Since EMPjnanager is a compositeobject POSTQUELallowsreferencing into it with a seconduse of the

dot notation. Whenever a compositeobjectappears in a class,a usercan utilize the cascaded dot notation

to reference into the object

In this case, die same POSTQUEL function is used to define the valueof manager forevery EMP

instance. As a result there is a second more efficient waytoutilize POSTQUEL functions to assign values

to the manager attribute. Specifically, we will define a second POSTQUEL function, lookup-mgr as fol

lows:

♦define function lookup-mgr(EMP) returns EMPas

♦retrieve (E.all) from E in EMP

where E.name=DEPT.manager and DEPTjiame =EMP.dept

8

In this case, the function lookup-mgr has an argument which isaninstance of

theclass EMP. Therefore, it takesa valuefor each instance of EMP, which

is the result of thequery with thefield "EMP.dept" filed inwithitsappropriate

constant

Consequently, theuser can think of thefunction lookup-mgr asan attribute of

EMP and can reference it just like any other attribute.

The following query finds alltheemployees whowork forJoe:

♦retrieve (EMPjiame) whereEMPjnanagerjiame ="Joe"

The samequeryis alsoavailable using functional notation:

♦retrieve (EMPjiame) wherelookup-mgr(EMP)Jiame « "Joe"

Lastly, POSTGRES supports the notion of time travel This feature allows auser torun histor

ical queries. For example to find thesalary of Sam attimeT onewould query:

♦retrieve (EMP.salary) usingEMP[T] where EMPjiame ="Sam"

POSTGRESwill automatically findthe versionof Sam's record validat

the correct time and get the appropriate salary.

REFERENCES

[FISH90]

[MOSH91]

[ROWE87]

[SCHA90]

[STON861

[STON87]

Wensel, S. (ed.), "The POSTGRES Reference Manual Version 2.1'* Elec

tronics Research Laboratory, University of California, Berkeley,CA, Report

M91/10, February 1991.

Rowe, L. and Stonebraker, M, "The POSTGRES Data Model" Proc. 1987

VLDB Conference, Brighton, England, Sept 1987.

Schank, P. et al, PICASSO Reference Manual" Electronics Research La

boratory, MemoUCB/ERLM90/79, Sept 1990.

Stonebraker, M and Rowe, L„ **The Design of POSTGRES,** Proc. 1986

ACM-SIGMODConference, Washington, D.C.,June 1986.

Stonebraker, M., "Tlie POSTGRES Storage System," Proc 1987 VLDB

Conference,Brighton,England, Sept 1987.

[STON88]

[STON901

[STON90B]

[WANG88]

Stonebraker, M. et al, "Hie POSTGRES RulesSystem," IEEE Transactions

on SoftwareEngineering, July 1988.

Stonebraker, M and Rowe,L., "TheImplementation of POSTGRES," IEEE

Transactions onKnowledge and Data Engineering, March 1990.

Stonebraker, M. et al, "On Rules, Procedures Caching andViews," Proc.

1990 ACM-SIGMOD Conference on Management of Data, Atlantic City,

NJ., June 1990.

Wang, Y., "The PICASSO Shared Object Hierarchy." MS Report, University

ofCalifornia, Berkeley, June 1988.

10

