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ABSTRACT

Manufacturing quality products in an integrated circuit fabrication facility requires that

thousands of individual process variables be strictly controlled. Although in-line measurements

and electrical test data have historically been used to detect process fluctuations, these methods

alone have become inadequate for rapidly identifying possible problems in processes with a very

narrow range of acceptable performance.

Individual process steps are conducted by complex pieces of fabrication equipment When

unreliable performance causesthis equipment to vary beyond desiredlimits, overall productqual

ity is jeopardized. Since process shifts resulting from faulty equipment can degrade semiconduc

tor products to anunacceptable level, it is essential thatrootcauses forthe malfunctionsbe diag

nosed and corrected quickly to prevent the continued occurrence of expensive misprocessing.

However, with the advent of highly proficientsensorsdesigned to monitor process conditions in-

situ, it has become feasible to perform such malfunction diagnosis on a real-time basis. There

fore, methods of equipment diagnosis which utilize these capabilities are critical to the overall

success of the semiconductor production process.

This dissertation presents a general methodology for the automated diagnosis of integrated

circuit fabrication equipment The technique presented combines the best aspects of quantitative

algorithmic diagnosis and qualitative knowledge-based approaches. Evidence from equipment



maintenance history, real-time sensor data and in-line measurements are integrated using eviden

tial reasoning techniques within the Berkeley Computer-Aided Manufacturing (BCAM) frame

work. This methodology is applied to the identification of faults in the Lam Research Autoetch

490 automated plasma etching system.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

In order to keep pace with economic competition abroad as well as rapid technological

advancement in fabrication techniques, the semiconductor industry in the United States is paying

an increasing amount of attention to issues related to semiconductor manufacturing [1]. As a

result, the current level of activity in computer-aided manufacturing (CAM) and computer

integrated manufacturing (CIM) techniques today is reminiscent of that incomputer-aided design

(CAD) several years ago.

Maintaining product quality throughout an integrated circuit (IQ manufacturing facility

requires the strict control of literally thousands of process variables. These variables serve as

input and output parameters for hundreds of distinct process steps. Thus, monitoring these pro

cess steps requires the manipulation of vast amounts of data which exists in various formats,

including:

1) work-in-process (WIP) information

2) equipment maintenance records

3) real-time process data

4) in-line physical and/or electrical measurement data

5) final electrical test data

The implementation of a well-designed CIM system that manages these five critical datasets as

well as the design and control various processes is essential for maintaining acompetitive edge in

the industry.



Although in-line measurements and final electrical test data have historically been used to

detect process fluctuations, these methods have become more and more inadequate for identifying

all possible problems in processes with avery narrow range of acceptable performance [2]. Asa

consequence, process failures often remain undetected until the completion of what is often a

very long and costly productioncycle.

Individual IC process steps are conducted by sophisticated and expensive pieces of fabrica

tion equipment. When unreliable equipment performance causes operating conditions to vary

beyond their desired limits, overall product quality is severely jeopardized. Consequently, fast

and accurate methods ofequipment malfunction diagnosis are essential to the success of the sem

iconductor production process.

Traditional approaches to diagnosis typically take place at the conclusion of asequence of

several fabrication steps. Since integrated circuit wafers are manufactured in a batch mode, the

detection of errors usually comes after a large number ofexpensive wafers have been mispro-

cessed. This is extremely costly in terms ofproduct yield. Therefore, from an economic point of

view, diagnosis is more beneficial when itis conducted during each individual process step. This

implies that greater emphasis must be placed on the diagnosis ofspecific pieces equipment rather

than entire processes. Moreover, with the advent ofhighly proficient sensors to monitor process

conditions in-situ [3-4], it has become possible to perform malfunction diagnosis on a real-time

basis.

This dissertation presents ageneral methodology for the automated diagnosis of IC fabrica

tion equipment. The technique presented combines the best characteristics ofquantitative algo

rithmic diagnosis and qualitative experiential approaches. Evidence from equipment mainte

nance history, real-time sensor data and in-line measurements are integrated using Dempster's

rules ofevidential reasoning [5]. Within the Berkeley Computer-Aided Manufacturing (BCAM)



framework, this methodology is applied to the identification of faults in a single-wafer plasma

etching system.

1.2 The Berkeley CAM Architecture

The objective of the BCAM system is to improve both theproductivity and the quality of

IC manufacturing. The approach utilized by BCAM is the design of a flexible architecture to link

various software modules in an integrated system tosupport design, manufacturing and testing of

ICprocesses. Inthis way, BCAM aims tosupport all aspects ofequipment operation and process

control in semiconductor manufacturing.

The BCAM group has identified several capabilities which contribute to theefficient opera

tion of individual pieces ofmanufacturing equipment Among these are: statistical process con

trol (SPQ, recipe generation, real-time monitoring, maintenance and record-keeping, modeling,

and malfunction diagnosis. These capabilities share a number of basic resources, including

numerical optimizers, statistical routines, relational databases and userinterfaces. They are also

very tightly coupled. For example, SPC is used to triggeran alarm which initiates malfunction

diagnosis procedures, which in turn make use of equipment models to infer equipment faults.

Therefore, the seamless integration of all of these capabilities is a necessity for any useful CIM

system. A graphical depiction of theBCAM framework appears in Figure 1.1.

In its current implementation, BCAM is a workstation-based system which employs the

object-oriented features of the CLOS [6], Cand C++ [7] programming languages. Inaddition, it

uses the X Window system and the INGRES [8] relational database. Direct communication with

semiconductor manufacturing equipment is accomplished by means ofthe Semiconductor Equip

ment Communications Standard U (SECSII) protocol [9]. BCAM is designed to support inter-

equipment control in work-cell configurations, and it is a part of the Berkeley Computer

Integrated Manufacturing (BCIM) system.



Figure 1.1 - The BCAM framework.
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In order to alleviate the cost and complications inherent in current CIM architectures, the

Berkeley CIM group has proposed a two-level approach [1-21. This two-level CIM architecture is

depicted inFigure 1.2. The lower level includes the embedded workcell controllers which main

tain the quality ofprocessing equipment on areal-time basis. The upper level consists ofadistri

buted network of multi-tasking workstations linked to acommon relational database. The high

speed CIMBUS [2] provides communication among the various processors and acts as acoordina

tor among different applications.
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Several recent technological advances have contributed greatly to this realization. First of

all, it is now possible to constuct physically distributed, but logically integrated relational data

base systems whose ease ofuse reduces the effort required for both initial system development

and subsequent modification. In addition, industry has widely accepted the use of high-

bandwidth local area networks (LANs) that make it possible to connect process control applica

tions directly to fabrication equipment in acost-effective manner. These LANsenable the real

time monitoring that is critical to both SPC and equipment diagnosis. Finally, the emergence of

artificial intelligence (AI) methodologies as an aid in automated decision-making, planning,

scheduling, and diagnosis has eliminated some ofthe difficulties associated with these knowledge

intensive and error-prone manufacturing activities.



The overall objective of the Berkeley CIM architecture is to develop software modules for

controlling IC processing steps based upon the two-level model. This objective is also aided by

the Berkeley Process Flow Language (BPFL) [10] and the Work-in-Progress (WIP) interpreter

[11]. BPFL is used to describe manufacturing processes, and WIP executes the BPFL process

specifications, handles equipment allocation and control, and collects and stores the data used to

monitor the entire maiinfacturing facility. BPFL and WIP operate at the upper level of the CIM

architecture and send commands tothe BCAM modules toinitiate, monitor, diagnose, orgenerate

a recipe for a process step. Using this architecture, it has become possible to implement aunified

CIMsystem which is simpler and more flexible than earlier generation systems.

1.4 Thesis Organization

The subject of this dissertation is the development of an automated system to perform mal

function diagnosis on semiconductor manufacturing equipment within the overall BCAM frame

work. In particular, this system is applied to the diagnosis of a plasma etcher. A theoretical

description of the inference technique employed todetermine the equipment malfunctions is pro

vided in Chapter 2. Chapter 3 contains an overview of the mechanical operation of the Lam

Research Corporation Autoetch 490 plasma etcher, the particular machine to which the diagnostic

scheme is applied. Experimental modeling of the etcher isdescribed inChapter 4. The approach

taken to the generation and distribution of evidential support for fault hypotheses is discussed in

Chapter 5. In Chapter 6, adetailed explanation of the software which implements the entire diag

nostic system is provided. Finally, Chapter 7 presents averification of the system bymeans of a

few examples, as wellas some overall conclusions and some suggestions for future work.
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CHAPTER2

A METHODOLOGY FOR DIAGNOSTIC INFERENCE

2.1 Introduction

In semiconductor manufacturing equipment, a certain amount ofinherent variability exists

regardless of how well the machine is designed or maintained [1]. This "noise" is the result of

numerous small and essentially uncontrollable causes. However, when this variability becomes

large compared to background noise, significant performance shifts may occur. As an example of

such a shift, consider the standard Shewhart control chart shown in Figure 2.1. This figure dep

icts a shift inthe thickness ofaparticular thin film as integrated circuit wafers are processed ina

fabrication line. Such process shifts are often indicative ofequipment malfunctions. Since these

shifts can degrade the overall fabrication process to an unacceptable level, it is critical that

assignable causes for the equipment malfunctions be diagnosed and corrected quickly to prevent

thecontinued occurrence of expensive misprocessing [2].

Several recent computerized diagnostic systems have had the objective of performing

automated diagnosis offaults in both manufacturing processes and equipment Algorithmic sys

tems such as HIPPOCRATES [3] and MERLIN [4] have been developed to identify process

faults from statistical inference procedures and electrical measurements performed on finished IC

wafers. Although this technique makes good use ofquantitative models ofprocess behavior, it

can only arrive at useful diagnostic conclusions in the limited regions of operation over which

these models are valid. When catastrophic faults that destroy circuit functionality occur, these

models can no longer adequately describe the failure mechanism [5]. Moreover, in critical pro

cess steps such as plasma etching, the theoretical basis for determining causal relationships isnot

very well understood (see Chapter 4), thereby limiting the usefulness ofphysical models [1,6-7].
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Another algorithmic system has been designed to diagnose intra-wafer variability and spa

tial dependencies of process parameters [8]. This system utilizes principal component analysis

[9] and pattern recognition techniques to determine the spatial distribution of process faults.

Although the identification of the faults is accomplished through rigorous statistical means, the

subsequent determination of their root causes is assisted by the quantification of empirical

engineering knowledge. However, both this method and HIPPOCRATES perform diagnosis at

the conclusion of IC processes. From apractical standpoint, this approach is inadequate since at

that point intime, significant misprocessing and yield loss may have already taken place.



When attempting to diagnose unstructured problems which lack a solid conceptual founda

tion for reasoning, some success has been attained byapproaches based upon quantifying expert

knowledge. Expert systems such as PIES [10] and PEDX [11] are designed to draw upon

experiential knowledge to develop qualitative models of process behavior. In this way, they are

able to circumvent the difficulties encountered byalgorithmic systems when quantitative relation

ships break down. Yet a purely knowledge-based approach often lacks the precision inherent in

the deep-level physical models, and is thus incapable of deriving solutions for unanticipated

situations from the underlying principles surrounding the process. Another shortcoming of

purely expert diagnosis is itsinability to identify concurrent multiple faults.

Both the algorithmic and the expert approaches to diagnosis outlined above typically take

place following a sequence of several fabrication steps. However, since integrated circuits are

manufactured in a "batch" mode, evidence pertaining to potential equipment malfunctions accu

mulates at irregular intervals throughout the process sequence. Often, diagnosis cannot be con

clusive until subsequendy acquired data verifies earlier hypotheses regarding the nature of the

problem. Therefore, an essential requirement for acompetent and effective diagnostic tool is a

systematic methodology for combining evidence originating from numerous sources at random

intervals.

The actual means by which the diagnostic system formulates fault hypotheses is known as

the inference engine [12]. The inference engine performs the reasoning function for the entire

system bysystematically combining available evidence using ageneral methodology in conjunc

tion with information contained in the knowledge base (see Chapter 3). This chapter presents an

inference methodology for automated equipment diagnosis. Data from various sources is seam

lessly integrated using Dempster's rules of evidential reasoning under uncertainty [13]. This

technique integrates the best characteristics of quantitative algorithmic diagnosis and qualitative

experiential approaches and has several advantages over other methods of inference. The

10



evidential reasoning approach has been implemented using support logic programming [14] in an

object-oriented manner via the C++ programming language [15]. This methodology has been

appliedto fault identification in a plasmaetcher.

12 Sources of Diagnostic Evidence

Evidence regarding fabrication equipment malfunctions originates from several sources,

including equipment maintenance history, real-time sensor data, and physical in-line measure

ments of process parameters [16-17]. Both sensor and measurement data are constrained by

first-principle physics and empirical relationships. Violation or significant deviation from these

constraints is indicative of equipment faults. Each violated constraint may be subsequently

mapped to a particular set of potential faults. As a simple example, consider the flow of mass

through apipe as shown inFigure 2.2. IfFj represents the flow at the entry tothe pipe and F2 is

the flow at its exit, then this system is constrained by the following expression relating the con

servation ofmass:

Fl-F2 = 0 (2.1)

Hows Fx and F2 are monitored by sensors Sx and S2, respectively. The violation of constraint

(2.1) in the positive direction mightbe diagnosed aseither a leakorthe failure ofoneof thetwo

sensors, whereas a negative deviation would indicate a sensor failure only. In effect, diagnosis

represents the logical combination of inferences drawn from a complete set of constraint equa

tions. Such acomplete set is referred to as the system ofgoverning equations for agiven process

[18].

The solution of the governing equations for any given system falls into three distinct

categories, depending uponthemagnitude and direction ofconstraint deviatioa This fact is illus

trated throughthe following expressions:

11
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Figure 22 - Simple example ofaphysical constraint: the flow of mass through apipe.

C+s(C>tol)

C0a(\C\£tol) (2.2)

C~a(C<to/)

where C+, C° and C" represent the conditions for positive constraint violation, constraint satis

faction, and negative constraint violation for agiven equation C. The variable tol represents the

tolerance over which agiven constraint ispermitted to vary. The analog to the simple pipe sys

tem in a plasma etcher is the mass flow controller (MFC) which controls the flow of gases into

the process chamber [19]. In general, all manufacturing equipment is composed of numerous

instances of systems, subsystems and components, each ofwhich is influenced byparticular faults

which manifest themselves as observable symptoms that arc detectable by sensors or in-line

measurements.

23 A Survey of Existing Inference Methods

Each piece of evidence collected contributes incremental adjustments inbelief regarding the
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presence of a particular fault or fault group. In order to facilitate robust diagnosis, this informa

tion must be efficiently combined and integrated to produce a viable overall conclusion. Several

methodshave been proposed andinvestigated to achieve the necessary integration of evidence in

this system. A briefsurvey of these approaches along with their relative merits is given below.

23.1 Boolean Logic

Classical logic requires the truth of any statement tobetwo-valued (either "true" or"false").

Reasoning systems based upon this approach draw anoverall conclusion from a setof true and/or

false statements by manipulating this binary information with classical Boolean algebra. How

ever, the use of the Boolean approach for diagnostic applications is inadequate for several rea

sons. First, the assumption that all available information is binary innature leads to misleading

conclusions. This is due to the fact that data collected from manufacturing equipment is often

uncertain. For example, consider theexample of the flow of gas through amass flow controller in

the plasma etcher. In this situation, it is apparent that the accurate diagnosis of MFC faults

depends heavily on the validity of the sensors which measure the gas flow. If aparticular sensor

is malfunctioning or slightiy miscalibrated, the conclusions drawn about the process differ

significandy from cases in which sensors are functioning properly. Classical Boolean logic lacks

a method for attributing a degree of belief to sensor accuracy orto any other uncertain informa

tion.

In addition, the use of governing equations as constraints depends on the classification of

violations into the categories C+, C° and C". An incorrect classification can drastically alter

diagnosis by either eliminating otherwise viable hypotheses or by postulating spurious alterna

tives. At or near the threshold value tol, the inference is much too sensitive to incremental

changes in the process conditions, thereby greatiy exacerbating diagnostic instability in the pres

ence ofmeasurement noise [16-18].
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Finally, classical knowledge bases are monotonic innature. Statements regarding a given

proposition lead toeither the logical confirmation orcontradiction of that proposition. Due to the

complex interaction among various subsystems in IC fabrication equipment, this monotonic logi

cal progression is not often the case. At one moment, acomponent failure due to overheating

might be attributed to amechanical fault in the cooling system. Later, however, further scrutiny

of the available evidence might attribute the overheating to an insufficient supply of liquid

coolant, thus repudiating the original hypothesis. Like fluctuations due to measurement noise,

this constant state of flux inbelief also renders classical reasoning techniques unstable.

23.2 Certainty Factors

Although the Boolean approach suffers from the shortcoming of two-valued logic, this

inadequacy is overcome through the use ofmultivalued measures of certainty. In this way, the

certainty of information may be expressed in terms of a "likelihood" rather than anexact truth.

This allows diagnoses to be expressed in terms of ranked lists of fault possibilities, each with

varying degrees of belief attached. These degrees of belief, known as certainty factors, are usu

ally normalized to astandard scale such as the interval [-1,1]. Certainty factors, however, do not

adequately address the notion ofuncertainty since even the degree of certainty (or uncertainty)

regarding aparticular proposition will itself be uncertain. Despite the claims ofthe developers of

diagnostic systems based on certainty factors that these factors possess an inherent advantage due

to their intuitive "usability," studies have indicated that rule-based systems employing certainty

factors are significantly less accurate than other techniques given uncertain evidence [20]. More

over, it has been shown that particular classes ofdependencies among uncertain beliefs cannot be

represented by certainty factors in anefficientmanner [21].

In addition, there has been much debate concerning the the development of a proper and

rigorous methodology for combining certainty factors from multiple sources of evidence. There
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is an implicit assumption in these systems that if a numerical certainty factor is attacked to each

premise in a knowledge base, then a certainty factor corresponding to a conclusion based on these

premises may be expressed as a function of their individual certainty factors. This assumption is

very questionable. In fact, it has been demonstrated that the original rules for evidence combina

tion using certainty factors is ad hoc and lacks commutativity [22]. Since evidence is collected at

irregular time intervals, commutativity is an essential property for accurate diagnosis. Although

this discrepancy canbe alleviated through the proper choice of a probabilistic interpretation for a

given set of certainty factors under a given framework of inference, an infinite number of valid

choices of interpretation exist. The question of which interpretation is optimal has yet to be con

clusively answered.

Finally, a set of rules for factor combination under any probabilistic interpretation relies

heavily upon theassumption of conditional independence of evidence for agiven hypothesis [23].

This assumption isnotjustifiable inthe equipment diagnosis regime. Due tothecomplex interac

tion between system components, the presence of one symptom often direcdy results in the

occurrence of another (see Chapter 3). Referring to the previous example of the mass flow

through apipe, it would beerroneous to assume that the evidence collected by sensors Sxand S2

is independent. One possible scenario in which these two symptoms would be direcdy related

would be in the event of an electrical systems failure which resulted in their mutual miscalibra-

tion. Thus, the symptoms related to electrical failure would have adirect impact on die symp

toms which initiate the diagnosisof a possibleleak.

2.3.3 Bayesian Inference

The Bayesian approach to reasoning involves the integration ofboth prior fault probabilities

and conditional probabilities of faults given acertain set of symptoms. In general, given n mutu

ally exclusive and collectively exhaustive events that define astate A, the conditional probability
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(Pr) of a particular event B in this systemis expressed as:

Pr(Air)B)Pr(B\Ai) =—L-iU_i /23v
Pr(Ai) KZ'5)

where / =l,...,n. In diagnosis, the events At could represent various equipment faults. The event

B wouldthen represent a particular symptom that occurs asaresult of these faults.

The task ofadiagnostic system is to determine the probability of fault/; given that symp

tom s is present. This probability is also calculated using conditional probabilities as follows:

Pr(fi]S) =~Prl^-= Pr(s) <2'4>

Because faults /,- are collectively exhaustive, their union forms the entire set of possible faults,

or:

^=/i+/2+" +/„ (2.5)

where F is the setof all possible faults. Set theory dictates that the intersection of a sum of sets

is the sum of their intersections, thus:

(fi+f2+ ••• +fn)=fls+f2s+ ••• +fns (2.6)

Furthermore, since faults /,- are mutually exclusive, their intersections are empty, or

(fiS)(fjs) =0. Therefore, the probability of symptom s is the sum of the probabilities of all

combinations/,-s:

Pr(s) =Pr(fls) +Pr(f2s)+- +Pr(fns) =ifr(s\fi)Pr(fi) (2.7)
l

Substituting (2.7) into (2.4) gives one version of Bayes' Theorem:

Pr<fi '*) = -n (2.8)
IfrWJPrifi)

l
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However, if one assumes conditional independence among individual symptoms st and si

given that a particular fault / is known, then the computational complexity of (2.8) may be

reduced using [18]:

Pr(sx\f) Pr(s2\f)
Pr(f\S)=Pr(f)* p, /» », v * •'• (2.9)

Pr(si) Prisj)

whereS =s ^ 2» • • •. The assumption of conditional independence implies that if the true failure

state is known, then the probability of one symptom (or sensor reading) is independent of

another. In other words, for a known failure state, additional sensor readings provide no new

information on the readings of another sensor.

The major difficulty in the implementation of the Bayesian approach is the large numberof

subjective probabilities which must beobtained (either from thedomain expert orthrough experi

mentation) [23]. Since etch malfunction diagnosis entails over40 distinct potentially faulty com

ponents (refer to Appendix 3.1) and about 15 relevant, observable symptoms (see Chapter 5),

then over 615 probability values (600 conditional probabilities and 15 prior symptom probabili

ties) must be gathered in order to use equation (2.9). Moreover, if the possibility of multiple

faults exists, this number becomes even higher. Determining such ahuge number of probabilities

canbe both a time-consuming and expensiveprocess.

However, even if all these probabilities could beobtained, the Bayesian approach requires

that the faults themselves bemutually exclusive and collectively exhaustive. Since overlapping

sets of faults are not at all uncommon, and due tothe lack of available information regarding their

mutual exclusivity, it can be difficult to model a system such that this assumption holds.

Although efforts to circumvent thesedifficulties involving the use of so-called "beliefnetworks"

and influence diagrams [24] have had some degree of success, an efficient algorithm to solve die

general inference problem usingthesenetworks hasyet to be found.
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2.3.4 Fuzzy Logic

Fuzzy logic utilizes the concept of membership grade to express variable degrees of

membership of elements in imprecisely defined sets [12,25-26]. In this framework, a fuzzysetX

can be described by a set ofordered pairs:

*H(*i.Ci).(*2.C2).... (2.10)

where £,- is a number in the interval [0,1] representing the grade of membership of jcx- in X.

Methodology exists which allows the standard set operations of union, intersection, and comple

mentation on suchfuzzy sets. Traditional logicis merely a subset of fuzzylogic in whicheach &

is equal to one.

Sincethis paradigm introduces the formal concept of inexactness of information in a fairly

rigorous manner, it is a natural means of dealing withthetroubling presence of uncertainty in evi

dence. Although this methodology is ideal for enhancing knowledge base consistency through

the unambiguous manipulation of inexactquantifiers used in naturallanguages (suchas "almost",

"very", etc.) [21], this type of formalism is most useful for expert systems with extensive user

interfaces. However, as will be shown later, the diagnostic system which has been designed for

the plasma etching application has litde need for such semantic interpretation due to its use of

numerically-based heuristics for beliefgeneration andpropagation (seeChapter 5).

2.3.5 Dempster-Shafer Theory

The methods of evidential reasoning outiined in Dempster-Shafer theory [13] appear to

represent the most suitable compromise between the various disadvantages of the inference

methods mentioned above. This technique allows the combination of various pieces of uncertain

evidence obtained at irregular intervals. These evidence sources are usually assumed to be

independent, but proper modifications can allow this requirement to be relaxed under certain
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conditions (see § 2.5). Further, the preferred implementation of this approach results in continu

ously varying, non-monotonic belief functions which reflect the status of diagnostic conclusions

at any given point in time. These belief functions can be chosen so that they are insensitive to

measurement noise [16-17]. Dempster-Shafer theory provides conceptually straightforward rea

soning and reduces to both the Boolean and Bayesian model in the limit when evidence takes on

certain forms [27].

According to the basic tenets of Dempster-Shafer theory, the likelihood of propositionA is

expressed as an interval [s(A),p(A)] which lies in [0,1]. The parameter s(A) represents the

belief in A due to the amount of supporting evidence available, while p (A) indicates the plausi

bility of A. Plausibility is defined as the degree to which contradictory evidence is lacking. In

other words:

p(A) = l-*(A) (2.11)

where s (A) is the measure of belief in the proposition A. Therefore, the probability of the propo

sition A is bounded by s (A) and p (A). The quantity u (A) = p (A) - s (A) is the uncertainty of

A. For example, A [0.2,0.6] indicates that the probability of A is between 0.2 and 0.6 with an

uncertainty of 0.4. If u(A) is zero for all propositions in the knowledge base, then a more con

ventional system results [13].

Propositions in this arrangement are subsets of the set of all relevant hypotheses, 6. This

superset is known as the frame of discernment. For the purposes of diagnosis, the frame of dis

cernment is the union of all possible faults (hypotheses). Each piece of collected evidence can be

mapped to a fault or group of faults which is a subset of 6. Evidential intervals for individual

faults [s(A)p(A)] are derived from a basic probability mass distribution (BPMD). The BPMD

distributes numerical belief over the set of propositions in the fault hypothesis space domain. For

instance, the BPM m<A> represents the sum of the belief attributed to A. Any residual belief in
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the frame of discernment that cannot be attributed to any subset of 6 is assigned direcdy to 6

itself. This effectively serves to introduce uncertainty into diagnosis.

Using this framework, the belief and plausibility of aset of propositions A are given by:

j(A) = Iml<A1> (2.12)

p(A) = l-Imi<Bi> (2.13)

where AL^A and fl^cA. Thus, the total belief in A is the sum of beliefs ascribed to A and all

subsets thereof.

2.4 Evidence CombinationUsingthe Dempster-Shafer Methodology

In any given diagnostic application, theremay be numerous sources of evidence contribut

ing varying degrees of belief to several propositions under a common frame of discernment

Dempster's rule of combination [13,28] provides a deterministic and unambiguous method of

combining BPMDs from separate and distinct sources of knowledge. Since the method is com

mutative, the order in which evidence is combined has no bearing on diagnostic conclusions.

Further, as will be shown later, this rule is easily stated in a form which is readily programmable

in a computer environment

The rule for combining the observed basic probability masses of two arbitrary and indepen

dent knowledge sources mxand m2 intoathird BPMm3 is as follows:

Imx<Xi>* m2<Yf>
m3<Z> = — i— (2.14)

where Z =Xt p> Yj and

k =Jjnx<Xi> * m2<Yj> (2.15)

where Xt p> Yj = 0. Here Xt and Yj represent various propositions which consist of fault

hypotheses and disjunctions thereof. Thus, the BPM ofthe intersection ofXt and Yj is the pro-
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duct of the individual BPMs of Xt and Yj. The factor (1 - k) is anormalization constant which

prevents the total belief from exceeding unity due to the donation of portions of beliefto the

empty set

In order to illustrate this rule, consider the combination of mi and m2 when each contains

different evidence concerning the diagnosis of a malfunction in the plasma etching application.

Such evidence could result from two different sensor readings. In particular, suppose that die

sensors have observed that the flow of of one of the etchant gases into theprocess chamber is too

low. Let the simplified frame of discemment 9= {A, B, C, D, E), where A,...,E symbolically

represent the following equipment faults:

A = Mass Flow Controller Miscalibration

B s Gas Line Leak

C s Routing Valve Malfunction

D = Incorrect Sensor Signal

E sThe "No-Fault" Condition

These components are illustrated graphically in the partial schematic of the Lam etcher gas flow

system shown in Figure 2.3. (For adetailed discussion of the operation of the etcher gas flow

system, refer to Chapter 3). Suppose that belief in this frame of discernment is distributed

according to the BPMDs mx<A u B, C, D, E, 9> =<0.48, 0.12,0,0.2,0.2> and m2 <B, Au

C, D U E, 9>=<0,0.7,0.1,0.2>.

The calculation of the combined BPMD m3 is visualized in Table 2.1. Each cell of the

table contains the intersection ofthe corresponding propositions from mi and m2 along with the

product oftheir individual beliefs. Note that the intersection of any proposition with 9 isthe ori

ginal proposition. The BPM attributed to the empty set, which originates from the presence of

various propositions inmj and m2 whose intersection isempty, is:

k =(0.48X0.1) +0+(0.12)(0.1) +0+0+0+(0.2)(0.7) =0.2 (2.16)
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Mass Flow Controller

Routing Valve

Gas Lines

Figure 23 - Schematic diagram ofthe gas system inthe Lam plasma etcher [17].

Likewise, the BPM attributed to faultC is wi3<0, which is given by:

<c>_ (0.12X0.7)+ (0.12)(0.2) _Q135
1 -k

m$ (2.17)

Thus, the products of the individual BPMs in which propositions from mx and m2 intersect

donate incremental belief to the combined BPMD. Through the similar application of equation

(2.14), the BPMs for the remaining propositions result in the combined BPMD m3 <A, A|jB,

AU C, C, DU E, E, 9> =<0.425,0.12,0.175,0.135,0.025,0.075,0.05>.
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mx

A^B 0.48

C 0.12

D 0

E 0.2

9 0.2

Table 2.1 - Illustration of BPMD Combination

B 0 A 0.34 0 0.048 AUB 0.096

0 0 C 0.084 0 0.012 C 0.024

0 0 0 0 D 0 D 0

0 0 0 0.14 E 0.02 E 0.04

B 0 AUC 0.14 DUE 0.02 9 0.04

B 0 AyjC 0.7 D^jE 0.1 9 0.2 m2

The plausibilities for the propositions in the above combined BPMD are calculated by

applying equation (2.13). In other words:

p (A) = 1 - 0.135 - 0.025 - 0.075 = 0.765 (2.18)

Consequendy, the individual evidential intervals implied by m3 are: A[0.425, 0.765], B[0.0,

0.165], C[0.135, 0.355], D[0.0, 0.07], and E[0.075, 0.145]. Therefore, combining the evidence

available from knowledge sources m\ and m2 leads to the conclusion that the most likely cause of

the insufficient gas flow malfunction is a miscalibration of the mass Howcontroller (A) since this

fault hypothesis has the highest belief. The order of likelihood for the remaining faults is: rout

ing valve malfunction (C), gas line leak (B), no faults present (E), and an incorrect sensor signal

(D), respectively.

2.5 Diagnosing Multiple Faults Using the Dempster-Shafer Methodology

Recall the constraint violations described by equation (2.2). Let the fault groups which lead

to these violations be denoted by H. In other words:

C+-»//+ (2.19)
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C~-*H-

Thus the occurrence of fault groups H+ and H" causes positive and negative constraint violation,

respectively. It is reasonable to assume that no fault group can simultaneously lead to both posi

tive and negative deviation. Ifan existing fault group which is to be diagnosed is denoted by Ht,

then the elements of//,- can be enumerated as follows:

r i
Hi =*ni\*ni2* " ' f (2.20)

where htj are the individual faults within a fault group.

Often, it is assumed that each hy is a single fault As described in [13] and [17], this

assumption reduces the number of mappings from the evidence space to the fault hypothesis

space from 2e to 9. This is usually not too restrictive since multiple equipment malfunctions

rarely occur independently. Under such an assumption, diagnosis becomes simply a matter of

isolating the particular fault responsible for constraint violation by finding the intersection of all

fault groups Hi whichexist in the system.

However, as has already been pointed out, it is occasionally possible for secondary faults to

be triggered by the occurrence of primary faults. In cases such as these, if we relax die single

fault assumption and allow individual hu's to represent either single faults or simultaneously

occurring multiple faults, then the same diagnosis procedure remains equally capable ofdeducing

these multiple faults. Thus, the requirement ofconditional independence of evidence that inhibits

inference in probabilistic and Bayesian reasoning systems (see §2.3.2 and 2.3.3) may be relaxed

under the Dempster-Shafer framework. To illustrate this point, consider the frame of discemment

described in the previous section. Suppose that routing valve malfunctions can cause gas lines to

break and subsequendy leak. In these cases, it would be useful if malfunction diagnosis could

capture the concurrent incidence of both faults. To do so, it would seem that the frame of dis-
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cemment should also include an entry for Bp|C. However, this would confuse the diagnosis of

caseswhereeitherB or C occurred individually.

Nevertheless, it is perfectiy valid torepresent the intersection of B and Cby anew variable,

say F. In other words, letF=B p> C. Then, indiagnosing the malfunction Fis treated as just

another single fault Thus, if all combinations of similarly induced multiple faults are known and

enumerated in the knowledge base of the diagnostic system, then theymaybe deduced. In this

way, the requirement of independence for different sources of evidence may becircumvented by

appropriately grouping faults which may induce other faults. However, it should be noted that

this approach is still somewhat limited since a thorough and comprehensive enumeration is a

non-trivial task, and an incomplete list means that the accurate diagnosis ofmultiple faults cannot

be guaranteed in all cases.

2.6 Summary

This chapter presents a general method for inferring the malfunctions of semiconductor

manufacturing equipment This method is based upon the application of Dempster-Shafer evi

dential reasoning techniques. This approach offers several distinct advantages over other infer

ence strategies. It provides asystematic and efficient way to integrate evidence obtained at irreg

ular intervals from multiple knowledge sources in an uncertain measurement environment and

use this combined evidence to diagnose aranked list of possible equipment faults. Moreover, the

Dempster-Shafer concept of evidential plausibility isconceptually similar to the statistical notion

of significance probability [29]. As will be shown later in Chapter 5, this fact makes the

Dempster-Shafer approach very attractive for diagnosis based on statistical models [30].

In order to implement the Dempster-Shafer approach on apractical piece ofmanufacturing

equipment, three major bodies ofinformation are required. First, athorough understanding ofthe

operation of the particular piece of equipment to which die methodology is to be applied is
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essential. Such an understanding provides the basis of the Dempster-Shafer frame of discemment

which serves as the knowledge base ofthe system. Equally necessary is aset ofgoverning equa

tions which model the observable equipment behavior. Finally, atechnique which generates and

distributes numerical evidential support among the various faults in the frame of discernment is

the sole remaining portion of a practical diagnostic system that is required to implement the

Dempster-Shafer approach. Using the plasma etcher as an application vehicle, the development

of these three components of the overall system is the subject of the next three chapters of this

thesis.
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CHAPTER3

AN OPERATIONAL DESCRIPTION OFTHE LAM RESEARCH

AUTOECH 490 PLASMA ETCHER

3.1 Introduction

Wet etching was the standard method of pattern transfer in early generations ofintegrated

circuits. This stemmed primarily from the fact that etchants with high selectivity to both the sub

strate and the masking layer were readily available. However, wet etching processes are almost

invariably isotropic in nature. Consequendy, when the thickness of the film being etched

becomes comparable to the minimum pattern dimension (as is the case with modern VLSI cir

cuits), the undesirable lateral undercut due to the etch isotropy ofwet etchants is no longer toler

able. In order to overcome the shortcomings ofwet etch processes, the technique ofion-assisted

plasma etching has become widely used insemiconduaor manufacturing [1]. Since this method

offers the added feature of etch anisotropy, considerable effort has been expended in recent years

to develop plasma etch processes.

As is the case with other semiconductor manufacturing equipment, faulty or unreliable

etcher performance can jeopardize the quality ofintegrated circuits. Moreover, since the duration

of plasma processes is typically on the order of minutes, very rapid malfunction diagnosis in

plasma etchers is necessary in order to minimize misprocessing. This is especially true during

the fabrication ofMOS circuits, where plasma etching is essential to the definition ofpolysilicon

gates [2]. However, etch diagnosis is further complicated by the fact that plasma processes are

currentiy not well understood [3]. Since the problem ofetch diagnosis is lacking in asolid physi

cal foundation for reasoning, the plasma etcher makes avery suitable candidate for the applica

tion of the approach to equipment diagnosis described in the previous chapter.
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One of themost basic and essential components of any expert system is itsknowledge base

[4-5]. Inthis respect, diagnostic expert systems are noexceptioa The knowledge base represents

thecompilation of thevarious facts which thesystem uses to perform its reasoning functions. In

thecase of the proposed diagnostic system for the plasma etcher, theknowledge base is a formal

ized description of the etcher and its operation. It consists of a catalog of various equipment

faults as well as information concerning possible causes of those faults. This catalog defines the

diagnostic frame ofdiscernment [6].

Since each malfunction which the expert system attempts todiagnose results from aparticu

lar faulty component, the development of the knowledge base for a system designed to troub-

leshoot equipment failures requires a relatively thorough understanding of the functionality of

that particular piece of equipment at acomponent level [7]. Consequendy, this chapter gives an

overview of the operation of the Lam Research Autoetch 490 Plasma Etching System as well as a

description of the manner in which various etcher components are categorized as diagnosable

faults.

3.2 System Operation Overview

The Lam Autoetch 490 isacassette-to-cassette, fully automated, single-wafer parallel-plate

system. Automated functions are controlled by means of a Z80 microprocessor. Etching pro

grams may be entered manually from the keyboard and saved on arecipe programming module.

Programmable recipe parameters include operating pressure, RF power, electrode spacing, and

gas flow rates.

The entire Autoetch system is under automatic, closed-loop control and is double key-

locked to prevent accidental alteration of the process. In addition, the Autoetch has acontinuous

CRT display for monitoring the machine status and the process parameters. This system is

designed to monitor and report on its own performance through the communications interface
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modem to a remote diagnostics station [8].

The entire machine (schematic shown in Figure 3.1) consists of several basic subsystems,

including the RF power system, electronics, wafer transport, temperature control, the process

chamber, the vacuum system, and the gas system [9]. Each subsystem is described in detail

below. Component failures are catalogued inahierarchical fashion according tothe Lam subsys

tem to which each component belongs. This hierarchy, which is presented in Appendix 3.1, is

essentially a simplified overview of common Autoetch malfunctions obtained through extensive

consultation with the equipment maintenance technician serving as the domain expert [10]. This

equipment description facilitates the inclusion ofthe Lam etcher inFAULTS, the BCAM compu

terizedmaintenance record-keeping system [11].

3.2.1 RF Power System

The Autoetch is equipped with solid state RF power supplies which are water-cooled, 650

watt or 1.25 kilowatt generators. These generators are automatically controlled and operate at

13.56 MHz with an output impedance of 50 CI. The generators are completely enclosed to insure

operator safety.

As process parameters change, the electrical impedance of the etch process chamber also

changes. Therefore, the RF power is connected to a match assembly in which the chamber

impedance ismatched to the generator output impedance bymeans ofaphaseAnagnitude detector

system. Matching is necessary to achieve maximum power transfer. The RF matching network

automatically matches the impedance of the plasma to that of the RF generators as power, elec

trode spacing, gas composition, and chamber pressure vary.
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Figure 3.1 - Schematic diagram of the Lam Research Autoetch490.

3.2.2 System Electronics

Etcher electronics consist of acontroller drawer assembly, a power distribution box assem

bly, and interface electronics. The controller drawer houses amicroprocessor card cage, various

printed circuit boards, and power supplies. A microprocessor controls all die functions of the
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machine and memory cards contain all equipment instructions. TTL driver cards operate

solenoids, relays, and motors. Analog and digital input boards provide information to the

microprocessor CPU concerning machine status.

The power distribution box assembly distributes the required AC and DC voltages neces

sary for the system to function property. The electronics system contains among other things, a

resistor thermometer device (see § 3.2.4) interface board, a guard seal interface board, and RF

generatorinterface board, an endpoint detector board, and a modem which allows communication

between the Autoetch and a remote monitoring system.

3.2.3 Wafer Transport System

Wafers are loaded from cassettes into and out of the process chamber by means of Hine

indexers mounted on the upper front plates of the Autoetch and pneumatic station lifters. Send

indexers load individual wafers onto the motor-driven wafer belt conveyer system. Receive

indexers take finished wafers from the beltdrive systemand store them in the receive cassette.

The entrance station lifter elevates unprocessed wafers to a point where they may be

reached by the entrance airlock arm. Similarly, the exit station lifter receives finished wafers

from the exit airlock arm and lowers them to the receiver conveyer belt Lifters are raised and

lowered by pneumatically driven pistons. Wafers are held onto the lifters byavacuum generated

by the airlock vacuum manifold which is controlled by a solenoid valve actuated by the

microprocessor CPU (see § 3.2.2).

An infrared sensor onthe entrance station informs the etcher that awafer is present There

is also an additional sensor mounted ahead of the entrance station which senses the presence of

more than one wafer. If multiple wafers are detected, the lifter will not rise and the process is

halted.

The etcher airlocks act as a buffer between the clean room environment and the process
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chamber since wafers are loaded and unloaded from the chamber through them. Closing die

inner doors isolates the airlocks from the chamber and allows the airlocks to be vented. Thus,

these airlocks allow the chamber to remain in a constant state of vacuum. The inner and outer

airlock doors are operated by two air cylinders, a gear train, and alinkage mechanism which is

designed toinsure that the door ismechanically locked while wafers are being processed.

Airlock arms are driven by two air cylinders in series. The translation of thelinear motion

of these cylinders to the motion that is required to extend and retract the arm of the airlock is

achieved through another mechanical gear train. Mechanical interlocks assure that the airlock

doors cannot be closed until the arm is centeredin the airlock.

3.2.4 Temperature Control System

The lower electrode of the Autoetch process chamber is cooled by a temperature control

system which removes heat from the electrode by circulating deionized water. This closed-loop,

recirculating system is know as the "chiller". The chiller maintains a preset temperature level.

For the etcher in the Berkeley microlab, this level is set to room temperature. The temperature is

controlled bymeans of aresistance thermometer device (RTD) located onthe bottom of the elec

trode which sends temperature information to the CPU. The etcher also has a low water flow

alarm switch which monitors thelevelof thedeionized water from the chiller.

3.2.5 Process Chamber

It is inside the process chamber that wafers are etched by computer-controlled gas

discharge. Therefore, the process chamber must remain under vacuum at all times. The chamber

is located direcdy behind the operator interface display. This display is hinged and will swing

upward to allow direct visual access to the process chamber. The chamber is equipped with

quartz windows on the front and rear. Each window has a wire mesh screen to contain the RF
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field anda plexiglass cover forUV filtering. Not only do thesewindowsallow forobservation of

the etch process, butthe front window plate also serves as the mounting point for the capacitance

manometer (see § 3.2.6).

The major subsystems of die process chamber are theupper and lower electrode assemblies,

the electrode gap adjustment system, and the RF match assembly (see § 3.2.1). The lower elec

trode assembly contains the anode on which the wafer rests during processing. The gap adjust

ment systemprovides for modification of the space between thecathode (upper electrode) and the

wafer. The gap housing has two large guard seals which provide a vacuum seal between the

chamberand atmospheric pressure.

3.2.6 Chamber/Airlock Vacuum System

The airlock vacuum system can bedivided into the airlock vacuum pump assembly and die

airlock manifold. The vacuum pumpis installed remotely from the etcher itself. It consists ofan

Edwards EH 250 Roots Blower and an E2M40F Rotary Pump. Control of the chamber pressure

is achieved through a "butterfly" throtde valve attached to the vacuum manifold at the rear of the

machine. An automatic throtde valve controller maintains chamber pressure by comparing the

pressure setpoint given in the etch recipe with the actual chamber pressure as monitored by a

capacitance manometer. The chamber vacuum manifold, with apneumatically operated isolation

valve, is attached to the chamber vacuum foreline assembly. The isolation valve is normally

closed and is activated by theCPU during operation of the system.

32.7 Gas System

The gas panel assembly independendy regulates the flow ofup to five gases into the process

chamber. These gases flow into the chamber according to the flow rates indicated by the etch

recipe to create the various plasmas. Gases are connected to the rear panel of the machine with
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aluminum fittings and each passes through a filter before entering a mass flow controller (MFC).

While not being activelycontrolled, the MFC'sgo into a "normally open" state andthen closeto

regulate the flow of gas. There is a pneumatically operated valve both upstream anddownstream

from each MFC. There are also two valves which rout the gases either to the process chamber or

into the chamber vacuum manifold.

On polysilicon etch machines, the gas panel also houses a CCl4 tank. This tank holds the

CCLA orother process liquids under vacuum and stores die gas until it is required for etching.

The desired flow of gas is programmed from the recipe and causes ananalog signal to be sent to

each MFC. The necessary amount of gas will then flow through the gas panel MFC's into the

process chamber. Theline between the gas panel and the process chamber is aquarter-inch stain

less steel flexible tube housed in acorrugated tube.

3.3 Fault Propagation

Incomplex electromechanical systems such as a plasma etcher, equipment malfunctions are

frequendy propagated from one subsystem to another. For example, it is conceivable that a

deionized water flow sensor miscalibration could cause insufficient coolant to circulate through

the chiller. This in turncancause RF power supplies to overheat The ultimate result of sucha

problem would cause RF power mismatch or instability errors. The only observable symptom in

this case indicates a fault in theRFmatching network. However, the actual root cause of the mal

function was the incorrect water flow sensor.

In order to insure accurate and robust diagnosis, it is therefore necessary to obtain a

comprehensive mapping of all potential fault propagation patterns. For the Lam Autoetch 490,

these relationships have been captured by means of lengthy discussions withmaintenance techni

cians [10] as well as thorough inspection of the recorded equipment maintenance history. This

information isvisually summarized in"System Fault Propagation Diagrams," such as the one that
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appears in Figure 3.2. These diagrams are very similar to influence diagrams, which are often

used in expert systems to graphically represent relationships critical to the problem under con

sideration [121. This particular figure shows fault propagation inthe Autoetch RF Power System.

It includes the flow sensor malfunction scenario descibed above as well as other potential prob

lems related to RF power.

1.1 Interconnect

1.2 RF Matching Network

1.3 Phase/Magnitude Detector

1.4 Power Supplies

1.5 Generator Calibration

2.5 Interface Electronics

4.1 Chiller

5.2 Electrode Gap Adjustment System

6.5 Pressure Controller "Butterfly" Valve

Figure 32 - Fault propagation diagram for Lam Autoetch 490 RF power subsystem. Arrows
indicate the direction which component malfunctions may influence subsequent failures. (Com
ponent numbering refers to the classification system given in Appendix 3.1).

In general, these diagrams are intended to depict the interrelationships ofall subsystems and

components inthe etcher. These relationships are critical to the development ofauseful diagnos

tic tool since they describe the manner in which faults evolve from root causes to observable
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symptoms. The complete set of fault propagation diagrams for the Autoetch 490 appears in

Appendix 3.2.

3.4 Summary

This chapterhas provided a description of the operation of the Lam ResearchAutoetch 490.

Sinceequipment malfunctions result from faulty components, this information is essentialto the

development of the knowledge base of the system intended to diagnose suchmalfunctions in the

etcher. Another necessary component of thediagnostic system is a system of models to describe

equipment behavior. The derivation of such models requires a thorough characterization of the

response of process outputs to variations in input parameters. Model development through this

processcharacterization is the subjectof the next chapter.
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APPENDIX 3.1

LAM ETCHER FAULT DESCRIPTION

Below is ahierarchical description ofthe major systems, subsystems and components ofme

Lam Research Autoetch 490 Plasma Etch System. Each item inthis listing isaccompanied by an

abbreviated designation which is used in FAULTS, the BCAM automated equipment mainte

nance record-keeping system.

1. RF POWER SYSTEM (rf)

1.1 Interconnect (cable-problem)

1.2 RF Matching Network (matching-network)

1.3 Phase/Magnitude Detector (phase-mag-detect)

1.4 Power supplies (power-supply)

1.5 Generator Calibration (rf-calibration)

2. SYSTEM ELECTRONICS (computer)

2.1 24-volt DCPower Supply (24volt-supply)

2.2 Circuit Boards (board-failure)

2.3 Endpointer (endpointer)

2.4 Equipment Communication (host-link)

2.5 Interface Electronics (interface)

2.6 PowerSupply (power-supply)

2.7 Recipe Module (recipe-module)
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V. .

3. WAFER TRANSPORT SYSTEM (wafer-transport)

3.1 Airlock Arm (arm-adjustment)

3.2 Belts (belt)

3.3 Belt Drive System (belt-motor)

3.4 Airlock Doors (door-adjustment)

3.5 Hine Indexer (cassette-indexer)

3.6 Door O-Rings (o-rings)

3.7 Transport Pneumatics (pneumatics)

3.8 WaferPresence Sensors (sensor-adjustment)

4. TEMPERATURE CONTROLSYSTEM (cooling)

4.1 Chiller (chiller-problem)

4.2 Chiller WaterLevel (chiller-water-level)

4.3 Water Flow Sensor (flow-sensor)

4.4 Water Utility (recirc-water)

4.5 ProconPump (mechanical-pump)

5. PROCESS CHAMBER (chamber)

5.1 Endpoint Window(endpoint-window)

5.2 Electrode GapAdjustment System (gap)

5.3 Guard Seals (guard-seals)

5.4 Leaks (teak)
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5.5 LowerElectrode Assembly Gower-assembly)

5.6 Polymer Deposition(polymer-deposition)

5.7 Wafer in System (wafer-in-system)

5.8 Worn Electrodes (wom-electrodes)

6. CHAMBER/AIRLOCK VACUUM SYSTEM (vacuum)

6.1 Roots Blower (blower)

6.2 Capacitance Manometer(cap-manometer)

6.3 Isolation Valves (isovalves)

6.4 ChamberVacuum Manifold(manifold-leak)

6.5 Pressure Controller "Butterfly" Valve (press-control)

7. GAS SYSTEM (gas)

7.1 CC/4 Tank (ccl4-fiU)

7.2 GasCylinders (gas-cylinder-empty)

7.3 Gas Lines (gas-lines)

7.4 MFC Calibration (MFC-cal)

7.5 Routing Valves (valves)

8. RECIPE ERROR (recipe-error)
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9. ROUTINE MAINTENANCE (maintenance)

9.1 Analog InterfaceCalibration(analog-calibration)

9.2 Chamber Clean (chamber-clean)

9.3 Electrode Replacement (electrode-replace)

9.4 ChangePump Oil (pump-service)
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APPENDIX 3.2

LAM ETCHER FAULT PROPAGATION DIAGRAMS

The following are system fault propagation diagrams for the Lam Research Autoetch 490

Plasma Etch System. The first diagram shows the relationship between each major subsystem

and the overall piece of equipment Subsequent diagrams depict similar relationships andinterre

lationships for each subsystem at the component level. For each diagram, arrows indicate the

direction of malfunction propagation. The component numbering system reflects the

classification scheme in Appendix 3.1.
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CHAPTER4

EXPERIMENTAL MODELING OF THE PLASMA ETCHER

4.1 Introduction

Plasma etch modeling from a fundamental physicalstandpoint has had limited success. The

plasma chemistry of many discharges cannot be modeled because the principal reactions and rate

constants are unknown [1]. The best physically-based models currently available are capable of

describing the chemical kinetics of one-dimensional RF glow discharges [2-4]. Two-dimensional

models of RF glow discharges are now at an early stage of development [5]. These models

attempt to derive self-consistent solutions to first-principle equations involving continuity,

momentum balance, and energy balance inside a high frequency, high intensity electric field.

This is accomplished by means of computationally expensive numerical simulation methods

which typically produce outputs such as profiles of the distribution of electrons and ions within

the plasma sheath. However, although detailed simulation is useful for equipment design and

optimization, it is subject to many simplifying assumptions. Due to the extremely complex

nature of particle dynamics within a plasma, the connection between these microscopic models

and macroscopic parameters such as etch rate has yet to be clearly distinguished.

Since the complexity of practical plasma processes at the equipment level is presently far

ahead of theoretical comprehension, other efforts have focused on empirical approaches to

plasma modeling involving Response Surface Methods (RSM) [6-7]. These techniques have

been used by several authors to obtain statistical models of the etch rates of various thin films [8-

14]. Karulkar and Wirzbicki studied the etch rate of silicon dioxide and positive photoresist in a

CHFiIC7F(JO<2/He plasma as a function of oxygen flow, reactor pressure and average RF power

[8]. In addition, Riley et. al. investigatedthe etchingofSiO2 in C^F^CHF^ plasmas versus flow
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rate andpressure [9]. Jenkins et al. provides amodelof the etch rate ofp -doped polysilicon in a

CF^Cl/Ar plasma versus pressure, RF power and CF3Cl fraction [11]. Thompson and Sawin

studied the etching of /i+-doped poly in SF6 plasmas versus power, pressure, and flow rate [12].

Further, Gogolides and Sawin performed a similar characterization of n+poly in CCl^/He plas

mas as functions of RF power, pressure and He fraction [13]. Riley and Hanson, on the other

hand, investigated silicon nitride etching in SFfJHe versus the combined SFJHe flow rate, pres

sure, power and electrode spacing [14].

In many of these studies, however, the complete characterization of other critical process

outputs which directly affect product quality such as etch uniformity, selectivity and anisotropy

has been somewhat overlooked. Such a complete characterization is a necessary component of

any effective diagnostic system. Therefore, the objective of the following experiment was to

obtain a comprehensive set of empirical models for plasma etch rates, uniformity, selectivityand

anisotropy. These models accurately represent the behavior of a specific piece of equipment

under a wide range of etch recipes, thus making them ideal for equipment diagnosis and other

manufacturing purposes. In particular, this study focuses on theetchcharacteristics of »+-doped

polysilicon in a CCl^jHelOi plasma. Responses weremodeled underthe variation ofthe follow

ing six input parameters: RFpower, pressure, electrode spacing, and the three gas flows. Etching

took place in the Lam Research Autoetch 490single-wafer plasma system.

4.2 Experimental Design

A prime example of a fabrication stepin which plasma etching hasbecomeessential is the

definition of polysilicon features for MOS circuits. This process step often requires that a rela

tively thick polysilicon gate beetched down toathin silicon dioxide layer. Therefore, high selec

tivity between poly and SiO2is necessary in order to use a thin gate oxide as an etch stop. In

addition, it is desirable that the vertical etch rate of the polysilicon be much greater than its
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horizontal rate toachieve high etch anisotropy. Finally, good within-wafer uniformity and selec

tivity to photoresist are also desirable. Carbon tetrachloride has been reported as an anisotropic

etchant with ahigh selectivity for polysilicon in plasma etching [15], thus making it an attractive

candidate for this experiment

The most critical control parameters in plasma etching are RF power, chamber pressure,

electrode spacing and gas flow [11,14-16]. Helium is oftenadded to standard CClA etchrecipes

in order to enhance etch uniformity. In addition, oxygen is sometimes also introduced into the

gas mixture to suppress polymer deposition in the process chamber [1,9,13]. The effects of all six

process variables must be considered in plasma recipe control However, RSM techniques are

most effective when the number of input factors is limited to six or fewer [11,17]. As a result, it

was appropriate to divide the overall experiment into an initial variable screening [7] phase to

determine the most significant parameters, followed by a second phase designed to obtain the sta

tistical response models.

Occasionally, temporary disturbances might affect the operation of a piece of equipment as

complex as a plasmaetcher. In orderto make surethat such disturbances do not occur during the

characterization runs, it is important to bring and maintain the operation under Statistical Process

Control (SPQ. This was accomplished by applying a real-time monitoring system during the

experiment This system was designed with a client-server interface between the etcher and a

host computer. A C program allowed the interpretation of Semiconductor Equipment Communi

cations Standard n (SECS-II) messages issued from the etcher showing various sensor values

which monitored real-time conditions in the process chamber. The parameters monitored

included:

1. CCl4 flow

2. 02flow

3. He flow
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4. Forward RF power

5. Reflected RF power

6. Chamber pressure

7. Electrode temperature

8. Electrode gap

9. Guard seal pressure

10. Entrance airlock pressure

11. Exit airlock pressure

Control was ensured by comparing the patterns observed during the experimental runs with simi

lar historical data [18].

4.2.1 First Phase - Screening Experiment

The six factors chosen for the initial screening phase of this experiment along with their

respective ranges of interest are shown in Table 4.1. These ranges were chosen to effectively

encompass the wide variety of etch recipes currently being utilized in the Berkeley Microfabrica-

tion Laboratory. A full factorial experiment to determine all effects and interactions for six fac

tors would require 26, or 64 experimental runs. In order to reduce experimental costs, the effects

ofhigher order interactions were neglected and a26"1 fractional factorial design requiring only 32

runs was performed [19]. This design used a Resolution V format which preventedmain effects

from being confounded with other main effects as well as with two- and three-factor interactions.

It also prevented the confounding of two-factor interactionswith each other [7].

Table 4.1: Range of Input Factors

Parameter Range Units

RF Power 300-400 watts

Pressure 200-300 m ton-

Electrode Spacing 1.2 - 1.8 cm

CC/4 Flow 100-150 seem

He Flow 50-200 seem

0 2 Flow 10-20 seem

58



Table42: Design Matrix forScreening Experiment

Run Pressure RF Power CCl4 How He Flow 02 Flow Electrode Gap Block

1 300 300 100 200 20 1.8 2
2 200 400 100 50 10 1.8 2
3 200 400 150 200 20 1.2 1
4 300 400 150 200 20 1.8 2
5 200 400 150 50 10 1.2 1

6 300 300 150 200 10 1.8 1
7 300 400 100 50 20 1.8 1
8 250 350 125 125 15 1.5 1
9 200 300 150 200 20 1.8 2
10 300 400 150 50 20 1.2 2
11 300 300 100 200 10 1.2 2
12 200 300 150 200 10 1.2 2
13 200 400 100 200 10 1.2 2
14 300 400 150 50 10 1.8 2
15 200 300 100 50 20 1.8 1
16 200 400 100 200 20 1.8 2

17 200 300 100 200 20 1.2 1

18 300 300 150 50 10 \2 1
19 200 300 100 50 10 1.2 1

20 200 300 150 50 10 1.8 2
21 300 400 150 200 10 1.2 2
22 200 400 100 50 20 1.2 2

23 200 400 150 200 10 1.8 1
24 300 400 100 200 20 1.2 1

25 250 350 125 125 15 1.5 1

26 300 300 100 50 20 1.2 2
27 300 300 100 50 10 1.8 2
28 300 300 150 200 20 1.2 1

29 200 300 150 50 20 1.2 2
30 200 300 100 200 10 1.8 1

31 200 400 150 50 20 1.8 1

32 300 400 100 200 10 1.8 1

33 300 300 150 50 20 1.8 1

34 300 400 100 50 10 1.2 1

35 250 350 125 125 15 1.5 2

Theexperimental runs were performed in twoblocks of 16trials eachin sucha way thatno

main effects or first order interactions were confounded with any hidden time effects (such as

unscheduled equipment maintenance during the experiment). Three centerpoints were added to

the design to provide a check for model nonlinearity. The design matrix appears in Table 4.2.
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The experimental sequence was randomized in order to avoid biases due to equipment aging dur

ing the experiment

4.2.2 Second Phase - RSM Modeling Experiment

Analysis of the first stage of the experiment revealed significant nonlinearity in nearly all

responses, which indicated the necessity of quadratic models. Also, none of the input factors were

found to have a statistically insignificant effect on all of the responses of interest Thus, none

were omitted from the response surface models derived in the subsequent phase. In order to

obtain these models, it was necessaryto augment the data gathered with a secondexperiment that

employed a Central Composite Circumscribed (CCQ Box-Wilson design (see Figure 4.1). In

this design, the 2-level factorial "box" was enhanced by further replicated experiments at the

center (to provide a direct measure of the equipment and measurement replication error) as well

as symmetrically located "star" points [19].

Table 4.3: Additional "Star Point" Recipes for Box-Wilson Experiment

Run Pressure RF Power CC/4 How He Flow O2Flow Electrode Gap
36 250 350 125 125 3 1.5
37 250 231 125 125 15 1.5
38 250 350 125 200 15 1.5
39 250 350 125 125 15 0.8
40 369 350 125 125 15 1.5
41 250 350 125 0 15 1.5
42 250 350 125 125 15 1.5
43 250 350 66 125 15 1.5
44 250 350 184 125 15 1.5
45 250 350 125 125 15 1.5
46 250 350 125 125 15 1.5
47 250 350 125 125 15 2.2
48 250 350 125 125 15 1.5
49 250 469 125 125 15 1.5
50 131 350 125 125 15 1.5
51 250 350 125 125 27 1.5
52 250 350 125 125 15 1.5
53 250 350 .125 125 15 1.5
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Figure 4.1 - Centralcomposite Box-Wilson experimental designs [17].

A complete CCC design for six factors requires a total of 91 runs. In order to reduce the

size of the experiment and combine it with the results from the screening phase, a half replicate

design was again employed. The entire second phase required a total of 18 additional runs,

whose recipes are shown in Table 4.3. A circumscribed design was selected as opposed to a

inscribed (CCI) design, in orderto allow the models to accurately predia the responses over the

entire range of the input factor settings [17]. However, in the case ofHe flow for runs 39 and 41,

the necessary star point required recipe settings (303 and -53 seem) which are beyond the opera

tional capabilities of the equipment. In this case, the recipe was modified to reflea the

61



maximum/minimum possible parameter settings of the Lam etcher (0 and 200 seem, respec

tively). A graphic description of central composite designs appearsin Figure 4.1.

43 Experimental Apparatus and Technique

43.1 Test Pattern Design

LTO mask

poly h^
© 1

oxide

substrate

—-3

© ©i
© J.

resistjstT

(7) Photoresist Etch Rate

(2) Lateral Polysilicon Etch Rate

(¥) Polysilicon Etch Rate

\4J Slicon Dioxide

Figure 4.2 - Cross section of test structure describing the measurements of interest

Etching was performed on a simple test structure designed to facilitate the simultaneous

measurement of the vertical etch rates of polysilicon, SiO 2, and photoresist as well as the lateral

etch rate of poly onthe same wafer. This was done in order to insure that each of the models to

be derived would be developed under identical process conditions. Preliminary investigations

revealed that photoresist exhibited very poor etch selectivity when used as amask for polysilicon.

Due to this inadequacy, it was determined that low-temperature oxide (LTO) would serve as a

much more effective mask for patterning the poly lines necessary for anisotropy measurements.
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These lines were patterned using a simple 3-maskprocess which is described below. A cross sec

tion showing the critical measurementarea is shownin Figure 4.2.

43.2 Test Pattern Fabrication

The patterns were fabricated on 4-in diameter silicon wafers. Approximately 1.2pm of

phosphorus-doped polysilicon wasdeposited over0.5um of thermal Si02 by low-pressure chemi

cal vapordeposition (LPCVD). The relatively thicklayerof oxidewasgrownin orderto prevent

etching through the oxide by the less selective experimental recipes. Poly resistivity was meas

ured at 86.0 ft-cm. Oxide was grown in a steam ambient at 1000 ° C. One micron of Kodak 820

photoresist was spun on and baked for 60 seconds at 120*C. Poly lines for SEM photos were

patterned with an LTO mask deposited at 450 °C by LPCVD.

43.3 Plasma Etch Equipment

The etching apparatus consisted of a Lam Research Corporation Autoetch 490 single-wafer

parallel-plate system. The etching samples rest on the grounded lower electrode while the upper

electrode is excited by a 13.56 MHz RF generator operating through a matching network. The

anodized aluminum electrodes are circular and equal in area. The electrode walls are also com

posed of aluminum. Process gases are introduced into the chamber through nearly 1000 holes in

the upper electrode in "showerhead" fashion. Reactor pressure is monitored with a capacitance

manometer and controlled automatically with a throttle valve [20-21]. As mentioned above, the

etcher was monitored via a real-time statistical process control scheme to ensure consistency in

equipment operation throughout the experiment. A schematic diagram of the etching system

appears in Figure 3.1 (see Chapter 3).
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43.4 Measurement Methodology

Film thickness measurements were performed on five points per wafer (as in Figure 4.3)

both before and aiter etching using a Nanometrics Nanospec AFT system in conjunction with an

Alphastep 200 Automatic Step Profiler. Vertical etch rates were calculated by dividing the differ

ence between the pre-and post-etchthicknessby the etch time. The lateral etch rate for poly was

determined via SEM photosby measuring the difference between the pre-andpost-etchlinewidth

under the assumption that the pre-etch width was that at the base of the poly line (see Figure

4.17). Since the average polysilicon etch selectivity with respect to LTO was about 10:1, the

contribution of the eroding LTO mask to the measured lateral rate was insignificant

Figure 43 - Wafer Measurement Sites.

Expressions for the selectivity of the poly with respect to oxide (5^) and with respea to

photoresist (Sph) along with percent anisotropy (A) and percent nonuniformity (U), respectively,

are given below:
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A = 1-

v>J
(4.3)

U = —2-—2—* 100 (4.4)

where rtp is themean vertical poly etch rate over the five points, Rm is themean oxide etch rate,

Rph is the mean resist etch rate, Lp is the lateral poly etch rate, J?^ is the poly etch rate at the

center of the wafer, and Rpe is the mean poly etch rate of the four points located about one inch

from the edge [1,22].

4.4 Experimental Results

Experimental data was analyzed using the R/S Discover commercial software package [17].

After the initial screening experiment, a few of the input factors were found to have an

insignificant effect upon individual responses. However, no single factor was statistically

irrelevant to all five responses of interest For example, although the electrode gap spacing had

little effect on the etch selectivity with respea to oxide, it had a dramatic impact on uniformity.

Table 4.4 shows the significance level of the student-t statistic for each ofthe main effects.

Table 4.4: Results of Screening Experiment

Faaor
Statistical Significance

Rr snr s* U A

Pressure 0.0090 0.0001 0.0001 0.0677 0.3008
RF Power 0.0001 0.0046 0.0001 0.0493 0.5119
CCl4 0.0032 0.0410 0.0001 0.0672 0.5244
He 0.0001 0.0001 0.0001 0.0002 0.0157
02 0.0043 0.0669 0.0014 0.9581 0.6418
Gap 0.0185 0.4134 0.0001 0.0107 0.4634

* Onlyfactors with a significance < 0.05areconsidered significant.
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The above results indicate that all six controlled parametershave a significant effect both on

etch rate and resist selectivity. On the other hand, oxide selectivity is impacted mostly by pres

sure, power, CCI4 and helium flow. Etch uniformity depends primarily on power, helium flow

and gap spacing. Finally, for the range of our experiment, anisotropy depends only on helium

flow. The additional 18 runs of the second phase of the experiment yielded quadratic models

which indicate the precise interaction between input faaors and the four responses. These

models are discussed below.

4.4.1 Polysilicon Etch Rate

Fitting aregression model forRp yielded the following expression:

Rp = -245-4.24/> +11.0/?/ +0.742CC/4+ U.2He +523G (4.5)

+35.9(92-0.034P*He +7.82P*G +0.085/?/*CC/4-8.36R/*G

-0.132(CC/4)2+0.059CC/4*/fe -0.059He2 ± 104A Imin

where Rp is in angstroms/minute (A /min) and the units of every other parameter are given in

Table 4.1. This equation was derived by stepwise regression [23], and it will predict the mean

response of the equipment with a one-sigma prediction error of ± 104A /mia The actual meas

ured response of the equipment will vary around the mean value with a one-sigma replication

error of ± 309 A Anin. The Analysis of Variance (ANOVA) table for the etch rate model is

shown in Table 4.5.

The F-test shows that this model is highly significant, since the regression mean square,

which is the amount of variation explained by the proposed model, is significant This faa is

verified by the F-ratio statistic. If the regression mean square was not significant then this ratio

would be distributed according to the F distribution with 15 and 37 degrees of freedom. The

value 16.86, however, is highly unlikely to occur in the F(15,37) distributioa The lack-of-fit F-

test reveals little evidence that the inclusion of additional terms would improve this model, since
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a lack-of-fit F-ratio as large as 2.66 occurs 7.5% ofthe time in the F(29,8) distribution [7,19].

Therefore, most of the residual of the model originates from experimental error. The "adjusted

R2" is aparameter which measures the fraction of the total variation in the data accounted for by

the model [11]. Ascatterplot ofthe predicted etch rate values versus the corresponding experi

mental values is shown in Figure 4.4.

Source

Table 4.5: ANOVA for Poly Etch Rate Model

DF Sum of Squares Mean Square F-Ratio Significance
Total 52 24717141 475329.63
Regression 13 20983554 1614120.00 16.86 0.000
Residual 39 3733587 95732.99

Lack ofFit 31 3402778 109767.03 2.66 0.075
Error 8 330809 41351.11

2_Adjusted R* = 0.799

Although this empirical etch rate model is fairly complex, a few interesting relationships

emerge from the contour plots of Figures 4.5 and 4.6. In Figure 4.5, Rp surfaces are plotted

against RF power and chamber pressure with all other parameters set attheirnominal values. For

high process throughput, etch rate should preferably be as high as possible. This occurs at high

powerand high pressure, since higherpressures provide a more suitable environment forchemi

cal etching by radicals [1]. Alternatively, as can be seen in Figure 4.6,highetchrates occur when

the gap is narrow and the flow rate is high. The observed relationship between the etch rate,

power and the CC74 flow is consistent with the commonly held belief that theamount of etching

is proportional to the adsorbed chlorine concentration on the polysilicon surface. This concentra

tion is increased both by greater CC74 flow and high RF power, which enhances the rate of the

following electron-impact dissociation and electron attachment reactions [13]:

CCl4 + e" -» CCl3+ Cl +e' (4.6)
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Etch Rate Model vs Actual
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Figure 4.4 - Scatteiplot ofetch rates predicted by empirical model versus actual experimen
tal values. The straight line represents the region of perfect agreement between model and
experiment
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Figure 4.5 - Contour plotofpolysilicon etchrate versus RF powerand pressure.
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Figure 4.6 - Contour plot ofpolysilicon etch rate versus CCl4 flow and electrode spacing.
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CCl4 +e~ -> CCl2 + Cr +Cl (4.7)

However, it is shown below that these choices might compromise the other objectives of the etch

step.

43.2 Etch Uniformity

The uniformity regression model andcorresponding ANOVA table are:

U =-11.5 - 0.0385/> +0.0937/?/ +0.710CC74 - OAlSHe - 8.90G (4.8)

-(M7e-3)Rf*CCl4 + (13&e-3)Rf*He -(1.40c-3)CCl4*He +(7.98e-4)ffe2 ±2.22[%]

Table 4.6: ANOVA for Etch Uniformity Model

Source DF Sum of Squares MeanSquare F-Ratio Sigmficance
Total 52 5896.02 113.39

Regression 9 3987.96 443.11

Residual 43 1908.06 44.37

Lack ofFit 35 1546.79 44.19
Error 8 361.27 45.16

9.99 0.000

0.98 0.562
361.27 45.16

Adjusted/?2 =0.609

The prediction error of the uniformity model is ± 2.22 (measured in %). The equipment

replication error around the average value given by the model is ± 6.66 [%]. Tests for

sigmficance reveal that all model coefficients are relevant. In addition, there is no evidence for

lack of fit. The scatterplot of predicted nonuniformity versus experimental data appears in Figure

4.7. The contours in Figures 4.8 and 4.9 depict the behavior of the model. In Figure 4.8, U is

plotted against pressure and power. Optimum uniformity is observed at high pressure and low

power. Thus, good uniformity is achieved at the expense of high etch rates. The effects of He

flow and electrode spacing are observed in Figure 4.9. This plot verifies the initial assumption

that helium enhancesuniformity, but only up to a relatively low optimum value of He flow rate.

Beyond this value, U begins to degrade.
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Figure 4.8- Contour plot of etch uniformity versus RFpower and pressure.
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Figure 4.9- Contour plotof etch uniformity versus electrode spacing and He flow.
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4.4.3 Oxide Selectivity

The regression model and ANOVAtable for S^ are given below:

Sac = -13.1 + 0.097P + 0.04*/ - O.O6CC/4 - 0.059#e + 0.079O2 (4.9)

- (2e^)P*Rf + (2.9e-4)P*CCl4 - (3e-4)P*He ± 0.31

Table 4.7: ANOVA for Oxide Selectivity Model

Source DF Sum of Squares Mean Square F-Ratio Significance
Total 52 248.70 4.78
Regression 9 213.26 23.70 28.76 0.000
Residual 43 35.43 0.82

Lack ofFit 35 31.35 0.90 1.75 0.205
Error 8 4.09 0.51

Adjusted/?2= 0.828

The one-sigma prediction error of this model is ±0.31, and the replication error inherent in the

equipment is ±0.91. The F-tests reveal that the overall modelis highlysignificant, and that there

is no evidence that a more complex model is required. The scatterplot for the oxide selectivity

model appears inFigure 4.10. Afew implications of the oxide selectivity model are seen inFig

ures 4.11 and 4.12. Figure 4.11 shows Sox contours versus RFpower and pressure. According to

this plot, highest oxide selectivity occurs at high pressure and low power. These results reflea

the fact that high ion energies (produced by high RF power) generally tend to degrade etch selec

tivity [1]. Thus, a trade-off exists between high etch rate and good selectivity interms ofpower.

The effects of CCl4 flow and pressure can be seen inRgure 4.12. The highest oxide selectivity

occurswhenpressureand CCl4 flow arebothhigh.

4.4.4 Photoresist Selectivity

The regression model and ANOVA table for 5^ are:

Sph = 7.56 + 0.009? +0.014/?/ - 0.022CC/4 +0.006/fe - 2.59G - 0.09902 (4.10)

-(5e-5)P*Rf + (1.3e-4)P*CCl4-(Je-5)P*He +(3.7e-4)P*02
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Figure 4.10 - Scatterplot ofprediaed oxide selectivity versus experimental values.
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Figure 4.11 - Contour plot of oxide selectivity versus RF power and pressure.

77



150

148"

146' • «

144"

142"

Ze

iss'"

136"

134"

132"

130

128+

126

124

122'

120"

118"

116"

114"

112"

110"

108"

106"

104"

102"

6.2

6.2

6.2
\

6.2

Sox

Rf power - 350, Be - 125, Gap - 1.5, 02-15

100 -I 1-
200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300

Pressure
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+(2Je-5)Rf2 +(3.6e-5}Rf*He - (5e-5)CCl4*He +0.757G2 ±0.09

Table 4.8: ANOVA for Photoresist Selectivity Model

Source DF Sum of Squares Mean Square F-Ratio Significance
Total

Regression
Residual

Lack ofFit

Error

52 15.24 0.29
14 12.61 0.90 13.02 0.000
38 2.63 0.07

30 2.42 0.08 3.07 0.050
8 0.21 0.03

Adjusted R* = 0.764

The one-sigma prediction error of this model is±0.09, and the equipment replication error is±

0.95. Statistical tests for model complexity and fit give no reason to question the significance and

adequacy of the resist selectivity model The scatterplot for the resist selectivity model is shown

in Figure 4.13. Figure 4.14 shows Sph contours versus power and pressure, and Figure 4.15

shows the effects of CCl4 flow and pressure. These plots indicate that photoresist selectivity

possesses similar trends to that of oxide. This result is notsurprising, since both oxide and resist

are etched mechanically rather than chemically within the plasma [15].

4.4.5 Anisotropy

Early studies have reported significant undercutting of the etch mask during polysilicon

plasma etching in CCl4 [15]. In this study however, our primary interest was to derive models

that describe equipment behavior in commonly used ranges of settings. This meant that the

chosen range ofRF power was high enough and the range ofpressure was low enough such that

the ions in the plasma struck the wafer surface almost exclusively at normal incidence. This type

of ion bombardment preferentially accelerates the surface chemical reaction in thevertical direc

tion, thereby producing highly anisotropic profiles [1]. Consequently, analysis of the etch aniso

tropy data from the first block ofthe screening phase ofthe experiment showed very anisotropic

poly lines for all recipe variations. Scanning Electron Microscopy (SEM) photographs were used
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Figure 4.14 - Contour plot ofresist selectivity versus RF power and pressure.
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Figure 4.15 - Contour plot of resist selectivity versus CCl4 flow and pressure.
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to measure the sidewall slope as defined in Eq. (3). Because of the cost associated with SEM stu

dies, only 18 of the first-phase wafers were examined. These samples werechosen according to a

Resolution IV, 26"2 fractional factorial design with three center points. This data exhibited no

significant nonlinearity andrather high equipment andmeasurement replication error. Still, a sim

ple, statistically significant anisotropy model was derived using only these trials. The model is

given below:

A =94.6 - 0.031/fe ± 1.82(%) (4.11)

The one-sigma replication error of this model is ±3.24 (%). Anisotropy depends primarily upon

helium flow for this range of input factors. As indicated in Figure 4.16, high anisotropy is

obtained by reducing helium flow as much as possible. An SEM photo exhibiting the lateral

etching of the polysilicon lines appears in Figure 4.17. As shown in Table 4.9, analysis of vari

ance forthis model revealed no evidence thatthe modelis inadequate or any indication of lack of

fit. Although this model is statistically significant, itshigh prediction and replication error imply

thatbenefits from He adjustment canonly be realized in along production run.

Table 4.9: ANOVA for Anisotropy Model

Source DF Sum of Squares Mean Square F-Ratio Significance
Total 18 269.83 14.99
Regression 1 91.23 91.23 8.68 0.009
Residual 17 178.60 10.51

Lack ofFit 16 178.35 11.15 45.50 0.116
Error 8 0.21 0.03

Adjusted/?2 =0.299

4.5 Model Verification

The accuracy of the above models was verified in two separate procedures. In the first, an

experiment was conducted to optimize the standard etch recipe using numerical optimization
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Figure 4.17 - SEM photos of typical polysilicon lines used to determine the sidewall slope and
lateral etch rate for the anisotropy calculation, (a) isaline etched with ahigh He flow rate, and
(b) was etched with a low He flow rate.
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techniques along with the five empirical models. In thesecond, themodels were used to predia

the etch rate and anisotropy of various recipes designed to etch annealed polysilicoa In each

case, the utility andprecision of theetchmodels were corroborated bythe experimental results.

4.5.1 Process Optimization

Theetch models have been used to design a new etchrecipe which exhibited improvement

in all etch responses. The optimum recipe was determined using the Han Powell constraint

optimization algorithm [25]. This recipe was designed to simultaneously increase etch rate,

selectivities and anisotropy while minimizing nonunifoimity. A comparison between the stan

dard recipe and the optimized recipe appears in Table 4.10.

Table 4.10: Standard and Optimized Etch Recipes

Parameter Standard Optimized
Recipe Recipe

RF Power (watts) 300 300
Pressure (mtorr) 280 300
Electrode Spacing (cm) 1.5 1.2

CCl4 Flow (seem) 130 150
He Flow (seem) 130 50
02 Flow (seem) 15 20

After the optimum recipe was determined, an experiment was undertaken to confirm the

improvement of the etch responses. In this experiment, a total of six wafers were identically

prepared according to the previously described process flow. Prior to the final etch step, these

wafers were divided into two equal groups, one group undergoing the standard etch recipe and the

other receiving the optimized treatment. The results of this experiment aresummarized in Table

4.11. The last two columns in this table show the percent improvement in the etch response

derived from optimizing the recipe and the statistical significance of this improvement based on
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thestudent-t statistic [19]. Notably, significant improvement was obtained in nearly everycase.

Table 4.11: Standard and Optimized Responses

Response Std Opt % Change Sign.

Etch Rate (A /min) 3660 4467 22.0 0.03
Nonuniformity (%) 10.66 10.09 -5.3 0.56
Oxide Selectivity 9.58 20.10 109.8 0.01
Resist Selectivity 2.99 5.07 69.6 0.00

4.5.2 Using Models for Prediction

The empirical etch models which have been developed enable a process engineer to accu

rately predict etch responses over a wide range of etch recipes. This faa was verified by an

experiment designed to characterize the plasma etching of annealed polysilicon using various

recipes. In this procedure, the particular responses of interest were the etch rate and anisotropy.

The results of thisexperiment are summarized below inTables 4.12and 4.13. In thesetables, the

difference between predicted and actual values is given in standard deviations as given by die

equipment replication error (aR ). (Note that anisotropy measurements were notmade for recipes

2,6, and 7).

Table 4.12: Etch Rate Predictions versus Actual Results

Recipe Predicted Rate (A /min) ActualRate (A /min) Difference (Off)
1 4161 3992 0.6
2 4161 4516 1.2
3 3973 3685 0.9
4 4161 4012 0.5
5 4348 4696 1.1
6 4348 4669 1.0
7 4348 4452 0.3
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Table 4.13: Amsotropy Predictions versus Actual Results

Recipe Predicted Anisotropy (%)^ Actual Anisotropy (%) Difference (Cr)

1 93.1 95.0 0.6

3 90.6 90.0 0.2

4 93.1 89.0 1.3

5 92.1 91.5 0.2

In each of the above cases, the models predicted the etch behavior well within ± 1.96o)? limits,

thereby validating their accuracy at the 5% level of significance [19].

4.6 Summary

An economical two-phase experiment has been designed and conducted to characterize the

etch rate, uniformity, selectivity to SiO2 and photoresist, and anisotropy of n+-doped polysilicon

versus a comprehensive set of controlling parameters. These parameters were fit to quadratic

response surface models.

Undoubtedly, some of the second order effects reported here apply only to the specific

apparatus used for our experimental processing. Additional characterization effort has to be

undertaken in order to apply this methodology to other production-worthy plasma etchers. On

the other hand, it has been shown that these models describe the operation of the characterized

equipment very precisely. These models can also be augmented to reflea equipment aging by

using on-line experimentation [24]. Further, since statistical estimates of both prediction and

replication errors were derived, these models can be used for the long range optimization of the

etching process. This consideration is extremely important for long production runs.

Unlike computationally expensive physically-based simulators which are often impractical

due to their slowness and lack of precision, the empirical models derived herein can be used for a

variety of manufacturing purposes, including diagnosis, recipe generation, and statistical process
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control. This has been accomplished by organizing and storing the models in anobjea-oriented

software library (see Appendix 4.2). In the next chapter, the specific use of the models for mal

function diagnosis will be described in greaterdetail
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APPENDIX 4.1

AN EMPIRICAL MODEL FOR ETCH TEMPERATURE

Motivation

The ultimate goal of the development of models which describe the behavior of the plasma

etcher is to use these models for equipment diagnosis. Although the models for etch rate, unifor

mity, selectivity, and anisotropy provide accurate diagnostic information, they are only useful

during the in-line measurement phase, after the actual etch process has been completed. A model

describing a real-time process condition would provide additional diagnostic evidence which

could be used to infer equipment malfunctions even more rapidly. Since the temperature of the

Lam etcher process chamber is not directly controlled by the user [1], a model for this response

could serve to capture the "signature" of the properbehavior of the machine.

Background

Process temperature has a profound influence on plasma dischargechemistry. The tempera

ture of the gas mixture is a complex function of power input, heat transfer, and transport

phenomena. The rate constants for the chemical reactions in the etching process vary with tem

perature according to the Arrhenius expression [2]:

A:(r)=A(r)//?T (a4.1.1)

where A is a "pre-exponential" whichis weakly dependent on temperature, and EA is the "activa

tion energy." Since the rate constants for chemical reactions are a function of temperature, the

temperature also has an indirect effect on selectivity, uniformity and etch rate.
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Metrology

In the Lam Autoetch 490 plasmaetcher,the processtemperature is controlledby means of a

system which removes heat from the lower electrode by circulating deionized water [1]. How

ever, even though this control scheme prevents the electrode temperature from elevating much

above room temperature, subtle increases in temperature during processing arestill detectable by

the equipment monitoring system [3]. A typical graph depicting this phenomenon is shown in

Figure a4.1.1

Since the temperature increases almost linearly with time, the temperature gradient may be

described by the slope of the least squares regression line [4] of the temperature versus time plot

This slope is a function of the etch recipe. Thus, it is possible to model the process temperature

gradient using response surface methods in the same manner as the in-line responses (i.e. - etch

rate, uniformity, selectivity, etc.). Such a model has been developed using temperaturedata from

the same two-phase experiment described in Chapter 4.

Temperature Gradient Model

Experimental data was analyzed by piecewise regression [5] using R/S Discover [6]. The

regressionmodel for the temperature gradient(vTJ is:

Vr =7.29 - 0.QO6P +0.036/?/ +0.03CC/4 - 0.014/fe - 11.9G (a4.1.2)

+(1.12e-4)P2 - (2e-*)P*He +(9.S5e-5)He2 +3.58G2 ±0.39(mdeg/sec)

The prediction error of theuniformity model is ±0.39 miUidegrees/second. The equipment

replication error is ± 1.17 mdeg/sec. Sigmficance tests reveal that all model coefficients are

relevant, and there is no evidence for lack of fit. A scatterplot of the predicted gradient versus is

shown in Figure a4.1.2. Figures a4.1.3 and a4.1.4 describe the behavior of the temperature gra

dient under various process conditions. Ideally, thegradient should be kept aslow aspossible to
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Figure a4.1.1 - Typical plot ofprocess temperature versus time.
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reduce the possibility of overheating and ensure the stability of long etching i steps. From these

figures, it is evidentthat the a low gradient is achieved at low powerandpressureas well as using

wide electrode spacing. In addition, the presence of helium in the process chamber seems to

serve as a cooling agent. The ANOVA table of this model appears below.

Table a4.1.1: ANOVA for Temperature Gradient Model

Source DF Sum of Squares Mean Square F-Ratio Significance
Total 52 363.23 6.99

Regression 9 304.54 33.84 24.80 0.000
Residual 43 58.68 1.37

Lack ofFit 35 41.50 1.19 0.55 0.892
Error 8 17.19 2.15

Adjusted R2 = 0.805

Summary

This appendix presents an empirical model for the temperature gradient in the plasma etch

process chamber. This model possesses the advantage of providing additional diagnostic infor

mation during thereal-time phase ofthe process. Although this model has yetto beincorporated

into the overall process control and diagnostic strategy for theetcher, its use in conjunction with

the equipment monitoring scheme [3] will potentially allow the detection of failures early in the

fabrication cycle.
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Temperature Gradient Model vs Actual
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Figure a4.1.2- Scatterplot of predicted temperature gradients vs actual measured gradients.
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Figure a4.13 -Contour plot ofthe temperature gradient versus RF power and pressure.
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Figure a4.1.4 - Contour plot of the temperature gradient versus electrode spacing and He flow.

98



!._

References for Appendix 4.1

[1] Autoetch Plasma Etch System Operation and Maintenance Manual, Lam Research Corpora
tion, March, 1985.

[2] D. M. Manos and D. L. Flamm, Plasma Etching: An Introduction, San Diego: Academic
Press, 1989.

[3] N. H. Chang, A. Gaduh, H. Guo, and D. Mudie, "A Real-TimeEquipment Monitoring Pro
gram," Electronics Research Laboratory Research Summary, Department of Electrical
Engineering andComputerScience,University ofCalifornia at Berkeley, 1990.

[4] G. E. P. Box, W. B. Hunter, and J. S. Hunter, Statistics for Experimenters, New York:
Wiley, 1978.

[5] R. R. Hocking, "Hie Analysis and SelectionofVariables in Linear Regression," Biometrics,
vol. 32, March, 1976.

[6] RSIDiscover User's Guide, BBN Software Products Corporation, June 1988.

99



APPENDIX 4.2

AN OBJECT-ORIENTED SOFTWARE LIBRARY FOR

BCAM EQUIPMENT MODELS

Motivation

The characterization of integrated circuit processes throughequipment models such asthose

developed in Chapter 4 has become a necessity in semiconductor manufacturing. Equipment

models may be physical or empirical, or a combination of both. Further, equipment-specific

models are often updated to reflect the changing status of the equipmentover time. In addition to

the models for the Lam Research Automated Plasma Etcher [1], the Berkeley Computer-Aided

Manufacturing (BCAM) group has also developed several other statistically-based polynomial

models to describe the behavior of important pieces of IC manufacturing equipment, including

the Tylan Low-Pressure Chemical Vapor Deposition (LPCVD), and the photolithography

workcell [2,3].

In order to aid in theongoing derivation of further equipment models, theBCAM group has

also developed an object-oriented model library. The overall purpose of the library is to provide

an efficient means of storing, retrieving, evaluating, analyzing, and otherwise manipulating these

models for use by other modules in the BCAM architecture (i.e. - recipe generation, malfunction

diagnosis, statistical process control, etc.). Further, the library makes the models available to

simulation tools such as the SIMPL-DIX TCAD software package. The entire library is written

in C++, an object-oriented superset of theC programming language [4].

Rationale for Object-Oriented Approach

The BCAM system currentiy employs equipment models for the Lam Research automated

plasma etcher, the Tylan low-pressure chemical vapor deposition furnace, the Eaton photoresist
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coating and baking system, the GCA wafer stepper, and the MTI development station. In addi

tion, it is anticipated that many more models may be developed in the future. Given its inherent

modularity, hierarchical nature, and inheritance properties, new models may be added in an

object-oriented environment with relative ease [5]. Consequently, it was determined that the

BCAM equipment model library should be implemented using an object-oriented programming

(OOP) language. Due to the overall efficiencyof the C programming language and its ability to

interface with other software in the UNIX programming environment, the language chosen for

this application was C++, an object-oriented extension of C. (For a more detailed description of

the advantages of OOP and C++, refer to Chapter6).

Model Library Structure

The class structure of the equipment model library is depicted in Figure a4.2.1. In this

structure, the most general object class is the generic model. All subsequent classes inherit their

basic data structures and methods from the model class. There are two types of models derived

from this parent class: process models and equipment models. Process models are "textbook"

physical models of fabrication processes such as the well-known Deal-Grove model for silicon

oxidation [6]. The equipment model class, on the other hand, contains the empirical and semi-

empirical equipment-specific models for the Lam etcher, Tylan furnace, and other fabrication

equipment located in the Berkeley Microlab. Each equipment class possesses several subclasses

which consist of the specific charaaeristics modeled in that particular piece of equipment For

the etcher, these subclasses include: etch rate, uniformity, selectivity, and anisotropy. These

models are discussed in detail in Chapter 4.

The C++ code which implements the structure of the generic modelclass and allof its subc

lasses appears in Appendix 4.2a. The parent class contains the following crucial pieces of data:
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Figure a4.2.1 - Hierarchical description of BCAM model objects.

• version - a characterstring which denotes the version designation ofthe particularmodel.

• termjont - the total number of terms in the model.

• param_cnt - the total number of independent parametersin the model.

• coeffs - the array which contains the coefficients of the model terms.

• param - the array which contains the actual parameter values for a given recipe.

• expjnat - the matrix of dimension [termjcntj>aramj:ni] which contains the exponents to

which the parameters in each model term are raised.
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• stdjerr - the standard error (or equivalendy, "replication error") of the equipment that is

being modeled.

• predjsrr - the prediction errorof the model.

• paramjtames - a string array containing the namesof the model parameters.

In order to more cleariy illustratethe meaning of the data structures in the model class, con

sider themodel derived for polysilicon etch rate (Rp) in theLam plasma etcher:

Rp =-245 -4.24P +11.0/?/ +0.742CC/4+ U.2He (a4.2.1)

+ 523G + 35.902-0.034P*/fe + 7.82P*G

+0.085/?/*CC/4-8.36K/*G -0.\32{CCl4f

+ 0.059CCl4*He -0.059He2

For this particular model, the above variables wouldassume the following values:

version =1.0 (a4.2.2)

term cut = 14

paramjcjit = 6

coeffs =

-245
-4.24

11.0
0.742

11.2

523
35.9

-0.034
7.82

0.085
-8.36

-0.132
0.059

-0.059

(a4.2.3)

(a4.2.4)

(a4.2.5)
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param =

expjnat =

recipe pressure value

recipe power value

recipe CCI4 value

recipe He value

recipe 02 value

recipe gap value

P Rf CCl4 He 02G
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 1
1 0 0 1 0 0
1 0 0 0 0 0
0 1 1 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 1 1 0 0
0 0 0 2 0 0

stdjerr =309

P redjerr = 104I

paramjiames =

P

Rf
cci,

He

02

G

(a4.2.6)

(a4.2.7)

(a4.2.8)

(a4.2.9)

(a4.2.10)

Functionality of Model Objects

The primary methods which perform operations onthebasic model object in Appendix 4.2a

are as follows:

• eval - this function evaluates a particular model response foragiven recipe ofparameters.
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• get_std_err - this function returns the standarderror of the model.

• getjpredjsrr - this function returns the prediction errorofthe model.

• sens - this function evaluates the sensitivity of themodel ata given point in the parameter

space. Sensitivity is defined as the first partial derivative of the polynomial). The deriva

tives are evaluated analytically for polynomial models and numerically foranyothermodel

type.

• getjparamjndex - this function returns the indexof agivenparameter in theparamjuvnes

array.

• printjnodel - this function prints models in an aestheticallypleasing format

• updatejnodel - this function is intended to providea means ofupdatinga particular version

of a model by adjusting its coefficients. It has yet to be written.

• storejversion - this function stores the model along with its version number as a character

string in the INGRES database [7]. It has yet to be written.

• find_version - this function retrieves the character string representation of a model from die

INGRES database using its version number. It has yet to be written. The function is accom

panied by a routine which parses the character string (separating terms, counting terms,

counting parameters, identifying exponents, identifying coefficients, etc.) so that the model

may be manipulated by other methods such as sens and eval. The parsing routine is fully

operational.

• delete^version - this function deletes a particular version of a model from the database. It

has yet to be written.

These functions assume that all models are polynomials expressions. However, special methods

have been adapted to models where this is not the case (such as the LPCVD deposition rate
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model [3]). Using "virtual" C++ functions [4], such adaptation is relatively straightforward.

Summary and Future Work

The basic structure and necessary functions of the BCAM equipment model library have

been designed, implemented and tested. However, several methods currently require further

development. Most of these, such as the storejfersion, find_version, and deletejfersion func

tions, merely involve the connection between the library and the INGRES database. In addition,

a robust method for updating model coefficients and terms must also be designed.

Models for the Lam etcher and Tylan furnace are presentiy accessible from the library.

Plans are underway for the inclusion of the models for the components of the photolithography

workcell (i.e. - the Eaton coating and baking system, GCA wafer stepper, and MIT developer) as

soon as the development of these models is complete [8]. Existing models are currently being

used for recipe generation, malfunction diagnosis, and technology CAD (TCAD) development

C++ code for the library resides on 'radon.berkeley.edu' in the ~bcam/src/models directory. The

code which implements generic model functions as well as the Lam etcher model is given in

Appendices 4.2b and 4.2c, respectively.
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APPENDIX 4.2a

C++ IMPLEMENTATION OF MODEL LIBRARY CLASS STRUCTURE

/*

Model definition module of BCAM

Copyright (c) 1990 Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear
in all copies and that both that copyright notice and this permission notice appear in sup
porting documentation, and that the name of the University of California not be used in
advertising or publicity pertaining to distribution of the software without specific, written
prior permission. The University of California makes no representations about the suitabil
ity of this software for any purpose. It is provided "as is" without express or implied war
ranty.

Author: gsm
Source: /home/radon 1/bcam/src /models

Revision: 1.0

Date: 90/02/01 09:09:59

FileName: model.h

*/

//
// Symbolic constants for BCAM models.
//

#define MAXCOEFF 50 //maximum number ofmodel coefficients
#define MAXPARAM 10 //maximum number ofmodelparameters

//
// Class declarations for all BCAM models and their associated methods.
//

// Basic model class

class model {
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protected:
char *version;

int term.cnt, param.cnt;
long exp_mat[50][10];
double std_err, pred_err;
double param[10], coeffs[50];
char *param_names[10];

public:
virtual double eval(double param[]);
double get_std_err(float n = 1.0) { return n*std_err,}
double get_pred_err(float n = 1.0) { return n*pred_err,}
virtual double sens(int n, double param[]);
int get_param_index(char *name);
void print_modelO;
void update_modelO;
friend void store_versionO;
friend model find_versionO;
friend void delete_versionO;

};

// Process model class

class process: public model {
char *process_name;
void print_proc_nameO;

};

// Equipment model class

class equipment: public model {
char *equip_spec;
void print_equip_specO;
void update_equip_specO;

};

//Laml model class

class laml: public equipment {
int response_cnt;
char *response_names[10];
void update_response_namesO;

public:
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void std_laml_model(void);

};

//Tylanl6 model class

class tylanl6 : public equipment {
int response_cnt;
char *response_names[10];
void update_response_namesO;

public:
};

// Laml etch rate model

class etch_rate : public laml {
public:

void std_eteh_rate_model(void);

};

//Laml etch unifomity model

class uniformity : public laml {
public:

void std_uniformity_model(void);
};

//Laml oxide selectivity model

class sox: public laml {
public:

void std_sox_model(void);
};

//Laml resist selectivity model

class sph: public laml {
public:

void std__sph_model(void);
};

// Laml etch anisotropy model
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class anisotropy: public laml {
public:

void std_anisotropy_model(void);
};

//Laml temperature gradient model

class temp_grad: public laml {
public:

void std_temp_grad_model(void);

};

//Tylanl6 deposition rate model

class depurate: public tylan16 {
public:

double eval(double param[]);
double sens(int n, double paramf]);
void std_dep_rate_model(void);

};

//Tylanl6 stress model

class stress : public tylan16 {
public:

void std_stress_model(void);

};
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APPENDDC4.2b

C++ IMPLEMENTATION OF MODEL LIBRARY GENERIC METHODS

/*

Model definition module of BCAM

Copyright (c) 1990 Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear
in all copies and that both that copyright notice and this permission notice appear in sup
porting documentation, and that the name of the University of California not be used in
advertising or publicity pertaining to distribution of the software without specific, written
prior permission. The University of California makes no representations about the suitabil
ity of this software for any purpose. It is provided"as is" without express or implied war
ranty.

Author: gsm
Source: /home/radon 1/bcam/src /models

Revision: 1.0

Date: 90/02/01 09:09:59

FileName: model.cc

*/

#include <math.h>

#include <stdio.h>

#include <stream.h>

//*************************************^^

II
II Member function definitions for model class.
//

//This function returns thevalue of theresponse model for apreviously set
// array of parametervalues ("param[]").

double model::eval(double param[])
{

int i j;
double sum, term;
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sum = 0.0;
for (i = 0; i<term_cnt; i++) {

term = 1.0;

for (j = 0; j<param_cnt; j++) {
term *= pow(param[j],exp_mat[i][j]);

}
sum += coeffs[i] * term;

}
retum sum;

// Retum the first partial derivative of the model with respea to parameter
// "n" and evaluated at the arrayof parametervalues "param[]".

double model::sens(int n, double param[])

{
int i j;
long new_exp_mat[MAXCOEFF][MAXPARAM];
double sum, term;

double new_coeffs[MAXCOEFF];

for (i = 0; i<term_cnt; i++) {
for (j = 0; j<param_cnt; j++) {

new_exp_mat[i][j] = exp_mat[i][j];

}
if(exp_mat[i][n] !=0){

new__coeffs[i] = coeffsfi] * exp_mat[i][n];
new_exp_mat[i][n] -= 1;

} else {
new_coeffs[i] = 0.0;

}
}

sum = 0.0;

for (i = 0; i<term_cnt; i++) {
term = 1.0;

for (j = 0; j<param_cnt; j++) {
term *= pow(param[j], new_exp_mat[i][j]);

}
sum += new__coeffs[i] * term;

}
retum sum;

// Retum the index of the "param_names" array corresponding to the given
// parameter "name".
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int model::get_param_index(char *name)

{
inti;
for (i = 0; i<param_cnt; i++) {

if (param_names[i] = name) retum i;

}
}
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APPENDDC4.2c

C++ IMPLEMENTATION OF METHODS
FOR LAM ETCHER MODELS

/*

Model definition module of BCAM

Copyright (c) 1990Regentsof the University of California

Permission touse, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear
in all copies and that both that copyright notice and this permission notice appear in sup
porting documentation, and that the name of the University of California not be used in
advertising or publicity pertaining to distribution of the software without specific, written
prior permission. The University of California makes no representations aboutthe suitabil
ity of this software for any purpose. It is provided "as is" without express or implied war
ranty.

Author: gsm
Source: /home/radon l/bcam/src /models
Revision: 1.0

Dare: 90/02/01 09:09:59

FileName: laml.ee

*l

#include <math.h>

#include <stdio.h>

#include <stream.h>

//
// Member functions of the laml class.

//

// Set up the standard laml model.

void lam 1::std_laml_model(void)

{
intij;

teim_cnt = 28;
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param_cnt = 6;

param_names[0] = "P";
param_names[l] = "Rf*;
param_names[2] = "Ca4";
param_names[3] = "He";
param_names[4] = "02";
param_names[5] = "G";

// Initialize and set exponent matrix.

for (i = 0; i<term_cnt; i++) {
for (j = 0; j<param_cnt; j++) {

exp_mat[i][j] = 0;

}
}
exp_mat[l][0] = 1
exp_mat[2][l] = 1
exp_mat[3][2] = 1
exp_mat[4][3] = 1
exp_mat[5][4] = 1
exp_mat[6][5] = 1
exp_mat[7][0] = 2
exp_mat[8][0] = 1
exp_mat[8][l] = 1
exp_mat[9][0] = 1
exp_mat[9][2] = 1
exp_mat[10][0] = 1
exp_mat[10][3] = 1
exp_mat[ll][0] = l
exp_mat[ll][4] = l
exp_mat[12][0] = 1
exp_mat[12][5] = 1
exp_mat[13][l] = 2
exp_mat[14][l] = 1
exp_mat[14][2] = 1
exp_mat[15][l] = 1
exp_mat[15][3] = l
exp_mat[16][l] = 1
exp_mat[16][4] = 1
exp_mat[17][l] = 1
exp_mat[17][5] = 1
exp_mat[18][2] = 2
exp_mat[19][2] = 1
exp_mat[19][3] = 1
exp_mat[20][2] = 1
exp_mat[20][4] = 1
exp_mat[21][2] = 1
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exp_mat[21][5] = 1
exp_matI22][3] = 2
exp_matI23][3] = 1
exp_mat[23][4] = 1
exp_mat[24][3] = 1
exp_mat[24][5] = 1
exp_mat[25][4] = 2
exp_mat[26][4] = 1
exp_mat[26][5] = 1
exp_mat[27][5] = 2

//
// Member function definitions for etch rate class.

//

// Set up the standard etch_rate model.

voidetch_rate::std_etch_rate_model(void)

{
inti;

std_err= 309.4;
pred_err = 104.0;

// Initialize and set coefficient array.

for (i = 0; i<term_cnt; i++) {
coeffs[i] = 0.0;

}
coeffs[0] = -244.954;
coeffs[l] = -4.239;
coeffs[2] = 10.96;
coeffs[3] = 0.742;
coeffs[4] = 11.225;
coeffs[5] = 35.868;
coeffs[6] = 523.149;
coeffs[10] = -0.034;
coeffs[12] = 7.817;
coeffs[14] = 0.085;
coeffs[17] = -8.362;
coefTs[18] = -0.132;
coeffs[19] = 0.059;
coeffs[22] = -0.059;
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//
// Member function definitions for uniformity class.

//

// Set up the standard uniformity model

voidumformity::std_.uniformity_.model(void)

{
inti;

std_err=6.66;
pred_err=2.22;

// Initialize and set coefficient array.

for (i = 0; i<term_cnt; i++) {
coeffs[i] = 0.0;

}
coeffs[0] = -11.549;
coeffs[l] = -0.038527;
coeffs[2] = 0.093699;
coeffs[3] = 0.709912;
coeffs[4] = -0.415408;
coeffs[6] = -8.898964;
coeffs[14] = -0.00177;
coeffs[15] = 0.001383;
coeffs[19] =-0.001403;
coeffs[22] = 7.975e-4;

}

//
// Member functiondefinitions for oxide selectivityclass.
//

// Set up the standard oxide selectivity model.

void sox::std_sox_model(void)
{

inti;

std_err=0.93;
pred_err=0.31;

// Initialize and set coefficient array.

for (i = 0; i<term_cnt; i++) {
coeffsp] = 0.0;

}
coeffs[0] = -13.106;
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}

coeffs[l] = 0.097;
coeffs[2] = 0.04;
coeffs[3] = -0.06;
coeffs[4] = 0.059;
coeffs[5] = 0.079;
coeffs[8] = -2e-4;
coeffs[9] = 2.898e-4;
coeffs[10] = -3e-4;

//
// Member function definitions for resist selectivity class.
//

// Set up the standard resist selectivity model

void sph::std_sph_model(void)
{

inti;

std_err=0.95;

pred_err = 0.09;

// Initialize and set coefficient array.

for (i = 0; i<term_cnt; i++) {
coeffs[i] = 0.0;

}
coeffs[0] = 7.558;
coeffs[l] = 0.009;
coeffs[2] = -0.014;
coeffs[3] = -0.022;
coeffs[4] = 0.006;
coeffs[5] =-0.099;
coeffs[6] = -2.586;
coeffs[8] = -5e-5;
coeffs[9]=1.292e-4;
coeffs[10] = -7e-5;
coeffs[ll] = 3.688e-4;
coeffs[13] = 2.713e-5;
coeffs[15] = 3.558e-5;
coeffs[19] = -5e-5;
coeffs[27] = 0.757;

}

//

//Member function definitions foranisotropy class.
//
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// Set up the standard anisotropy model

void anisotropy::std_anisotropy_model(void)

{
inti;

std_err=3.24;
pred_err=1.82;

// Initialize and set coefficient array.

for (i = 0; i<term_cnt; i++) {
coeffs[i] = 0.0;

}
coeffs[0] = 94.61;
coeffs[4] =-0.031;

}

//

// Member functiondefinitions for temperature gradient class.
//

// Set up the standard temperature gradient model.

void temp_grad::std_temp_grad_model(void)
{

inti;

std_err= 1.17;
pred_err = 0.39;

// Initialize and set coefficient array.

for (i = 0; i<term_cnt; i++) {
coeffs[i] = 0.0;

}
coeffs[0] = 7.287;
coeffs[l] = -0.006;
coeffs[2] = 0.036;
coeffs[3] = 0.03;
coeffs[4] = 0.014;
coeffs[6] =-11.946;
coeffs[7] = 1.116e-4;
coeffs[10] = -2e-4;
coeffs[22] = 9.846e-5;
coeffs[27] = 3.579;
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CHAPTER 5

GENERATION AND DISTRIBUTION OF EVIDENTIAL SUPPORT

5.1 Introduction

The previous two chapters have discussed the mechanical operation of a plasma etcher and

the development of quantitative models for etch behavior. In Dempster-Shafer (D-S) terminol

ogy, these two chapters have established Van frame of discernment and governing equations for

equipment diagnosis [1-2]. The only remaining task necessary to fully implement the Dempster-

Shafer approach to fault diagnosis is the development of a set of techniques to generate and distri

bute numerical evidential support among all of the various fault hypotheses in the etcher's frame

ofdiscernment. The objective of this chapter is to provide such techniques, and in so doing, com

plete the formulation of the methodology for IC equipment malfunction diagnosis.

5.2 Chronology of Evidence Availability

Due to the batch nature of the semiconductor manufacturing process, useful diagnostic

information, or evidence% accumulates over time in an irregular fashion. Several sources of evi

dence are available, but all of this informationmay be placed into one of three major categories

according to the chronologyin which it is obtained. Evidenceregardingequipmentstatus may be

collected either: 1) during maintenance periods(before processing), 2) during on-line equipment

operation (duringprocessing), or 3) during in-line physical and/orelectrical inspection of the pro

cessedwafer (afterprocessing) [3-5]. Thesechronological evidencesourcesare illustrated in Fig

ure 5.1.

Using these three categories of evidence as a framework, malfunction diagnosis takes place

in three consecutive steps. Maintenance diagnosis is performedby examining the relevant histor

ical records of equipment performance. Next, on-line diagnosis is performed based on analysis
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Figure 5.1 - Chronological sources ofdiagnostic evidence.

of real-time sensor data available from equipment monitoring facilities. Finally, in-line diagnosis

makes use of physical and/or electrical in-line measurements on processed wafers in conjunction

with empirical models for equipment behavior. For each of these three phases of diagnosis, evi

dential support for fault hypotheses is generated and mapped to particular malfunctioning equip

ment components. The methodology employed to generate support and obtain this mapping is

discussed below.

53 Generation of Evidential Support

5.3.1 The Support Function

The Dempster-Shafer evidence combination method illustrated in Chapter 2 (see § 2.4)

depends heavily upon the basic manner in which evidential support is initially distributed to the
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BPMDs. In a Boolean classification scheme, thebelief in any fault hypothesis is set equal to one

as soon as the measurement residualcorresponding to a particular constraint exceeds its absolute

tolerance (tol). This residual is defined as the difference between a measured response and its

setpoint. This type of belief (or support) assignment is depicted by the step function in Figure

5.2. However, this step function yields highly unstable belief assignment in the presence of

measurement noise [2-5]. Thus, incremental changes in equipment operating conditions when

constraints are at or near tol lead to discontinuous adjustments in the support values associated

with various diagnoses.

Support
step function

sigmoid function

-tol residual

Figure 5.2 - Booleanandsigmoidsupport functions [3-5].

A betterbehaving support function is the sigmoid function also shown in Figure 5.2. This

"squashing" function has beenused in neural network studies [6]. The equation for the sigmoid

function is:

*(e) =
\-u

(5.1)
l+exp[-G(-^--l)]
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where u is the uncertainty associated with the individual constraint and e is the measurement

residual, which is assumed to be a normally distributed randomvariable with mean zero and con

stant variance (o2). The parameter G is an arbitrary constant used to adjust the sharpness of the

function. As G approaches infinity, the sigmoid function approximates the shape of the step

function.

Values for the adjustable parameters u and G are typically based on experience. However,

the default value of G is set at 5.0, which causes the support for a given hypothesis to be less than

0.1 when e is 2-o and larger than 0.2 when e is 2.5-a (assuming zero uncertainty) [3-4]. The

default value of uncertainty in the system is 0.1. As indicated below, this support function forms

the basis for the generation of numerical belief in two of the three phases of malfunction diag

nosis.

5.3.2 Support Generation for Maintenance Diagnosis

Computerized equipment maintenance records allow the maintenance phase of diagnosis to

take place in a straightforward manner. Two quantities are used to characterize the likelihood

that a particular component is faulty: 1) its mean-time-between-failures (mtf), and 2) the elapsed

time since its last failure (tsf). These quantities may be extracted directly from FAULTS, UC-

Berkeley's automated equipment maintenance record-keeping system [7]. Given the repair his

tory of a particular component, evidential support may be generated in a similar manner to (5.1)

using:

s(tsf) = X-^— (5.2)
l+exp[-G(-^r-l)]

mtf

Here the elapsed time since the last equipment failure is treated as the measurement residual and

the mean-time-between failures assumes the role of the measurement tolerance.
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As an example, suppose that a mass flow controller mustbe calibrated every sue weeks and,

at the time that diagnosis takes place, it has been five weeks since its last calibration. If G =5.0

and u = 0.1 (10% uncertainty in the system), then0.27 units of support are attributed to themis-

calibrated mass flow controller fault During maintenance diagnosis, support values forall com

ponents in the frame of discernment are calculated in this way.

5.3.3 Support Generation for On-line Diagnosis

Data from real-time equipment sensors serves as the source of evidence which is analyzed

during the on-line phase of diagnosis. Inthe case of the plasma etcher, this data is transmitted via

a software system known as LAMTALK [8]. LAMTALKsends the sensor readings overalocal

area network to a workstation controlling the process. The program monitors 11 current process

conditions which provide useful diagnostic information. These conditions include gas flow rates,

forward and reflected RF power, various chamber and airlock pressures, chamber temperature,

and electrode spacing (see § 4.2).

The real-time sensor data is sampled ata rate of one sample/second. At such ahigh sam

pling rate, it is reasonable toexpect significant auto- and cross-correlation among the samples [9].

In order to alleviate these effects, a CUSUM control chart technique has been implemented to

detect small process shifts [10]. The ability to detect small shifts is critical for the on-line diag

nosis of rapid fabrication steps such as plasma etching. This isbecause slight equipment miscali-

brations may only have sufficient time to manifest themselves as smaU shifts when the total pro

cessing time is on the order of minutes. CUSUM charts monitor such shifts by comparing the

cumulative sums of the deviations of the sample values from their targets. This is accomplished

by means of theV-mask shown in Figure 5.3. The procedure for detecting process shifts consists

of determining whetheror not all of the previous cumulative sums lie within the arms of the V-

mask on the CUSUM control chart
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Figure S3 - Typical CUSUM controlchartshowing the V-mask and scaling parameters [10].

Using this approach to generate evidential support requires the following two cumulative

sums:

SH(i) = m2x[0,x-(niS + b) + SH(i-l)]

SL(O = max[0,(Ho-&)-3c+SHG-l)]

(5.3)

(5.4)

where SH is the sum used to detect positive process shifts, SL is the sum usedto detect negative

shifts, x is the mean value of the current sample, and u<) is the target value. The initialvalue of

both Sh and SL is set to zero. Both sums accumulate deviations from the target value|iogreater

thanb, andboth resetto zerouponbecoming negative. The parameter b is given by:

6=^(200*) (5.5)

where cx is the standard deviation of the sampled variable and 9 is the aspect angle of the V-
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mask. This angle has been selected in such a way as to detect one-sigma process shifts with an

average run length of50 wafers between alarms when the process is in control.

When either SL or £# exceeds a decision interval h, this signals that the process has shifted

out of statistical control. The decision interval is:

/»=2daxtan(9) (5.6)

where d is the V-mask lead distance (see Figure 5.3). The decision interval may be used as the

process tolerance limit and the sums SH and Si are be treated as measurement residuals [4].

Thus, numerical support is derived from the CUSUM chart using the sigmoid:

s(SH/L) = l-=j (5.7)
l+exp[-G(-^-l)]

This function is used to generate Dempster-Shafer supportvalues for all fault hypotheses related

to the sensor data monitored during the on-line phase of diagnosis.

5.3.4 Plausibility Generation for In-line Diagnosis

In the final phase of diagnosis, in-line wafer measurements are used in conjunction with

empirically obtained regression models of equipment behavior to obtain further numerical evi

dence. For the plasma etch application, the development of these models was described in

Chapter 4. The responses that have been modeled are the etch rate, uniformity, oxide and pho

toresist selectivity, and anisotropy of a CCl4-based polysilicon etchprocess. These responses are

controlled bysixinput factors: pressure, RFpower, electrode spacing, and theCCl4, He, and 02

flow rates.

For the purpose of generatingnumericalbelief from the empirical models, it is assumed that

a malfunction may be explained by an inadvertent shift in one of these six settings. Under this

assumption, the system of regression equations is then used to test the individual hypotheses that
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each of the settings has drifted from its target value. Statistical tests based on solving the system

of regression equations in "reverse" are then used to derive the significance probability that each

suspected drift satisfactorily explains difference between model predictions and measured

responses [10]. This statistical notion of the significance probability is directly analogous to the

Dempster-Shafer concept of evidential plausibility [11]. Therefore, the plausibilities derived

from solving the regression models in reverse can be unambiguously combined with existing evi

dence using the methods described in Chapter2.

53.4.1 Solving the Regression Equations in Reverse

In order to illustrate this technique, consider a manufacturing process with q observable

responses controlled by p independent settings. Further, q regression models for the responses

each contain up top* different terms. The regression equations are:

Y = Z'© + E (5.8)

where Y is the nxq array of the q responses collected from n experiments, Z is the p*xn array

of thevalues of the terms used in the equations, @is the p*xq array of the regression coefficients

and E is the nxq arrayof residuals.

In general, the regression equations are nonlinear expressions of the process settings. How

ever, they may be linearized using the truncated Taylor series expansion of/ (x):

/ (x + Ax) = z'0 + Oz/a^-yeAx, (5.9)

where x is the column vector of the p process settings, z is the column vector of the p nonlinear

expressions of the settings (i.e. - x\x2, x$, etc.), (dz/dxi) is the p*x\ column vector of the partial

derivatives of the regression terms of the i th setting, and Ax is a vector of small shifts in the each

of the settings. Diagnosis occurs after the responses from m identical process runs have been

observed. If these observations do not agree the model predictions, then a shift in one of the set-
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tings is suspected.

A new value for the i th process setting may be extracted by solving the regression equa

tions in "reverse" throughminimizing the sum of squares of the residual:

min(Ax4- &(dzJdxi) - y+0'z)2 (5.10)

where y is the q xl column vector of the average processresponseover the m runs. The value of

Axi which minimizes this expression is:

„ (dz/dxJQy-z'eQ'Qz/dXi)
Axi — (5.11)

(dz/dXiYQQXdz/dXi)

As the subscript i implies, this shift is calculated for each of the p process settings.

53.4.2 Validating the Solution of the System - Test A

All malfunctions are not directly traceable to a shift in one of the process settings. In fact,

even when a change in a setting is responsible for a malfunction, it could conceivably be of such

magnitude that the linearized empirical models cannot adequately describe it. In such cases the

solution of the regression system will offer no additional evidence since the residual defined in

(5.10) and (5.11) will be too large to be distinguished from the error introduced by linearization.

On the other hand, if the solution is indeed a valid one, then the residual will be normally distri

buted around zero. The qx\ vector of the residuals is defined for each of the p suspected process

shifts as:

\i a Mi &(dz/dxi) - y + 0'z (5.12)

The hypothesis test that determines whether these residuals are negligible or significant requires

iterative use of the student-t statistic [10]. However, all of the q process responses arecorrelated,

and an estimate of the q xq covariance matrix S is available from the original modeling experi

ment. This covariance matrix was estimated with k =n -p* degrees of freedom. As a result,
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the iterative use of the student-t test may be replaced by a single hypothesis test employing

Hotelling's T2 statistic with k degrees of freedom [12]. The value of the T2 statistic, which is

distributed according to the T2 distribution, is:

Tt =k%Sr% (5.13)

The T2distribution is related to the well-known F distribution as follows:

Tltti-Sij^f-F^^ (5.14)

The residual £,- is not significantly different from zero and Axj is a "good" solution of the

system at an ot^ level of significance if:

TA<Rfzf-F^q^-q (5.15)

Satisfaction of this inequality indicates that the malfunction can be explained in terms of a shift

in the i th process setting. The maximum value of o^ that satisfies the inequality is known as the

significance probability of the test. The significance probability is a measure of the "goodness"

of the solution because it asymptotically approaches 0.0 when the residual is large and

approaches 1.0 when the residual is small.

5.3.4.3 Determining the Significance of the Shift - Test B

Test A above validates the various solutions of the reverse regression equations by deter

mining the relative capabilities of the calculated shifts Ax,- to account for the differences between

the model predictions and experimental results. However, even after validating the solutions, it

still remains to be seen if the actual shifts Ax,- are statistically significant. This is determined by

means of another test based on the estimated shifts. The variabled is defined:

CisAjfc&'Oz/ajCf) (5.16)
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This variable is the non-centrality vector underthe assumption that the actual shift is zero. It is

derived from (5.12) by setting y=©7. A second T2 test can be performed based on:

r^&'S-1?, (5.17)

The maximum significance probability aB of this statistic may be found in the same manner as

(5.14) and (5.15). The value (1 - aB) measures the significance of the observed shift since aB

asymptotically approaches zero when the estimated shift is large and approaches one when the

estimate is small.

53.4.4 Generating Evidential Plausibility from Tests A and B

The objective of this section is to use the statistical tests of the two previous sections to

derive evidential plausibility of potential equipment faults. This requires acknowledgement of

the fact that the statistical significance probability is equivalent to oneminusthe plausibility of a

given event. In statistical terms, if anevent is accepted at a 0.05 level of significance, then there

exists at most a 5% chance of making a mistake accepting this event as true. Under these cir

cumstances, using Dempster-Shafer terminology, the evidence that theevent did notactually hap

pen gives 0.05 "units" of support on a scale from 0.0 to 1.0. Therefore, the plausibility of the

event is 0.95 (assuming zero uncertainty).

Using the regression models requires two tests to derive evidential plausibility. The first

(Test A) establishes with asignificance probability aA that the residuals of the reverse regression

equation are zero. Similarly, the second test (Test B) establishes with significance probability

1- c% that the calculated shift in a given process setting is statistically significant For diag

nosis, both of these assertions are combined and the plausibility p' that a given parameter has

shifted is:

p' = aA(l-aB) (5.18)
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At this point, the role of evidential uncertainty u deserves some discussion. Since uncer

tainty is not a probabilisticconcept, it is not possible to deriveits value from the formal statistical

tests above. In addition, some care must be exercised in any method for choosing a value for u

since too large an uncertainty will result in negative evidential supportif u is subtracted from p'

directly (see § 2.3.5). In order to preventthis fromoccurring, the factor p is defined as:

1 -u

Then the final value of plausibility p which guarantees positive support is given by:

'-J££ (520)
Since the chosen value of uncertainty is the same for all process settings modeled by the regres

sion equations, the relative ranking of the suspected faults is unaffected by the introduction of (3

into the analysis.

It is also important to note that the derivation of evidential plausibility using the statistical

tests outlined above yields a final relationship between plausibility and the inferred parametric

shift that has a nearly sigmoid exponential form. This is a direct result of the exponential sig

moid shape of the student-tdistribution [10-12].

53.4J Example of In-line Malfunction Diagnosis

In order to verify the above methodology, a simulated experiment was performed using the

regression models which describe the Lam Autoetch plasma etcher. In this experiment, the in

line measurements of 50 wafers were generated via a random number generator. These measure

ments were generated around mean values given by the predicted responses of the optimized etch

recipe from § 4.5.1 with standard deviations given by the one-sigma replication errors of the indi

vidual models. This data was used to calculate y in equations (5.10-12). A 5 seem leak in the

132



CCI4 flow was then simulated by usinga valueof only 145 seem for this parameter in the z and

dz/dxi vectors rather thanthe 150seem value specified by therecipe.

Table 5.1: Ranked Fault List for Simulated CC14 Leak

Rank Parameter Plausibility
1 CCl4 flow 0.3265

2 RF Power 0.2459

3 02flow 0.1953

4 He flow 0.1942

5 Gap 0.1744

6 Pressure 0.1227

Using the BLSS [13] statistical software package to calculate aA and aB yielded the fault

ranking shown in Table 5.1. These plausibilities were calculated with an assumed uncertainty

value of 10%. As is indicated by this list, the CCl4 problem was correctly identified as the most

likely candidate to explain the discrepancy between the model predictions and the simulated

measurements. In general, this methodology has proven to work well, provided that the faults to

be diagnosed are neither too small (in which case they produce statistically insignificant effects)

or too large (preventing thelinearized process models from adequately describing them).

This approach has been implemented to generate Dempster-Shafer evidential plausibility

for possible faults related to each of the sixprocess parameters in the etcher regression models.

The support from in-line diagnosis is then combined with that from the two previous phases to

produce the final diagnostic conclusions.

5.4 Distributionof Support Among Multiple Fault Hypotheses

Given any piece of diagnostic evidence, either the support generating function given by

(5.1) or the method of solving regression equations in reverse described in § 5.3.3 above may be

used to derive an initial probability mass distribution for a given knowledge source. BPMs are
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assigned to the fault hypothesis sets i/+, H~ (see § 2.5), and H° (the Mno-fault" condition) in the

following manner:

ro<H+,/r,#<\e> = <d,0,l-&-ii,K>, e>0 (5.21)

m<H+tH-tH°,Q>=<Otb,l-b-u,u>, e<0 (5.22)

The evidential intervals implied by this support assignment technique indicate that when the con

straint residual is greater than zero, the probability that the constraint is high is between b and

b + u, whereas the probability that it is low is between zero and u. When the residual is less

than zero, these intervals are reversed. Note that the uncertainty involved in evaluating the con

straint is assigned directly to 6. This means that u supports all relevant hypotheses and cannot be

attributed to any particular subset of the frame of discernment Assorted BPMDs for all

knowledge sources are subsequently combined in the manner described in Chapter 2.

As an example, consider this support distribution scheme as applied to the frame of discern

ment discussed in § 2.4. This frame is repeated below for the sake ofconvenience:

A s Mass Flow Controller Miscalibration

B a Gas Line Leak

C s Routing Valve Malfunction

D = Incorrect Sensor Signal

E sThe "No-Fault" Condition

Let H+ = (A {j B, Q for the violation of a particular constraint This means that this set of

violated faults (induced from e >0) contains faults A ^j B or fault C. Sucha scenario is possible

when the particularevidence source cannot distinguish specifically between the fault subset "A or

B" (mass flow controller miscalibration or gas line leak) and fault C (routing valve malfunction)

alone. Furthermore, suppose that the records contained in the equipment maintenance database

reveal that the set A \^j B is responsible for the observed evidence 80% of the time when e > 0,

while C is responsible only 20% of the time. Thus, set A ^ B gets 0.8*s(e) and fault C gets

0.2*.s (e) (from 5.1) when e > 0. Let H~ = D for this constraint.

134



In addition, consider a second evidential constraint whoseviolation yieldsH+ = B and H~ =

(A yj Q. Further, assume that s\(t\) = 0.6 when ei > 0 for the first constraint and s&j) = 0.7

when 62 <0 for the secondconstraint Then, the following supportdistribution results:

mi <AUB,C/>,(AUBUCUD)',e> =w1 <A[jB,C,D ,E,e> =<0.48,0.12,0,0.2,0.2> (5.23)

m2<BAvc >(A {jB ^jC)\Q> = m2<BA\jCP\JE$> = <0,0.7,0.1,0.2> (524)

This illustrates the mannerin which the BPMDs combined in § 2.4 are initially derived. Similar

methods are applied to all evidence sources in the system to obtain a complete mapping of sup

port from the evidence spaceto the fault space(or frame ofdiscernment).

5.5 Summary

This chapter has outlined a paradigm for the generation of Dempster-Shafer evidential sup

portduring threechronological phases of malfunction diagnosis. These threephases are basedon

the availability of evidence during the maintenance, on-line, and in-line portions of equipment

operation. Each phase of diagnosis is accompanied by a unique method of support generation

based on statistical principles as well as heuristics.

In conjunction with the operational equipment description contained in Chapter 3 and the

quantitative equipment models developed in Chapter 4, the support generation techniques in this

chapter complete the set of components necessary to implement the automated malfunction diag

nosis system onthe Lam plasma etcher. The details of that implementation are the topic of the

next chapter.
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CHAPTER 6

SOFTWARE IMPLEMENTATION OF DIAGNOSTIC METHODOLOGY

6.1 Introduction

In recent years, software design methods have undergone a change in philosophy toward

what is known as "object-oriented programming" (OOP) [1]. In an effort to obtain improvement

in software productivity and reusability, this style of programming has been selected as the pre

ferred technique for the Berkeley Computer-Aided Manufacturing (BCAM) system (see Chapter

1). Consequently, this style of programming has also been adoptedfor the realizationof the mal

function diagnosis system. The C++ programming language [2] has been chosen to implement

the object-oriented approach. In addition to some background information on OOP, this chapter

provides a description of the C++ software whichimplements the diagnostic methodology and an

overview ofthe flow of information within the system.

6.2 Object-Oriented Programming

The centralphilosophy behind OOPis the concept that the design of an application should

be modeled as closely aspossible to thereal-world objects which areembodied in the application

itself. This approach differs from structured programs which are organized as a small number of

relatively large and complex procedures that manipulate a small number of large and complex

data structures. Although structured programs are suitable for development early in the design

cycle, they canbe difficult to maintain throughout the lifetime of thesoftware. This is especially

true whenprogrammers are required to make extensive changes during implementation that were

not forseen during the initial prototyping phase [1].

Object-oriented programs extend the structured approach by combining the principle of

data abstraction with traditional concepts of hierarchical structure and modularity. Each
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Class Boundary

CLASS NAME

Variable X

Private Data

Variable Y

C Method 1

c Method 2
Data Manipulation Procedures

c Method 3

Figure 6.1 - Illustration of generic OOPobjects.

individual unit of data abstraction, or object, has a limited number of permissible operations

whichcontrol the data within its boundaries. The data within the boundary of oneobjectis com

pletely inviolate from the point of view of other objects, thereby preventing interdependencies

between objects. The procedures which operate on data within an object, known as methods, are

the only means of accessing this data. Some methods arepublic (accessible from outside the

object), while others are private (accessible only to other object methods). Objects interact by

sending and receiving messages without specific knowledge of how the calling procedure is
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implemented. The objectstructure is illustrated inFigure 6.1.

Aside from data abstraction and message passing, other significant features unique to OOP

include: polymorphism, inheritance, and class hierarchy. Polymorphism is the highly desirable

ability to use the same function name to refer to different function implementations. For exam

ple, polymorphism would allow the same "read" function to input character or numeric data.

Inheritance is the mechanism bywhich objects ofone class may possess theproperties ofanother.

Using this property, polymorphic methods in a subclass override their counterparts in the parent

class, and changes to methods in theparent areautomatically inherited by all descendent classes.

Inheritance allows the programmer to organize class objects into a hierarchy in which generic

high-level classes are refined into successively more specific subclasses. Inthis way, classes may

bearranged justlike a zoological taxonomy inwhich animals arecategorized bytheir similarities

and differences. Forexample, a "mammal" class may have subclasses "dog" and "horse".

63 ClassStructure and Associated Methods for Diagnostic Objects

The following section describes the class structure of the equipment diagnosis system.

Three major classes are required to implement this methodology: 1) the BPM class; 2) the evi

dence class; and 3) the fault-set class. These three classes form the basis of all evidence combi

nation and belief distribution inthe system. Each is presented along with an explanation ofthen-

associated methods.

63.1 The BPM Class

Initially, an object-oriented dialect of Common Lisp known as CLOS was selected as the

language with which to implement the Dempster-Shafer rules of evidence combination in the

diagnostic system [3-5]. However, the computational speed and efficiency of interpreted

languages such as Lisp orProlog [6] leaves much to be desired. This isacritical deficiency since
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the Dempster-Shafer techniques require a significant number of computations, and real-time

plasma etch diagnosis requires that these calculations take place at a pace commensurate with

that of the etching itself, which is on the order ofminutes [7].

Due to the inadequacies of CLOS, the C++ programming language (an object-oriented

superset of C) has been implemented to increase computational speed. The expected increase

wasjustifiable since C is a compiled, rather than interpreted language. As a result, C++ employs

much more efficient memory management techniques than any dialect of Lisp [2]. In fact, after

the code was written and tested, C++ was found to have more than a factor of 1000 advantage in

CPU time over CLOS for functions performing analogous tasks (1.06 sec for CLOS versus less

than 1.0 msec for one BPMD combination in C++).

In this implementation, BPMDs are stored as linked lists of C++ objects called

"bpm_nodes". The exact format of these objects is described in Appendix 6.1a. Each bpm__node

contains the following data:

1) Pointers to the headof the list (head), the address of the current node (cur), and the next
node in the linked list (next).

2) A stream of bits which represent the presence or absence of certain faults in the frame of
discernment (bits).

3) The support (belief) and plausibility (plaus) attributed to the particular fault set described
by this node.

4) A flag indicating whether ornotthisnode contains thebeliefascribed to 0 (theta).

The structure of the linked list is visualized in Figure 6.2, which depicts the BPMD mlt which

was discussed in § 2.4.

The bit stream merits further explanation. Essentially, each set of faults is assigned to a

particular stream, and each fault within a given setis mapped to aparticular bit within the stream.

Consider, the frame of discernment in § 2.4. This frame would berepresented by astream of five
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00011 "bits" field

"belief field

"theta" flag

"next" pointer

10000

0.48 0.2

0 0

—> 00100 1—> 11111

0.12 0.2

0 1

null

1—> 01000

0.0

0

Figure 6.2 - The linked list structure usedto implement BPMDsin C++.

bits, one for each of the five faults. The least significant bit isassigned to fault A. For example,

the bits field inthe bpm_node assigned to fault set A \^j Cwould be00707. Likewise, fault set A

^ B would be represented as 00077, fault D would be 01000, and so forth. When BPMDs are

combined, the bits field of individual bpm_nodes are bitwise logically "AND"-ed in order to

determine the belieftobeattributed to their intersection as inequations (2.8) and (2.9).

In addition to the data indicated above, thebpm_node object (or"class") also contains vari

ous methods which are used to manipulate the linked lists in order to implement the Dempster-

Shafer methodology. The most critical functions in terms of performing Dempster-Shafer evi-
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dence combination are the public (or "friend") functions "arb_bpmd_comb" and

"bel_pls_encript". The "arb_bpmd_comb" function combines BPMDs from two arbitrary evi

dence sources, and "bel_pls_encript" calculates the evidential intervals of support and plausibility

resulting from this combination. Most of the other methods in this class are designed to perform

various subtasks related to combining the BPMDs and obtaining the evidential intervals. The

remaining methods are: 1) a function which appendsnew bpm_nodes to the linked list; 2) stan

dard C++ functions to allocate and deallocate memory space for the class (called constructors

and destructors); and 3) methods used to step through nodes in the linked list [2]. For a more

detailed descriptionofeach method, referto Appendices 6.1a and 6.2.

6.3.2 The Evidence Class

The evidence class contains information related to all forms of evidence for maintenance,

on-line, and in-line diagnosis. Like the BPM class, this class also utilizes a linked list data struc

ture. This structure appears in Appendix 6.1b. In addition to the usual list pointers, eachnode of

the evidence linked list (called an "evidence_node") contains the data below:

1) The name of this particular piece ofevidence (name).

2) The uncertainty associated withthis piece of evidence (uncertainty).

3) The "sharpness" parameter ofthe support function (beljg).

4) Thename of the piece of equipment corresponding to this evidence (equip).

For on-line evidence, two additional slots are defined:

5) The recipe setpoint forthis pieceof evidence (setpt).

6) The tolerancelimit of this evidence (tol).

Overall, the program contains three distinct evidence lists, one for each of the three phases of

diagnosis. As an example, a portion of the on-line evidence list is depicted in Figure 6.3. This
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"name" field

"uncertainty" field

"bel_g" field

"equip" field

"setpt" field

"tol" field
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0.1
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ga8_flow_2

0.1
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laml
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0.12
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0.1

5.0

laml

20

0.12

rfjbward

0.1

5.0

laml

300

3.34

rfjreflected

0.1

5.0

laml

5.23

4.70

pressure

0.1

5.0

laml

200

0.81

Figure 63 - The on-line evidence list structure.

figure shows a portion of the on-line evidence list Nodes for each of the real-time data channels

(see § 4.2) are chained together to fonn this list [8-9]. A similar approach is taken to construa

the maintenance and in-line evidence lists.

The three evidence lists are initialized by the public functions

"initialize_maintenance_evidence", "initialize_online_evidence"f and

"initialize_inline_evidence." Another public method, "inline_belgen", generates Dempster-

Shaferevidential plausibility for in-line evidencein the mannerdescribed in § 5.3.4. Aside from

standard methods used to append and iterate through the linked list of evidence nodes described
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in the previous section, this class has only one private function. This function (which is called

"get_online-spc_info") retrieves the values for the setpt and tol slots for the on-line evidence list

For a more thorough explanation of these functions, see Appendices 6.1b and 6.2.

63.3 The Fault-Set Class

The diagnostic software uses yet another type of linked list, the fault-set, to quantify the

knowledge base of the plasma etcher (see Chapter 3). The contents of the fault-set lists are out

lined in the definition of the "fault_setjnode" class in Appendix 6.1c. Aside from list pointers,

each node contains the following data:

1) Thename of thepiece of evidence associated with thisfault-set (evijtame).

2) A flag indicating whether this fault-set corresponds to positive or negative constraint vio
lation (level).

3) The numberof faults in the set (faultj:nt).

4) A symbolic list of equipment faults belonging to the set (symbols).

5) Thebit stream representation (as described in § 6.2.1) of thefault symbols (bits).

6) The proportionof belief attributed to this set (frac).

The structure ofthe fault-set linked list appears inFigure 6.4. The fault-set depicted inthis figure

corresponds to the one described in § 5.4. Here, the level flag is set to 1 for positive constraint

deviations and -1 for negative deviations. Each fault symbol corresponds to a single component

in the frame ofdiscernment Thefrac variable is the fraction of the generated support attributed

to the fault-set in a single node ofa fault-set list. This variable represents the weight that the set

is given in the diagnosis of a particular violated constraint [10].

In addition to the above data and the standard C++ functions to implement linked lists (see

§ 6.2.1 above), the fault_set_node class also contains several methods used to manipulate fault-

sets for diagnosis. The three most important functions associated with the fault_set_node class
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"evi_name" field gas_flow_l

"level" field 1

"fault_cnt" field 2

"symbols" field AB

"bits" field 00011

"frac" field 0.8

1—> gas_flow_l

1

1

C

00100

0.2

1—) gas_flow_l

-1

1

D

00010

1.0

null

Figure 6.4 - The linked list structure which implements fault-sets.
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are the public functions "imtiahze_fault_sets", "make__fault_setH and "make_bpmd". The

"initialize_fault_sets" function creates a global fault-set which contains every fault combination

in the frame of discernment From this overall fault list, "make_fault_set" constructs a subset of

this list for a particular piece of evidence. This evidence originates from the maintenance, on-line

and in-line evidence lists (refer to § 6.2.2). Finally, "make_bpmd" creates the BPMD which

corresponds to a fault-set for a given direction of constraint violation, numerical support and

uncertainty value. For further information regarding the methods attached to the

fault_set_node_class, see Appendices 6.1c and 6.2.

6.4 Diagnostic Algorithms and Information Flow

The BPM, evidence, and fault-set linked lists are the basic data structures that are manipu

lated during the execution of the diagnostic software. This section provides an overview of the

mannerin which program execution takes place. Figure 6.5 shows the global flow of information

within the diagnostic system. In this figure, rectangular boxes symbolize equipment, cylinders

indicate data or databases, and circles represent software. The direction of arrowheadsis indica

tive of the directionof information flow. The primary body of code is divided into three modules

which reflect the three stages of diagnosis. MAINT performs maintenance diagnosis. ONLINE

implements both maintenance and on-line diagnosis. INLINE initiates all three diagnostic

phases. The algorithms used to implement these three modules are described below. Execution

of the entire diagnostic package requires: the etch recipe, the real-time etch data and the in-line

measurements. The system produces two forms of output: a text file containing a ranked list of

equipment malfunctions or plots of the Dempster-Shafer belief accumulated by each component

fault versus time.

Although it has only been applied to a plasma etcher in this dissertation, most of the struc

ture of the diagnostic system is generic and may accomodate other semiconductor manufacturing
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Figure6.5 - Information flow withinthe diagnostic system.

processes. The only portions of the code which must be significantly modified for new equip

ment applications are the knowledge base and the equipment model library. As part of the

overall BCAM architecture (see Chapter 1), the system also works closely with several other

CAM functions, including the statistical process control module, which generates alarms and ini

tiates diagnosis. Inaddition, as has been previously mentioned, thesystem interacts with both the

equipment monitoring andmodeling functions.

6.4.1 Maintenance Diagnosis

The maintenance diagnosis module (MAINT) begins execution by creating an overall

BPMD and storing it in a"record-oriented" input/output file [2]. This BPMDis used for fast tem-
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porary storage of BPMDs as they are combined throughout the maintenance diagnostic process.

The file is initialized by setting each fault's supportto zero and plausibility to one, signifying mat

no diagnostic information is available at this point Next, both the maintenance evidence list and

the global fault-set are initialized as described in § 6.2.2 and 6.2.3 above.

Following these initialization procedures, MAENT loops througheach piece of evidence in

the maintenance evidence list, continuously updating and storing the overall BPMD each case.

Belief for faults in the maintenance phase of diagnosis is obtained by comparing the mean-time-

to-failure of each equipment component to the elapsed time since its last failure (see § 5.3.2).

This component failure informationis read from a file which is generated by FAULTS, the com

puterizedequipment maintenancerecord-keeping system [11].

After all components in the maintenance evidence list have been processed, a text file is

created which contains the ranked list of all equipment faults resulting from maintenance diag

nosis. This file contains the name of each component along withits final support and plausibility

values (see Figure 6.9 below). However, faults are ranked according to their support value only.

Updating the fault ranking fileconcludes the maintenance phase.

6.4.2 On-line Diagnosis

Unlike the maintenance module, the on-line diagnosis module (ONLINE) requires two

forms of user input to initiate execution: the name of a file which contains the etch recipe and a

second file that contains the real-time sensor readings of etcher operating conditions from the

equipment monitoring system. This data is transmitted over the local area network via the

SECS-n protocol by a program called LAMTALK [9]. The recipe file is obtained from the

BCAM recipe database [12]. The format of this file is illustrated by Figure 6.6.

148



Pressure

RFPower

CClAFlow

He Flow

02Flaw

Gap

Figure 6.6 - Format of recipe file.

The initialization portion of ONLINE is similar to themaintenance module, except that this

module defines an additional record-oriented BPMD file to serve astemporary storage foron-line

BPMDs as well as an on-line evidence list. After initialization, maintenance diagnosis takes

place as described in the previous section. Next, the sensor data file is read and the standard devi

ations of the sensor readings are obtained by the "get_online_spc_infoM function described in §

6.2.2 above.

ONLINE performs diagnosis by continuously updating the on-line BPMD through the

examination of all sources of evidence in the on-line evidence list For each piece of evidence in

this list, fault belief is generated for each of the eleven sensor readings (refer to § 4.2). These

readings are available in sets that are taken at a particular instant in time. Each set is called a

"sample". Usually, LAMTALK monitors and stores onesample persecond.

Evidential support is generated using the CUSUM [13] scheme described in § 5.3.3. After

the cumulative sums are calculated and belief is generated, BPMDs are combined for each set of

concurrent readings. The overall BPMD from each set is stored in individual files which

correspond to component faults. The format of these files is compatible with XGRAPH [14],

which is used to produce support versus time plots for each individual fault (refer to Figure 6.9
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below). The first data point in each of these plots corresponds to the support calculated during

maintenance diagnosis. All support versus time data is stored in a separate "belief directory. In

additionto these graphs, ONLINE alsoupdatesthe maintenance fault ranking.

6.43 In-line Diagnosis

The module which implements in-line diagnosis (INLINE) uses the sameinput asONLINE.

However, aside from the etch recipe and sensor data, INLINE also requires the name of the file

that contains a summary of the in-line measurements fora particular lot of wafers. The format of

this file appears in Figure 6.7. During initialization, INLINE defines another record-oriented

BPMD file as well as an in-line evidence list in addition to those files and evidence lists created

in ONLINE. Afterwards, maintenance andon-linediagnosis are performed asdescribed above.

In-line diagnosis is subsequently executed by looping through all sources of in-line evi

dence and continuously updating the in-line BPMD. INLINEuses the etch recipe and the BCAM

equipment model library (see Appendix 4.2) to compare model predictions to the measurements

in the in-line measurement file. This module interfaces withthe BLSS [15] statistical package to

generate evidential plausibility using the "reverse" regression approach of [16], which is

explained in § 5.3.4.

Mean Etch rate

MeanNonuniformity

Mean Oxide Selectivity

Mean Resist Selectivity

Figure 6.7 - Format of in-line measurement file.
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The BPMDs which result from analyzing in-line evidence are appended to the XGRAPH

files described in the previous section. Like ONLINE, INLINE also updates the maintenance

ranking. Thus, upon the conclusion of in-line diagnosis, complete support versus time plots are

available for all three diagnostic phases (see Figure 6.9). In each plot, the first data point

corresponds to support derived during maintenance diagnosis andthe last four points areobtained

from performing in-line diagnosis for each of the four in-line measurements. All intermediate

points result from the on-line phase.

6.5 Diagnosis User Interface

The executable files for maintenance, on-line and in-line diagnosis described above allow

the execution of each phase independently. Specific instructions onhowto do sodirectly are pro

vided in Appendix 6.3. However, diagnosis may also be initiated through themore user-friendly

BCAM interface [12]. This interface uses the X Toolkit [17] to call BCAMthevarious applica

tions from an X Window environment [14].

Figure 6.8 shows the windows associated with each step in running the diagnostic software.

Window (1) is the BCAM main menu. After the user enters his/her account name, the desired

BCAM module may be selected with a mouse click. When diagnosis is selected, the dialogue

boxes in window (2) prompt the user to select a particular piece of equipment to diagnose. The

choice of "LAMl" causes the appearance of window (3), which allows the user to select the

appropriate recipe file from the recipe editor shown inwindow (4). Next, window (5) permits the

selection of either maintenance, on-line, or in-line diagnosis. Execution of on-line diagnosis

requires the selection of the file containing the appropriate sensor data from window (6). Finally,

initiating in-line diagnosis necessitates the choice of the appropriate in-line measurement file in

window (7).
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The output interface of the diagnosis module is illustrated in Figure 6.9. Window (1) ofthis

figure shows the fault ranking file which results from maintenance diagnosis. If on-line or in-line

diagnosis has been executed, the user may select a particular component from the menu in win

dow (2) to produce support versus time graphs. Examples of such plots appear in windows (3)

and (4).

6.6 Summary

The chapter has provided an overview of the software which implements the methodology

for equipment malfunction diagnosis described in previous chapters. The diagnostic systemhas

been programmed in anobject-oriented fashion usingthe C++ language. It resides on a Sun-class

UNIX workstation which may be linked directly to manufacturing equipment The diagnostic

system is one moduleof the overall BCAM architecture. As such,this system workscloselywith

several other applications, including statistical process control, real-time monitoring, and equip

ment modeling.
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APPENDIX 6.1a

CLASS DECLARATION AND ASSOCIATED METHODS

FOR BPMD OBJECTS

I*

Diagnosis module of BCAM

Copyright (c) 1990 Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear
in all copies and that both that copyright notice and this permission notice appearin sup
porting documentation, and that the name of the University of California not be used in
advertising or publicity pertaining to distribution of the software without specific, written
prior permission. The University of California makes no representations about the suitabil
ity of this software for any puipose. It is provided "as is" without express or implied war
ranty.

Author: gsm
Source:/home/radon l/bcam/src /diagnosis /lam
Revision: 1.0

Date: 90/05/24 11:58:37

FileName: bpmd.h

*/

//
// Class declarations for bpmd nodes (nodes of linked lists).
//

// Bpm.node class. Each node containsthe following data:
// 1) "bits" - its fault bit sequence.
// 2) "belief* - evidential support value.
// 3) "plaus" - evidential plausibility value.
// 4) "theta" - a flag to indicate whether or not the node is theta.
//

// In addition, each node containspointers to the headof the list, the
// current node and next node in the list
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class bpm.node {
public:

bpm_node *head;
bpm_node *next;
bpm_node *cur,
long bits;
float belief,

float plaus;
short theta;

bpm_node(void) { //constructor
head = 0;
theta = 1;

}
~bpm_node(void); // destructor
void reset_iter(void) {

cur = head; // reset the iterator

}
bpmjnode *iter(void); // iterator function
void appendQongb, floatbel, short thet, float pls=0);
void modify_bit.value(void);
int my_length(void);
float my_nth(int pos);
void my_subst(int pos, float val);
void normalize(float factor);
friend bpm_node arb_bpmd_comb(bpm_node &bl, bpm_node &b2);
friend bpm_node beLpls_encript(int lngth, bpm_node &b);
friend int bit_vec_equalGongstream,bpm_node *b);
friend bpm_node *my_bit_and(bpm_node *nl, bpm_node *n2);

};
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APPENDIX 6.1b

CLASS DECLARATION AND ASSOCIATED METHODS

FOR EVIDENCE OBJECTS

/*

Diagnosis module of BCAM

Copyright (c) 1990 Regents of the University of California

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear
in all copies and that both that copyright notice and this permission notice appear in sup- ~
porting documentation, and that the name of the University of California not be used in
advertising or publicity pertaining to distribution of the software without specific, written
prior permission. The University of California makes no representations about the suitabil
ity of this software for any purpose. It is provided "as is" without express or implied war
ranty.

Author: gsm
Source: /home/radon Vbcam Isrc /diagnosis llam
Revision: 1.0

Date: 90/06/12 09:54:43

FileName: evidence.h

*/

//
// Class declarations for evidence and its subclasses.

//

// Evidence_node class (foundation of all evidence). Each node contains the
// following data:
// 1) "name" - name ofthis piece ofevidence.
// 2) "uncertainty" - the uncertainty in this evidence.
// 3) "bel_g" - the belief function parameter.
// 4) "equip" - the equipment name.
// 5) "setpt" - the recipe setpointofthis evidence (if applicable).
// 6) "tol" - 3-sigma toleranceofthis evidence (if applicable).
//
// In addition, each node contains pointers to the head ofthe list, the
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// current node, and the next node in the list

class evidencejnode {
public:

evidence_node *head;
evidencejnode *next;
evidence_node *cur,
char *name;

float uncertainty;
float bel_g;
char *equip;
float setpu
float tol;

evidence_node (void) { // constructor
head = 0;

}
~evidence_node(void); // destructor
void reset_iter(void) {

cur = head; // reset the iterator

}
evidence_node *iter(void); // iterator
void append(char *na, float u, float g, char *eq);
void get_online_spc_info(char *recipefile);
friend evidence_node initialize_maintenace_evidence(void);
friend evidence_node initialize_online_evidence(void);
friend evidence__node initialize_inline_evidence(void);
friend float inline_belgen(char *ename,float u.char *rfile,char *mfile);

};

160



APPENDK 6.1c

CLASS DECLARATION AND ASSOCIATED METHODS

FOR FAULT-SET OBJECTS

/*

Diagnosis module of BCAM

Copyright (c) 1990Regentsof the University of California

Permission touse, copy, modify, and distribute this software and itsdocumentation for any
purpose and without fee is hereby granted, provided that the above copyright notice appear
in all copies and that both that copyright notice and this permission notice appear in sup
porting documentation, and that the name of the University of California not be used in
advertising or publicity pertaining to distribution of the software without specific, written
prior permission. The University of California makes no representations about the suitabil
ity of this software for any puipose. It is provided "as is" without express orimplied war
ranty.

Author: gsm
Source:/home/radonVbcamIsrc/diagnosis llam
Revision: 1.0

Dare: 90/06/12 09:54:43

FileName: fault_set.h

*/

II

II Class declarations for symbolic fault setnodes (nodes of linked lists).
// Each fault set is associated with one piece of evidence.
//

// Fault_set_node class. Each node contains the following data:
// 1) "evi_name" - evidence name associated with this fault set
// 2) "level" - a short integer flag whichindicates whether constraint
// violation is positive ornegative (+/-1).
// 3) "fault_cnt" - the number of faults in the fault set
// 4) "symbols" - symbolic list of faults (such as *ABD' or 'ADE').
// 5)"bits" - thebits corresponding tothe above symbols
// 6) "frac" - the weighted belief fraction of the set.
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//
// In addition, each node contains pointers to the head oflist, the current
// node, and the next node in the list

class fault_set_node {
public:

fault_set_node *head;
fault_set_node *next;

fault_set_node *cur,
char *evi__name;
short level;
int fault_cnt;
char *symbols;
long bits;
float frac;
fault_set_node(void) {

head = 0;

}
~fault_set_node(void);
void reset_iter(void) {

cur = head;

}
fault_set_node *iter(void); // iterator
void append(char *evi, short lev, int fc, char*sym, float fr);
void clear_fault_bits(void);
int count_faults(void);
void get_fault_bits(void);
friend int char_to_int(char c);
friend fault_set_node initialize_fault_sets(void);
friend bpm_node make_bpmd(fault_set._node &fs, short lev, float bel,

float u, int fits);
friend fault_set_node make_fault_set(char *ev, fault_set_node &ofs);

};

// how many faults in this node?
// fault symbols

//constructor

//destructor

// reset the iterator
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APPENDIX 6.2

DIAGNOSTIC SOFTWARE OVERVIEW

This appendix provides a summary of the organization of all software modules and output

files used to implement equipment malfunction diagnosis. The module names, contents, and gen

eral functionality are described. The system is comprised of approxiamtely 3,200 lines of C++

code. This code resides on the SUN 4 machine 'radon.berkeley.edu' in the

~bcam/src/diagnosis/lam directory.
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File Name Contents Function Name(s) Purpose

belief Output directory for
belief vs time data

none not applicable

bpmd.cc Member functions for

bpm_node class
"bpmjtode Deletes an entire linked list of bpm_nodes

iter Iterates through a list ofbpm_nodes

append Appends one bpm_node to the end of a list

modifyJ)it_value Ensures that the last bpm_node in a
list is a 'theta* node

myjength Returns the number ofbpm_nodes in a list

myjith Returns the support slot for a given node
in a list ofbpm_nodes

my_subst Substitutes a support value into a given
position in a list of bpm_nodes

normalize Performs BPMD normalization on a

bpm.node list

Friend functions for

bpm_node class
arbJ>pmd_comb Performs arbitrary BPMD combination

on two lists of bpm_nodes

bel_pls_encript Calculates final evidential intervals

for a given bpm.node list

bit_yec_equal Returns the position ofa given bit pattern
in a bpm_node list

my_bitjmd Performs the logical 'and' of the bit patterns
of two different bpm_nodes

bpmd.h Class definition for

bpmjnode class
none not applicable

const.h Symbolic constants for
diagnosis software

none not applicable
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File Name Contents Function Name(s) Purpose

evidence.cc Member functions for

evidence_node class
~evidence_node Deletes an entire linked list of

evidence_nodes

iter Iterates through a list of
evidence.nodes

append Appends one evidence_node to
the end ofa list

get_pnUne_spcJnfo Retrieves values for setpt and
tol slots ofon-line evidence list

Friend functions for

evidence.node class
initialize_maintenance_evidence Initializes the maintenance

evidence list

initialize_on\ine_evidence Initializes the on-line

evidence list

initializeJnline_evidence Initializes the in-line

evidence list

evidence.h Class definition for

evidence.node class
none not applicable

faultset.cc Member functions for

fault_set_node class
Jaultjetjiode Deletes an entire linked list of

fault_set_nodes

iter Iterates through a list of
fault_set_nodes

append Appends one fault_set_node to
the end of a list

clearJault_bits Clears the bits in every node
of a fault-set list

countJaults Counts the total number of fault
symbols in a fault-set list

getjdultjbits Converts a symbolic fault list to
its integer representation
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File Name Contents Function Name(s) Purpose

Friend functions for

fault_set_node class
charjojnt Returns the integer representation

of a given ascii character

initializeJault_sets Initializes the global fault-set list

makejbpmd Returns BPMD for given fault-set
list support and direction of
constraint violation

make_fault_set Returns the fault-set list for a

given piece ofevidence

fault_set.h Class definition for

fault_set_node class
none not applicable

fau!ts.info Component failure info
for maintenance diagnosis

none not applicable

file_io.cc Member functions for

recfile class

recfile Creates a record file

open Opens a recfile using the standard
C I/O function fopenO

close Closes a recfile using the standard
C I/O function fcloseO

seek Moves the recfile pointer to a
given record

rw Reads/writes records in/out ofa
buffer at given starting record

errjiandler Recfile errorhandling function

Member functions for

bpm_rec class
display Displays a bpmjrec file

Friend functions for

bpm_rec class
translateJamlJit Translates fault symbols to

corresponding laml names
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File Name Contents Function Name(s) Purpose

fileich Class definitions for

recfile bpm.rec classes
none not applicable

inline.cc Main program to execute all
3 phasesof laml diagnosis

none not applicable

inline.rank Fault ranking from
in-line diagnosis

none not applicable

inline_belief.ee Functions necessary for
in-line diagnosis

inline_belgen Generates in-line support
using reverse regression

inline_bpmd.fi! Record-oriented BPMD file

for in-line diagnosis
none not applicable

mainbpmd.fil Record-oriented BPMD file

for maintenance diagnosis
none not applicable

maintenance.ee Main program to execute
laml maintenance diagnosis

none not applicable

maintenance.rank Fault ranking from
maintenance diagnosis

none not applicable

misc_diag.ee Miscellaneous functions
used for diagnosis

beljgen

bitsjojehar

cusumjdgh

Generates belief from
'squashing' function

Converts sequence of bits
to an ascii character

Calculates cusum positive
deviationsusing tabular
V-mask
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File Name

online.cc

online.data

online.rank

onUne_bpmd.fi!

Contents

Program to execute
on-line diagnosis

Formatted file containing
on-line sensor data

Fault ranking from
on-line diagnosis

Record-oriented BPMD file
for on-line diagnosis

Function Name(s)

cusumjow

getjaultjntf

getjaultjsf

makejcgraphJUes

read_bpmdjile

storeJ>pmdjde

storejbelief

transferjraw_data

none

none

none

none

Purpose

Calculates cusum negative
deviations using tabular
V-mask

Retrieves mtf

from 'faults.info*

Retrieves tsf

from 'faultsinfo'

Stores XGRAPH datasets
from maintenance ranking in
'belief directory

Reads support from
record-oriented BPMD files
into bpm_node lists

Stores a bpm_node list into a
record-oriented BPMD file

Stores belief from each node of
bpmjnode list into appropriate
file in 'belief directory

Reads raw sensor data,
transfers it to format for
on-line diagnosis

not applicable

not applicable

not applicable

not applicable
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APPENDK 6.3

MANUAL PAGES FOR DIAGNOSIS SOFTWARE

This appendix provides the UNIX manual pages for the BCAM equipment malfunction

diagnosis software. The commands described apply to the Lam Research Autoetch 490 plasma

etcher in the Berkeley Microfabrication Laboratory. Commands are executable from the

"bcam/src/diagnosis/lam directory on radon.berkeley.edu.
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DIAGNOSIS COMMANDS

INLINE(1) INLINE(1)

NAME

inline - perform the maintenance, on-line and in-line phases ofdiagnosis on the Lam etcher

SYNOPSIS

inline <recipe> <data> <measurements>

DESCRIPTION

Inline performs malfunction diagnosis on the etcher after processing. In addition to run
ning maint(l) and online(l), inline also performs in-line diagnosis using a summary of in
line etch measurements.

Recipe is the file which contains the etch recipe settings. Data is a file containing the real
time data produced by the LAMTALK equipment monitoring program. The measurements
file contains a summary of the in-line etch measurements.

Inline produces an output file called 'inline.rank'. This file contains the componentname,
support and plausibility for each etcher fault, hi addition, inline creates xgraph(l) datasets
which contain diagnostic support versus time data. These datasets are stored accordingto
component name in the "bcam/src/diagnosis/lam/beliefdirectory.

SEE ALSO

maint(l), online(l), xgraph(l)

AUTHOR

Gary S. May, University of California at Berkeley

Last change: May, 1991
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DIAGNOSIS COMMANDS

MAINT(1) MAINT(1)

NAME

maint - perform the maintenance phase ofdiagnosis on the Lam etcher

SYNOPSIS

maint

DESCRIPTION

Maint perfoims malfunction diagnosis on theetcherbefore processing. It reads component
mean-time-to-failure and elapsed time since last failure data from a file called 'faults.info*.
This file is generated and updated by running pareto(l) from ~gsm on argon.berkeley.edu.
It must then be copied to "bcam/src/diagnosis/lam/faults.info on radoaberkeley.edu.

Maint produces an output file called 'maintenance.rank'. This file contains the component
name, support and plausibility for each etcher fault

SEE ALSO

pareto(l)

AUTHOR

Gary S. May, University of California at Berkeley

Last change: May, 1991
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DIAGNOSIS COMMANDS

ONLINEO) ONLINE(l)

NAME

online - perform the maintenance and on-line phases of diagnosis on the Lam etcher

SYNOPSIS

inline <recipe> <data>

DESCRIPTION

Online performs malfunction diagnosis on the etcherafter processing. In addition to run
ning maint(l), inline alsoperforms on-line diagnosis usingreal-time sensordata.

Recipe is the file which contains the etch recipe settings. Data is a file containing the real
time dataproduced by the LAMTALK equipment monitoring program.

Online produces anoutput file called 'online.rank'. This file contains thecomponent name,
support andplausibility for eachetcher fault In addition, onlinecreates xgraph(l) datasets
which contain diagnostic support versus time data. These datasets are stored according to
componentname in the "bcam/src/diagnosisAam/beliefdirectory.

SEE ALSO

maint(l), xgraph(l)

AUTHOR

Gary S. May, University of California at Berkeley

Last change: May, 1991
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DIAGNOSIS COMMANDS

PARETO(l) PARETO(l)

NAME

pareto - retrieve etcher component failure information from FAULTS

SYNOPSIS

pareto > faults.info

DESCRIPTION

Pareto retrieves etcher component mean-time-to-failure (mtf) and elapsed time since last
failure (tsf) data from the FAULTS database. It directs the output into a file called
'faults.info*. This file contains each component's name, mtf and tsf. This information is
necessary for maintenance diagnosis.

Pareto is executed from "gsm on argon.berkeley.edu. The 'faults.info' file should be
copied to "Tx:am/src/diagnosis/lam/faults.info on radon.berkeley.edu.

SEE ALSO

maint(l)

AUTHORS

David Mudie and Gary S. May, Universityof California at Berkeley

Last change: May, 1991
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CHAPTER 7

SYSTEM VERIFICATION AND CONCLUSIONS

7.1 Introduction

This chapter illustrates the use of the equipmentdiagnostic system for two typical malfunc

tions which occur in the operation of the Lam Research Autoetch 490 automated plasma etcher.

Following a discussion of the diagnosis of these faults, a summary of the major results of this

research and some suggestions for future work are presented.

7.2 Diagnostic Examples

Two typical diagnostic scenarios are discussed below. For each of these, the polysilicon

etch rate, uniformity, and oxide and resist selectivity are monitoredby standard Shewhart control

charts with +/- 3-a control limits [1]. In these charts, the etch outputs of the first nine baseline

wafers are contrasted with 10 new wafers for which a simulated etcher malfunction has caused

the process to shift. The word "simulated" here refers to the fact no actual malfunctions existed;

the wafers were merely etched under conditions which would occur in the event of such a mal

function. The charts illustrate that even when process shifts do occur, they are not always easily

discernible to an operator examining a controlchart.

The nine baseline measurements come from wafers etched by the center point recipe of the

modeling experiment described in Chapter4. The process settings of this recipe are: pressure=

250 mtorr, RF power = 350 watts, CCl4 flow = 125 seem, He flow = 125 seem, 02 flow = 15

seem, and electrode spacing = 1.5 cm. The shifts have been induced artificially by etching at

slightly different recipes. The shifts were introduced by varying one of the controllable etch

parameters from the center point recipe. These modifications simulate the behavior of the etcher

under the conditions of the malfunction.
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7.2.1 Miscalibrated Mass Flow Controller

One of the most common equipment malfunctions that occurs on the etcher is the miscali

bration of a mass flow controller (MFQ [2]. When an MFCbecomes miscalibrated, the flow of

gas into the etcher's process chamber may beless than what is expected. This diagnostic scenario

is illustrated in Figures 7.1 and 12.

Figure 7.1 shows the oxide selectivity control chart for 19 wafers. The first nine wafers

were etched with the centerpoint recipe, and the average selectivity for these wafers is 7.1. The

3-o control limits of the control chart in the figure are estimated from the baseline wafers. For

the next 10 wafers, a miscalibrated MFC is simulated by etching at a reduced CCl4 flow (115

seem). This results in a mean selectivity ofonly 5.5. This reduction in oxide selectivity due to

lower CCl4 flow is in agreement with trends predicted by the oxide selectivity model in § 4.4.3.

The average etch rate (RP), uniformity (U), oxide selectivity (S^) and resist selectivity (Sph) for

nominal and malfunctioning etcher operation are summarized in Table 7.1.

Table 7.1 - Summary ofEtch Outputs for Miscalibrated MFC Example

Response Nominal Operation Malfunctioning Operation
RP 4494A/min 4275 A/min
U 8.9% 8.6%

Sax 7.1 5.5

$Dh 2.5 2.6

Figure 7.2 shows the evidential support versus time plot during the processing ofone wafer

with amiscalibrated MFC. Here, the maintenance phase of diagnosis shows some indication of a

fault. However, since gas flow sensors are directly connected to the circuitry which controls the

MFC [3], amiscalibrated MFC is not detectable by these sensors. Therefore, on-line diagnosis

cannot reveal this problem. Nevertheless, during in-line diagnosis, the system computes

significant likelihood for a miscalibrated MFC fault
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Recall from the Fault Propagation diagrams in Appendix 3.2 that an MFC miscalibration is

occasionally the result of a malfunctioning microprocessor. The microprocessor is a part of the

etcher's interface electronics system. Consequently, in Figure 7.2, the support for the MFC fault

is contrasted with that of a fault in the interface electronics. However, in this case, a fault in the

electronics system is not discernible.

7.2.2 Phase/Magnitude Detector Problem

Another fault which may occur in the plasma etcher involves the phase/magnitude detector

system which matches the chamber impedance to the RF generator output This matching is

necessaryto achieve maximum power transfer[3]. Occasionally, however, the timing mechanism

in the phase/magnitude detector malfunctions and causes a power loss [4]. This loss of powercan

significantly reduceetch rate. This situationis depictedin Figures 7.3 and7.4.

The first nine wafers in Figure 7.3 are etched with the samecenter point recipe asin the pre

vious example. For these, the average etch rate is once again 4494 A /mia Once again, the con

trol limits of the control chart areestimated from the baseline wafers. For the next 10 wafers, the

phase/magnitude detector problem is simulated by reducing the forward RF power to 340 watts,

which results inadecrease inmean etch rate to 4027 A /mia This reduction is also inagreement

with the model in § 4.4.1. The remaining etchoutputs for this example are summarized in Table

7.2.

Table73, - Summary of Etch Outputs forPhase/Magnitude Detector Example

Response Nominal Operation Malfunctioning Operation
RP 4494A/min 4027 A /min
U 8.9% 4.4%

Sax 7.1 5.3

$Dk 2.5 2.6
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Figure 7.4 shows the support versus time plot from amisprocessed wafer under these condi

tions. Since the phase/magnitude detector fails very infrequently [2], the maintenance phase of

diagnosis shows negligible indication of a fault During on-line diagnosis, however, the support

for this fault increases dramatically as the wafer is processed, and the system correctly identifies

the phase/magnitude detector as a probable malfunction. This diagnosis is even further corro

borated by the in-line phase.

The evidential support for the phaseAnagnitude detector problem maybe compared to that

of the RF calibration fault which is also depicted in Figure 7.4. Although a miscalibrated RF

power system is also apossible fault when power-related malfunctions are observed (see Appen

dix 3.2), thisgraph shows that such miscalibration is unlikely in thiscase.

73 Conclusions

This dissertation has presented ageneral methodology for the automated malfunction diag

nosis of semiconductor manufacturing equipment The approach utilized combines the best

aspects of algorithmic and knowledge-based methods. By employing Dempster-Shafer evidential

reasoning [5] to infer the causes of failures, and by using evidence generated before, during and

after equipment operation, malfunctions may be identified before significant misprocessing has

occurred.

The development of this diagnostic system required athorough understanding ofequipment

operation under optimal conditions as well as cognizance of the effect of individual malfunctions

on nominal operation. Consequently, aqualitative model ofboth the interaction between equip

ment components and the propagation of equipment faults through the system has been

developed for the piece of equipment which served as the application vehicle for the diagnosis

prototype: the Lam Research Autoetch490 plasma etcher[3].
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In addition, the use of the Dempster-Shafer methodology necessitated comprehensive

experimentation to obtainempirical models for the behavior of the Lam etcher. Thus, a series of

experiments have been conductedto characterize the etch rate, uniformity, selectivity, and aniso

tropy of a polysilicon etch process using response surface models. These models have been

shown to describe the critical etch outputs very precisely [6]. Moreover, the models provide

quick analytical solutions which areessential for diagnosis.

Techniques were also developed to derive important diagnostic information from all three

primary sources of evidence: equipment maintenance history, real-time sensor data, and the

empirical equipment models. Each source of evidence corresponds to one phase of diagnosis,

and each diagnostic phase is accompanied by a unique method of evidential support generation.

For the maintenance phase, support is generated by comparing the elapsed time since a com

ponent has failed to that component's mean-time-to-failure. Both of these quantities areobtained

from an equipment database [7]. Duringon-line diagnosis, support is derived by monitoring sen

sor data [8] and filtering correlation effects using the cumulative sum of measurement residuals

[1]. Finally, for in-line diagnosis, an innovative technique has been developed to obtain eviden

tial plausibility for equipment failures from the empirical models of equipment behavior [9]. In

so doing, the this technique provides an important link between statistical modeling and

knowledge-based diagnostic systems.

However, the Dempster-Shafer approach to diagnosis is not totally without limitations.

Like many Bayesian schemes designed for large systems [10-11], Dempster-Shafer theory

assumes independence of evidencesources. This is probably erroneous in integrated circuitfabri

cation equipment since sensor data is often correlated in time [12]. Although the effect of the

independence assumption can be somewhat lessened by applying the Dempster-Shafer model to

multiple fault groups in the manner described in § 2.5, accurate diagnosis with this technique

requires an exhaustive mapping of evidence sources to particular faults or fault groups. Such a
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mapping is noteasily derived for complex systems.

The diagnostic methodology described in this thesis serves as one module of the Berkeley

Computer-Aided Manufacturing (BCAM) architecture. Among the other capabilities of the

BCAM system are: statistical process control (SPQ, recipe generation, real-time equipment

monitoring, modeling and simulation of equipment and processes, and automated maintenance

record-keeping. Inthis framework, the diagnostic module plays aunique role in linking the vari

ous other applications.

Diagnosis is initiated when alarms are generated by SPC monitoring schemes. Also, in

order for real-time diagnosis to take place, the linkbetween the diagnostic module and the equip

ment monitoring software is critical. Furthermore, the maintenance phase of diagnosis depends

heavily upon information obtained from the automated record-keeping system [7]. Finally, the

empirical models of equipment behavior necessary for in-line diagnosis are equally useful for

recipe generation [13] and manufacturing-based technology CAD simulation [14].

7.4 Future Work

7.4.1 Short Term

Intheshort term, onlyone task isof primary importance for plasma etch diagnosis. A more

direct link betweenthe monitoring software and the diagnostic modulemust be established. Such

alinkwould allow the real-time analysis of sensor data during on-line diagnosis. At present, on

line diagnosis is performed by reading files containing recently transmitted sensor data (see §

6.3.2). Since executing the ONLINE program ona Sun 4 computer currently takes less than 30

seconds to process data collected during a60 second process run, it is not unreasonable to assume

that once such adirect link isestablished, real-time etch diagnosis may take place.

Moreover, aside from enabling real-time diagnosis, the link to the monitoring software
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would permit the continuousupdating of the standard deviations of all sensorinputs. These stan

dard deviations are necessary for the implementation of the CUSUM support generation scheme

described in § 5.3.3. Currently, these deviations are "hard-wired" into the Mget_online_spc_infoN

function (refer to § 62.2).

7.4.2 Long Term

One way to lessen the impact of the limitations of the Dempster-Shafer approach outlined

above involves optimizing the values of the various adjustable parameters used to generate and

distribute numerical fault belief. These parameters include system uncertainty, the "sharpness"

factor of equation (5.1), and the weighting system used to assign portions of fault beliefto indivi

dual faults or fault groups (see § 5.4 and 6.2.3). Such an optimization requires extensive use of

experimentation and simulation of known malfunctions in a manner similar to the examples

presented in this chapter. The result of this effort would provide greater assurance that the diag

nostic system is sufficiently robust to arrive at accurate conclusions over awide range of failure

scenarios.

The overall accuracy of the diagnostic system would also be greatly enhanced through the

use of additional real-time sensors. The plasma etcher to which the system has been applied in

this dissertation has alimited number sensors which provide useful data (see §4.2). The lack of

availability of sufficient sensors is asignificant hindrance to evidence gathering. Improvement of

sensor capabilities for the plasma etcher remains a critical topic of ongoing research for both

universities and equipment manufacturers, and the application ofthis diagnostic methodology to

an etcher with more abundant and more advanced sensors (such as the Lam Rainbow etcher [12])

would provide abetter measure of the potential usefulness of the system.

Finally, although the techniques developed inthis thesis have thus far been applied to fault

identification in asingle-wafer plasma etching system, the overall diagnostic approach is general
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enough to be useful in other equipment applications. Inorder to alleviate someof the difficulties

discussed above, further research should be initiated with the goal of applying this methodology

to other fabrication processes. A few potential candidates include ionimplantation and molecular

beam epitaxy (MBE). Moreover, through the use offunctional decomposition techniques [15],

this diagnostic approach might also be usefulin the development of state-of-the-art "cluster tools"

and othermulti-chamber, single-vacuum apparatus.
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