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ABSTRACT

Manufacturing quality products in an integrated circuit fabrication facility requires that
thousands of individual process variables be strictly controlled. Although in-line measurements
and electrical test data have historically been used to detect process fluctuations, these methods
alone have become inadequate for rapidly identifying possible problems in processes with a very

narrow range of acceptable performance.

Individual process steps are conducted by complex pieces of fabrication equipment. When
unreliable performance causes this equipment to vary beyond desired limits, overall product qual-
ity is jeopardized. Since process shifts resulting from faulty equipment can degrade semiconduc-
tor products to an unacceptable level, it is essential that root causes for the malfunctions be diag-
nosed and corrected quickly to prevent the continued occurrence of expensive misprocessing.
However, with the advent of highly proficient sensors designed to monitor process conditions in-
situ, it has become feasible to perform such malfunction diagnosis on a real-time basis. There-
fore, methods of equipment diagnosis which utilize these capabilities are critical to the overall

success of the semiconductor production process.

This dissertation presents a general methodology for the automated diagnosis of integrated
circuit fabrication equipment. The technique presented combines the best aspects of quantitative

algorithmic diagnosis and qualitative knowledge-based approaches. Evidence from equipment



maintenance history, real-time sensor data and in-line measurements are integrated using eviden-
tial reasoning techniques within the Berkeley Computer-Aided Manufacturing (BCAM) frame-
work. This methodology is applied to the identification of faults in the Lam Research Autoetch

490 automated plasma etching system.
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CHAPTER 1
INTRODUCTION

1.1 Background and Motivation

In order to keep pace with economic competition abroad as well as rapid technological
advancement in fabrication techniques, the semiconductor industry in the United States is paying
an increasing amount of attention to issues related to semiconductor manufacturing [1]. As a
result, the current level of activity in computer-aided manufacturing (CAM) and computer
integrated manufacturing (CIM) techniques today is reminiscent of that in computer-aided design ~

(CAD) several years ago.

Maintaining product quality throughout an integrated circuit (IC) manufacturing facility
requires the strict control of literally thousands of process variables. These variables serve as
input and output parameters for hundreds of distinct process steps. Thus, monitoring these pro-
cess steps requires the manipulation of vast amounts of data which exists in various formats,
including:

1) work-in-process (WIP) information
2) equipment maintenance records
3) real-time process data
4) in-line physical and/or electrical measurement data
5) final electrical test data
The implementatiop of a well-designed CIM system that manages these five critical datasets as

well as the design and control various processes is essential for maintaining a competitive edge in

the industry.



Although in-line measurements and final electrical test data have historically been used to
detect process fluctuations, these methods have become more and more inadequate for identifying
all possible problems in processes with a very narrow range of acceptable performance [2]. Asa
consequence, process failures often remain undetected until the completion of what is often a

very long and costly production cycle.

Individual IC process steps are conducted by sophisticated‘ and expensive pieces of fabrica-
tion equipment. When unreliable equipment performance causes operating conditions to vary
beyond their desired limits, overall product quality is severely jeopardized. Consequently, fast
and accurate methods of equipment malfunction diagnosis are essential to the success of the sem-

iconductor production process.

Traditional approaches to diagnosis typically take place at the conclusion of a sequence of
several fabrication steps. Since integrated circuit wafers are manufactured in a batch mode, the
detection of errors usually comes after a large number of expensive wafers have been mispro-
cessed. This is extremely costly in terms of product yield. Therefore, from an economic point of
view, diagnosis is more beneficial when it is conducted during each individual process step. This
implies that greater emphasis must be placed on the diagnosis of specific pieces equipment rather
than entire processes. Moreover, with the advent of highly proficient sensors to monitor process
conditions in-situ [3-4], it has become possible to perform malfunction diagnosis on a real-time

basis.

This dissertation presents a general methodology for the automated diagnosis of IC fabrica-
tion equipment. The technique presented combines the best characteristics of quantitative algo-
rithmic diagnosis and qualitative experiential approaches. Evidence from equipment mainte-
nance history, real-time sensor data and in-line measurements are integrated using Dempster’s

rules of evidential reasoning [S]. Within the Berkeley Computer-Aided Manufacturing (BCAM)



framework, this methodology is applied to the identification of faults in a single-wafer plasma

etching system.

1.2 The Berkeley CAM Architecture

The objective of the BCAM system is to improve both the productivity and the quality of
IC manufacturing. The approach utilized by BCAM is the design of a flexible architecture to link
various software modules in an integrated system to support design, manufacturing and testing of
IC processes. In this way, BCAM aims to support all aspects of equipment operation and process

control in semiconductor manufacturing.

The BCAM group has identified several capabilities which contribute to the efficient opera-
tion of individual pieces of manufacturing equipment. Among these are: statistical process con-
trol (SPC), recipe generation, real-time monitoring, maintenance and record-keeping, modeling,
and malfunction diagnosis. These capabilities share a number of basic resources, including
numerical optimizers, statistical routines, relational databases and user interfaces. They are also
very tightly coupled. For example, SPC is used to trigger an alarm which initiates malfunction
diagnosis procedures, which in tumn make use of equipment models to infer equipment faults.
Therefore, the seamless integration of all of these capabilities is a necessity for any useful CIM

system. A graphical depiction of the BCAM framework appears in Figure 1.1.

In its current implementation, BCAM is a woxjkstation-based system which employs the
object-oriented features of the CLOS [6], C and C++ [7] programming languages. In addition, it
uses the X Window system and the INGRES [8] relational database. Direct communication with
semiconductor manufacturing equipment is accomplished by means of the Semiconductor Equip-
ment Communications Standard II (SECSII) protocol [9]. BCAM is designed to support inter-
equipment control in work-cell configurations, and it is a part of the Berkeley Computer

Integrated Manufacturing (BCIM) system.
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Figure 1.1 - The BCAM framework.
1.3 The Berkeley CIM System

In order to aﬂé?iate the cost and complications inherent in current CIM architectures, the
Berkeley CIM group has proposed a two-level approach [1-2]. This two-level CIM architecture is
depicted in Figure 1.2. The lower level includes the embedded workcell controllers which main-
tain the quality of processing equipment on a real-time basis. The upper level consists of a distri-
buted network of multi-tasking workstations linked to a common relational database. The high-
speed CIMBUS (2] provides communication among the various processors and acts as a coordina-

tor among different applications.
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Several recent technological advances have contributed greatly to this realization. First of
all, it is now possible to constuct physically distributed, but logically integrated relational data-
base systems whose ease of use reduces the effort required for both initial system development
and subsequent modification. In addition, industry has widely accepted the use of high-
bandwidth local area networks (LANS) that make it possible to connect process control applica-
tions directly to fabrication equipment in a cost-effective manner. These LANS enable the real-
time monitoring that is critical to both SPC and equipment diagnosis. Finally, the emergence of
artificial intelligence (AI) methodologies as an aid in automated decision-making, planning,
scheduling, and diagnosis has eliminated some of the difficulties associated with these knowledge

intensive and error-prone manufacturing activities.

Figure 1.2 - Two-level CIM architecture.




The overall objective of the Berkeley CIM architecture is to develop software modules for
controlling IC processing steps based upon the two-level model. This objective is also aided by
the Berkeley Process Flow Language (BPFL) [10] and the Work-in-Progress (WIP) interpreter
[11]. BPFL is used to describe manufacturing processes, and WIP executes the BPFL process
specifications, handles equipment allocation and control, and collects and stores the data used to
monitor the entire maunfacturing facility. BPFL and WIP operate at the upper level of the CIM
architecture and send commands to the BCAM modules to initiate, monitor, diagnose, or generate
a recipe for a process step. Using this architecture, it has become possible to implement a unified

CIM system which is simpler and more flexible than earlier generation systems.

1.4 Thesis Organization

The subject of this dissertation is the development of an automated system to perform mal-
function diagnosis on semiconductor manufacturing equipment within the overall BCAM frame-
work. In particular, this system is applied to the diagnosis of a plasma etcher. A theoretical
description of the inference technique employed to determine the equipment malfunctions is pro-
vided in Chapter 2. Chapter 3 contains an overview of the mechanical operation of the Lam
Research Corporation Autoetch 490 plasma etcher, the particular machine to which the diagnostic
scheme is applied. Experimental modeling of the etcher is described in Chapter 4. The approach
taken to the generation and distribution of evidential support for fault hypotheses is discussed in
Chapter 5. In Chapter 6, a detailed explanation of the software which implements the entire diag-
nostic system is provided. Finally, Chapter 7 presents a verification of the system by means of a

few examples, as well as some overall conclusions and some suggestions for future work.
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CHAPTER 2
A METHODOLOGY FOR DIAGNOSTIC INFERENCE

2.1 Introduction

In semiconductor manufacturing equipment, a certain amount of inherent variability exists
regardless of how well the machine is designed or maintained [1]. This "noise" is the result of
numerous small and essentially uncontrollable causes. However, when this variability becomes
large compared to background noise, significant performance shifts may occur. As an example of
such a shift, consider the standard Shewhart control chart shown in Figure 2.1. This figure dep-
icts a shift in the thickness of a particular thin film as integrated circuit wafers are processed in a
fabrication line. Such process shifts are often indicative of equipment malfunctions. Since these
shifts can degrade the overall fabrication process to an unacceptable level, it is critical that
assignable causes for the equipment malfunctions be diagnosed and corrected quickly to prevent

the continued occurrence of expensive misprocessing [2].

Several recent computerized diagnostic systems have had the objective of performing
automated diagnosis of faults in both manufacturing processes and equipment. Algorithmic sys-
tems such as HIPPOCRATES [3] and MERLIN [4] have been developed to identify process
faults from statistical inference procedures and electrical measurements performed on finished IC
wafers. Although this technique makes good use of qumﬁmﬁve quels of process behavior, it
can only arrive at useful diagnostic conclusions in the limited regions of operation over which
these models are valid. When catastrophic faults that destroy circuit functionality occur, these
models can no longer adequately describe the failure mechanism [5]. Moreover, in critical pro-
cess steps such as plasma etching, the theoretical basis for determining causal relationships is not

very well understood (see Chapter 4), thereby limiting the usefulness of physical models [1,6-7].
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Figure 2.1 - Shewhart control chart illustrating a process shift.

Another algorithmic system has been designed to diagnose intra-wafer variability and spa-
tial dependencies of process parameters [8]. This system utilizes principal component analysis
[9] and pattern recognition techniques to determine the spatial distribution of process faults.
Although the identification of the faults is accomplished through rigorous statistical means, the
subsequent determination of their root causes is assisted by the quantification of empirical
engineering knowledge. However, both this method and HIPPOCRATES perform diagnosis at
the conclusion of IC processes. From a practical standpoint, this approach is inadequate since at

that point in time, significant misprocessing and yield loss may have already taken place.



When attempting to diagnose unstructured problems which lack a solid conceptual founda-
tion for reasoning, some success has been attained by approaches based upon quantifying expert
knowledge. Expert systems such as PIES [10] and PEDX [11] are designed to draw upon
experiential knowledge to develop qualitative models of process behavior. In this way, they are
able to circumvent the difficulties encountered by algorithmic systems when quantitative relation-
ships break down. Yet a purely knowledge-based approach often lacks the precision inherent in
the deep-level physical models, and is thus incapable of deriving solutions for unanticipated
situations from the underlying principles surrounding the process. Another shortcoming of

purely expert diagnosis is its inability to identify concurrent multiple faults.

Both the algorithmic and the expert approaches to diagnosis outlined above typically take
place following a sequence of several fabrication steps. However, since integrated circuits are
manufactured in a "batch" mode, evidence pertaining to potential equipment malfunctions accu-
mulates at irregular intervals throughout the process sequence. Often, diagnosis cannot be con-
clusive until subsequently acquired data verifies earlier hypotheses regarding the nature of the
problem. Therefore, an essential requirement for a competent and effective diagnostic tool is a
systematic methodology for combining evidence originating from numerous sources at random

intervals.

The actual means by wh.ich the diagnostic system formulates fault hypotheses is known as
the inference engine [12]. The inference engine performs the reasoning function for the entire
system by systematically combining available evidence using a general methodology in conjunc-
tion with information contained in the knowledge base (see Chapter 3). This chapter presents an
inference methodology for automated equipment diagnosis. Data from various sources is seam-
lessly integrated using Dempster’s rules of evidential reasoning under uncertainty [13]. This
technique integrates the best characteristics of quantitative algorithmic diagnosis and qualitative

experiential approaches and has several advantages over other methods of inference. The

10



evidential reasoning approach has been implemented using support logic programming [14] in an
object-oriented manner via the C++ programming language [15). This methodology has been

applied to fault identification in a plasma etcher.

2.2 Sources of Diagnostic Evidence

Evidence regarding fabrication equipment malfunctions originates from several sources,
including equipment maintenance history, real-time sensor data, and physical in-line measure-
ments of process parameters [16-17). Both sensor and measurement data are constrained by
first-principle physics and empirical relationships. Violation or significant deviation from these_
constraints is indicative of equipment faults. Each violated constraint may be subsequently
mapped to a particular set of potential faults. As a simple example, consider the flow of mass
through a pipe as shown in Figure 2.2. If F represents the flow at the entry to the pipe and Fis
the flow at its exit, then this system is constrained by the following expression relating the con-

servation of mass:
F,-F;=0 2.1)

Flows F, and F, are monitored by sensors S, and S, respectively. The violation of constraint
(2.1) in the positive direction might be diagnosed as either a leak or the failure of one of the two
sensors, whereas a negative deviation would indicate a sensor failure only. In effect, diagnosis
represents the logical combination of inferences drawn from a complete set of constraint equa-
tions. Such a complete set is referred to as the system of governing equations for a given process

(18].

The solution of the govemning equations for any given system falls into three distinct
categories, depending upon the magnitude and direction of constraint deviation. This fact is illus-

trated through the following expressions:

11
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Figure 2.2 - Simple example of a physical constraint: the flow of mass through a pipe.

C*=(C >1ol) )
C° =(ICl stol) 22
C=a(C <tl)
where C*, C° and C~ represent the conditions for positive constraint violation, constraint satis-
faction, and negative constraint violation for a given equation C. The variable 70! represents the
tolerance over which a given constraint is permitted to vary. The analog to the simple pipe sys-
tem in a plasma etcher is the mass flow controller (MFC) which controls the flow of gases into
the process chamber [19]. In general, all manufacturing equipment is composed of numerous
instances of systems, subsystems and components, each of which is influenced by particular faults
which manifest themselves as observable symptoms that are detectable by sensors or in-line

measurements.

2.3 A Survey of Existing Inference Methods

Each piece of evidence collected contributes incremental adjustments in belief regarding the

12



presence of a particular fault or fault group. In order to facilitate robust diagnosis, this informa-
tion must be efficiently combined and integrated to produce a viable overall conclusion. Several
methods have been proposed and investigated to achieve the necessary integration of evidence in

this system. A brief survey of these approaches along with their relative merits is given below.

2.3.1 Boolean Logic

Classical logic requires the truth of any statement to be two-valued (either "true” or "false").
Reasoning systems based upon this approach draw an overall conclusion from a set of true and/or
false statements by manipulating this binary information with classical Boolean algebra. How-
ever, the use of the Boolean approach for diagnostic applications is inadequate for several rea-
sons. First, the assumption that all available information is binary in nature leads to misleading
conclusions. This is due to the fact that data collected from manufacturing equipment is often
uncertain. For example, consider the example of the flow of gas through a mass flow controller in
the plasma etcher. In this situation, it is apparent that the accurate diagnosis of MFC faults
depends heavily on the validity of the sensors which measure the gas flow. If a particular sensor
is malfunctioning or slightly miscalibrated, the conclusions drawn about the process differ
significantly from cases in which sensors are functioning properly. Classical Boolean logic lacks
a method for attributing a degree of belief to sensor accuracy or to any other uncertain informa-
tion.

In addition, the use of goveming equations as constraints depends on the classification of
violations into the categories C*, C° and C~. An incorrect classification can drastically alter
diagnosis by either eliminating otherwise viable hypotheses or by postulating spurious altema-
tives. At or near the threshold value fol, the inference is much too sensitive to incremental
changes in the process conditions, thereby greatly exacerbating diagnostic instability in the pres-

ence of measurement noise [16-18].
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Finally, classical knowledge bases are monotonic in nature. Statements regarding a given
proposition lead to either the logical confirmation or contradiction of that proposition. Due to the
complex interaction among various subsystems in IC fabrication equipment, this monotonic logi-
cal progression is not often the case. At one moment, a component failure due to overheating
might be attributed to a mechanical fault in the cooling system. Later, however, further scrutiny
of the available evidence might attribute the overheating to an insufficient supply of liquid
coolant, thus repudiating the original hypothesis. Like fluctuations due to measurement noise,

this constant state of flux in belief also renders classical reasoning techniques unstable.

2.3.2 Certainty Factors

Although the Boolean approach suffers from the shortcoming of two-valued logic, this
inadequacy is overcome through the use of multivalued measures of certainty. In this way, the
certainty of information may be expressed in terms of a "likelihood" rather than an exact truth.
This allows diagnoses to be expressed in terms of ranked lists of fault possibilities, each with
varying degrees of belief attached. These degrees of belief, known as certainty factors, are usu-
ally normalized to a standard scale such as the interval [-1,1]. Certainty factors, however, do not
adequately address the notion of uncertainty since even the degree of certainty (or uncertainty)
regarding a particular proposition will itself be uncertain. Despite the claims of the developers of
diagnostic systems based on certainty factors that these factors possess an inherent advantage due
to their intuitive "usability," studies have indicated that rule-based systems employing certainty
factors are significantly less accurate than other techniques given uncertain evidence [20]. More-
over, it has been shown that particular classes of dependencies among uncertain beliefs cannot be

represented by certainty factors in an efficient manner [21].

In addition, there has been much debate conceming the the development of a proper and

rigorous methodology for combining certainty factors from multiple sources of evidence. There
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is an implicit assumption in these systems that if a numerical certainty factor is attached to each
premise in a knowledge base, then a certainty factor corresponding to a conclusion based on these
premises may be expressed as a function of their individual certainty factors. This assumption is
very questionable. In fact, it has been demonstrated that the original rules for evidence combina-
tion using certainty factors is ad hoc and lacks commutativity [22]). Since evidence is collected at
irregular time intervals, commutativity is an essential property for accurate diagnosis. Although
this discrepancy can be alleviated through the proper choice of a probabilistic interpretation for a
given set of certainty factors under a given framework of inference, an infinite number of valid
choices of interpretation exist. The question of which interpretation is optimal has yet to be con-

clusively answered.

Finally, a set of rules for factor combination under any probabilistic interpretation relies
heavily upon the assumption of conditional independence of evidence for a given hypothesis [23].
This assumption is not justifiable in the equipment diagnosis regime. Due to the complex interac-
tion between system components, the presence of one symptom often directly results in the
occurrence of another (see Chapter 3). Referring to the previous example of the mass flow
through a pipe, it would be erroneous to assume that the evidence collected by sensors Syand S,
is independent. One possible scenario in which these two symptoms would be directly related
would be in the event of an electrical systems failure which resulted in their mutual miscalibra-
tion. Thus, the symptoms related to electrical failure would have a direct impact on the symp-

toms which initiate the diagnosis of a possible leak.

2.3.3 Bayesian Inference

The Bayesian approach to reasoning involves the integration of both prior fault probabilities
and conditional probabilities of faults given a certain set of symptoms. In general, given n mutu-

ally exclusive and collectively exhaustive events that define a state A, the conditional probability
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(Pr) of a particular event B in this system is expressed as:

Pr(A;B)

Pr(BlA,) = =)

2.3)

where i =1,...,n. In diagnosis, the events A; could represent various equipment faults. The event
B would then represent a particular symptom that occurs as a result of these faults.

The task of a diagnostic system is to determine the probability of fault f i given that symp-

tom s is present. This probability is also calculated using conditional probabilities as follows:

Pr(fis) _ Pr(sifoPr(fy)
Pr(sy ~—  Pr(s)

Pr(f;ls)= 24)

Because faults f; are collectively exhaustive, their union forms the entire set of possible faults,

or.

F=fi4fs+ - +f, 2.5)
where F is the set of all possible faults. Set theory dictates that the intersection of a sum of sets
is the sum of their intersections, thus:

Frtfat  +f)=f1s+f5+ - +f,s (2.6)

Furthermore, since faults f; are mutually exclusive, their intersections are empty, or
(fis)(fjs) = @. Therefore, the probability of symptom s is the sum of the probabilities of all

combinations f;s:
Pr(s)=Pr(f1s)+Pr(fss)+ - +Pr(fas)=3Pr(s|f)Pr(f;) @7
1

Substituting (2.7) into (2.4) gives one version of Bayes’ Theorem:

Pr(slf)Pr(f;)

zl:Pr(sIf,-)Pr(f,-)

Pr(f;1s)=

(2.8)
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However, if one assumes conditional independence among individual symptoms s; and S;
given that a particular fault f is known, then the computational complexity of (2.8) may be

reduced using [18]:

Pr(sy1f) . Pr(s,lf) ...
Pr(sy) Pr(s9)

Pr(fI1S)=Pr(f)* 2.9)

where § =5,,5, - - + . The assumption of conditional independence implies that if the true failure
state is known, then the probability of one symptom (or sensor reading) is independent of
another. In other words, for a known failure state, additional sensor readings provide no new

information on the readings of another sensor.

The major difficulty in the implementation of the Bayesian approach is the large number of
subjective probabilities which must be obtained (either from the domain expert or through experi-
mentation) [23]. Since etch malfunction diagnosis entails over 40 distinct potentially faulty com-
ponents (refer to Appendix 3.1) and about 15 relevant, observable symptoms (see Chapter 5),
then over 615 probability values (600 conditional probabilities and 15 prior symptom probabili-
ties) must be gathered in order to use equation (2.9). Moreover, if the possibility of multiple
faults exists, this number becomes even higher. Determining such a huge number of probabilities

can be both a time-consuming and expensive process.

However, even if all these probabilities could be obtained, the Bayesian approach requires
that the faults themselves be mutually exclusive and collectively exhaustive. Since overlapping
sets of faults are not at all uncommon, and due to the lack of available information regarding their
mutual exclusivity, it can be difficult to model a system such that this assumption holds.
Although efforts to circumvent these difficulties involving the use of so-called "belief networks"
and influence diagrams [24] have had some degree of success, an efficient algorithm to solve the

general inference problem using these networks has yet to be found.
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2.3.4 Fuzzy Logic

Fuzzy logic utilizes the concept of membership grade to express variable degrees of
membership of elements in imprecisely defined sets [12,25-26). In this framework, a fuzzy set X

can be described by a set of ordered pairs:

X ={(xlv§l) ’ (thCZ) 'm} (2~10)

where {; is a number in the interval [0,1] representing the grade of membership of x; in X.
Methodology exists which allows the standard set operations of union, intersection, and comple-
mentation on such fuzzy sets. Traditional logic is merely a subset of fuzzy logic in which each {;

is equal to one.

Since this paradigm introduces the formal concept of inexactness of information in a fairly
rigorous manner, it is a natural means of dealing with the troubling presence of uncertainty in evi-
dence. Although this methodology is ideal for enhancing knowledge base consistency through
the unambiguous manipulation of inexact quantifiers used in natural languages (such as "almost",
"very", etc.) [21], this type of formalism is most useful for expert systems with extensive user
interfaces. However, as will be shown later, the diagnostic system which has been designed for
the plasma etching application has little need for such semantic interpretation due to its use of

numerically-based heuristics for belief generation and propagation (see Chapter 5).

2.3.5 Dempster-Shafer Theory

The methods of evidential reasoning outlined in Dempster-Shafer theory [13] appear to
represent the most suitable compromise between the various disadvantages of the inference
methods mentioned above. This technique allows the combination of various pieces of uncertain
evidence obtained at irregular intervals. These evidence sources are usually assumed to be

independent, but proper modifications can allow this requirement to be relaxed under certain
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conditions (see § 2.5). Further, the preferred implementation of this approach results in continu-
ously varying, non-monotonic belief functions which reflect the status of diagnostic conclusions
at any given point in time. These belief functions can be chosen so that they are insensitive to
measurement noise [16-17]. Dempster-Shafer theory provides conceptually straightforward rea-
soning and reduces to both the Boolean and Bayesian model in the limit when evidence takes on

certain forms [27].

According to the basic tenets of Dempster-Shafer theory, the likelihood of proposition A is
expressed as an interval [s(A), p(A)] which lies in [0,1]. The parameter s(A) represents the
belief in A due to the amount of supporting evidence available, while p (4) indicates the plausi-
bility of A. Plausibility is defined as the degree to which contradictory evidence is lacking. In

other words:
pA)=1-s(A) @.11)

where s(A ) is the measure of belief in the proposition A . Therefore, the probability of the propo-
sition A is bounded by s(A) and p(A). The quantity u(A)=p(A) —s(A) is the uncertainty of
A. For example, A [0.2,0.6] indicates that the probability of A is between 0.2 and 0.6 with an
uncertainty of 0.4. If u(A) is zero for all propositions in the knowledge base, then a more con-

ventional system results [13].

Propositions in this arrangement are subsets of the sct of all relevant hypotheses, 6. This
superset is known as the frame of discernment. For the purposes of diagnosis, the frame of dis-
cemnment is the union of all possible faults (hypotheses). Each picce of collected evidence can be
mapped to a fault or group of faults which is a subset of 6. Evidential intervals for individual
faults [s(A),p (A)] are derived from a basic probability mass distribution (BPMD). The BPMD

distributes numerical belief over the set of propositions in the fault hypothesis space domain. For

instance, the BPM m <A > represents the sum of the belief attributed to A. Any residual belief in .
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the frame of discernment that cannot be attributed to any subset of @ is assigned directly to 6
itself. This effectively serves to introduce uncertainty into diagnosis.
Using this framework, the belief and plausibility of a set of propositions A are given by:
s(A ) = fm,- <A.'> (2.12)
pA)=1-Zm;<B;> (2.13)
where A;cA and B;cA. Thus, the total belief in A is the sum of beliefs ascribed to A and all

subsets thereof.

2.4 Evidence Combination Using the Dempster-Shafer Methodology

In any given diagnostic application, there may be numerous sources of evidence contribut-
ing varying degrees of belief to several propositions under a common frame of discernment.
Dempster’s rule of combination [13,28] provides a deterministic and unambiguous method of
combining BPMDs from separate and distinct sources of knowledge. Since the method is com-
mutative, the order in which evidence is combined has no bearing on diagnostic conclusions.
Further, as will be shown later, this rule is easily stated in a form which is readily programmable

in a computer environment.

The rule for combining the observed basic probability masses of two arbitrary and indepen-

dent knowledge sources m; and m, into a third BPM m; is as follows:

Z'Jn1<X;> * m2<Yj>
1-k

Ma<Z> = 2.14)

where Z =X;  ¥; and
k =Zm<X;>* m2<Yj> (2.15)

where X; N\ Y; = ©. Here X; and Y; represent various propositions which consist of fault

hypotheses and disjunctions thereof. Thus, the BPM of the intersection of X; and ¥ '; is the pro-
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duct of the individual BPMs of X; and ¥;. The factor (1 — k) is a normalization constant which
prevents the total belief from exceeding unity due to the donation of portions of belief to the

empty set.

In order to illustrate this rule, consider the combination of m, and m, when each contains
different evidence conceming the diagnosis of a malfunction in the plasma etching application.
Such evidence could result from two different sensor readings. In particular, suppose that the
sensors have observed that the flow of of one of the etchant gases into the process chamber is too
low. Let the simplified frame of discemment 6 = {A, B, C, D, E}, where A,...E symbolically

represent the following equipment faults:

A = Mass Flow Controller Miscalibration
B = Gas Line Leak

C =Routing Valve Malfunction

D = Incorrect Sensor Signal

E = The "No-Fault" Condition

These components are illustrated graphically in the partial schematic of the Lam etcher gas flow
system shown in Figure 2.3. (For a detailed discussion of the operation of the etcher gas flow
system, refer to Chapter 3). Suppose that belief in this frame of discernment is distributed
according to the BPMDs m, <A \ B, C, D, E, 8> = <0.48, 0.12, 0, 0.2, 0.2> and m, <B, A )

C,DE, 6>=<0,07,0.1,0.2>,

The calculation of the combined BPMD mj is visualized in Table 2.1. Each cell of the
table contains the intersection of the corresponding propositions from m, and m, along with the
product of their individual beliefs. Note that the intersection of any proposition with 0 is the ori-
ginal proposition. The BPM attributed to the empty set, which originates from the presence of

various propositions in 7, and m, whose intersection is empty, is:

k =(0.48)(0.1) + 0 +(0.12)(0.1) + 0+ 0 + 0 + (0.2)(0.7) = 0.2 (2.16)
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Figure 2.3 - Schematic diagram of the gas system in thc Lam plasma etcher [17].

Likewise, the BPM attributed to fault C is m4<C>, which is given by:

oo (0.12)(0.7:10.12)(0.2) - 0.135 @.17)

M3<C

Thus, the products of the individual BPMs in which propositions from m, and m, intersect
donate incremental belief to the combined BPMD. Through the similar application of equation

(2.14), the BPMs for the remaining propositions result in thc combincd BPMD m3 <A, A (U B,

A\ C,C,DE,E, 6>=<0425,0.12,0.175, 0.135, 0.025, 0.075, 0.05>.
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Table 2.1 - Illustration of BPMD Combination

my
AUB 048 | B 0| A 034 @ 0048 | AUB 0.09
C 012 | @ 0 C 0.084 7] 0.012 C 0.024
D 0 g 0 7] 0 D 0 D 0
E 0.2 @ 0 1) 0.14 E 0.02 E 0.04
@ 02 [B 0|AyUC 014 |[DUE 002 e 004
B 0 AUC 07 DyUE 0l 0 02  my

The plausibilities for the propositions in the above combined BPMD are calculated by

applying equation (2.13). In other words:
Pp(A)=1-0.135-0.025 - 0.075 =0.765 (2.18)

Consequently, the individual evidential intervals implied by m5 are: A[0.425, 0.765], B[0.0,
0.165], C[0.135, 0.355], D[0.0, 0.07], and E[0.075, 0.145]. Thercfore, combining the evidence
available from knowledge sources m and m, leads to the conclusion that the most likely cause of
the insufficient gas flow malfunction is a miscalibration of the mass {low controller (A) since this
fault hypothesis has the highest belief. The order of likelihood for the remaining faults is: rout-
ing valve malfunction (C), gas line leak (B), no faults present (E), and an incorrect sensor signal

(D), respectively.

2.5 Diagnosing Multiple Faults Using the Dempster-Shafer Methodology

Recall the constraint violations described by equation (2.2). Lct the fault groups which lead

to these violations be denoted by H. In other words:

C*->H* (2.19)
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C > H
Thus the occurrence of fault groups H* and H™ causes positive and negative constraint violation,
respectively. It is reasonable to assume that no fault group can simultaneously lead to both posi-
tive and negative deviation. If an existing fault group which is to be diagnosed is denoted by H;,

then the elements of H; can be enumerated as follows:
H;= {hn-hiz» . } (2.20)

where k;; are the individual faults within a fault group.

Often, it is assumed that each h;j is a single fault. As described in [13] and [17], this
assumption reduces the number of mappings from the evidence space to the fault hypothesis
space from 2° to ©. This is usually not too restrictive since multiple equipment malfunctions
rarely occur independently. Under such an assumption, diagnosis becomes simply a matter of
isolating the particular fault responsible for constraint violation by finding the intersection of all

fault groups H; which exist in the system.

However, as has already been pointed out, it is occasionally possible for secondary faults to
be triggered by the occurrence of primary faults. In cases such as these, if we relax the single
fault assumption and allow individual h;;’s to represent either single faults or simultaneously
occurring multiple faults, then the same diagnosis procedure remains equally capable of deducing
these multiple faults. Thus, the requirement of conditional independence of evidence that inhibits
inference in probabilistic and Bayesian reasoning systems (see § 2.3.2 and 2.3.3) may be relaxed
under the Dempster-Shafer framework. To illustrate this point, consider the frame of discernment
described in the previous section. Suppose that routing valve malfunctions can cause gas lines to
break and subsequently leak. In these cases, it would be useful if malfunction diagnosis could

capture the concurrent incidence of both faults. To do so, it would seem that the frame of dis-
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cemment should also include an entry for B ~ C. However, this would confuse the diagnosis of

céses where either B or C occurred individually.

Nevertheless, it is perfectly valid to represent the intersection of B and C by a new variable,
say F. In other words, let F =B ~ C. Then, in diagnosing the malfunction F is treated as just
another single fault. Thus, if all combinations of similarly induced multiple faults are known and
enumerated in the knowledge base of the diagnostic system, then they may be deduced. In this
way, the requirement of independence for different sources of evidence may be circumvented by
appropriately grouping faults which may induce other faults. However, it should be noted that
this approach is still somewhat limited since a thorough and comprehensive enumeration is a
non-trivial task, and an incomplete list means that the accurate diagnosis of multiple faults cannot

be guaranteed in all cases.

2.6 Summary

This chapter presents a general method for inferring the malfunctions of semiconductor
manufacturing equipment. This method is based upon the application of Dempster-Shafer evi-
dential reasoning techniques. This approach offers several distinct advantages over other infer-
ence strategies. It provides a systematic and efficient way to integrate evidence obtained at irreg-
ular intervals from multiple knowledge sources in an uncertain measurement environment and
use this combined evidence to diagnose a ranked list of possible equipment faults., Moreover, the
Dempster-Shafer concept of evidential plausibility is conceptually similar to the statistical notion
of significance probability [29). As will be shown later in Chapter 5, this fact makes the

Dempster-Shafer approach very attractive for diagnosis based on statistical models [30].

In order to implement the Dempster-Shafer approach on a practical piece of manufacturing
equipment, three major bodies of information are required. First, a thorough understanding of the

operation of the particular piece of equipment to which the methodology is to be applied is



essential. Such an understanding provides the basis of the Dempster-Shafer frame of discernment
which serves as the knowledge base of the system. Equally necessary is a set of goveming equa-
tions which model the observable equipment behavior. Finally, a technique which generates and
distributes numerical evidential support among the various faults in the frame of discernment is
the sole remaining portion of a practical diagnostic system that is required to implement the
Dempster-Shafer approach. Using the plasma etcher as an application vehicle, the development
of these three components of the overall system is the subject of the next three chapters of this

thesis.

26



(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]
(13]

(14])

References for Chapter 2

G. S. May, J. Huang, and C. J. Spanos, "Statistical Experimental Design in Plasma Etch
Modeling," IEEE Transactions on Semiconductor Manufacturing, vol. 4, no. 2, May, 1991,

D. C. Montgomery, Introduction to Statistical Quality Control, 2nd Edition, New York:
Wiley, 1989.

C. J. Spanos, "HIPPOCRATES: A Methodology for IC Process Diagnosis,” Proceedings of
the International Conference on Computer-Aided Design, 1986.

G. Freeman, J. Y.-C. Pan, and W. Lukaszek, "Application of Analytic Device Models to
Automated IC Process Diagnosis," Proceedings of the Fifth Annual SRC/IDARPA CIM-IC
Workshop, August, 1990. ‘

R. Isermann, “Process Fault Detection Based on Modeling and Estimation Methods - A Sur-
vey," Automatica, vol. 20, no. 4, 1984,

D. M. Manos and D. L. Flamm, Plasma Etching: An Introduction, San Diego: Academic
Press, 1989.

G. S. May, J. Huang, and C. J. Spanos, "Modeling the Etch Characteristics of Polysilicon in
CCl4 Plasmas Using Response Surface Methodology," Proceedings of the Ninth IEEE
International Electronics Manufacturing Technology Symposium, 1990.

J. K. Kabarian, "Statistical Diagnosis of IC Process Faults,” Carnegie-Mellon Research
Report No. CMUCAD-90-52, December, 1950.

H. H. Harman, Modern Factor Analysis, Chicago: University of Chicago Press, 1967.

J. Y. Pan and J. M. Tenenbaum, "PIES: An Engineer’s 'Do-It-Yourself’ Knowledge Sys-
tem for Interpretation of Parametric Test Data,” Proceedings of the 5th National Conference
on Artificial Intelligence, pp. 836-843, 1986.

S. B. Dolins, A. Srivastava, and B. E. Flinchbaugh, "Monitoring and Diagnosis of Plasma
Etch Processes," IEEE Transactions on Semiconductor Manufacturing, vol. 1, no. 1, Febru-
ary, 1988.

K. Parsaye and M. Chignell, Expert Systems for Experts, New York: Wiley, 1988.
G. Shafer, "A Mathematical Theory of Evidence,”" Princeton University Press, 1976.

J. F. Baldwin, "Support Logic Programming,” Fuzzy Sets Theory and Applications, Great
Britain: D. Reidel Publishing Company, 1986.

27



[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

K. Weiskamp and B. Flaming, The Complete C++ Primer, San Diego: Academic Press,
1990.

G. S. May and C. J. Spanos, "Automated Malfunction Diagnosis of a Plasma Etcher,"
Proceedings of the 1991 International Semiconductor Manufacturing Science Symposium,
May, 1991.

N. H. Chang and C. J. Spanos, "Chronological Equipment Diagnosis with Evidence Integra-
tion: An LPCVD Application," IEEE Transactions on Semiconductor Manufacturing, vol.
4, no. 1, February, 1991.

M. A. Kramer, "Malfunction Diagnosis Using Quantitative Models with Non-Boolean Rea-
soning in Expert Systems," Journal of the American Institute of Chemical Engineers, vol.
33, no. 1, January, 1987.

Autoetch Plasma Etch System Operation and Maintenance Manual, Lam Research Corpora-
tion, vol. 1, March, 1985.

D. S. Vaughan, B. M. Perrin, R. M. Yadrick, and P. D. Holden, "Comparing Expert Systems
Built Using Different Uncertain Inference Systems," Proceedings of the Fifth Annual AAAI
Workshop on Uncertainty and Al, August, 1989.

D. E. Heckerman and E. J. Horvitz, "On the Expressiveness of Rule-Based Systems for
Reasoning with Uncertainty,” Proceedings of the Sixth National AAAI Conference on
Artificial Intelligence, July, 1987.

D. E. Heckerman, "Probabilistic Interpretations for MYCIN’s Certainty Factors,” Uncer-
tainty in Artificial Intelligence, L. Kanal and J. Lemmer (editors), North Holland, 1986.

K.-C. Ng and B. Abramson, "Uncertainty Management in Expert Systems," /EEE Expert,
vol. 5, no. 2, April 1990,

A. Rege and A. M. Agogino, "Topological Framework for Representing and Solving Proba-
bilistic Inference Problems in Expert Systems," IEEE Transactions on Systems, Man &
Cybernetics, vol. 18, no. 3, 1988.

L. A. Zadeh, "The Role of Fuzzy Logic in the Manégement of Uncertainty in Expert Sys-
tems," Approximate Reasoning in Expert Systems, M. M. Gupta, A. Kandel, J. B. Kiszka
(editors), Elsevier Science Publishers: North Holland, 198S5.

L. A. Zadeh, "A Computational Approach to Fuzzy Quantifiers in Natural Languages,”
Computation & Mathematics with Applications, vol. 9, no. 1, 1983.

R. F. Bordley, "Deducing Dempster’s Law of Conditioning from a Bayesian Probability
Model," Conference Proceedings: TIMS/ORSA Conference, New York, 1989.

28



(28] L. A. Zadeh, "A Simple View of the Dempster-Shafer Theory of Evidence and its Implica-
tion for the Rule of Combination," The Al Magazine, Summer, 1986.

[29] G. E. P. Box, W. B. Hunter, and J. S. Hunter, Statistics for Experimenters, New York:
Wiley, 1978. '

[30] C.J. Spanos and G. S. May, "Using Regression Equations for Model-Based Diagnosis in
the Berkeley Computer-Aided Manufacturing System," Workshop on Intelligent Diagnostic
and Control Systems for Manufacturing, Boston, July, 1990,

29



CHAPTER 3
AN OPERATIONAL DESCRIPTION OF THE LAM RESEARCH
AUTOECH 490 PLASMA ETCHER

3.1 Introduction

Wet etching was the standard method of pattern transfer in early generations of integrated
circuits. This stemmed primarily from the fact that etchants with high selectivity to both the sub-
strate and the masking layer were readily available. However, wet etching processes are almost
invariably isotropic in nature. Consequently, when the thickness of the film being etched
becomes comparable to the minimum pattern dimension (as is the case with modem VLSI cir-
cuits), the undesirable lateral undercut due to the etch isotropy of wet etchants is no longer toler-
able. In order to overcome the shortcomings of wet etch processes, the technique of ion-assisted
plasma etching has become widely used in semiconductor manufacturing [1]. Since this method
offers the added feature of etch anisotropy, considerable effort has been expended in recent years

to develop plasma etch processes.

As is the case with other semiconductor manufacturing equipment, faulty or unreliable
etcher performance can jeopardize the quality of integrated circuits. Moreover, since the duration
of plasma processes is typically on the order of minutes, very rapid malfunction diagnosis in
plasma etchers is necessary in order to minimize misprocessing. This is especially true during
the fabrication of MOS circuits, where plasma etching is essential to the definition of polysilicon
gates [2]. However, etch diagnosis is further complicated by the fact that plasma processes are
currently not well understood [3]. Since the problem of etch diagnosis is lacking in a solid physi-
cal foundation for reasoning, the plasma etcher makes a very suitable candidate for the applica-

tion of the approach to equipment diagnosis described in the previous chapter.
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One of the most basic and essential components of any expert system fis its knowledge base
[4-5]. In this respect, diagnostic expert systems are no exception. The knowledge base represents
the compilation of the various facts which the system uses to perform its reasoning functions. In
the case of the proposed diagnostic system for the plasma etcher, the knowledge base is a formal-
ized description of the etcher and its operation. It consists of a catalog of various equipment
faults as well as information conceming possible causes of those faults. This catalog defines the
diagnostic frame of discernment [6].

Since each malfunction which the expert system attempts to diagnose results from a particu-
lar faulty component, the development of the knowledge base for a system designed to troub-_
leshoot equipment failures requires a relatively thorough understanding of the functionality of
that particular piece of equipment at a component level [7]. Consequently, this chapter gives an
overview of the operation of the Lam Research Autoetch 490 Plasma Etching System as well as a
description of the manner in which various etcher components are categorized as diagnosable

faults.

3.2 System Operation Overview

The Lam Autoetch 490 is a cassette-to-cassette, fully automated, single-wafer parallel-plate
system. Automated functions are controlled by means of a Z80 microprocessor. Etching pro-
grams may be entered manually from the keyboard and saved on a recipe programming module.

Programmable recipe parameters include operating pressure, RF power, electrode spacing, and

gas flow rates.

The entire Autoetch system is under automatic, closed-loop control and is double key-
locked to prevent accidental alteration of the process. In addition, the Autoetch has a continuous
CRT display for monitoring the machine status and the process parameters. This system is

designed to monitor and report on its own performance through the communications interface
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modem to a remote diagnostics station [8].

The entire machine (schematic shown in Figure 3.1) consists of several basic subsystems,
including the RF power system, electronics, wafer transport, temperature control, the process
chamber, the vacuum system, and the gas system [9]. Each subsystem is described in detail
below. Component failures are catalogued in a hierarchical fashion according to the Lam subsys-
tem to which each component belongs. This hierarchy, which is presented in Appendix 3.1, is
essentially a simplified overview of common Autoetch malfunctions obtained through extensive
consultation with the equipment maintenance technician serving as the domain expert [10]. This
equipment description facilitates the inclusion of the Lam etcher in FAULTS, the BCAM compu-

terized maintenance record-keeping system [11).

3.2.1 RF Power System

The Autoetch is equipped with solid state RF power supplies which are water-cooled, 650
watt or 1.25 kilowatt generators. These generators are automatically controlled and operate at
13.56 MHz with an output impedance of 50 Q. The generators are completely enclosed to insure

operator safety.

As process parameters change, the electrical impedance of the etch process chamber also
changes. Therefore, the RF power is connected to a match assembly in which the chamber
impedance is matched to the generator output impedance by means of a phase/magnitude detector
system. Matching is necessary to achieve maximum power transfer, The RF matching network
automatically matches the impedance of the plasma to that of the RF generators as power, elec-

trode spacing, gas composition, and chamber pressure vary.
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Figure 3.1 - Schematic diagram of the Lam Research Autoetch 490,
3.2.2 System Electronics

Etcher electronics consist of a controller drawer assembly, a power distribution box assem-
bly, and interface electronics. The controller drawer houses a microprocessor card cage, various

printed circuit boards, and power supplies. A microprocessor controls all the functions of the
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machine and memory cards contain all equipment instructions. TTL driver cards operate
solenoids, relays, and motors. Analog and digital input boards provide information to the

microprocessor CPU conceming machine status.

The power distribution box assembly distributes the required AC and DC voltages neces-
sary for the system to function properly. The electronics system contains among other things, a
resistor thermometer device (see § 3.2.4) interface board, a guard seal interface board, and RF
generator interface board, an endpoint detector board, and a modem which allows communication

between the Autoetch and a remote monitoring system.
3.2.3 Wafer Transport System

Wafers are loaded from cassettes into and out of the process chamber by means of Hine
indexers mounted on the upper front plates of the Autoetch and pneumatic station lifters. Send
indexers load individual wafers onto the motor-driven wafer belt conveyer system. Receive

indexers take finished wafers from the belt drive system and store them in the receive cassette.

The entrance station lifter elevates unprocessed wafers to a point where they may be
reached by the entrance airlock arm. Similarly, the exit station lifter receives finished wafers
from the exit airlock arm and lowers them to the receiver conveyer belt. Lifters are raised and
lowered by pneumatically driven pistons. Wafers are held onto the lifters by a vacuum generated
by the airlock vacuum manifold which is controlled by a solenoid valve actuated by the

microprocessor CPU (see § 3.2.2).

An infrared sensor on the entrance station informs the etcher that a wafer is present. There
is also an additional sensor mounted ahead of the entrance station which senses the presence of
more than one wafer. If multiple wafers are detected, the lifter will not rise and the process is

halted.

The etcher airlocks act as a buffer between the clean room environment and the process



chamber since wafers are loaded and unloaded from the chamber through them. Closing the
inner doors isolates the airlocks from the chamber and allows the airlocks to be vented. Thus,
these airlocks allow the chamber to remain in a constant state of vacuum. The inner and outer
airlock doors are operated by two air cylinders, a gear train, and a linkage mechanism which is

designed to insure that the door is mechanically locked while wafers are being processed.

Airlock arms are driven by two air cylinders in series. The translation of the linear motion
of these cylinders to the motion that is required to extend and retract the arm of the aiflock is
achieved through another mechanical gear train. Mechanical interlocks assure that the airlock

doors cannot be closed until the arm is centered in the airlock.

3.2.4 Temperature Control System

The lower electrode of the Autoetch process chamber is cooled by a temperature control
system which removes heat from the electrode by circulating deionized water. This closed-loop,
recirculati\ng system is know as the “"chiller". The chiller maintains a preset temperature level.
For the etcher in the Berkeley microlab, this level is set to room temperature. The temperature is
controlled by means of a resistance thermometer device (RTD) located on the bottom of the elec-
trode which sends temperature information to the CPU. The etcher also has a low water flow

alarm switch which monitors the level of the deionized water from the chiller.

3.2.5 Process Chamber

It is inside the process chamber that wafers are etched by computer-controlled gas
discharge. Therefore, the process chamber must remain under vacuum at all times. The chamber
is located directly behind the operator interface display. This display is hinged and will swing
upward to allow direct visual access to the process chamber, The chamber is equipped with

quartz windows on the front and rear. Each window has a wire mesh screen to contain the RF
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field and a plexiglass cover for UV filtering. Not only do these windows allow for observation of
the etch process, but the front window plate also serves as the mounting point for the capacitance

manometer (see § 3.2.6).

The major subsystems of the process chamber are the upper and lower electrode assemblies,
the electrode gap adjustment system, and the RF match assembly (see § 3.2.1). The lower elec-
trode assembly contains the anode on which the wafer rests during processing. The gap adjust-
ment system provides for modification of the space between the cathode (upper electrode) and the
wafer. The gap housing has two large guard seals which provide a vacuum seal between the

chamber and atmospheric pressure.

3.2.6 Chamber/Airlock Vacuum System

The airlock vacuum system can be divided into the airlock vacuum pump assembly and the
airlock manifold. The vacuum pump is installed remotely from the etcher itself. It consists of an
Edwards EH 250 Roots Blower and an E2M40F Rotary Pump. Control of the chamber pressure
is achieved throuéh a "butterfly” throttle valve attached to the vacuum manifold at the rear of the
machine. An automatic throttle valve controller maintains chamber pressure by comparing the
pressure setpoint given in the etch recipe with the actual chamber pressure as monitored by a
capacitance manometer. The chamber vacuum manifold, with a pneumatically operated isolation
valve, is attached to the chamber vacuum foreline assembly. The isolation valve is normally

closed and is activated by the CPU during operation of the system.

3.2.7 Gas System

The gas panel assembly independently regulates the flow of up to five gases into the process
chamber. These gases flow into the chamber according to the flow rates indicated by the etch

recipe to create the various plasmas. Gases are connected to the rear panel of the machine with
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aluminum fittings and each passes through a filter before entering a mass flow controller (MFC).
While not being actively controlled, the MFC’s go into a "normally open" state and then close to
regulate the flow of gas. There is a pneumatically operated valve both upstream and downstream
from each MFC. There are also two valves which rout the gases either to the process chamber or

into the chamber vacuum manifold.

On polysilicon etch machines, the gas panel also houses a CCl, tank. This tank holds the
CCL 4 or other process liquids under vacuum and stores the gas until it is required for etching,
The desired flow of gas is programmed from the recipe and causes an analog signal to be sent to
each MFC. The necessary amount of gas will then flow through the gas panel MFC’s into the
process chamber. The line between the gas panel and the process chamber is a quarter-inch stain-

less steel flexible tube housed in a corrugated tube.

3.3 Fault Propagation

In compléx electromechanical systems such as a plasma etcher, equipment malfunctions are
frequently propagated from one subsystem to another. For example, it is conceivable that a
deionized water flow sensor miscalibration could cause insufficient coolant to circulate through
the chiller. This in tumn can cause RF power supplies to overheat. The ultimate result of such a
problem would cause RF pow;er mismatch or instability errors. The only observable symptom in
this case indicates a fault in the RF matching network. However, the actual root cause of the mal-

function was the incorrect water flow sensor.

In order to insure accurate and robust diagnosis, it is therefore necessary to obtain a
comprehensive mapping of all potential fault propagation patterns. For the Lam Autoetch 490,
these relationships have been captured by means of lengthy discussions with maintenance techni-
cians [iO] as well as thorough inspection of the recorded equipment maintenance history. This

information is visually summarized in "System Fault Propagation Diagrams," such as the one that

37



appears in Figure 3.2. These diagrams are very similar to influence diagrams, which are often
used in expert systems to graphically represent relationships critical to the problem under con-
sideration [12]. This particular figure shows fault propagation in the Autoetch RF Power System.

It includes the flow sensor malfunction scenario descibed above as well as other potential prob-

lems related to RF power.
RF Power System
13 14 | 1.2 11 15
41 2.5 52 6.5

1.1 Interconnect 2.5 Interface Electronics
1.2 RF Matching Network 4.1 Chiller
1.3 Phase/Magnitude Detector 5.2 Electrode Gap Adjustment System
1.4 Power Supplies 6.5 Pressure Controller "Butterfly" Valve
1.5 Generator Calibration

Figure 3.2 - Fault propagation diagram for Lam Autoetch 490 RF power subsystem. Arrows
indicate the direction which component malfunctions may influence subsequent failures. (Com-
ponent numbering refers to the classification system given in Appendix 3.1).

In general, these diagrams are intended to depict the interrelationships of all subsystems and
components in the etcher. These relationships are critical to the development of a useful diagnos-

tic tool since they describe the manner in which faults evolve from root causes to observable
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symptoms. The complete set of fault propagation diagrams for the Autoetch 490 appears in
Appendix 3.2,

3.4 Summary

This chapter has provided a description of the operation of the Lam Research Autoetch 490.
Since equipment malfunctions result from faulty components, this information is essential to the
development of the knowledge base of the system intended to diagnose such malfunctions in the
etcher. Another necessary component of the diagnostic system is a system of models to describe
equipment behavior. The derivation of such models requires a thorough characterization of the

response of process outputs to variations in input parameters. Model development through this

process characterization is the subject of the next chapter.
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APPENDIX 3.1
LAM ETCHER FAULT DESCRIPTION

Below is a hierarchical description of the major systems, subsystems and components of the
Lam Research Autoetch 490 Plasma Etch System. Each item in this listing is accompanied by an
abbreviated designation which is used in FAULTS, the BCAM automated equipment mainte-

nance record-keeping system.

1. RF POWER SYSTEM (rf)
1.1 Interconnect (cable-problem)
1.2 RF Matching Network (matching-network)
1.3 Phase/Magnitude Detector (phase-mag-detect)
1.4 Power supplies (power-supply)

1.5 Generator Calibration (rf-calibration)

2. SYSTEM ELECTRONICS (computer)
2.1 24-volt DC Power Supply (24volt-supply)
2.2 Circuit Boards (board-failure)
2.3 Endpointer (endpointer)
24 Equipment Communication (host-link)
2.5 Interface Electronics (interface)
2.6 Power Supply (power-supply)

2.7 Recipe Module (recipe-module)
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3. WAFER TRANSPORT SYSTEM (wafer-transport)
3.1 Airlock Arm (arm-adjustment)
3.2 Belts (belt)
3.3 Belt Drive System (belt-motor)
3.4 Airlock Doors (door-adjustment)
3.5 Hine Indexer (cassette-indexer)
3.6 Door O-Rings (o-rings)
3.7 Transport Pneumatics (pneumatics)

3.8 Wafer Presence Sensors (sensor-adjustment)

4. TEMPERATURE CONTROL SYSTEM (cooling)
4.1 Chiller (chiller-problem)
4.2 Chiller Water Level (chiller-water-level)
4.3 Water Flow Sensor (flow-sensor)
4.4 Water Utility (recirc-water)

4.5 Procon Pump (mechanical-pump)

5. PROCESS CHAMBER (chamber)
5.1 Endpoint Window (endpoint-window)
5.2 Electrode Gap Adjustment System (gap)
53 Guard Seals (guard-seals)

54 Leaks (leak)



5.5 Lower Electrode Assembly (lower-assembly)
5.6 Polymer Deposition (polymer-deposition)
5.7 Wafer in System (wafer-in-system)

5.8 Wom Electrodes (wormn-electrodes)

6. CHAMBER/ATIRLOCK VACUUM SYSTEM (vacuum)
6.1 Roots Blower (blower)
6.2 Capacitance Manometer (cap-manometer)
6.3 Isolation Valves (isovalves)
6.4 Chamber Vacuum Manifold (manifold-leak)

6.5 Pressure Controller "Butterfly" Valve (press-control)

7. GAS SYSTEM (gas)
7.1 CCl4 Tank (ccl4-fill)
7.2 Gas Cylinders (gas-cylinder-empty)
7.3 Gas Lines (gas-lines).
7.4 MFC Calibration (MFC-cal)

7.5 Routing Valves (valves)

8. RECIPE ERROR (recipe-error)



9. ROUTINE MAINTENANCE (maintenance)

9.1

9.2

9.3

94

Analog Interface Calibration (analog-calibration)
Chamber Clean (chamber-clean)
Electrode Replacement (electrode-replace)

Change Pump Oil (pump-service)



APPENDIX 3.2
LAM ETCHER FAULT PROPAGATION DIAGRAMS

The following are system fault propagation diagrams for the Lam Research Autoetch 490
Plasma Etch System. The first diagram shows the relationship between each major subsystem
and the overall piece of equipment. Subsequent diagrams depict similar relationships and interre-
lationships for each subsystem at the component level. For each diagram, arrows indicate the
direction of malfunction propagation. The component numbering system reflects the

classification scheme in Appendix 3.1.
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CHAPTER 4
EXPERIMENTAL MODELING OF THE PLASMA ETCHER

4.1 Introduction

Plasma etch modeling from a fundamental physical standpoint has had limited success. The
plasma chemistry of many discharges cannot be modeled because the principal reactions and rate
constants are unknown [1]. The best physically-based models currently available are capable of
describing the chemical kinetics of one-dimensional RF glow discharges [2-4]. Two-dimensional
models of RF glow discharges are now at an early stage of development [S]. These models
attempt to derive self-consistent solutions to first-principle equations involving continuity,
momentum balance, and energy balance inside a high frequency, high intensity electric field.
This is accomplished by means of computationally expensive numerical simulation methods
which typically produce outputs such as profiles of the distribution of electrons and ions within
the plasma sheath. However, although detailed simulation is useful for equipment design and
optimization, it is subject to many simplifying assumptions. Due to the extremely complex
nature of particle dynamics within a plasma, the connection between these microscopic models

and macroscopic parameters such as etch rate has yet to be clearly distinguished.

Since the complexity of practical plasma processes at the equipment level is presently far
ahead of theoretical comprehension, other efforts have focused on empirical approaches to
plasma modeling involving Response Surface Methods (RSM) [6-7]). These techniques have

_been used by several authors to obtain statistical models of the etch rates of various thin films [8-
14]. Karulkar and Wirzbicki studied the etch rate of silicon dioxide and positive photoresist in a
CHF 3/C,F ¢/O,/He plasma as a function of oxygen flow, reactor pressure and average RF power

[8]. In addition, Riley et. al. investigated the etching of SiO, in C ,F ¢/CHF 4 plasmas versus flow
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rate and pressure [9]. Jenkins et. al. provides a model of the etch rate of p -doped polysilicon in a
CF3Cl/Ar plasma versus pressure, RF power and CF3Cl fraction [11]. Thompson and Sawin
studied the etching of n*-doped poly in SF ¢ plasmas versus power, pressure, and flow rate [12].
Further, Gogolides and Sawin performed a similar characterization of n* poly in CCI,/He plas-
mas as functions of RF power, pressure and He fraction [13]). Riley and Hanson, on the other
hand, investigated silicon nitride etching in SF ¢/He versus the combined SF ¢/He flow rate, pres-

sure, power and electrode spacing [14].

In many of these studies, however, the complete characterization of other critical process
outputs which directly affect product quality such as etch uniformity, selectivity and anisotropy
has been somewhat overlooked. Such a complete characterization is a necessary component of
any effective diagnostic system. Therefore, the objective of the following experiment was to
obtain a comprehensive set of empirical models for plasma etch rates, uniformity, selectivity and
anisotropy. These models accurately represent the behavior of a specific piece of equipment
under a wide range of etch recipes, thus making them ideal for equipment diagnosis and other
manufacturing purposes. In particular, this study focuses on the etch characteristics of n*-doped
polysilicon in a CCl4/He /O, plasma. Responses were modeled under the variation of the follow-
ing six input parameters:. RF power, pressure, electrode spacing, and the three gas flows. Etching

took place in the Lam Research Autoetch 490 single-wafer plasma system.

4.2 Experimental Design

A prime example of a fabrication step in which‘plasma etching has become essential is the
definition of polysilicon features for MOS circuits. This process step often requires that a rela-
tively thick polysilicon gate be etched down to a thin silicon dioxide layer. Therefore, high selec-
tivity between poly and Si0, is necessary in order to use a thin gate oxide as an etch stop. In

addition, it is desirable that the vertical etch rate of the polysilicon be much greater than its
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horizontal rate to achieve high etch anisotropy. Finally, good within-wafer uniformity and selec-
tivity to photoresist are also desirable. Carbon tetrachloride has been reported as an anisotropic
etchant with a high selectivity for polysilicon in plasma etching [15], thus making it an attractive

candidate for this experiment.

The most critical control parameters in plasma etching are RF power, chamber pressure,
electrode spacing and gas flow [11,14-16]. Helium is often added to standard CCl, etch recipes
in order to enhance etch uniformity. In addition, oxygen is sometimes also introduced into the
gas mixture to suppress polymer deposition in the process chamber [1,9,13]. The effects of all six -
process variables must be considered in plasma recipe control. However, RSM techniques are
most effective when the number of input factors is limited to six or fewer [11,17]. As a result, it
was appropriate to divide the overall experiment into an initial variable screening [7] phase to
determine the most significant parameters, followed by a second phase designed to obtain the sta-

tistical response models.

Occasionally, temporary disturbances might affect the operation of a piece of equipment as
complex as a plasma etcher. In order to make sure that such disturbances do not occur during the
characterization runs, it is important to bring and maintain the operation under Statistical Process
Control (SPC). This was accomplished by applying a real-time monitoring system during the
experiment. This system was designed with a client-server interface between the etcher and a
host computer. A C program allowed the interpretation of Semiconductor Equipment Communi-
cations Standard IT (SECS-II) messages issued from the etcher showing various sensor values

which monitored real-time conditions in the process chamber. The parameters monitored

included:
1. CCl4flow
2. . 4] 2 flow
3. He flow
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Forward RF power
Reflected RF power
Chamber pressure
Electrode temperature
Electrode gap

. Guard seal pressure

10. Entrance airlock pressure
11. Exit airlock pressure

B

Control was ensured by comparing the patterns observed during the experimental runs with simi-

lar historical data [18].

4.2.1 First Phase - Screening Experiment

The six factors chosen for the initial screening phase of this experiment along with their
respective ranges of interest are shown in Table 4.1. These ranges were chosen to effectively
encompass the wide variety of etch recipes currently being utilized in the Berkeley Microfabrica-
tion Laboratory. A full factorial experiment to determine all effects and interactions for six fac-
tors would require 25, or 64 experimental runs. In order to reduce experimental costs, the effects
of higher order interactions were neglected and a 25~ fractional factorial design requiring only 32
runs was performed [19]. This design used a Resolution V format which prevented main effects
from being confounded with other main effects as well as with two- and three-factor interactions.

It also prevented the confounding of two-factor interactions with each other [7].

Table 4.1: Range of Input Factors

Parameter Range Units
RF Power 300-400 | watts
Pressure 200-300 | mtorr
Electrode Spacing 12-1.8 cm
CCl 4 Flow 100-150 | sccm
He Flow 50-200 | sccm
0, Flow 10-20 | sccm
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Table 4.2: Design Matrix for Screening Experiment

Run | Pressure | RFPower | CCl,Flow | He Flow | O )2 Flow | Electrode Gap | Block
1 300 300 100 200 20 1.8 2
2 200 400 100 50 .10 1.8 2
3 200 400 150 200 20 1.2 1
4 300 400 150 200 20 1.8 2
5 200 400 150 50 10 1.2 1
6 300 300 150 200 10 1.8 1
7 300 400 100 50 20 1.8 1
8 250 350 125 125 15 1.5 1
9 200 300 150 200 20 1.8 2

10 300 400 150 50 20 12 2
11 300 300 100 200 10 12 2
12 200 300 150 200 10 1.2 2
13 200 400 100 200 10 12 2
14 300 400 150 50 10 1.8 2
15 200 300 100 50 20 1.8 1
16 200 400 100 200 20 1.8 2
17 200 300 100 200 20 1.2 1
18 300 300 150 50 10 1.2 1
19 200 300 100 50 10 1.2 1
20 200 300 150 50 10 1.8 2
21 300 © 400 150 200 10 1.2 2
22 200 400 100 50 20 1.2 2
23 200 400 150 200 10 1.8 1
24 300 400 100 200 20 1.2 1
25 250 350 125 125 15 1.5 1
26 300 300 100 50 20 12 2
27 300 300 100 50 10 1.8 2
28 300 300 150 200 20 1.2 1
29 200 300 150 50 20 1.2 2
30 200 300 100 200 10 1.8 1
31 200 400 150 S0 20 1.8 1
32 300 400 100 200 10 1.8 1
33 300 300 150 50 20 1.8 1
34 300 400 100 50 10 1.2 1
35 250 350 125 125 15 1.5 2

The experimental runs were performed in two blocks of 16 trials each in such a way that no
main effects or first order interactions were confounded with any hidden time effects (such as
unscheduled equipment maintenance during the experiment). Three center points were added to

the design to provide a check for model nonlinearity. The design matrix appears in Table 4.2.
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The experimental sequence was randomized in order to avoid biases due to equipment aging dur-

ing the experiment.

4.2.2 Second Phase - RSM Modeling Experiment

Analysis of the first stage of the experiment revealed significant nonlinearity in nearly all
responses, which indicated the necessity of quadratic models. Also, none of the input factors were
found to have a statistically insignificant effect on all of the responses of interest. Thus, none
were omitted from the response surface models derived in the subsequent phase. In order to
obtain these models, it was necessary to augment the data gathered with a second experiment that
employed a Central Composite Circumscribed (CCC) Box-Wilson design (see Figure 4.1). In
this design, the 2-level factorial "box" was enhanced by further replicated experiments at the
center (to provide a direct measure of the equipment and measurement replication error) as well

as symmetrically located "star" points [19].

Table 4.3: Additional " Star Point" Recipes for Box-Wilson Experiment

Run | Pressure | RF Power | CCl Flow | He Flow | O,Flow | Electrode Gap
36 250 350 125 125 3 1.5
37 250 231 125 125 15 1.5
38 250 350 125 200 15 1.5
39 250 350 125 125 15 0.8
40 369 350 125 125 15 15
41 250 350 125 0 15 1.5
42 250 350 125 125 15 15
43 250 350 66 125 15 1.5
4 250 350 184 125 15 1.5
45 250 350 125 125 15 1.5
46 250 350 125 125 15 1.5
47 250 350 125 125 15 22
48 250 350 125 125 15 1.5
49 250 469 125 125 15 1.5
50 131 350 125 125 15 1.5
51 250 350 125 125 27 1.5
52 250 350 125 125 15 15
53 250 350 125 125 15 1.5
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Figure 4.1 - Central composite Box-Wilson experimental designs [17].

A complete CCC design for six factors requires a total of 91 runs. In order to reduce the
size of the experiment and combine it with the results from the screening phase, a half replicate
design was again employed. The entire second phase required a total of 18 additional runs,
whose recipes are shown in Table 4.3. A circumscribed design was selected as opposed to a
inscribed (CCI) design, in order to allow the models to accurately predict the responses over the
entire range of the input factor settings [17]. However, in the case of He flow for runs 39 and 41,
the necessary star point required recipe settings (303 and -53 sccm) which are beyond the opera-

tional capabilities of the equipment. In this case, the recipe was modified to reflect the
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maximum/minimum possible parameter settings of the Lam etcher (0 and 200 sccm, respec-

tively). A graphic description of central composite designs appears in Figure 4.1.

4.3 Experimental Apparatus and Technique

4.3.1 Test Pattern Design
® @
LTO mask @ _1_ @ | _l_
poly i I X ] l ....... E
oxide ' | 1‘
1

substrate

@ Photoresist Etch Rate
@ Lateral Polysilicon Etch Rate
@ Polysilicon Etch Rate

@ Slicon Dioxide
Figure 4.2 - Cross section of test structure describing the measurements of interest.

Etching was performed on a simple test structure designed to facilitate the simultaneous
measurement of the vertical etch rates of polysilicon, Si0,, and photoresist as well as the lateral
etch rate of poly on the same wafer. This was done in order to insure that each of the models to
be derived would be developed under identical process conditions. Preliminary investigations
revealed that photoresist exhibited very poor etch selectivity when used as a mask for polysilicon.
Due to this inadequacy, it was determined that low-temperature oxide (LTO) would serve as a

much more effective mask for patterning the poly lines necessary for anisotropy measurements.
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These lines were patterned using a simple 3-mask process which is described below. A cross sec-

tion showing the critical measurement area is shown in Figure 4.2,

4.3.2 Test Pattern Fabrication

The patterns were fabricated on 4-in diameter silicon wafers. Approximately 1.2um of
phosphorus-doped polysilicon was deposited over 0.5um of thermal SiO , by low-pressure chemi-
cal vapor deposition (LPCVD). The relatively thick layer of oxide was grown in order to prevent
etching through the oxide by the less selective experimental recipes. Poly resistivity was meas-
ured at 86.0 Q-cm. Oxide was grown in a steam ambient at 1000 °C. One micron of Kodak 820
photoresist was spun on and baked for 60 seconds at 120 °C. Poly lines for SEM photos were

patterned with an LTO mask deposited at 450 °C by LPCVD.

4.3.3 Plasma Etch Equipment

The etching apparatus consisted of a Lam Research Corporation Autoetch 490 single-wafer
parallel-plate system. The etching samples rest on the grounded lower electrode while the upper
electrode is excited by a 13.56 MHz RF generator operating through a matching network. The
anodized aluminum electrodes are circular and equal in area. The electrode walls are also com-
posed of aluminum. Process gases are introduced into the chamber through nearly 1000 holes in
the upper electrode in "showerhead” fashion. Reactor pressure is monitored with a capacitance
manometer and controlled automatically with a throttle valve [20-21]. As mentioned above, the
etcher was monitored via a real-time statistical proceés control scheme to ensure consistency in
equipment operation throughout the experiment. A schematic diagram of the etching system

appears in Figure 3.1 (see Chapter 3).
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4.3.4 Measurement Methodology

Film thickness measurements were performed on five points per wafer (as in Figure 4.3)
both before and after etching using a Nanometrics Nanospec AFT system in conjunction with an
Alphastep ZOQ Automatic Step Profiler. Vertical etch rates were calculated by dividing the differ-
ence between the pre- and post-etch thickness by the etch time. The lateral etch rate for poly was
determined via SEM photos by measuring the difference between the pre- and post-etch linewidth
under the assumption that the pre-etch width was that at the base of the poly line (see Figure
4.17). Since the average polysilicon etch selectivity with respect to LTO was about 10:1, the

contribution of the eroding LTO mask to the measured lateral rate was insignificant.

Figure 4.3 - Wafer Measurement Sites.

Expressions for the selectivity of the poly with respect to oxide (S,;) and with respect to

photoresist (S, ) along with percent anisotropy (A ) and percent nonuniformity (U'), respectively,

are given below:
Sox = -R@o% @.1
_ R
Spn = 'R'ﬁ 4.2



1L
A_[I-RPJ @4.3)

* 100 44)

where R, is the mean vertical poly etch rate over the five points, R, is the mean oxide etch rate,
R,y is the mean resist etch rate, L, is the lateral poly etch rate, R, is the poly etch rate at the
center of the wafer, and R,, is the mean poly etch rate of the four points located about one inch

from the edge {1,22].

4.4 Experimental Results

Experimental data was analyzed using the R/S Discover commercial software package [17].
" After the initial screening experiment, a few of the input factors were found to have an
insignificant effect upon individual responses. However, no single factor was statistically
irrelevant to all five responses of interest. For example, although the electrode gap spacing had
little effect on the etch selectivity with respect to oxide, it had a dramatic impact on uniformity.

Table 4.4 shows the significance level of the student-t statistic for each of the main effects.

Table 4.4: Results of Screening Experiment

Statistical Significance

Factor
Rg Sox Seé U A __|
Pressure 0.0090 | 0.0001 { 0.0001 | 0.0677 | 0.3008

RF Power | 0.0001 | 0.0046 | 0.0001 | 0.0493 | 0.5119

CCl, 0.0032 | 0.0410 | 0.0001 | 0.0672 | 0.5244
He 0.0001 | 0.0001 | 0.0001 | 0.0002 | 0.0157
0, 0.0043 | 0.0669 | 0.0014 | 0.9581 | 0.6418
Gap 0.0185 | 04134 | 0.0001 | 0.0107 | 0.4634

* Only factors with a significance < 0.05 are considered significant.
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The above results indicate that all six controlled parameters have a significant effect both on
etch rate and resist selectivity. On the other hand, oxide selectivity is impacted mostly by pres-
sure, power, CCl4 and helium flow. Etch uniformity depends primarily on power, helium flow
and gap spacing. Finally, for the range of our experiment, anisotropy depends only on helium
flow. The additional 18 runs of the second phase of the experiment yielded quadratic models
which indicate the precise interaction between input factors and the four responses. These

models are discussed below.

4.4.1 Polysilicon Etch Rate

Fitting a regression model for R, yielded the following expression:

R, =-245-4.24P + 11.0Rf +0.742CCl,+ 11.2He + 523G 4.5)
+35.90, - 0.034P*He + 7.82P*G +0.085Rf*CCl .- 8.36Rf*G
- 0.132(CCl )* +0.059CCl ;*He —0.059He? + 1043 /min

where R, is in angstroms/minute (4 /min) and the units of every other parameter are given in
Table 4.1. This equation was derived by stepwise regression [23), and it will predict the mean
response of the equipment with a one-sigma prediction error of + 104 A /min. The actual meas-
ured response of the equipment will vary around the mean value with a one-sigma replication
error of + 309 4 /min. The Analysis of Variance (ANOVA) table for the etch rate model is

shown in Table 4.5.

The F-test shows that this model is highly significant, since the regression mean square,
which is the amount of variation explained by the proposed model, is significant. This fact is
verified by the F-ratio statistic. If the regression mean square was not significant, then this ratio
would be distributed aécording to the F distribution with 15 and 37 degrees of freedom. The
value 16.86, however, is highly unlikely to occur in the F(15,37) distribution. The lack-of-fit F-

test reveals little evidence that the inclusion of additional terms would improve this model, since
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a lack-of-fit F-ratio as large as 2.66 occurs 7.5% of the time in the F(29,8) distribution [7,19).
Therefore, most of the residual of the model originates from experimental error. The "adjusted
R?" is a parameter which measures the fraction of the total variation in the data accounted for by
the model [11]. A scatterplot of the predicted etch rate values versus the corresponding experi-

mental values is shown in Figure 4.4,

Table 4.5: ANOVA for Poly Etch Rate Model

Source DF  Sum of Squares Mean Square  F-Ratio Significance
Total 52 24717141 475329.63
Regression 13 20983554 1614120.00 16.86 0.000
Residual 39 3733587 95732.99
Lack of Fit | 31 3402778 109767.03 2.66 0.075
Error 8 330809 41351.11

Adjusted R? = 0.799

Although this empirical etch rate model is fairly complex, a few interesting relationships
emerge from the contour plots of Figures 4.5 and 4.6. In Figure 4.5, R, surfaces are plotted
against RF power and chamber pressure with all other parameters set at their nominal values. For
high process throughput, etch rate should preferably be as high as possible. This occurs at high
power and high pressure, since higher pressures provide a more suitable environment for chemi-
cal etching by radicals [1]. Alternatively, as can be seen in Figure 4.6, high etch rates occur when
the gap is narrow and the flow rate is high. The observed relationship between the etch rate,
power and the CCl, flow is consistent with the commonly held belief that the amount of etching
is proportional to the adsorbed chlorine concentration on the polysilicon surface. This concentra-
tion is increased both by greater CCl4 flow and high RF power, which enhances the rate of the

following electron-impact dissociation and electron attachment reactions [13]:

CCly+e™ = CCly3+Cl +e” 4.6)
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Etch Rate Model vs Actual
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Figure 4.4 - Scatterplot of etch rates predicted by empirical model versus actual experimen-
tal values. The straight line represents the region of perfect agreement between model and
experiment.
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CCly+e~ = CCly+Cl~+Cl @7

However, it is shown below that these choices might compromise the other objectives of the etch

step.

4.3.2 Etch Uniformity

The uniformity regression model and corresponding ANOVA table are:

U =-11.5-0.0385P +0.0937Rf +0.710CCl,—0.415He — 8.90G 4.8)
—(1.77e=-3)Rf*CCl 4+ (1.38¢ =3)Rf *He — (1.40e-3)CCl*He +(7.98e—4)He? +2.22[%]

Table 4.6: ANOVA for Etch Uniformity Model

Source DF  Sum of Squares Mean Square  F-Ratio Significance
Total 52 5896.02 113.39
Regression 9 3987.96 443.11 9.99 0.000
Residual 43 1908.06 44.37
Lack of Fit | 35 1546.79 44.19 0.98 0.562
Error 8 361.27 45.16

Adjusted R2 = 0.609

The prediction error of the uniformity model is + 2.22 (measured in %). The equipment
replication error around the average value given by the model is + 6.66 [%]. Tests for
significance reveal that all model coefficients are relevant. In addition, there is no evidence for
lack of fit. The scatterplot of predicted nonuniformity versus experimental data appears in Figure
4.7. The contours in Figures 4.8 and 4.9 depict the behavior of the model. In Figure 4.8, U is
plotted against pressure and power. Optimum uniformity is observed at high pressure and low
power. . Thus, good uniformity is achieved at the expense of high etch rates. The effects of He
flow and electrode spacing are observed in Figure 4.9. This plot verifies the initial assumption
that helium enhances uniformity, but only up to a relatively low optimum value of He flow rate.

Beyond this value, U begins to degrade.
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4.4.3 Oxide Selectivity

The regression model and ANOVA table for S, are given below:

Sax =-13.1+0.097P +0.04Rf —0.06CC!l4—0.059He +0.0790, 4.9
—(2e—4)P*Rf +(2.9¢-4)P*CCl,— (3e—4)P*He 10.31

Table 4.7: ANOVA for Oxide Selectivity Model

Source DF _ Sum of Squares Mean Square __F-Ratio __Significance
Total 52 248.70 4.78
Regression 9 213.26 23.70 28.76 0.000
Residual 43 3543 0.82
Lack of Fit | 35 31.35 0.90 1.75 0.205
Error 8 4.09 0.51

Adjusted R? = 0.828

The one-sigma prediction error of this model is £ 0.31, and the replication error inherent in the
equipment is £ 0.91. The F-tests reveal that the overall model is highly significant, and that there
is no evidence that a more complex model is required. The scatterplot for the oxide selectivity
model appears in Figure 4.10. A few implications of the oxide selectivity model are seen in Fig-
ures 4.11 and 4.12. Figure 4.11 shows S, contours versus RF power and pressure. According to
this plot, highest oxide selectivity occurs at high pressure and low power. These results reflect
the fact that high ion energies (produced by high RF power) generally tend to degrade etch selec-
tivity [1]. Thus, a trade-off exists between high etch rate and good selectivity in terms of power.
The effects of CCl4 flow and pressure can be seen in Figure 4.12. The highest oxide selectivity

occurs when pressure and CCl 4 flow are both high.

4.4.4 Photoresist Selectivity

The regression model and ANOVA table for S, are:

Sph =7.56 +0.009P +0.014Rf —0.022CCl4 + 0.006He —2.59G -0.0990, (4.10)
—(5e=5)P*Rf +(1.3¢—4)P*CCl4— (Te-5)P*He + (3.7e—4)P*0,
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Oxide Selectivity Model vs Actual
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+(2.7e-5)Rf 2 + (3.6e-S)Rf*He — (5¢-5)CCl *He +0.7571G* +0.09

Table 4.8: ANOVA for Photoresist Selectivity Model

Source DF  Sum of Squares Mean Square  F-Ratio Significance
Total 52 15.24 0.29
Regression 14 12.61 0.90 13.02 0.000
Residual 38 2.63 0.07
Lack of Fit | 30 242 0.08 3.07 0.050
Error 8 0.21 0.03

Adjusted R%=0.764

The one-sigma prediction error of this model is + 0.09, and the equipment replication error is +
0.95. Statistical tests for model complexity and fit give no reason to question the significance and
adequacy of the resist selectivity model. The scatterplot for the resist selectivity model is shown
in Figure 4.13. Figure 4.14 shows S,, contours versus power and pressure, and Figure 4.15
shows the effects of CCl4 flow and pressﬁre. These plots indicate that photoresist selectivity
possesses similar trends to that of oxide. This result is not surprising, since both oxide and resist

are etched mechanically rather than chemically within the plasma [15].

4.4.5 Anisotropy

Early studies have reported significant undercutting of the etch mask during polysilicon
plasma etching in CCl, [15]. In this study however, our primary interest was to derive models
that describe equipment behavior in commonly used ranges of settings. This meant that the
chosen range of RF power was high enough and the range of pressure was low enough such that
the ions in the plasma struck thg wafer surface almost exclusively at normal incidence. This type
of jon bombardment preferentially accelerates the surface chemical reaction in the vertical direc-
tion, thereby producing highly anisotropic profiles [1]. Consequently, analysis of the etch aniso-
tropy data from the first block of the screening phase of the experiment showed very anisotropic

poly lines for all recipe variations. Scanning Electron Microscopy (SEM) photographs were used
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to measure the sidewall slope as defined in Eq. (3). Because of the cost associated with SEM stu-
dies, only 18 of the first-phase wafers were examined. These samples were chosen according to a
Resolution IV, 252 fractional factorial design with three center points. This data exhibited no
significant nonlinearity and rather high equipment and measurement replication error. Still, a sim-
ple, statistically significant anisotropy model was derived using only these trials. The model is

given below:

A =946-0031He +1.82(%) 4.11)

The one-sigma replication error of this model is + 3.24 (%). Anisotropy depends primarily upon
helium flow for this range of input factors. As indicated in Figure 4.16, high anisotropy is
obtained by reducing helium flow as much as possible. An SEM photo exhibiting the lateral
etching of the polysilicon lines appears in Figure 4.17. As shown in Table 4.9, analysis of vari-
ance for this model revealed no evidence that the model is inadequate or any indication of lack of
fit. Although this model is statistically significant, its high prediction and replication error imply

that benefits from He adjustment can only be realized in a long production run.

Table 4.9: ANOVA for Anisotropy Model

Source DF  Sum of Squares Mean Square  F-Ratio Significance
Total 18 269.83 14.99
Regression 1 91.23 91.23 8.68 0.009
Residual 17 178.60 10.51
Lack of Fit | 16 178.35 11.15 45.50 0.116
Error 8 0.21 0.03

Adjusted R?=0.299

4.5 Model Verification

The accuracy of the above models was verified in two separate procedures. In the first, an

experiment was conducted to optimize the standard etch recipe using numerical optimization
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techniques along with the five empirical models. In the second, the models were used to predict
the etch rate and anisotropy of various recipes designed to etch annealed polysilicon. In each

case, the utility and precision of the etch models were corroborated by the experimental results.

4.5.1 Process Optimization

The etch models have been used to design a new etch recipe which exhibited improvement
in all etch responses. The optimum recipe was determined using the Han Powell constraint
optimization algorithm [25]. This recipe was designed to simultaneously increase etch rate,
selectivities and anisotropy while minimizing nonuniformity. A comparison between the stan-

dard recipe and the optimized recipe appears in Table 4.10.

Table 4.10: Standard and Optimized Etch Recipes

Parameter Standard | Optimized
_ Recipe Recipe |
‘| RF Power (watts) 300 300
Pressure (mtorr) 280 300
Electrode Spacing (cm) 1.5 1.2
CCl 4 Flow (sccm) 130 150
He Flow (sccm) 130 50
O, Flow (sccm) 15 20

After the optimum recipe was determined, an experiment was undertaken to confirm the
improvement of the etch responses. In this experiment, a total of six wafers were identically
prepared according to the previously described process flow. Prior to the final etch step, these
wafers were divided into two equal groups, one group undergoing the standard etch recipe and the
other receiving the optimized treatment. The results of this experiment are summarized in Table
4.11. The last two columns in this table show the percent improvement in the etch response

derived from optimizing the recipe and the statistical significance of this improvement based on
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the student-t statistic [19]. Notably, significant improvement was obtained in nearly every case.

Table 4.11: Standard and Optimized Responses

Response Sid
Etch Rate (A /min) | 3660
Nonuniformity (%) | 10.66
Oxide Selectivity 9.58
Resist Selectivity 2.99

4.5.2 Using Models for Prediction

The empirical etch models which have been developed enable a process engineer to accu-
rately predict etch responses over a wide range of etch recipes. This fact was verified by an
experiment designed to characterize the plasma etching of annealed polysilicon using various
recipes. In this procedure, the particular responses of interest were the etch rate and anisotropy.
The results of this experiment are summarized below in Tables 4.12 and 4.13. In these tables, the
difference between predicted and actual values is given in standard deviations as given by the
equipment replication error (Gz). (Note that anisotropy measurements were not made for recipes

2,6, and 7).

Table 4.12: Etch Rate Predictions versus Actual Results

Recipe | Predicted Rate (A /min) | Actual Rate (4 /min) | Difference (Gz)
1 4161 3992 0.6
2 4161 4516 1.2
3 3973 3685 0.9
4 4161 4012 0.5
5 4348 4696 1.1
6 4348 4669 1.0
7 4348 4452 0.3
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Table 4.13: Anisotropy Predictions versus Actual Results

Recipe | Predicted Anisotropy (%) | Actual Anisotropy (% Difference (G,
1 93.1 95.0 0.6
3 90.6 90.0 0.2
4 93.1 89.0 1.3
5 92.1 91.5 0.2

In each of the above cases, the models predicted the etch behavior well within + 1.960; limits,

thereby validating their accuracy at the 5% level of significance [19].

4.6 Summary

An economical two-phase experiment has been designed and conducted to characterize the
etch rate, uniformity, selectivity to SiO, and photoresist, and anisotropy of n*-doped polysilicon
versus a comprehensive set of controlling parameters. These parameters were fit to quadratic

response surface models.

Undoubtedly, some of the second order effects reported here apply only to the specific
apparatus used for our experimental processing. Additional characterization effort has to be
undertaken in order to apply this methodology to other production-worthy plasma etchers. On
the other hand, it has been shown that these models describe the operation of the characterized
equipment very precisely. These models can also be augmented to reflect equipment aging by
using on-line experimentation [24]. Further, since statistical estimates of both prediction and
replication errors were derived, these models can be used ‘for the long range optimization of the

etching process. This consideration is extremely important for long production runs.

Unlike computationally expensive physically-based simulators which are often impractical
due to their slowness and lack of precision, the empirical models derived herein can be used fora

variety of manufacturing purposes, including diagnosis, recipe generation, and statistical process
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control. This has been accomplished by organizing and storing the models in an object-oriented
software library (see Appendix 4.2). In the next chapter, the specific use of the models for mal-

function diagnosis will be described in greater detail.
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APPENDIX 4.1
AN EMPIRICAL MODEL FOR ETCH TEMPERATURE

Motivation

The ultimate goal of the development of models which describe the behavior of the plasma
etcher is to use these models for equipment diagnosis. Although the models for etch rate, unifor-
mity, selectivity, and anisotropy provide accurate diagnostic information, they are only useful
during the in-line measurement phase, after the actual etch process has been completed. A model
describing a real-time process condition would provide additional diagnostic evidence which
could be used to infer equipment malfunctions even more rapidly. Since the temperature of the
Lam etcher process chamber is not directly controlled by the user [1], a model for this response

could serve to capture the "signature” of the proper behavior of the machine.

Background

Process temperature has a profound influence on plasma discharge chemistry. The tempera-
ture of the gas mixture is a complex function of power input, heat transfer, and transport
phenomena. The rate constants for the chemical reactions in the etching process vary with tem-

perature according to the Arrhenius expression [2]:

Eu

k(T)=AT)e X (ad.1.1)

where A is a "pre-exponential” which is weakly dependent on temperature, and E, is the "activa-
tion energy." Since the rate constants for chemical reactions are a function of temperature, the

temperature also has an indirect effect on selectivity, uniformity and etch rate.
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Metrology

In the Lam Autoetch 490 plasma etcher, the process temperature is controlled by means of a
system which removes heat from the lower electrode by circulating deionized water [1]. How-
ever, even though this control scheme prevents the electrode temperature from elevating much
above room temperature, subtle increases in temperature during processing are still detectable by
the equipment monitoring system [3). A typical graph depicting this phenomenon is shown in
Figure a4.1.1

Since the temperature increases almost linearly with time, the temperature gradient may be
described by the slope of the least squares regression line [4] of the temperature versus time plot.
This slope is a function of the etch recipe. Thus, it is possible to model the process temperature
gradient using response surface methods in the same manner as the in-line responses (i.e. - etch
rate, uniformity, selectivity, etc.). Such a model has been developed using temperature data from

the same two-phase experiment described in Chapter 4.

Temperature Gradient Model
Experimental data was analyzed by piecewise regression [5] using R/S Discover [6]. The
regression model for the temperature gradient (VT ) is:

VT =7.29 - 0.006P +0.036Rf +0.03CCl, - 0.014He — 11.9G (ad.1.2)
+(1.12e4)P% - 2¢—4)P*He + (9.85¢-5)He? +3.58G? +0.39 (mdeg/sec)

The prediction error of the uniformity model is + 0.39 millidegrees/second. The equipment
replication error is + 1.17 mdeg/sec. Significance tests reveal that all model coefficients are
relevant, and there is no evidence for lack of fit. A scatterplot of the predicted gradient versus is
shown in Figure a4.1.2. Figures a4.1.3 and a4.1.4 describe the behavior of the temperature gra-

dient under various process conditions. Ideally, the gradient should be kept as low as possible to
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Figure a4.1.1 - Typical plot of process temperature versus time.



reduce the possibility of overheating and ensure the stability of long etching i steps. From these

figures, it is evident that the a low gradient is achieved at low power and pressure as well as using

wide electrode spacing. In addition, the presence of helium in the process chamber seems to

serve as a cooling agent. The ANOVA table of this model appears below.

Table a4.1.1: ANOVA for Temperature Gradient Model

Source DF _ Sum of Squares Mean Square _F-Ratio __Significance
Total 52 363.23 6.99
Regression 9 304.54 33.84 24.80 0.000
Residual 43 58.68 1.37
Lack of Fit | 35 41.50 1.19 0.55 0.892
Error 8 17.19 2.15

Adjusted R% = 0.805

Summary

This appendix presents an empirical model for the temperature gradient in the plasma etch

process chamber. This model possesses the advantage of providing additional diagnostic infor-

mation during the real-time phase of the process. Although this model has yet to be incorporated

into the overall process control and diagnostic strategy for the etcher, its use in conjunction with

the equipment monitoring scheme [3] will potentially allow the detection of failures early in the

fabrication cycle.
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Figure a4.1.2 - Scatterplot of predicted temperature gradients vs actual measured gradients.
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APPENDIX 4.2
AN OBJECT-ORIENTED SOFTWARE LIBRARY FOR
BCAM EQUIPMENT MODELS

Motivation

The characterization of integrated circuit processes through equipment models such as those
developed in Chapter 4 has become a necessity in semiconductor manufacturing. Equipment
models may be physical or empirical, or a combination of both. Further, equipment-specific
models are often updated to reflect the changing status of the equipment over time. In addition to
the models for the Lam Research Automated Plasma Etcher [1], the Berkeley Computer-Aided
Manufacturing (BCAM) group has also developed several other statistically-based polynomial
models to describe the behavior of important pieces of IC manufacturing equipment, including -
the Tylan Low-Pressure Chemical Vapor Deposition (LPCVD), and the photolithography

workcell [2,3].

In order to aid in the ongoing derivation of further equipment models, the BCAM group has
also developed an object-oriented model library. The overall purpose of the library is to provide
an efficient means of storing, retrieving, evaluating, analyzing, and otherwise manipulating these
models for use by other modules in the BCAM architecture (i.e. - recipe generation, malfunction
diagnosis, statistical process control, etc.). Further, the library makes the models available to
simulation tools such as the SIMPL-DIX TCAD software package. The entire library is written

in C++, an object-oriented superset of the C programming language [4].

Rationale for Object-Oriented Approach

The BCAM system currently employs equipment models for the Lam Research automated

plasma etcher, the Tylan low-pressure chemical vapor deposition furnace, the Eaton photoresist
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coating and baking system, the GCA wafer stepper, and the MTI development station. In addi-
tion, it is anticipated that many more models may be developed in the future. Given its inherent
modularity, hierarchical nature, and inheritance properties, new models may be added in an
object-oriented environment with relative ease [S]. Consequently, it was determined that the
BCAM equipment model library should be implemented using an object-oriented programming
(OOP) language. Due to the overall efficiency of the C programming language and its ability to
interface with other software in the UNIX programming environment, the language chosen for
this application was C++, an object-oriented extension of C. (For a more detailed description of

the advantages of OOP and C++, refer to Chapter 6).

Model Library Structure

The class structure of the equipment model library is depicted in Figure a4.2.1. In this
structure, the most general object class is the generic model. All subsequent classes inherit their
basic data structures and methods from the mode! class. There are two types of models derived
from this parent class: process models and equipment models. Process models are “"textbook"
physical models of fabrication processes such as the well-known Deal-Grove model for silicon
oxidation [6]. The equipment model class, on the other hand, contains the empirical and semi-
empirical equipment-specific models for the Lam etcher, Tylan fumnace, and other fabrication
equipment located in the Berkeley Microlab. Each equipment class possesses several subclasses
which consist of the specific characteristics modeled in that particular piece of equipment. For
the etcher, these subclasses include: etch rate, uniformity, selectivity, and anisotropy. These

models are discussed in detail in Chapter 4.

The C++ code which implements the structure of the generic model class and all of its subc-

lasses appears in Appendix 4.2a. The parent class contains the following crucial pieces of data:
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Figure a4.2.1 - Hierarchical description of BCAM model objects.

e  version - a character string which denotes the version designation of the particular model.
e  rerm_cnt - the total number of terms in the model.

e  param_cnt - the total number of independent parameters in the model.

e  coeffs - the array which contains the coefficients of the model terms.

e  param - the array which contains the actual parameter values for a given recipe.

®  exp_mat - the matrix of dimension [term_cnt,param_cnt] which contains the exponents to

which the parameters in each model term are raised.
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e  std_err - the standard error (or equivalently, "replication error") of the equipment that is

being modeled.
e  pred_err - the prediction error of the model.

®  param_names - a string array containing the names of the model parameters.

In order to more clearly illustrate the meaning of the data structures in the model class, con-

sider the model derived for polysilicon etch rate (R, ) in the Lam plasma etcher:

R, =-245-4.24P +11.0Rf +0.742CCl4+ 11.2He (ad.2.1)
+ 523G +35.90,-0.034P*He + 7.82P*G
+0.085Rf*CCl4 - 8.36Rf*G —0.132(CCl4)?
+0.059CCl 4*He — 0.059He?

For this particular model, the above variables would assume the following values:

version = 1.0 (ad4.2.2)
term_cnt = 14 (a4.2.3)

param_cnt =6 (a4.24)

3 -

=245
—4.24
110
0.742
11.2
523
coeffs = _85034 (a4.2.5)
7.82
0.085
-8.36
-0.132
0.059
-0.059
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[ recipe pressure valuel
recipe power value
recipe CCl4value

param = recipe He value (a4.2.6)
recipe O, value
recipe gap value
P Rf CCly He 02 G
00 0 0 00O
10 0 0 00O
01 0 0 00O
00 1 0 00
00 0 1 00
00 0 0 00O
expmat =(00 0 O 1 1 (a4.2.7)
10 0 1 00
10 0 0 00O
01 1 0 00
01 0 0 00O
00 2 0 00O
00 1 1 00
00 0 2 00O
std_err =309 (a4.2.8)
pred_err =104 (a4.29)
F P
Rf
ccl,
param_names = | o, (a4.2.10)
0,
G

Functionality of Model Objects

The primary methods which perform operations on the basic model object in Appendix 4.2a

are as follows:

®  eval - this function evaluates a particular model response for a given recipe of parameters.
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e  get_std_err - this function retumns the standard error of the model.
e  get pred_err - this function retumns the prediction error of the model.

e  sens - this function evaluates the sensitivity of the model at a given point in the parameter
space. Sensitivity is defined as the first partial derivative of the polynomial). The deriva-
tives are evaluated analytically for polynomial models and numerically for any other model
type.

®  get param_index - this function returns the index of a given parameter in the param_names
array.

e  print_model - this function prints models in an aesthetically pleasing format.

e  update_model - this function is intended to provide a means of updating a particular version

of a model by adjusting its coefficients. It has yet to be written.

e  store_version - this function stores the model along with its version number as a character

string in the INGRES database [7]. It has yet to be written.

e  find_version - this function retrieves the character string representation of a model from the
INGRES database using its version number. It has yet to be written. The function is accom-
panied by a routine which parses the character string (separating terms, counting terms,
counting parameters, identifying exponents, identifying coefficients, etc.) so that the model
may be manipulated by other methods such as sens and eval. The parsing routine is fully
operational.

e  delete_version - this function deletes a particular version of a model from the database. It

has yet to be written.

These functions assume that all models are polynomials expressions. However, special methods

have been adapted to models where this is not the case (such as the LPCVD deposition rate
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model [3]). Using "virtual" C++ functions [4], such adaptation is relatively straightforward.

Summary and Future Work

The basic structure and necessary functions of the BCAM equipment model library have
been designed, implemented and tested. However, several methods currently require further
development. Most of these, such as the store_version, find_version, and delete_version func-
tions, merely involve the connection between the library and the INGRES database. In addition,

a robust method for updating model coefficients and terms must also be designed.

Models for the Lam etcher and Tylan furnace are presently accessible from the library.
Plans are underway for the inclusion of the models for the components of the photolithography
workeell (i.e. - the Eaton coating and baking system, GCA wafer stepper, and MTI developer) as
soon as the development of these models is complete [8). Existing models are currently being
used for recipe generation, malfunction diagnosis, and technology CAD (TCAD) development.
C++ code for the library resides on 'radon.berkeley.edu’ in the “bcam/src/models directory. The
code which implements generic model functions as well as the Lam etcher model is given in

Appendices 4.2b and 4.2c, respectively.
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APPENDIX 4.2a

C++ IMPLEMENTATION OF MODEL LIBRARY CLASS STRUCTURE

/*
Model definition module of BCAM

Copyright (c) 1990 Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear
in all copies and that both that copyright notice and this permission notice appear in sup-
porting documentation, and that the name of the University of California not be used in
advertising or publicity pertaining to distribution of the software without specific, written
prior permission. The University of California makes no representations about the suitabil-
ity of this software for any purpose. It is provided "as is" without express or implied war-

ranty.

Author : gsm

Source : /lhome Iradon 1/bcam /src Imodels
Revision : 1.0

Date : 90/02/01 09:09:59

FileName: model.h
*/
/
// Symbolic constants for BCAM models.
/

#define MAXCOEFF 50 // maximum number of model coefficients
#define MAXPARAM 10 //maximum number of model parameters

[Ptk ko ko sk kol e okl ok skl kool ool ekl e kol kol sk kol ok ok

I/l
// Class declarations for all BCAM models and their associated methods.
Y/

// Basic model class

class model {

e e 3k ke
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protected:
char *version;
int term_cnt, param_cnt;
long exp_mat[50][10];
double std_err, pred_em;
double param[10], coeffs[50];
char *param_names[10];
public:
virtual double eval(double param([]);
double get_std_err(float n = 1.0) { retum n*std_err; }
double get_pred_err(float n = 1.0) { return n*pred_err; }
virtual double sens(int n, double param(]);
int get_param_index(char *name);
void print_model();
void update_model();
friend void store_version();
friend model find_versionQ;
friend void delete_version();

// e ek 2 2 o e e o e e aeafe 3 2 3 o e 3 o ok e e 2 e e e a3 3 e e e e 3 3 e 3 ae ab e sk o e e e o aleake afe afe e o afe afe ae aje e e

// Process model class

class process : public model {
char *process_name;
void print_proc_name();

b

// Equipment model class

class equipment : public model {
char *equip_spec; )
void print_equip_specQ;
void update_equip_spec(Q;
}i

//Lam1 model class

class lam1 : public equipment {
int response_cnt;
char *response_names[10];
void update_response_names();
public:

e sk sde sk 2k 0 o ok ok ode sde She she 2d sbe sbe ke sdo ok

// e o e 2 s 3 e e 2 e s e e 3 e sl e e e s afe e e 2 3 s s e e e e 3 e e s ae e a3 s s e e e e 2 o e afe afe e ae o afe e e o
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void std_lam1_model(void);
h

// Tylan16 model class

class tylan16 : public equipment {
int response_cnt;
char *response_names[10];
void update_response_names();
public:
|

// 3 3k e 3k afe e ok o afe e ke o o e e 2 ok e e de dk s fe e e 2k e afe afe e e ke 3 sk afe e 3 e afe fe e e e e a3 s e afe e e e 3 3 e de s afe e e e s 3 e e e o afe e obe e o o dfeofe e ke

// Lam1 etch rate model
class etch_rate : public lam1 {

public:
void std_etch_rate_model(void);
b

// Lam1 etch unifomity model
class uniformity : public lam1 {

public:
void std_uniformity_model(void);
|5

// Lam1 oxide selectivity model
class sox : public lam1 {
public:

void std_sox_model(void);
K
// Lam1 resist selectivity model
class sph : public lam1 {

public:
void std_sph_model(void);
|

// Lam1 etch anisotropy model
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class anisotropy : public lam1 {
public:

void std_anisotropy_model(void);
B

// Lam1 temperature gradient model

class temp_grad : public lam1 {
public:

void std_temp_grad_model(void);
}

// Tylan16 deposition rate model

class dep_rate : public tylan16 {

public:
double eval(double param([]);
double sens(int n, double param(]);
void std_dep_rate_model(void);

)5

// Tylan16 stress model

class stress : public tylan16 {
public:

void std_stress_model(void);
}
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APPENDIX 4.2b

C++ IMPLEMENTATION OF MODEL LIBRARY GENERIC METHODS

/*

Model definition module of BCAM

Copyright (c) 1950 Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear
in all copies and that both that copyright notice and this permission notice appear in sup-
porting documentation, and that the name of the University of California not be used in
advertising or publicity pertaining to distribution of the software without specific, written
prior permission. The University of California makes no representations about the suitabil-
ity of this software for any purpose. It is provided "as is" without express or implied war-
ranty.

Author : gsm

Source : /lhome Iradon 1/bcam /src Imodels
Revision: 1.0

Date . 0/02/01 09:09:59

FileName: model.cc

*/

#include <math.h>
#include <stdio.h>
#include <stream.h>

// 3 e e e o e e ok e e ke s ke o o e e af ae e s o e b ae e afeae e s e e o e s oo e sk o b ok e ok o e afe e o ae e o e e afe s e e o o s o e e sk o e sk o e sl o ke ol o e ok

/i

// Member function definitions for model class.

/i

// This function returns the value of the response model for a previously set
// array of parameter values ("param(]").

double model::eval(double param([])

{

intij;
double sum, term;
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sum = 0.0;
for (i = 0; i<term_cnt; i++) {
term = 1.0;
for (j = 0; j<param_cnt; j++) {
term *= pow(param(j}, exp_mat[i](j]);

sum += coeffs[i] * term;

}

return sum;

// Return the first partial derivative of the model with respect to parameter
// "n" and evaluated at the array of parameter values "param[]".

double model::sens(int n, double param(])

{

int i,j;

long new_exp_matfMAXCOEFF][MAXPARAM]J;
double sum, term;

double new_coeffsfMAXCOEFF];

for (i = 0; i<term_cnt; i++) {
for (j = 0; j<param_cnt; j++) {
new_exp_mat[il{j] = exp_mat[i][j];
)

if (exp_mat[i][n] !=0) {
new_coeffs[i] = coeffs[i] * exp_mat[i][n];
new_exp_mat[i][n] -=1;

} else {
new_coeffs[i] = 0.0;

}

}

sum = 0.0;
for (i = 0; i<term_cnt; i++) {
term = 1.0;
for (j = 0; j<param_cnt; j++) {
term *= pow(param(j], new_exp_mat[i][j]);
}

sum += new_coeffs[i] * term;

}

retumn sum,

// Retumn the index of the "param_names" array corresponding to the given
// parameter "name".
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int model::get_param_index(char *name)

{
int i;
for (i = 0; i<param_cnt; i++) {
if (param_names[i] = name) retum i;
)
}
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APPENDIX 4.2¢

C++ IMPLEMENTATION OF METHODS
FOR LAM ETCHER MODELS

/*

Model definition module of BCAM

Copyright (c) 1990 Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear
in all copies and that both that copyright notice and this permission notice appear in sup-
porting documentation, and that the name of the University of California not be used in
advertising or publicity pertaining to distribution of the software without specific, written
prior permission. The University of California makes no representations about the suitabil-
ity of this software for any purpose. It is provided "as is" without express or implied war-
ranty.

Author: gsm

Source : Ilhome /radon 1/bcam/src Imodels
Revision: 1.0

Date : 90/02/01 09:09:59

FileName: lam1l.cc
*/
#include <math.h>

#include <stdio.h>
#include <stream.h>

// 35 3 2 e e e e e e e e e fe e e e ke e ae ae ae e 3 o e e e 2 e s afe s afe s s s ke e afe o o s s o ae o abe o e o ok ae e ok o o ol e e e s fe e e e e e e s e s s ke e e sk ak

/

// Member functions of the lam1 class.
/4

// Set up the standard 1am1 model.
void lam1::std_lam1_model(void)

{

int i,j;

term_cnt = 28;
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param_cnt = 6;

param_names[0] = "P";
param_names[1] = "Rf";
param_names[2] = "CCl4";
param_names[3] = "He";
param_names[4] = "02";
param_names[5] = "G";

// Initialize and set exponent matrix.

for (i = 0; i<term_cnt; i++) {
for (j = 0; j<param_cnt; j++) {
exp_mat[i][jl = G;
}
}

exp_mat[1][0] =1;
exp_mat[2][1]=1;
exp_mat{3][2] =1;
exp_mat[4][3]=1;
exp_mat[5][4] = 1;
exp_mat[6][5]=1;
exp_mat[7}{0] = 2;
exp_mat[8][0] =1;
exp_mat(8][1]1=1;
exp_mat[9][0] = 1;
exp_mat[9](2] =1;
exp_mat{10][0] = 1;
exp_mat[10}[3] =1;
exp_mat[11][0] = 1;
exp_mat[11]){4]=1;
exp_mat[12][0] = 1;
exp_mat[12][5] = 1;
exp_mat[13][1] =2;
exp_mat[14][1] =1;
exp_mat{14][2] =1;
exp_mat[15][1] =1;
exp_mat[15][3]=1;
exp_mat[16][1]=1;
exp_mat[16][4] = 1;
exp_mat[17][1]=1;
exp_mat[17][5]=1;
exp_mat[18][2] = 2;
exp_mat[19][2] = 1;
exp_mat[19][3] =1;
exp_mat[20][2] =1;
exp_mat[20][4] =1;
exp_mat[21][2]=1;
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}

exp_mat(21][5] = 1;
exp_mat[22][3] = 2;
exp_mat[23][3] = 1;
exp_mat[23][4] =1,
exp_mat[24])(3] = 1;
exp_mat[24][S]=1;
exp_mat[25][4] = 2;
exp_mat{26][4] = 1;
exp_mat[26][5] = 1;
exp_mat[27][5] = 2;

// ke e e 3 2 e e 3 o o e e e o ae s e e 2 o e e e s e s 3 e e e e e 2 ae 3 s s 2k ae s s e e e e 3 a2 e 3 e 3 ae e e o afe e e s o afe e e s o e e s e afe e e e e ok 3

i

// Member function definitions for etch rate class.

/i

// Set up the standard etch_rate model.

void etch_rate::std_etch_rate_model(void)

{

// Initialize and set coefficient array.

int i;
std_err = 309.4;
pred_err = 104.0;

for (i = 0; i<term_cnt; i++) {

coeffs[i] = 0.0;
}
coeffs[0] = -244.954;
coeffs[1] = -4.239;
coeffs[2] = 10.96;
coeffs[3] = 0.742;
coeffs[4] = 11.225;
coeffs[5] = 35.868;
coeffs[6] = 523.149;
coeffs[10] = -0.034;
coeffs[12] = 7.817;
coeffs[14] = 0.08S;
coeffs[17] = -8.362;
coeffs[18] = -0.132;
coeffs[19] = 0.059;
coeffs[22] = -0.059;
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/i
// Member function definitions for uniformity class.

Vi
// Set up the standard uniformity model.

void uniformity::std_uniformity_model(void)

{

int i;
std_err = 6.66;
pred_err=2.22;

// Initialize and set coefficient array.

for (i = 0; i<term_cnt; i++) {
coeffs[i] = 0.0;
}

coeffs[0] = -11.549;
coeffs[1] = -0.038527;
coeffs[2] = 0.093699;
coeffs[3] = 0.709912;
coeffs[4] = -0.415408;
coeffs[6] = -8.898964;
coeffs[14] = -0.00177;
coeffs[15] = 0.001383;
coeffs[19] = -0.001403;
coeffs[22] = 7.975¢e-4;

}
I

// Member function definitions for oxide selectivity class.

I
// Set up the standard oxide selectivity model.

void sox::std_sox_model(void)

{

int i;
std_err=0.93;
pred_err=0.31;

// Initialize and set coefficient array.

for (i = 0; i<term_cnt; i++) {
coeffs[i] = 0.0;
}

coeffs[0] = -13.106;
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coeffs[1] = 0.097;
coeffs[2] = 0.04;
coeffs[3] = -0.06;
coeffs[4] = 0.059;
coeffs[5] = 0.079;
coeffs[8] = -2e-4;
coeffs[9] = 2.898e¢-4;
coeffs[10] = -3e-4;

}

/

// Member function definitions for resist selectivity class.
/

// Set up the standard resist selectivity model.

void sph::std_sph_model(void)

{
int i;
std_err = 0.95;
pred_err = 0.09;

// Initialize and set coefficient array.

for (i = 0; i<term_cnt; i++) {
coeffs[i] = 0.0;
}

coeffs[0] = 7.558;
coeffs[1] = 0.009;
coeffs[2] = -0.014;
coeffs[3] = -0.022;
coeffs[4] = 0.006;
coeffs[5] = -0.099;
coeffs[6] = -2.586;
coeffs[8] = -Se-5;
coeffs[9] = 1.292¢-4;
coeffs[10] = -7e-5;
coeffs[11] = 3.688e-4;
coeffs[13] = 2.713e-5;
coeffs[15] = 3.558e-5;
coeffs[19] = -5e-5;
coeffs[27] = 0.757;

}

/
// Member function definitions for anisotropy class.
/
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// Set up the standard anisotropy model.

void anisotropy::std_anisotropy_model(void)

{ 0 3
int i;
std_err= 3.24;
pred_err = 1.82;

// Initialize and set coefficient array.

for (i = 0; i<term_cnt; i++) {
coeffs[i] = 0.0;
}

coeffs[0] = 94.61;
coeffs[4] = -0.031;
}

/

// Member function definitions for temperature gradient class.

i
// Set up the standard temperature gradient model.

void temp_grad::std_temp_grad_model(void)
(

int i;
std_err=1.17;
pred_err = 0.39;

// Initialize and set coefficient array.

for (i = 0; i<term_cnt; i++) {
coeffs[i] = 0.0;
}

coeffs[0] = 7.287;
coeffs[1] = -0.006;
coeffs[2]) = 0.036;
coeffs[3] = 0.03;
coeffs[4] = 0.014;
coeffs[6] = -11.946;
coeffs[7] = 1.116e-4;
coeffs{10] = -2e4;
coeffs[22] = 9.846e-5;
coeffs[27] = 3.579;
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CHAPTER 5
GENERATION AND DISTRIBUTION OF EVIDENTIAL SUPPORT

5.1 Introduction

The previous two chapters have discussed the mechanical operation of a plasma etcher and
the development of quantitative models for etch behavior. In Dempster-Shafer (D-S) terminol-
ogy, these two chapters have established the frame of discernment and governing equations for
equipment diagnosis [1-2). The only remaining task necessary to fully implement the Dempster-
Shafer approach to fault diagnosis is the development of a set of techniques to generate and distri-
bute numerical evidential support among all of the various fault hypotheses in the etcher’s frame
of discemment. The objective of this chapter is to provide such techniques, and in so doing, com-

plete the formulation of the methodology for IC equipment malfunction diagnosis.

5.2 Chronology of Evidence Availability

Due to the batch nature of the semiconductor manufacturing process, useful diagnostic
information, or evidence, accumulates over time in an irregular fashion. Several sources of evi-
dence are available, but all of this information may be placed into one of three major categories
according to the chronology in which it is obtained. Evidence regarding equipment status may be
collected either: 1) during maintenance periods (before processing), 2) during on-line equipment
operation (during processing), or 3) during in-line physical and/or electrical inspection of the pro-
cessed wafer (after processing) [3-5]. These chronoloﬁcal evidence sources are illustrated in Fig-

ure 5.1.

Using these three categories of evidence as a framework, malfunction diagnosis takes place
in three consecutive steps. Maintenance diagnosis is performed by examining the relevant histor-

ical records of equipment performance. Next, on-line diagnosis is performed based on analysis
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Figure 5.1 - Chronological sources of diagnostic evidence.

of real-time sensor data available from equipment monitoring facilities. Finally, in-line diagnosis
makes use of physical and/or electrical in-line measurements on processed wafers in conjunction
with empirical models for equipment behavior. For each of these three phases of diagnosis, evi-
dential support for fault hypotheses is generated and mapped to particular malfunctioning equip-
ment components. The methodology employed to generate support and obtain this mapping is

discussed below.
5.3 Generation of Evidential Support

5.3.1 The Support Function

The Dempster-Shafer evidence combination methed illustrated in Chapter 2 (see § 2.4)

depends heavily upon the basic manner in which evidential support is initially distributed to the
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BPMDs. In a Boolean classification scheme, the belief in any fault hypothesis is set equal to one
as soon as the measurement residual corresponding to a particular constraint exceeds its absolute
tolerance (tol). This residual is defined as the difference between a measured response and its
setpoint. This type of belief (or supporr) assignment is depicted by the step function in Figure
5.2. However, this step function yields highly unstable belief assignment in the presence of
measurement noise [2-5]. Thus, incremental changes in equipment operating conditions when
constraints are at or near zol lead to discontinuous adjustments in the support values associated

with various diagnoses.

Support

step function
$1.0 _A_é
10-u
sigmoid function
) -tol residual. ~tol .

Figure 5.2 - Boolean and sigmoid support functions [3-5].

A better behaving support function is the sigmoid function also shown in Figure 5.2. This
"squashing” function has been used in neural network studies [6]. The equation for the sigmoid
function is:

s(®)= 1-u G.1)

1+ expl-G (7’51 -1)]
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where u is the uncertainty associated with the individual constraint and € is the measurement
residual, which is assumed to be a normally distributed random variable with mean zero and con-
stant variance (62). The parameter G is an arbitrary constant used to adjust the sharpness of the
function. As G approaches infinity, the sigmoid function approximates the shape of the step

function.

Values for the adjustable parameters u and G are typically based on experience. However,
the default value of G is set at 5.0, which causes the support for a given hypothesis to be less than
0.1 when ¢ is 2-¢ and larger than 0.2 when € is 2.5-¢ (assuming zero uncertainty) [3-4]. The
default value of uncertainty in the system is 0.1. As indicated below, this support function forms
the basis for the generation of numerical belief in two of the three phases of malfunction diag-

nosis.

5.3.2 Support Generation for Maintenance Diagnosis

Computerized equipment maintenance records allow the maintenance phase of diagnosis to
take place in a straightforward manner. Two quantities are used to characterize the likelihood
that a particular component is faulty: 1) its mean-time-between-failures (mf), and 2) the elapsed
time since its last failure (zsf). These quantities may be extracted directly from FAULTS, UC-
Berkeley’s automated equipment maintenance record-keeping system [7]. Given the repair his-
tory of a particular component, evidential support may be generated in a similar manner to (5.1)

using:

1-u

s@sf)= (5.2)
1+ exp[-G (% -1

Here the elapsed time since the last equipment failure is treated as the measurement residual and

the mean-time-between failures assumes the role of the measurement tolerance.
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As an example, suppose that a mass flow controller must be calibrated every six weeks and,
at the time that diagnosis takes place, it has been five weeks since its last calibration. If G = 5.0
and u = 0.1 (10% uncertainty in the system), then 0.27 units of support are attributed to the mis-
calibrated mass flow controller fault. During maintenance diagnosis, support values for all com-

ponents in the frame of discernment are calculated in this way.

5.3.3 Support Generation for On-line Diagnosis

Data from real-time equipment sensors serves as the source of evidence which is analyzed
during the on-line phase of diagnosis. In the case of the plasma etcher, this data is transmitted via
a software system known as LAMTALK [8). LAMTALK sends the sensor readings over a local
area network to a workstation controlling the process. The program monitors 11 current process
conditions which provide useful diagnostic-information. These conditions include gas flow rates,
forward and reflected RF power, various chamber and airlock pressures, chamber temperature,

and electrode spacing (see § 4.2).

The real-time sensor data is sampled at a rate of one sample/second. At such a high sam-
pling rate, it is reasonable to expect significant auto- and cross-correlation among the samples [9].
In order to alleviate these effects, a CUSUM control chart technique has been implemented to
detect small process shifts [10]. The ability to detect small shifts is critical for the on-line diag-
nosis of rapid fabrication steps such as plasma etching. This is because slight equipment miscali-
brations may only have sufficient time to manifest themselves as small shifts when the total pro-
cessing time is on the order of minutes. CUSUM charts monitor such shifts by comparing the
cumulative sums of the deviations of the sample values from their targets. This is accomplished
by means of the V-mask shown in Figure 5.3. The procedure for detecting process shifts consists
of determining whether or not all of the previous cumulative sums lie within the arms of the V-

mask on the CUSUM control chart.
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Figure 5.3 - Typical CUSUM control chart showing the V-mask and scaling parameters [10].

Using this approach to generate evidential support requires the following two cumulative

sums:

Sy@)=max [0,X - (o +b) + Sy (i - 1)) 5.3)
Sp(@)=max [0, o—=b)-X +Sy(i - 1)] 4

where Sy is the sum used to detect positive process shifts, S; is the sum used to detect negative
shifts, X is the mean value of the current sample, and i, is the target value. The initial value of
both Sy and S, is set to zero. Both sums accumulate deviations from the target value i, greater

than b, and both reset to zero upon becoming negative. The parameter b is given by:

b =tan (260, ) 5.5)

where G, is the standard deviation of the sampled variable and 0 is the aspect angle of the V-
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mask. This angle has been selected in such a way as to detect one-sigma process shifts with an

average run length of 50 wafers between alarms when the process is in control.

When either S or Sy exceeds a decision interval A, this signals that the process has shifted

out of statistical control. The decision interval is:
h =2d o, tan(0) 5.6)

where d is the V-mask lead distance (see Figure 5.3). The decision interval may be used as the
process tolerance limit and the sums Sy and S; are be treated as measurement residuals [4].

Thus, numerical support is derived from the CUSUM chart using the sigmoid:

1-u

1+exp[-G (s”T"' -1

SSu)= (6X))
This function is used to generate Dempster-Shafer support values for all fault hypotheses related

to the sensor data monitored during the on-line phase of diagnosis.

5.3.4 Plausibility Generation for In-line Diagnosis

In the final phase of diagnosis, in-line wafer measurements are used in conjunction with
empirically obtained regression models of equipment behavior to obtain further numerical evi-
dence. For the plasma etch application, the development of these models was described in
Chapter 4. The responses that have been modeled are the etch rate, uniformity, oxide and pho-
toresist selectivity, and anisotropy of a CCl ;-based polysilicon etch process. These responses are
controlled by six input factors: pressure, RF power, electrode spacing, and the CCl,4, He, and O,

flow rates.

For the purpose of generating numerical belief from the empirical models, it is assumed that
a malfunction may be explained by an inadvertent shift in one of these six settings. Under this

assumption, the system of regression equations is then used to test the individual hypotheses that
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each of the settings has drifted from its target value. Statistical tests based on solving the system
of regression equations in "reverse" are then used to derive the significance probability that each
suspected drift satisfactorily explains difference between model predictions and measured
responses [10]. This statistical notion of the significance probability is directly analogous to the
Dempster-Shafer concept of evidential plausibility [11]. Therefore, the plausibilities derived
from solving the regression models in reverse can be unambiguously combined with existing evi-

dence using the methods described in Chapter 2.

5.3.4.1 Solving the Regression Equations in Reverse

In order to illustrate this technique, consider a manufacturing process with ¢ observable
responses controlled by p independent settings. Further, ¢ regression models for the responses

each contain up to p* different terms. The regression equations are:
Y=2Z6+E (5.8)

where Y is the nXq array of the g responses collected from n experiments, Z is the p" xn array
of the values of the terms used in the equations, © is the p*xg array of the regression coefficients

and E is the nxq array of residuals.

In general, the regression equations are nonlinear expressions of the process settings. How-

ever, they may be linearized using the truncated Taylor series expansion of f (x):
f (x+ Ax) = 2/ + (3z/0x; Y OAX (5.9)

where x is the column vector of the p process settings, z is the column vector of the p" nonlinear
expressions of the settings (i.e. - x1x4, xZ, etc.), (9z/dx;) is the p* x1 column vector of the partial
derivatives of the regression terms of the i th setting, and Ax is a vector of small shifts in the each
of the settings. Diagnosis occurs after the responses from m identical process runs have been

observed. If these observations do not agree the model predictions, then a shift in one of the set-
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tings is suspected.

A new value for the ith process setting may be extracted by solving the regression equa-

tions in "reverse" through minimizing the sum of squares of the residual:
min(Ax; &'(92/0x;) — ¥ + €'z)* (5.10)

where y is the ¢ x1 column vector of the average process response over the m runs. The value of

Ax; which minimizes this expression is:

. (0u0dx;y 6y - 266’ (32/3x;)
L (az/ax,- )'é@’(az/ax,- )

5.11)
As the subscript i implies, this shift is calculated for each of the p process settings.

5.3.4.2 Validating the Solution of the System - Test A

All malfunctions are not directly traceable to a shift in one of the process settings. In fact,
even when a change in a setting is responsible for a malfunction, it could conceivably be of such
magnitude that the linearized empirical models cannot adequately describe it. In such cases the
solution of the regression system will offer no additional evidence since the residual defined in
(5.10) and (5.11) will be too large to be distinguished from the error introduced by linearization.
On the other hand, if the solution is indeed a valid one, then the residual will be normally distri-
buted around zero. The ¢ x1 vector of the residuals is defined for each of the p suspected process

shifts as:
E =A% G (00ox;) -7+ Oz (5.12)

The hypothesis test that determines whether these residuals are negligible or significant requires
iterative use of the student-t statistic [10]. However, all of the ¢ process responses are correlated,
and an estimate of the ¢ xXg covariance matrix S is available from the original modeling experi-

ment. This covariance matrix was estimated with k =n —p* degrees of freedom. As a result,
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the iterative use of the student-t test may be replaced by a single hypothesis test employing
Hotelling’s T? statistic with k degrees of freedom [12]. The value of the T2 statistic, which is

distributed according to the 72 distribution, is:
TP =kE/'S7g (5.13)

The T2 distribution is related to the well-known F distribution as follows:

(k-1
Taqu—q = %Tpa.q.k—q (5.14)

The residual §; is not significantly different from zero and A%; is a "good" solution of the

system at an o, level of significance if:
r3< 48 'q‘) Fopd k=g (5.15)

Satisfaction of this inequality indicates that the malfunction can be explained in terms of a shift
in the i th process setting. The maximum value of o, that satisfies the inequality is known as the
significance probability of the test. The significance probability is a measure of the "goodness"
of the solution because it asymptotically approaches 0.0 when the residual is large and

approaches 1.0 when the residual is small.

5.3.4.3 Determining the Significance of the Shift - Test B

Test A above validates the various solutions of the reverse regression equations by deter-
mining the relative capabilities of the calculated shifts A¥; to account for the differences between
the model predictions and experimental results. However, even after validating the solutions, it
still remains to be seen if the actual shifts Ax; are statistically significant. This is determined by

means of another test based on the estimated shifts. The variable {; is defined:

¢ = A%, &' Qzax;) (5.16)
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This variable is the non-centrality vector under the assumption that the actual shift is zero. It is

derived from (5.12) by setting ¥ = €'F. A second T2 test can be performed based on:
T2 =S, 5.17)

The maximum significance probability ap of this statistic may be found in the same manner as
(5.14) and (5.15). The value (1 - az) measures the significance of the observed shift since oz
asymptotically approaches zero when the estimated shift is large and approaches one when the

estimate is small.

5.3.4.4 Generating Evidential Plausibility from Tests A and B

The objective of this section is to use the statistical tests of the two previous sections to
derive evidential plausibility of potential equipment faults. This requires acknowledgement of
the fact that the statistical significance probability is equivalent to one minus the plausibility of a
given event. In statistical terms, if an event is accepted at a 0.05 level of significance, then there
exists at most a 5% chance of making a mistake accepting this event as true. Under these cir-
cumstances, using Dempster-Shafer terminology, the evidence that the event did not actually hap-
pen gives 0.05 "units" of support on a scale from 0.0 to 1.0. Therefore, the plausibility of the

event is 0.95 (assuming zero uncertainty).

Using the regression models requires two tests to derive evidential plausibility. The first
(Test A) establishes with a significance probability a, that the residuals of the reverse regression
equation are zero. Similarly, the second test (Test B) establishes with significance probability
1-o0p that the calculated shift in a given process setting is statistically significant. For diag-
nosis, both of these assertions are combined and the plausibility p’ that a given parameter has

shifted is:

p'=o,(1-0p) (5.18)
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At this point, the role of evidential uncertainty 4 deserves some discussion. Since uncer-
tainty is not a probabilistic concept, it is not possible to deﬁve its value from the formal statistical
tests above. In addition, some care must be exercised in any method for choosing a value for u
since 0o large an uncertainty will result in negative evidential support if u is subtracted from p’

directly (see § 2.3.5). In order to prevent this from occurring, the factor B is defined as:

B= 2 (5.19)

Then the final value of plausibility p which guarantees positive support is given by:

p=PtB (5.20)

1+B

Since the chosen value of uncertainty is the same for all process settings modeled by the regres-
sion equations, the relative ranking of the suspected faults is unaffected by the introduction of f

into the analysis.

It is also important to note that the derivation of evidential plausibility using the statistical
tests outlined above yields a final relationship between plausibility and the inferred parametric
shift that has a nearly sigmoid exponential form. This is a direct result of the exponential sig-

moid shape of the student-t distribution [10-12).

5.3.4.5 Example of In-line Malfunction Diagnosis

In order to verify the above methodology, a simulated experiment was performed using the
regression models which describe the Lam Autoetch plasma etcher. In this experiment, the in-
line measurements of 50 wafers were generated via a random number generator. These ‘measure-
ments were generated around mean values given by the predicted responses of the optimized etch
recipe from’ § 4.5.1 with standard deviations given by the one-sigma replication errors of the indi-

vidual models. This data was used to calculate y in equations (5.10-12). A 5 sccm leak in the
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CCl 4 flow was then simulated by using a value of only 145 sccm for this parameter in the z and

dz/dx; vectors rather than the 150 sccm value specified by the recipe.

Table 5.1: Ranked Fault List for Simulated CCl, Leak

Rank | Parameter | Plausibility

CCl 4 flow 0.3265
RF Power 0.2459
0, flow 0.1953
He flow 0.1942
Gap 0.1744
Pressure 0.1227

AW HE WN =

Using the BLSS [13] statistical software package to calculate o, and oz yielded the fault
ranking shown in Table 5.1. These plausibilities were calculated with an assumed uncertainty
value of 10%. As is indicated by this list, the CCl 4 problem was correctly identified as the most
likely candidate to explain the discrepancy between the model predictions and the simulated
measurements. In general, this methodology has proven to work well, provided that the faults to
be diagnosed are neither too small (in which case they produce statistically insignificant effects)

or too large (preventing the linearized process models from adequately describing them).

This approach has been implemented to generate Dempster-Shafer evidential plausibility
for possible faults related to each of the six process parameters in the etcher regression models.
The support from in-line diagnosis is then combined with that from the two previous phases to

produce the final diagnostic conclusions.

5.4 Distribution of Support Among Multiple Fault Hypotheses

Given any piece of diagnostic evidence, either the support generating function given by
(5.1) or the method of solving regression equations in reverse described in § 5.3.3 above may be

used to derive an initial probability mass distribution for a given knowledge source. BPMs are
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assigned to the fault hypothesis sets H*, H~ (see § 2.5), and H° (the "no-fault” condition) in the
following manner:

m<H*,H",H°,0>=<b,0,1-b-u,u>, £¢>0 (5.21)

m<H*,H",H°,0>=<0,b,1=-b -u,u>, €<0 (5.22)
The evidential intervals implied by this support assignment technique indicate that when the con-
straint residual is greater than zero, the probability that the constraint is high is between b and
b +u, whereas the probability that it is low is between zero and u. When the residual is less
than zero, these intervals are reversed. Note that the uncertainty involved in evaluating the con-
straint is assigned directly to 0. This means that u supports all relevant hypotheses and cannot be
attributed to any particular subset of the frame of discernment. Assorted BPMDs for all

knowledge sources are subsequently combined in the manner described in Chapter 2.

As an example, consider this support distribution scheme as applied to the frame of discemn-

ment discussed in § 2.4. This frame is repeated below for the sake of convenience:

A = Mass Flow Controller Miscalibration
B = Gas Line Leak

C =Routing Valve Malfunction

D = Incorrect Sensor Signal

E = The "No-Fault" Condition

Let H* = (A B, C) for the violation of a particular constraint. This means that this set of
violated faults (induced from & > 0) contains faults A (y B or fault C. Such a scenario is possible
when the particular evidence source cannot distinguish specifically between the fault subset "A or
B" (mass flow controller miscalibration or gas line leak) and fault C (routing valve malfunction)
alone. Furthermore, suppose that the records contained in the equipment maintenance database
reveal that the set A ) B is responsible for the observed evidence 80% of the time when € > 0,
while C is responsible only 20% of the time. Thus, set A \_j B gets 0.8*s(€) and fault C gets

0.2*s () (from 5.1) when € > 0. Let H™ = D for this constraint.

134



In addition, consider a second evidential constraint whose violation yields H+ = B and H- =

(A  ©). Further, assume that s1(e;) = 0.6 when &; > 0 for the first constraint and s(e)) = 0.7
when g2 < 0 for the second constraint. Then, the following support distribution results:

my <A B .C.D (A UBC\ D) 0>=m; <A UB.C.D [E 8>=<0480.120020.2> (523)

m2 <B A\_C (A\UB\UC).8>=m2 <B A C D\ _E 8> = <0,0.7,0.1,02> (5.24)

This illustrates the manner in which the BPMDs combined in § 2.4 are initially derived. Similar

methods are applied to all evidence sources in the system to obtain a complete mapping of sup-

port from the evidence space to the fault space (or frame of discernment).

5.5 Summary

This chapter has outlined a paradigm for the generation of Dempster-Shafer evidential sup-
port during three chronological phases of malfunction diagnosis. These three phases are based on
the availability of evidence during the maintenance, on-line, and in-line portions of equipment
operation. Each phase of diagnosis is accompanied by a unique method of support generation

based on statistical principles as well as heuristics.

In conjunction with the operational equipment description contained in Chapter 3 and the
quantitative equipment models developed in Chapter 4, the support generation techniques in this
chapter complete the set of components necessary to implement the automated malfunction diag-
nosis system on the Lam plasma etcher. The details of that implementation are the topic of the

next chapter.
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CHAPTER 6
SOFTWARE IMPLEMENTATION OF DIAGNOSTIC METHODOLOGY

6.1 Introduction

In recent years, software design methods have undergone a change in philosophy toward
what is known as "object-oriented programming"” (OOP) [1]. In an effort to obtain improvement
in software productivity and reusability, this style of programming has been selected as the pre-
ferred technique for the Berkeley Computer-Aided Manufacturing (BCAM) system (see Chapter
1). Consequently, this style of programming has also been adopted for the realization of the mal-
function diagnosis system. The C++ programming language [2] has been chosen to implement
the object-oriented approach. In addition to some background information on OOP, this chapter
provides a description of the C++ software which implements the diagnostic methodology and an

overview of the flow of information within the system.

6.2 Object-Oriented Programming

The central philosophy behind OOP is the concept that the design of an application should
be modeled as closely as possible to the real-world objects which are embodied in the application
itself. This approach differs from structured programs which are organized as a small number of
relatively large and complex procedures that manipulate a small number of large and complex
data structures. Although structured programs are suitable for development early in the design
cycle, they can be difficult to maintain throughout the lifetime of the software. This is especially
true when programmers are required to make extensive changes during implementation that were

not forseen during the initial prototyping phase [1].

Object-oriented programs extend the structured approach by combining the principle of

data abstraction with traditional concepts of hierarchical structure and modularity. Each
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/ Class Boundary

CLASS NAME

Variable X 1\
Variable Y l(/

__— Private Data

C Method 1 )\

C Method 2 j‘ Data Manipulation Procedures

v
( Methods j/

Figure 6.1 - Dlustration of generic OOP objects.

individual unit of data abstraction, or object, has a hrmted number of permissible operations
which control the data within its boundaries. The data within the boundary of one object is com-
pletely inviolate from the point of view of other objects, thereby preventing interdependencies
between objects. The procedures which operate on data within an object, known as methods, are
the only means of accessing this data. Some methods are public (accessible from outside the
object), while others are private (accessible only to other object methods). Objects interact by

sending and receiving messages without specific knowledge of how the calling procedure is
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implemented. The object structure is illustrated in Figure 6.1.

Aside from data abstraction and message passing, other significant features unique to OOP
include: polymorphism, inheritance, and class hierarchy. Polymorphism is the highly desirable
ability to use the same function name to refer to different function implementations. For exam-
ple, polymorphism would allow the same "read" function to input character or numeric data.
Inheritance is the mechanism by which objects of one class may possess the properties of another.
Using this property, polymorphic methods in a subclass override their counterparts in the parent
class, and changes to methods in the parent are automatically inherited by all descendent classes.
Inheritance allows the programmer to organize class objects into a hierarchy in which generic
high-level classes are refined into successively more specific subclasses. In this way, classes may
be arranged just like a zoological taxonomy in which animals are categorized by their similarities

and differences. For example, a "mammal” class may have subclasses "dog" and "horse".

6.3 Class Structure and Associated Methods for Diagnostic Objects

The following section describes the class structure of the equipment diagnosis system.
Three major classes are required to implement this methodology: 1) the BPM class; 2) the evi-
dence class; and 3) the fault-set class. These three classes form the basis of all evidence combi-
nation and belief distribution in the system. Each is presented along with an explanation of their

associated methods.

6.3.1 The BPM Class

Initially, an object-oriented dialect of Common Lisp known as CLOS was selected as the
language with which to implement the Dempster-Shafer rules of evidence combination in the
diagnostic system [3-5]. However, the computational speed and efficiency of interpreted

languages such as Lisp or Prolog [6] leaves much to be desired. This is a critical deficiency since
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the Dempster-Shafer techniques require a significant number of computations, and real-time
plasma etch diagnosis requires that these calculations take place at a pace commensurate with

that of the etching itself, which is on the order of minutes {7].

Due to the inadequacies of CLOS, the C++ programming language (an object-oriented
superset of C) has been implemented to increase computational speed. The expected increase
was justifiable since C is a compiled, rather than interpreted language. As a result, C++ employs
much more efficient memory management techniques than any dialect of Lisp [2]. In fact, after
the code was written and tested, C++ was found to have more than a factor of 1000 advantage in
CPU time over CLOS for functions performing analogous tasks (1.06 sec for CLOS versus less

than 1.0 msec for one BPMD combination in C++).

In this implementation, BPMDs are stored as linked lists of C++ objects called
"bpm_nodes". The exact format of these objects is described in Appendix 6.1a. Each bpm_node

contains the following data:

1) Pointers to the head of the list (head), the address of the current node (cur), and the next
node in the linked list (next).

2) A stream of bits which represent the presence or absence of certain faults in the frame of
discernment (bits).

3) The support (belief) and plausibility (plaus) attributed to the particular fault set described
by this node.

4) A flagindicating whether or not this node contains the belief ascribed to 0 (theta).

The structure of the linked list is visualized in Figure 6.2, which depicts the BPMD m,, which

was discussed in § 2.4,

The bit stream merits further explanation. Essentially, each set of faults is assigned to a
particular stream, and each fault within a given set is mapped to a particular bit within the stream.

Consider, the frame of discernment in § 2.4. This frame would be represented by a stream of five
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00011 "bits" field —— 10000
0.48 "belief" field 0.2
0 “"theta" flag 0

"next" pointer

—)l 00100 ——)‘ 11111

0.12 0.2
0 1
null

—" 01000

0.0

Figure 6.2 - The linked list structure used to implement BPMDs in C++.

bits, one for each of the five faults. The least significant bit is assigned to fault A. For example,
the bits field in the bpm_node assigned to fault set A \ C would be 00101. Likewise, fault set A
(U B would be represented as 00011, fault D would be 01000, and so forth. When BPMDs are
combined, the bits field of individual bpm_nodes are bitwise logically "AND"-ed in order to
determine the belief to be attributed to their intersection as in equations (2.8) and 2.9).

In addition to the data indicated above, the bpm_node object (or "class") also contains vari-
ous methods which are used to manipulate the linked lists in order to implement the Dempster-

Shafer methodology. The most critical functions in terms of performing Dempster-Shafer evi-
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dence combination are the public (or "friend") functions "arb_bpmd_comb” and
"bel_pls_encript”. The "arb_bpmd_comb" function combines BPMDs from two arbitrary evi-
dence sources, and "bel_pls_encript" calculates the evidential intervals of support and plausibility
resulting from this combination. Most of the other methods in this class are designed to perform
various subtasks related to combining the BPMDs and obtaining the evidential intervals. The
remaining methods are: 1) a function which appends new bpm_nodes to the linked list; 2) stan-
dard C++ functions to allocate and deallocate memory space for the class (called constructors
and destructors); and 3) methods used to step through nodes in the linked list [2]. For a more

detailed description of each method, refer to Appendices 6.1a and 6.2.

6.3.2 The Evidence Class

The evidence class contains information related to all forms of evidence for maintenance,
on-line, and in-line diagnosis. Like the BPM class, this class also utilizes a linked list data struc-
ture. This structure appears in Appendix 6.1b. In addition to the usual list pointers, each node of

the evidence linked list (called an "evidence_node") contains the data below:

1) The name of this particular piece of evidence (name).

2) The uncertainty associated with this piece of evidence (uncertainty).

3) The "sharpness"” param-eter of the support function (bel_g).

4) The name of the piece of equipment corresponding to this evidence (equip).
For on-line evidence, two additional slots are defined:

5) The recipe setpoint for this piece of evidence (setpr).

6) The tolerance limit of this evidence (tol).

Overall, the program contains three distinct evidence lists, one for each of the three phases of

diagnosis. As an example, a portion of the on-line evidence list is depicted in Figure 6.3. This
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"name” field gas_flow_1 gas_flow_3 — rf_reflected
“uncertainty"” field 0.1 0.1 0.1
"bel_g" field 5.0 5.0 5.0
"equip” field laml laml lam1
“setpt” field 150 20 5.23
“tol" field 0.12 0.12 4.70
gas_flow_2 rf_foward pressure
0.1 0.1 0.1
5.0 5.0 5.0
laml laml laml
50 300 200
0.12 3.34 0.81

Figure 6.3 - The on-line evidence list structure.

figure shows a portion of the on-line evidence list. Nodes for each of the real-time data channels
(see § 4.2) are chained together to form this list [8-9]. A similar approach is taken to construct

the maintenance and in-line evidence lists.

The three evidence lists are initialized by the public functions
"initialize_maintenance_evidence", "initialize_online_evidence", and
“initialize_inline_evidence.” Another public method, “inline_belgen", generates Dempster-
Shafer evidential plausibility for in-line evidence in the manner described in § 5.3.4. Aside from

standard methods used to append and iterate through the linked list of evidence nodes described
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in the previous section, this class has only one private function. This function (which is called
"get_online_spc_info") retrieves the values for the setpt and ol slots for the on-line evidence list.

For a more thorough explanation of these functions, see Appendices 6.1b and 6.2.

6.3.3 The Fault-Set Class

The diagnostic software uses yet another type of linked list, the fault-set, to quantify the
knowledge base of the plasma etcher (see Chapter 3). The contents of the fault-set lists are out-
lined in the definition of the "fault_set_node" class in Appendix 6.1c. Aside from list pointers,
each node contains the following data:

1) The name of the piece of evidence associated with this fault-set (evi_name).

2) A flagindicating whether this fault-set corresponds to positive or negative constraint vio-
lation (level).

3) The number of faults in the set (fault_cni).

4) A symbolic list of equipment faults belonging to the set (symbols).

5) The bit stream representation (as described in § 6.2.1) of the fault symbols (bits).

6) The proportion of belief attributed to this set (frac).
The structure of the fault-set linked list appears in Figure 6.4. The fault-set depicted in this figure
corresponds to the one described in § 5.4. Here, the level flag is set to 1 for positive constraint
deviations and -1 for negative deviations. Each fault symbol corresponds to a single component
in the frame of discernment. The frac variable is the fraction of the generated support attributed

to the fault-set in a single node of a fault-set list. This variable represents the weight that the set

is given in the diagnosis of a particular violated constraint [10).

In addition to the above data and the standard C++ functions to implement linked lists (see
§ 6.2.1 above), the fault_set_node class also contains several methods used to manipulate fault-

sets for diagnosis. The three most important functions associated with the fault_set_node class
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0.2

-

gas_flow_1

Figure 6.4 - The linked list structure which implements fault-sets.
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are the public functions "initialize_ fault_sets”, "make_fault_set” and "make_bpmd". The
"initialize_fault_sets" function creates a global fault-set which contains every fault combination
in the frame of discernment. From this overall fault list, "make_fault_set" constructs a subset of
this list for a particular piece of evidence. This evidence originates from the maintenance, on-line
and in-line evidence lists (refer to § 6.2.2). Finally, "make_bpmd" creates the BPMD which
corresponds to a fault-set for a given direction of constraint violation, numerical support and
uncertainty value. For further information regarding the methods attached to the

fault_set_node_class, see Appendices 6.1c and 6.2.

6.4 Diagnostic Algorithms and Information Flow

The BPM, evidence, and fault-set linked lists are the basic data structures that are manipu-
lated during the execution of the diagnostic software. This section provides an overview of the
manner in which program execution takes place. Figure 6.5 shows the global flow of information
within the diagnostic system. In this figure, rectangular boxes symbolize equipment, cylinders
indicate data or databases, and circles represent software. The direction of arrowheads is indica-
tive of the direction of information flow. The primary body of code is divided into three modules
which reflect the three stages of diagnosis. MAINT performs maintenance diagnosis. ONLINE
implements both maintenance and on-line diagnosis. INLINE initiates all three diagnostic
phases. The algorithms used to implement these three modules are described below. Execution
of the entire diagnostic package requires: the etch recipe, the real-time etch data and the in-line
measurements. The system produces two forms of output: a text file containing a ranked list of
equipment malfunctions or plots of the Dempster-Shafer belief accumulated by each component

fault versus time.

Although it has only been applied to a plasma etcher in this dissertation, most of the struc-

ture of the diagnostic system is generic and may accomodate other semiconductor manufacturing
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E— LAM ETCHER ‘ nanospet¢

Figure 6.5 - Information flow within the diagnostic system.

processes. The only portions of the code which must be significantly modified for new equip-
ment applications are the knowledge base and the equipment model library. As part of the
overall BCAM architecture (see Chapter 1), the system also works closely with several other
CAM functions, including the statistical process control module, which generates alaxins and ini-
tiates diagnosis. In addition, as has been previously mentioned, the system interacts with both the

equipment monitoring and modeling functions.

6.4.1 Maintenance Diagnosis

The maintenance diagnosis module (MAINT) begins execution by creating an overall

BPMD and storing it in a "record-oriented" input/output file [2]. This BPMD is used for fast tem-
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porary storage of BPMDs as they are combined throughout the maintenance diagnostic process.
The file is initialized by setting each fault’s support to zero and plausibility to one, signifying that
no diagnostic information is available at this point. Next, both the maintenance evidence list and

the global fault-set are initialized as described in § 6.2.2 and 6.2.3 above.

Following these initialization procedures, MAINT loops through each piece of evidence in
the maintenance evidence list, continuously updating and storing the overall BPMD each case.
Belief for faults in the maintenance phase of diagnosis is obtained by comparing the mean-time-
to-failure of each equipment component to the elapsed time since its last failure (see § 5.3.2).
This component failure information is read from a file which is generated by FAULTS, the com-

puterized equipment maintenance record-keeping system [11].

After all components in the maintenance evidence list have been processed, a text file is
created which contains the ranked list of all equipment faults resulting from maintenance diag-
nosis. This file contains the name of each component along with its final support and plausibility
values (see Figure 6.9 beléw). However, faults are ranked according to their support value only.

Updating the fault ranking file concludes the maintenance phase.

6.4.2 On-line Diagnosis

Unlike the maintenance- module, the on-line diagnosis module (ONLINE) requires two
forms of user input to initiate execution: the name of a file which contains the etch recipe and a
second file that contains the real-time sensor readings of etcher operating conditions from the
equipment monitoring system. This data is transmitted over the local area network via the
SECS-I protocol by a program called LAMTALK [9]. The recipe file is obtained from the

BCAM recipe database [12]. The format of this file is illustrated by Figure 6.6.
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0, Flow
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Figure 6.6 - Format of recipe file.

The initialization portion of ONLINE is similar to the maintenance module, except that this
module defines an additional record-oriented BPMD file to serve as temporary storage for on-line
BPMDs as well as an on-line evidence list. After initialization, maintenance diagnosis takes
place as described in the previous section. Next, the sensor data file is read and the standard devi-
ations of the sensor readings are obtained by the "get_online_spc_info" function described in §
6.2.2 above.

ONLINE performs diagnosis by continuously updating the on-line BPMD through the
examination of all sources of evidence in the on-line evidence list. For each piece of evidence in
this list, fault belief is generated for each of the eleven sensor readings (refer to § 4.2). These
readings are available in sets that are taken at a particular instant in time. Each set is called a

"sample”. Usually, LAMTALK monitors and stores one sample per second.

Evidential support is generated using the CUSUM [13] scheme described in § 5.3.3. After
the cumulative sums are calculated and belief is generated, BPMDs are combined for each set of
concurrent madingé. The overall BPMD from each set is stored in individual files which
correspond to component faults. The format of these files is compatible with XGRAPH [14],

which is used to produce support versus time plots for each individual fault (refer to Figure 6.9
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below). The first data point in each of these plots corresponds to the support calculated during
maintenance diagnosis. All support versus time data is stored in a separate "belief” directory. In

addition to these graphs, ONLINE also updates the maintenance fault ranking.

6.4.3 In-line Diagnosis

The module which implements in-line diagnosis (INLINE) uses the same input as ONLINE.
However, aside from the etch recipe and sensor data, INLINE also requires the name of the file
that contains a summary of the in-line measurements for a particular lot of wafers. The format of
this file appears in Figure 6.7. During initialization, INLINE defines another record-oriented
BPMD file as well as an in-line evidence list in addition to those files and evidence lists created
in ONLINE. Afterwards, maintenance and on-line diagnosis are performed as described above.

In-line diagnosis is subsequently executed by looping through all sources of in-line evi-
dence and continuously updating the in-line BPMD. INLINE uses the etch recipe and the BCAM
equipment model library (see Appendix 4.2) to compare model predictions to the measurements
in the in-line measurement file. This module interfaces with the BLSS [15] statistical package'to
generate evidential plausibility using the “reverse" regression approach of [16), which is

explained in § 5.3.4.

Mean Etch rate
Mean Nonuniformity
Mean Oxide Selectivity

Mean Resist Selectivity

Figure 6.7 - Format of in-line measurement file.
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The BPMDs which result from analyzing in-line evidence are appended to the XGRAPH
files described in the previous section. Like ONLINE, INLINE also updates the maintenance
ranking. Thus, upon the conclusion of in-line diagnosis, complete support versus time plots are
available for all three diagnostic phases (see Figure 6.9). In each plot, the first data point
corresponds to support derived during maintenance diagnosis and the last four points are obtained
from performing in-line diagnosis for each of the four in-line measurements. All intermediate

points result from the on-line phase.

6.5 Diagnosis User Interface

The executable files for maintenance, on-line and in-line diagnosis described above allow
the execution of each phase independently. Specific instructions on how to do so directly are pro-
vided in Appendix 6.3. However, diagnosis may also be initiated through the more user-friendly
BCAM interface [12]. This interface uses the X Toolkit [17] to call BCAM the various applica-

tions from an X Window environment [14).

Figure 6.8 shows the windows associated with each step in running the diagnostic software.
Window (1) is the BCAM main menu. After the user enters his/her account name, the desired
BCAM module may be selected with a mouse click. When diagnosis is selected, the dialogue
boxes in window (2) prompt the user to select a particular piece of equipment to diagnose. The
choice of "LAM1" causes the appearance of window (3), which allows the user to select the
appropriate recipe file from the recipe editor shown in window (4). Next, window (5) permits the
selection of either maintenance, on-line, or in-line diagnosis. Execution of on-line diagnosis
requires the selection of the file containing the appropriate sensor data from window (6). Finally,
initiating in-line diagnosis necessitates the choice of the appropriate in-line measurement file in

window (7).
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The output interface of the diagnosis module is illustrated in Figure 6.9. Window (1) of this
figure shows the fault ranking file which results from maintenance diagnosis. If on-line or in-line
diagnosis has been executed, the user may select a particular component from the menu in win-
dow (2) to produce support versus time graphs. Examples of such plots appear in windows (3)

and (4).

6.6 Summary

The chapter has provided an overview of the software which implements the methodology
for equipment malfunction diagnosis described in previous chapters. The diagnostic system has
been programmed in an object-oriented fashion using the C++ language. It resides on a Sun-class
UNIX workstation which may be linked directly to manufacturing equipment. The diagnostic
system is one module of the overall BCAM architecture. As such, this system works closely with
several other applications, including statistical process control, real-time monitoring, and equip-

ment modeling.
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APPENDIX 6.1a
CLASS DECLARATION AND ASSOCIATED METHODS
FOR BPMD OBJECTS

™"
Diagnosis module of BCAM

Copyright (c) 1990 Regents of the University of Califomia

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear
in all copies and that both that copyright notice and this permission notice appear in sup-
porting documentation, and that the name of the University of California not be used in
advertising or publicity pertaining to distribution of the software without specific, written
prior permission. The University of Califomia makes no representations about the suitabil-
ity of this software for any purpose. It is provided "as is" without express or implied war-
ranty.

Author: gsm

Source : lhome /radon 1/bcam Isrc /diagnosis /lam
Revision: 1.0

Date : 90/05/24 11:58:37

FileName: bpmd.h

*/

//*****************************t*****************’ll******************************

/
// Class declarations for bpmd nodes (nodes of linked lists).
/

// Bpm_node class. Each node contains the following data:

/! 1) "bits" - its fault bit sequence.

/l  2) "belief" - evidential support value.

/i 3) "plaus” - evidential plausibility value.

Vi 4) "theta" - a flag to indicate whether or not the node is theta.
1/

// In addition, each node contains pointers to the head of the list, the
// current node and next node in the list.
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class bpm_node {
public:

bpm_node *head;
bpm_node *next;
bpm_node *cur;
long bits;
float belief;
float plaus;
short theta;
bpm_node(void) { // constructor
head = 0;
theta=1;
}
“bpm_node(void); // destructor
void reset_iter(void)
cur = head; // reset the iterator
}

bpm_node *iter(void); // iterator function

void append(long b, float bel, short thet, float pls=0);

void modify_bit_value(void);

int my_length(void);

float my_nth(int pos);

void my_subst(int pos, float val);

void normalize(float factor);

friend bpm_node arb_bpmd_comb(bpm_node &b, bpm_node &b2);
friend bpm_node bel_pls_encript(int Ingth, bpm_node &b);
friend int bit_vec_equal(long stream, bpm_node *b);

friend bpm_node *my_bit_and(bpm_node *n1, bpm_node *n2);
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/t
Diagnosis module of BCAM

*/

APPENDIX 6.1b
CLASS DECLARATION AND ASSOCIATED METHODS
FOR EVIDENCE OBJECTS

Copyright (¢) 1990 Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear
in all copies and that both that copyright notice and this permission notice appear in sup-
porting documentation, and that the name of the University of California not be used in
advertising or publicity pertaining to distribution of the software without specific, written
prior permission. The University of California makes no representations about the suitabil-
ity of this software for any purpose. It is provided "as is" without express or implied war-
ranty.

Author : gsm

Source : lhome Iradon 1/bcam /src /diagnosis llam
Revision: 1.0

Date : 90/06/12 09:54:43

FileName: evidence.h

//************************************#*****************************************

I/

// Class declarations for evidence and its subclasses.

1/

// Evidence_node class (foundation of all evidence). Each node contains the
// following data:

/4 1) "name" - name of this piece of evidence.

//  2)"uncertainty” - the uncertainty in this evidence.

//  3)"bel_g" - the belief function parameter.

//  4) "equip” - the equipment name.

/l 5)"setpt" - the recipe setpoint of this evidence (if applicable).
//  6)"tol" - 3-sigma tolerance of this evidence (if applicable).

I

// In addition, each node contains pointers to the head of the list, the
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// current node, and the next node in the list.

class evidence_node {
public:

evidence_node *head;

evidence_node *next;

evidence_node *cur;

char *name;

float uncertainty;

float bel_g;

char *equip;

float setpt;

float tol;

evidence_node (void) { // constructor
head =0;

}

“evidence_node(void); // destructor
void reset_iter(void) {

cur = head; // reset the iterator
}

evidence_node *iter(void);  // iterator

void append(char *na, float u, float g, char *eq);

void get_online_spc_info(char *recipefile);

friend evidence_node initialize_maintenace_evidence(void);

friend evidence_node initialize_online_evidence(void);

friend evidence_node initialize_inline_evidence(void);

friend float inline_belgen(char *ename,float u,char *rfile,char *mfile);
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APPENDIX 6.1c
CLASS DECLARATION AND ASSOCIATED METHODS
FOR FAULT-SET OBJECTS

™"
Diagnosis module of BCAM

Copyright (c) 1990 Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear
in all copies and that both that copyright notice and this permission notice appear in sup-
porting documentation, and that the name of the University of California not be used in
advertising or publicity pertaining to distribution of the software without specific, written
prior permission. The University of California makes no representations about the suitabil-
ity of this software for any purpose. It is provided "as is" without express or implied war-

ranty.

Author: gsm

Source . lhome Iradon 1/bcam Isrc /diagnosis llam
Revision . 1.0

Date : 90/06/12 09:54:43

FileName: fault_set.h
*/
/i
// Class declarations for symbolic fault set nodes (nodes of linked lists).

// Each fault set is associated with one piece of evidence.
/

//*********#**********'"i:"“‘i'il;vwf.;' e e e o ae e e o o ke e e s s ae s e e e e e s s e e e sl sl s o e e afe o

// Fault_set_node class. Each node contains the following data:

I 1) "evi_name" - evidence name associated with this fault set.

/A 2) "level" - a short integer flag which indicates whether constraint
/Il violation is positive or negative (+/- 1).

1/l 3) "fault_cnt" - the number of faults in the fault set.

/i 4) "symbols” - symbolic list of faults (such as 'ABD’ or 'ADE’).
/[ 5) "bits" - the bits corresponding to the above symbols

/l  6) "frac" - the weighted belief fraction of the set.
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I

// In addition, each node contains pointers to the head of list, the current
// node, and the next node in the list.

class fault_set_node {
public:

fault_set_node *head;
fault_set_node *next;
fault_set_node *cur;
char *evi_name;

short level;
int fault_cnt; // how many faults in this node?
char *symbols; // fault symbols
long bits;
float frac;
fault_set_node(void) { // constructor
head = (;
}
“fault_set_node(void); // destructor
void reset_iter(void) (
cur = head; // reset the iterator
}

fault_set_node *iter(void);  // iterator

void append(char *evi, short lev, int fc, char *sym, float fr);

void clear_fault_bits(void);

int count_faults(void);

void get_fault_bits(void);

friend int char_to_int(char c);

friend fault_set_node initialize_fault_sets(void);

friend bpm_node make_bpmd(fault_set_node &fs, short lev, float bel,
float u, int fits);

friend fault_set_node make_fault_set(char *ev, fault_set_node &ofs);
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APPENDIX 6.2
DIAGNOSTIC SOFTWARE OVERVIEW

This appendix provides a summary of the organization of all software modules and output
files used to implement equipment malfunction diagnosis. The module names, contents, and gen-
eral functionality are described. The system is comprised of approxiamtely 3,200 lines of C++
code. This code resides on the SUN 4 machine ‘radon.berkeley.edu’ in the

“bcam/src/diagnosis/lam directory.
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File Name Contents Function Name(s) Purpose
belief Output directory for none not applicable
belief vs time data
bpmd.cc | Member functions for bpm_node Deletes an entire linked list of bpm_nodes
bpm_node class
iter Iterates through a list of bpm_nodes
append Appends one bpm_node to the end of a list
modify_bit_value | Ensures that the last bpm_node in a
list is a "theta’ node
my_length Returns the number of bpm_nodes in a list
my_nth Returns the support slot for a given node
in a list of bpm_nodes
my_subst Substitutes a support value into a given
position in a list of bpm_nodes
normalize Performs BPMD normalization on a
bpm_node list
Friend functions for arb_bpmd_comb | Performs arbitrary BPMD combination
bpm_node class on two lists of bpm_nodes
bel_pls_encript | Calculates final evidential intervals
for a given bpm_node list
bit_vec_equal Returns the position of a given bit pattern
in a bpm_node list
my_bit_and Performs the logical 'and’ of the bit patterns
of two different bpm_nodes
bpmd.h | Class definition for none not applicable
bpm_node class
const.h Symbolic constants for none not applicable
diagnosis software
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File Name Contents Function Name(s) Purpose
evidence.cc | Member functions for “evidence_node Deletes an entire linked list of
evidence_node class evidence_nodes
iter Iterates through a list of
evidence_nodes
append Appends one evidence_node to
the end of a list
get_online_spc_info Retrieves values for setpt and
tol slots of on-line evidence list
Friend functions for initialize_maintenance_evidence | Initializes the maintenance
evidence_node class evidence list
initialize_online_evidence Initializes the on-line
evidence list
initialize_inline_evidence Initializes the in-line
evidence list
evidence.h | Class definition for none not applicable
evidence_node class
fault_set.cc | Member functions for Tault_set_node Deletes an entire linked list of
fault_set_node class fault_set_nodes
iter Iterates through a list of
fault_set_nodes
append Appends one fault_set_node to

clear_fault_bits

count_faults

get_fault_bits

the end of a list

Clears the bits in every node
of a fault-set list

Counts the total number of fault
symbols in a fault-set list

Converts a symbolic fault list to
its integer representation
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File Name Contents Function Name(s Purpose
Friend functions for char_to_int Retums the integer representation
fault_set_node class of a given ascii character
initialize_fault_sets | Initializes the global fault-set list
make_bpmd Retums BPMD for given fault-set
list, support and direction of
constraint violation
make_fault_set Retums the fault-set list for a
given piece of evidence
fault_set.h | Class definition for none not applicable
fault_set_node class
faults.info | Component failure info none not applicable
for maintenance diagnosis
file_io.cc | Member functions for recfile Creates a record file
recfile class
open Opens a recfile using the standard
C I/O function fopen(
close Closes a recfile using the standard
C 1/O function fclose()
seek Moves the recfile pointer to a
given record
w Reads/writes records in/out of a
buffer at given starting record
err_handler Recfile error handling function
Member functions for display Displays a bpm_rec file
bpm_rec class
Friend functions for translate_laml_fit | Translates fault symbols to
bpm_rec class corresponding lam1 names
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File Name Contents Function Name(s) Purpose
file_io.h Class definitions for none not applicable
recfile bpm_rec classes
inline.cc Main program to execute all none not applicable
3 phases of lam1 diagnosis
inline.rank Fault ranking from none not applicable
in-line diagnosis
inline_belief.cc Functions necessary for inline_belgen Generates in-line support
in-line diagnosis using reverse regression
inline_bpmd.fil Record-oriented BPMD file none not applicable
for in-line diagnosis
main_bpmd.fil Record-oriented BPMD file none not applicable
for maintenance diagnosis
maintenance.cc Main program to execute none not applicable
lam1 maintenance diagnosis
maintenance.rank | Fault ranking from none not applicable
maintenance diagnosis
misc_diag.cc Miscellaneous functions bel_gen Generates belief from
used for diagnosis *squashing’ function
bits_to_char Converts sequence of bits
to an ascii character
cusum_high Calculates cusum positive
deviations using tabular
V-mask
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File Name Contents Function Name(s) Purpose
cusum_low Calculates cusum negative
deviations using tabular
V-mask
get_fault_mif Retrieves mtf
from ’faults.info’
get_fault_tsf Retrieves tsf
from *faults.info’
make_xgraph_files | Stores XGRAPH datasets
from maintenance ranking in
*belief” directory
read_bpmd_file Reads support from
record-oriented BPMD files
into bpm_node lists
store_bpmd_file Stores a bpm_node list into a
record-oriented BPMD file
store_belief Stores belief from each node of
bpm_node list into appropriate
file in ’belief* directory
transfer_raw_data | Reads raw sensor data,
transfers it to format for
on-line diagnosis
online.cc Program to execute none not applicable
on-line diagnosis
online.data Formatted file containing none not applicable
on-line sensor data
online.rank Fault ranking from none not applicable
on-line diagnosis
online_bpmd.fil | Record-oriented BPMD file none not applicable

for on-line diagnosis
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APPENDIX 6.3
MANUAL PAGES FOR DIAGNOSIS SOFTWARE

This appendix provides the UNIX manual pages for the BCAM equipment malfunction
diagnosis software. The commands described apply to the Lam Research Autoetch 490 plasma
etcher in the Berkeley Microfabrication Laboratory. Commands are executable from the

“bcam/src/diagnosis/lam directory on radon.berkeley.edu.
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DIAGNOSIS COMMANDS

INLINE(1) INLINE(1)

NAME
inline - perform the maintenance, on-line and in-line phases of diagnosis on the Lam etcher

SYNOPSIS
inline <recipe> <data> <measurements>

DESCRIPTION

Inline performs malfunction diagnosis on the etcher after processing. In addition to run-
ning maint(1) and online(1), inline also performs in-line diagnosis using a summary of in-
line etch measurements.

Recipe is the file which contains the etch recipe settings. Data is a file containing the real-
time data produced by the LAMTALK equipment monitoring program. The measurements
file contains a summary of the in-line etch measurements.

Inline produces an output file called ’inline.rank’. This file contains the component name,
support and plausibility for each etcher fault. In addition, inline creates xgraph(1) datasets
which contain diagnostic support versus time data. These datasets are stored according to
component name in the “bcam/src/diagnosis/lam/belief directory.

SEE ALSO
maint(1), online(1), xgraph(1)

AUTHOR
Gary S. May, University of California at Berkeley

Last change: May, 1991
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DIAGNOSIS COMMANDS

MAINT(1) MAINT(1)

NAME
maint - perform the maintenance phase of diagnosis on the Lam etcher

SYNOPSIS
maint

DESCRIPTION

Maint performs malfunction diagnosis on the etcher before processing. It reads component
mean-time-to-failure and elapsed time since last failure data from a file called ’faults.info’.
This file is generated and updated by running pareto(1) from “gsm on argon.berkeley.edu.
It must then be copied to "bcam/src/diagnosis/lam/faults.info on radon.berkeley.edu.

Maint produces an output file called 'maintenance.rank’. This file contains the component
name, support and plausibility for each etcher fault.

SEE ALSO
pareto(1)

AUTHOR
Gary S. May, University of California at Berkeley

Last change: May, 1991
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DIAGNOSIS COMMANDS

ONLINE(1) ONLINE(1)

NAME
online - perform the maintenance and on-line phases of diagnosis on the Lam etcher

SYNOPSIS
inline <recipe> <data>

DESCRIPTION

Online performs malfunction diagnosis on the etcher after processing. In addition to run-
ning maint(1), inline also performs on-line diagnosis using real-time sensor data.

Recipe is the file which contains the etch recipe settings. Data is a file containing the real-
time data produced by the LAMTALK equipment monitoring program.

Online produces an output file called "online.rank’. This file contains the component name,
support and plausibility for each etcher fault. In addition, online creates xgraph(1) datasets
which contain diagnostic support versus time data. These datasets are stored according to
component name in the “bcam/src/diagnosis/lam/belief directory.

SEE ALSO
maint(1), xgraph(1)

AUTHOR
Gary S. May, University of California at Berkeley

Last change: May, 1991
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DIAGNOSIS COMMANDS

PARETO(1) PARETO(1)

NAME
pareto - retrieve etcher component failure information from FAULTS

SYNOPSIS
pareto > faults.info

DESCRIPTION

Pareto retrieves etcher component mean-time-to-failure (mtf) and elapsed time since last
failure (tsf) data from the FAULTS database. It directs the output into a file called
"faults.info’. This file contains each component’s name, mtf and tsf. This information is .
necessary for maintenance diagnosis.

Pareto is executed from “gsm on argon.berkeley.edu. The 'faults.info’ file should be
copied to “bcam/src/diagnosis/lam/faults.info on radon.berkeley.edu.

SEE ALSO
maint(1)

AUTHORS
David Mudie and Gary S. May, University of California at Berkeley

Last change: May, 1991
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CHAPTER 7
SYSTEM VERIFICATION AND CONCLUSIONS

7.1 Introduction

This chapter illustrates the use of the equipment diagnostic system for two typical malfunc-
tions which occur in the operation of the Lam Research Autoetch 490 automated plasma etcher.
Following a discussion of the diagnosis of these faults, a summary of the major results of this

research and some suggestions for future work are presented.

7.2 Diagnostic Examples

Two typical diagnostic scenarios are discussed below. For each of these, the polysilicon
etch rate, uniformity, and oxide and resist selectivity are monitored by standard Shewhart control
charts with +/- 3-o control limits [1]. In these charts, the etch outputs of the first nine baseline
wafers are contrasted with 10 new wafers for which a simulated etcher malfunction has caused
the process to shift. The word "simulated" here refers to the fact no actual malfunctions existed;
the wafers were merely etched under conditions which would occur in the event of such a mal-
function. The charts illustrate that even when process shifts do occur, they are not always easily

discernible to an operator examining a control chart.

The nine baseline measurements come from wafers etched by the center point recipe of the
modeling experiment described in Chapter 4. The process settings of this recipe are: pressure =
250 mtorr, RF power = 350 watts, CCl4 flow = 125 sccm, He flow = 125 sccm, O, flow = 15
sccm, and electrode spacing = 1.5 cm. The shifts have been induced artificially by etching at
slightly different recipes. The shifts were introduced by varying one of the controllable etch
parameters from the center point recipe. These modifications simulate the behavior of the etcher

under the conditions of the malfunction.
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7.2.1 Miscalibrated Mass Flow Controller

One of the most common equipment malfunctions that occurs on the etcher is the miscali-
bration of a mass flow controller (MFC) [2]. When an MFC becomes miscalibrated, the flow of
gas into the etcher’s process chamber may be less than what is expected. This diagnostic scenario

is illustrated in Figures 7.1 and 7.2.

Figure 7.1 shows the oxide selectivity control chart for 19 wafers. The first nine wafers
were etched with the center point recipe, and the average selectivity for these wafers is 7.1. The
3-0 control limits of the control chart in the figure are estimated from the baseline wafem;. For
the next 10 wafers, a miscalibrated MFC is simulated by etching at a reduced CCI, flow (115
sccm). This results in a mean selectivity of only 5.5. This reduction in oxide selectivity due to
lower CCl4 flow is in agreement with trends predicted by the oxide selectivity model in § 4.4.3.
The average etch rate (Rp ), uniformity (U'), oxide selectivity (S, ) and resist selectivity (Spa) for

nominal and malfunctioning etcher operation are summarized in Table 7.1.

Table 7.1 - Summary of Etch Outputs for Miscalibrated MFC Example

Response | Nominal Operation | Malfunctioning Operation
Rp 4494 4 /min 4275 A /min
U 8.9 % 8.6 %
Sax : 7.1 55
Soh 2.5 2.6

Figure 7.2 shows the evidential support versus timé plot during the processing of one wafer
with a miscalibrated MFC. Here, the maintenance phase of diagnosis shows some indication of a
fault. However, since gas flow sensors are directly connected to the circuitry which controls the
MFC [3], a miscalibrated MFC is not detectable by these sensors. Therefore, on-line diagnosis
cannot reveal this problem. Nevertheless, during in-line diagnosis, the system computes

significant likelihood for a miscalibrated MFC fault.
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Figure 7.1 - Monitored oxide selectivity for miscalibrated MFC example.
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Recall from the Fault Propagation diagrams in Appendix 3.2 that an MFC miscalibration is
occasionally the result of a malfunctioning microprocessor. The microprocessor is a part of the
etcher’s interface electronics system. Consequently, in Figure 7.2, the support for the MFC fault
is contrasted with that of a fault in the interface electronics. However, in this case, a fault in the

electronics system is not discemible.

7.2.2 Phase/Magnitude Detector Problem

Another fault which may occur in the plasma etcher involves the phase/magnitude detector
system which matches the chamber impedance to the RF generator output. This matching is
necessary to achieve maximum power transfer [3). Occasionally, however, the timing mechanism
in the phase/magnitude detector malfunctions and causes a power loss [4]. This loss of power can

significantly reduce etch rate. This situation is depicted in Figures 7.3 and 7.4.

The first nine wafers in Figure 7.3 are etched with the same center point recipe as in the pre-
vious example. For these, the average etch rate is once again 4494 A /min. Once again, the con-
trol limits of the control chart are estimated from the baseline wafers. For the next 10 wafers, the
phase/magnitude detector problem is simulated by reducing the forward RF power to 340 watts,
which results in a decrease in mean etch rate to 4027 & /min. This reduction is also in agreement
with the model in § 4.4.1. The remaining etch outputs for this example are summarized in Table

7.2.

Table 7.2 - Summary of Etch Outputs for Phase/Magnitude Detector Example

Response | Nominal Operation | Malfunctioning Operation
Rp 4494 A /min 4027 A /min
U 89% 4.4 %
Sox 7.1 53
Soh 2.5 2.6
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Figure 7.4 shows the support versus time plot from a misprocessed wafer under these condi-
tions. Since the phase/magnitude detector fails very infrequently [2], the maintenance phase of
diagnosis shows negligible indication of a fault. During on-line _diagnosis, however, the support
for this fault increases dramatically as the wafer is processed, and the system correctly identifies
the phase/magnitude detector as a probable malfunction. This diagnosis is even further corro-
borated by the in-line phase.

The evidential support for the phase/magnitude detector problem may be compared to that
of the RF calibration fault which is also depicted in Figure 7.4. Although a miscalibrated RF
power system is also a possible fault when power-related malfunctions are observed (see Appen-

dix 3.2), this graph shows that such miscalibration is unlikely in this case.

7.3 Conclusions

This dissertation has presented a general methodology for the automated malfunction diag-
nosis of semiconductor manufacturing equipment. The approach utilized combines the best
aspects of algorithmic and knowledge-based methods. By employing Dempster-Shafer evidential
reasoning [5] to infer the causes of failures, and by using evidence generated before, during and
after equipment operation, malfunctions may be identified before significant misprocessing has

occurred.

The development of this diagnostic system required a thorough understanding of equipment
operation under optimal conditions as well as cognizance of the effect of individual malfunctions
on nominal operation. Consequently, a qualitative model of both the interaction between equip-
ment components and the propagation of equipment faults through the system has been
developed for the piece of equipment which served as the application vehicle for the diagnosis

prototype: the Lam Research Autoetch 490 plasma etcher [3].
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In addition, the use of the Dempster-Shafer methodology necessitated comprehensive
experimentation to obtain empirical models for the behavior of the Lam etcher. Thus, a series of
experiments have been conducted to characterize the etch rate, uniformity, selectivity, and aniso-
tropy of a polysilicon etch process using response surface models. These models have been
shown to describe the critical etch outputs very precisely [6]. Moreover, the models provide

quick analytical solutions which are essential for diagnosis.

Techniques were also developed to derive important diagnostic information from all three
primary sources of evidence: equipment maintenance history, real-time sensor data, and the
empirical equipment models. Each source of evidence corresponds to one phase of diagnosis,
and each diagnostic phase is accompanied by a unique method of evidential support generation.
For the maintenance phase, support is generated by comparing the elapsed time since a com-
ponent has failed to that component’s mean-time-to-failure. Both of these quantities are obtained
from an equipment database [7]. During on-line diagnosis, support is derived by monitoring sen-
sor data [8] and filtering correlation effects using the cumulative sum of measurement residuals
[1). Finally, for in-line diagnosis, an innovative technique has been developed to obtain eviden-
tial plausibility for equipment failures from the empirical models of equipment behavior [9]. In
so doing, the this technique provides an important link between statistical modeling and

knowledge-based diagnostic systems.

However, the Dempster-Shafer approach to diagnosis is not totally without limitations.
Like many Bayesian schemes designed for large systems [10-11], Dempster-Shafer theory
assumes independence of evidence sources. This is probably erroneous in integrated circuit fabri-
cation equipment since sensor data is often correlated in time [12]. Although the effect of the
independence assumption can be somewhat lessened by applying the Dempster-Shafer model to
multiple fault groups in the manner described in § 2.5, accurate diagnosis with this technique

requires an exhaustive mapping of evidence sources to particular faults or fault groups. Such a
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mapping is not easily derived for complex systems.

The diagnostic methodology described in this thesis serves as one module of the Berkeley
Computer-Aided Manufacturing (BCAM) architecture. Among the other capabilities of the
BCAM system are: statistical process control (SPC), recipe generation, real-time equipment
monitoring, modeling and simulation of equipment and processes, and automated maintenance
record-keeping. In this framework, the diagnostic module plays a unique role in linking the vari-

ous other applications.

Diagnosis is initiated when alarms are generated by SPC monitoring schemes. Also, in
order for real-time diagnosis to take place, the link between the diagnostic module and the equip- -
ment monitoring software is critical. Furthermore, the maintenance phase of diagnosis depends
heavily upon information obtained from the automated record-keeping system [7]. Finally, the
empirical models of equipment behavior necessary for in-line diagnosis are equally useful for

recipe generation [13] and manufacturing-based technology CAD simulation [14].

7.4 Future Work

7.4.1 Short Term

In the short term, only one task is of primary importance for plasma etch diagnosis. A more
direct link between the monitoring software and the diagnostic module must be established. Such
a link would allow the real-time analysis of sensor data during on-line diagnosis. At present, on-
line diagnosis is performed by reading files containing recently transmitted sensor data (see §
6.3.2). Since executing the ONLINE program on a Sun 4 computer currently takes less than 30
seconds to process data collected during a 60 second process run, it is not unreasonable to assume

that once such a direct link is established, real-time etch diagnosis may take place.

Moreover, aside from enabling real-time diagnosis, the link to the monitoring software
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would permit the continuous updating of the standard deviations of all sensor inputs. These stan-
dard deviations are necessary for the implementation of the CUSUM support generation scheme
described in § 5.3.3. Currently, these deviations are "hard-wired" into the "get_online_spc_info"

function (refer to § 6.2.2).

7.4.2 Long Term

One way to lessen the impact of the limitations of the Dempster-Shafer approach outlined
above involves optimizing the values of the various adjustable parameters used to generate and
distribute numerical fault belief. These parameters include system uncertainty, the "sharpness”
factor of equation (5.1), and the weighting system used to assign portions of fault belief to indivi-
dual faults or fault groups (see § 5.4 and 6.2.3). Such an optimization requires extensive use of
experimentation and simulation of known malfunctions in a manner similar to the examples
presented in this chapter. The result of this effort would provide greater assurance that the diag-
nostic system is sufficiently robust to arrive at accurate coﬁclusions over a wide range of failure

scenarios.

The overall accuracy of the diagnostic system would also be greatly enhanced through the
use of additional real-time sensors. The plasma etcher to which the system has been applied in
this dissertation has a limited number sensors which provide useful data (see § 4.2). The lack of
availability of sufficient sensors is a significant hindrance to evidence gathering. Improvement of
sensor capabilities for the plasma etcher remains a critical topic of ongoing research for both
universities and equipment manufacturers, and the application of this diagnostic methodology to
an etcher with more abundant and more advanced sensors (such as the Lam Rainbow etcher [12D)

would provide a better measure of the potential usefulness of the system.

Finally, although the techniques developed in this thesis have thus far been applied to fault

identification in a single-wafer plasma etching system, the overall diagnostic approach is general
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enough to be useful in other equipment applications. In order to alleviate some of the difficulties
discussed above, further research should be initiated with the goal of applying this methodology
to other fabrication processes. A few potential candidates include ion implantation and molecular
beam epitaxy (MBE). Moreover, through the use of functional decomposition techniques [15],
this diagnostic approach might also be useful in the development of state-of-the-art "cluster tools"

and other multi-chamber, single-vacuum apparatus.
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