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Abstract

Chua and Yang have proposed an analog VLSI circuit architecture for image pro
cessing they have dubbed Cellular Neural Networks (CNNs). To date most of the
proposed applications for CNNs have been for processing of binary (black or white)
images. We present here a new edge detection algorithm for gray scale images which is
extremely wellsuited for VLSIimplementation under the recently proposed framework
of Generalized CNNs. Although several authors have alreadyproposed various analog
circuit networks for edge detection, the VLSI implementation of the algorithm pre
sented here overcomes some of the major shortcomings ofpreviously proposed analog
circuit networks for edge detection, while maintaining many of their advantages.

1 Introduction

Edge detection is one of the primary problems in research into early visual processing. It
is an important preprocessing step for many computer vision algorithms. The location of

intensity discontinuities is one oftheprimary components ofthe raw primal sketch proposed
byMarr[19]. Marrasserts that the importance of the rawprimal sketch "is that it is the first

representation derived from an image whose primitives have a high probability of refiecting
physical reality directly." Canny[5] states that "The edge detection process serves tosimplify
the analysis of images by drastically reducing theamount ofdatatobeprocessed, while at the
same time preserving useful structural information about object boimdaries." For example,
the stereo depth detection algorithm of Grimson utilizes edges detected in a preprocessing

*This research is supported in part by a National Science Foundation Graduate Research Fellowship and
by the Office of Naval Research under Grant N00014-89-J1402.

iThe authors are with the Electronics Research Laboratory of the University of California at Berkeley.



stage[10]. Ullman's approach to the interpretation of visual motion begins with establishing
the correspondence between low level correspondence tokens such as edges[30]. Indeed, the

applications for edge detection are quite diverse [13, 1, 4].

Recently, researchers have been paying increased attention to the possibility of using
analog circuit arrays to perform early vision processing[17, 21, 22]. This has lead to the in

troduction of several analog circuit networks for edge detection. Poggio, Torre and Koch[27]
note that many earlyvision processes, including edge detection, are illposed in the sense de

fined by Hadamard. They propose to overcome this ill posedness byusing a priori knowledge
to restrict the class ofadmissible solutions. The a priori knowledge they use is essentially
an assumption on the smoothness of visual surfaces. Theyexploit variations! regularization

methods developed mainly by Tikhonov to recast early visual problems as functional mini

mizations. It turns out that the minimization required byregularization involving quadratic

functionaJs is ideally suited for implementation using analog circuit networks consisting of
voltage sources and lin^ resistors[26]. Recently, several researchers have discovered that

some algorithms for edge detection map naturally onto non-linear resistive networks. How

ever, the analog VLSI implementations of these networks suffer from several disadvantages
which we will discuss in more detail below.

In a related effort, motivated by the resurgence in interest in the potential of real time

processing using the massive parallelism ofneural networks, Chua and Yang have proposed
an analog circuit architecture called Cellular Neural Networks[7, 8] (CNNs) which has many
applications in image processing[l5]. The primary advantage of the cellular neural network

architecture is each basic processing unit, called a "cell", is restricted to interconnect only
with cells within a small neighborhood of itself. This simplifies their implementation in
analog VLSI. In fact, a chip implementing a "connected component detector" [20] has been
successfully fabricated and tested. Unfortunately, the original CNN architecture is primarily
useful for binary (black orwhite) image processing, although the half-toning CNN is anotable
exception. To overcome this difliculty, the CNN architecture has recently been generalized
while maintaining the features which make it easily implementable in VLSI.

In this paper, we present a new edge detection algorithm for gray scale images which
can be implemented in analog VLSI under the framework of Generalized Cellular Neural

Networks (GCNNs). The GCNN unplementation of this algorithm overcomes many of the



major shortconiings of previous analog VLSI architectxires for edge detection. The paper

is organized as follows. In section 2, we discuss three previously proposed analog networks

for edge detection and their advantages and disadvantages. Then in section 3 we present

the new algorithm. We defer the rigorous analysis of the algorithm to a later paper, but

highlight some of the key results pertaining to parameter choice and give examples of the

algorithm operating on real images in section 4. In section 5, we propose two possible

implementations of the algorithm in the GCNN architecture and discuss their advantages
over previous approaches. Finally, we conclude in section 6 by summarizing the results we

have presented here.

2 Previous Work

We begin bybriefly reviewing some oftheimportant issues inedge detection, before introduc
ing the three main edge detection algorithms which have been proposed for implementation
in analog VLSI. The algorithms we will discuss were developed by Perona and Malik[24],
Blake and Zisserman[3] and Nordstrom[23]. Although ICoch, MEarroqum and Yuille[lT] have
also proposed an .analog network edge detection, we have chosen not to discuss this net

work as it appears to be too complicated for effective implementation in analog VLSI. We
conclude this section by discussing the major shortcomings of the VLSI implementations of

these algorithms which our algorithm overcomes.

Up until the early 1980's almost all of the algorithms for edge detection were essentially
based upon searching for the local maxima of the first derivative or the zeros of the second

derivativeofa linearly low pass filtered version of the image, [5,9,18]. The low pass filtering is
typically accomplished by convolving the image intensitydata with a Gaussianor Gaussian

like convolution kernel. Low pass filtering serves two purposes. Because the computation
of the derivative is extremely sensitive to high frequency noise, filtering the image helps
prevent spurious responses to noise. In addition, convolving the image with convolution

kernels of varying widths gives rise to edge based representations of the image at different
levels of resolution or "scales" [19, 31]. Many researchers acknowledge the utility of multiple
representations of an image at varying resolutions. For example, Grimson's stereo depth
detection algorithm begins by establishing correspondence between edges in the image at
very coarse scales toavoid theprobl^a of "false targets" encountered at very fine resolutions.



Unfortxinately, although the linearfiltering methods are simpleand relativelyeasy to analyze,

edge detection using this approsich entails a fundamental uncertainty principlebetween the

accurate localization of an edge and the scale of the linear filter[5].

More recently, several non-linear algorithms to edgedetectionhavebeen proposed. Being

non-linear, they are not subject to the above uncertainty principle. In fact, one of the

primary advantages of these algorithms is that the edges remain well localized over varying

scale. Unfortunately, due to the complexity of these algorithms, they tend to be quite

computationally intensive on a traditional digital computer. In order to overcome this,

severalresearchers have proposed to implementsome of these algorithms using analog VLSI

resistivegrids. Perona and Malik have proposed aua. anisotropic diffusion algorithm for edge

detection and an associated analog VLSI implementation[24]. Nordstrom modifies Perona

and Malik's algorithm and derivesa biased anisotropic diffusion algorithm which can also be

implemented in analog VLSI[23]. Harris, Koch, Luo and Wyatt discuss an implementation of

the Graduated Non Convexity (GNC) algorithm of Blake and Zisserman[3] using "resistive

fuses" [11]. In fact, two dimensional resistive fuse network has already been successfully built

and tested[12]. It should be noted the GNC algorithm is actually a method of visual surface

reconstruction which automatically detects the locations ofsurface discontinuities. However,

it can be used as an edge detection algorithm by using the image intensity data as input to

the algorithnL

Perona and Malik's anisotropic diffusion algorithm is based upon therelationship between

convolution with a Gaussian and the solution of the diffusion equation[14]. Finding the
solution at time t of the diffusion equation with a constant coefficient of diffusion and initial

distribution equal to the image intensity is equivalent to convolving the image intensity with
a Gaussian distribution ofvariance proportional to l/t. Perona and Malik essentially allow
for a spatially varying diffusion coefficient and develop an algorithm which filters the image
using a non-linear diffusion process they call anisotropic diffusion. They show that this

process has the desirable property that edges are enhanced and show by example that the
edges detected by thresholding the gradient of the filtered image are thin and remain well

localized at all scales.

The algorithms of Blake and Zisserman and Nordstrom have their roots in the Ter-

zopoulos' regularization approach to surface reconstruction with discontinuities. Terzopou-



los approaches the problem of reconstructing a surface from noisy or sparse data by finding
functions vand cdefined on the image plane which minimize a cost function of the following
form:

:F{v,c) = V{v) + S{v,c)-\-V(c)

In theabove equation, v is thereconstructed surface and c isa "continuity control function"
which controls the smoothness of the reconstruction. "P is a functioned measuring the dis
tance between thereconstructed surfBoe and thedata. ^ is a functional penalizing excessive
vanation of the reconstruction, except at points ofdiscontinuity specified by c. P is a fimc-

tional penalizing the introduction of discontinuities. When the input to the reconstruction

algorithm is the image intensity, the points ofdiscontinuity specified byc correspond to the
edges of the image.

While Terzopoulos uses relatively complex functionak and performs minimization with

respect to v and c alternatively, Blake and Zisserman and Nordstrom choose simpler function-

als and show that for fixed v the c which minimizes the functional T is unique. Minimizing
first with respect to c reduces the problem to the minimization of a non-convex functional

depending only upon v. Once this minimization is performed, the c function can be recov

ered from the Vdata. To overcome the problem of multiple local miniTTia. of this non-convex

functional, Blake and Zisserman's Graduated Non-Convexity algorithm begins by minimiz

ing a strictly convex approximation to the non-convex functional and successively minimizes

closer andcloser approximations using theresult ofthe previous stepas the initial conditions

to the next. Blake and Zisserman argue that the solution found in this way will be nearly
optimal. Nordstrom, on the other hand, uses the Euler-Lagrange equations to show that the

minimum ofthefunctional heobtains must satisfy a non-linear partial differential equation.
His approach is to solve this PDE using relaxation methods. Due to the presence of multiple
solutions to this PDE, the edges his algorithm obtains vary with the initial conditions of the

relaxation algorithm.

The proposed analog VLSI implementations of these algorithms are quite similar. They
all use a two dimensional grid of non-linear resistors, where each node of the grid corresponds
to one pixel ofthe image. This grid architecture has theadvantage that the interconnections

are purely local. Perona and Malik propose an implementation of their algorithm using anon
linear resistive grid where each node is groimded through a capacitor (Figure 1). To process



Figure 1: The array of Perona and Malik settles to a steady state where the voltages across
the capcicitors are all equal.

Figure 2: The nonlinear resistive arrays ofHarris and Nordstrom aresimilar to thearray of
Perona and Malik.

an image, the voltage across each capacitor is initialized to the intensity of the associated

image pixel. As the circuit settles, the node voltages evolve according to a continuous time

discrete space approximation to anisotropic diffusion. However, this implementation has the
•disadvantage that thedesired result occurs at an intermediate stage ofthecircuit's transient-
response. In fact, the steady state of the array contains no useful information as all the

capacitors will have the same voltage. Thus, the capacitors of the array must be large
enough so that the readout of the voltages can be done quickly relative to the settling time
of the array. Even if the transient could be stopped at some point by somehow disconnecting
the capacitors from the resistive array, current leakage from the capacitors would still be a
problem in practice.

Unlike the Perona and Malik's circuit, in Harris et al.'s and Nordstrom's circuits the
desired result of the computation occurs at steady state. Harris et al.'s analog circuit imple
mentation of Blake and Zisserman's algorithm consists of a two dimensional grid of voltage
controlled non-linear resistors where the nodes are grounded through branches consisting of
a linear resistor in series with an independent voltage source whose output is equal to the
intensity of the corresponding image pixel (Figure 2). The node voltages correspond to the
approximation, u, to the image data and the total resistive co-content of the array corre
sponds to the non-convex cost functional of the GNC algorithm. The non-linearity of the
grid resistors can be controlled by an external voltage. The sequence of function approxima
tions of the GNC algorithm is approximated by adjusting the grid, resistances slowly from



a saturating resistance to the the final target non-linearity. Thus, this implementation has

the disadvantage that manual adjustment of the circuit is necessary for correct processing
of the image.

Nordstrom's algorithm maps onto to a similar array where the non-linear resistors are

replaced by voltage controlled conductances controlled by the voltages of six of the sur-

roimding nodes. Because of the practical difiSiculty in implementing these voltage controlled

conductances, he proposes using an approximation to his algorithm which results in a two

dimensional grid of voltage controlled non-linear resistors. The I-V characteristic of his non

linear resistors is similar to that of the target non-linearity in the implementation of Harris

et al. Instead of manually adjusting the resistive co-content of the network, Nordstrom pro

poses to load the voltages and allow the circuit to settle to steady state, arguing that by

design the circuit will settle to a "meaningful'' steady state. In this case no maTnial adjust

ment is necessary. However, the non-convexity of the resistive co-content of the array leads

to many possible stable steady state voltage configurations of this array. Because of this

non-uniqueness, the final voltage distribution will depend upon the sequence with which the

voltages were loaded and on the values and initial conditions of various parasitic elements.

Therefore, unless circuitry to initialize the node voltages and capacitors large enough to

dominate the effects of parasitic elements are also incorporated into the circuit array, the

final steady state of the array cannot be reliably predicted. This would be especially unde

sirable in applications requiring matching edges between two images such as stereo depth

detection.

3 A New Edge Detection Algorithm

The analog circuit implementation of the edge detection algorithm we propose below does

not suffer from the disadvantages of the circuit arrays we discussed above. In this section,
we present the heuristic motivation behind our approach and the mathematical derivation

of the algorithm. Since we are primarily interested in the analog circuit implementation of

the algorithm we embed our derivation in a circuit theoretic framework. A brief discussion

of the implementation of the algorithm using traditional digital computers concludes this

section.

We first give an overview of the algorithm to provide a framework for our subsequent



derivation. Following the regiilarization approach, the algorithm begins by constructing an

approximation to the imagewhichrepresents a compromisebetweenfidelityto the image data

and the smoothness of the approximation. This is accomplished by finding an approximation

which minimizes a cost functional penalizing both the distance between the approximation

and the data and the variation of the waveformat each point. Then, the algorithm locates the

points of the image where decreasing the penalty on excessive variation in the approximation

results in the greatest decrease in the error between the image and the approximation. Since

smoothing across sharp discontinuities in the image data leads to the greatest error, the

points located in this step should correspond to locations of sharp discontinuities. These

points are labeled as edge locations.

For mathematical simplicity, we develop the algorithm assuming a one dimensional dis

crete imagespace consisting of n points, before generalizing to two dimensions. Weconsider

a sequence of m scalar values a;,-, i = 1,... m as both a discrete waveform and as an m di

mensional vectorand will use the two terms interchangeably. Both the waveform and vector

will be denoted by by the unsubscripted letter x. The notation a: > 0 will denote that every
component of x is greater than zero. In the two dimensional case, with a slight abuse of
notation we will also use the unsubscripted letter to denote the two dimensional discrete

waveform.

Let di,i = 1,... n be the image intensity, and v,-, t = 1,... n be a discrete waveform. Let

wand Ci, i = 1,... n—1 be positive constants. Consider the following functional:
n—1

F{y) = 52(ui - dif + 2 c.(uj - Di+i)^
«=1 «=:1

The waveform vwhich minimizes T{v) is the desired approximation. In the continuous limit,
T is similar to the functionals used by Blake and Zisserman and Nordstrom, except that the
term corresponding to the penalization of the introduction of discontinuities is missing. The
first term measures the distance between u and the image data. The second measures the
smoothness ofv. It iseasy to see that this functional is exactly the total resistive co-content
of a one dimensional grid of linear resistors with conductance c; whose nodes are grounded
through resistances with conductance U3 and independent voltages sources which output d,-
volts. The nodal voltages correspond to the u,- variables (Figure 3).

The conductivity of the resistances linking the voltage sources to the resistive grid, w,
gives global control of the smoothness of the approximation. For small wrelative to c,-.



Fig\ire 3: The functional ^ is exactly the total resistive co-content of a one dimensional
linear resistive grid.

smoothness is favored in the reconstruction as the fidelity cost is weighted less in the co-

content function. Thus, the resulting approximation v will besmoother than for large w. On

the other hand, c gives local control to the smoothness of the approximation. The sequence

c is analogous to the continuity control function ofTerzopoulos. For large c,-, the difference

between Vi and Ui+i is heavily penalized in the co-content function. Smoothness is favored in

the approximation v at those points. In the limit of c,- = oo, the resistive linV between nodes

Vi and Vi+i is a short circuit and Vi = Vf+i. Conversely for small Ci, the difference u,- —u.+i

is lightly penalized. In the limit c,- = 0, the resistive linh is an open circuit.

Consider the caseof a uniform resistive grid where all the c,- equal to one. Sharp discon

tinuities in the approximating waveform v are penalized equally at all points and the overall

smoothness of the approximation is controlled by the value ofa;. Assume that for all image
data d the discrete waveform u is a well defined function of c for c > 0 and consider the

following error functional

£[c) =l'£(vi(c)-dir
«=i

between the approximation and the data. The functional S depends only implicitly on the
vector c through the dependence of the approximation on c. The ith component of the

gradient of this functional, V^, is the partial derivative of the error with respect to the c,-,
the conductance of the ith resistor of the resistive grid. The local mavima of the gradient
considered as a discrete n —1 point waveform correspond to those conductances of the

resistive grid which when decreased will result in the greatest decrease in the value of £ in

the limit as the amount of decrease tends to zero. The locations of resistors corresponding
to local ma,Yima above a certain threshold value will be detected by our algorithm as edge
locations.

Before computing the gradient, we verify the vaHdity of the assumption that u is a well
defined function of c for all c > 0. By the stationary co-content theorem[6], each local



minimum of the co-content corresponds to a steady state nodal voltage distribution of the

resistive grid. In addition, any steady state must satisfy Kirchoff's current law:

—di) 4- ci(ui —V2) = 0

uj^{vi - di) -f 0,-1 (vj - Ui_i) -f Ci(ui - Vi+i) = 0 2= 2,... n - 1

J^(v„- dn) + C„-l(Un - Un-l) = 0

Using matrix notation, we can simplify this to the following:

C(c)u = iJ^d

where C(c) is an n by n tridiagonal matrix

W^+Ci —Ci

-Ci Ci+LJ^+ C2 —C2

-C2

C(c) =

-Ci

—Ci —Cj+i

—Ci+1

-Cn-2

~Cn-2 C„_2+W^ + C„-l —C„-l

—Cn-1 C„-i-huP

By symmetry and the Gerschgorin circle criterion[25], the matrix C(c) is positive definite
for all c> 0. Thus, the steady state of the array (and the vwhich minimizes ^) is unique
for all c> 0and all d. The inverse of amatrix is acontinuous function of its entries as long
as the matrix is non-singular. Thus, u is a well defined and continuous function of c. and
the functional S{c) is wdl defined.

To compute an expression for gradient, first apply the chain rule to S,

dv^d€^
VS = — —

dc dv

Clearly, = u- d. To find implicitly differentiate (1) with respect to c to obtain

.dv ^C(c)^ +D=0

10

(1)



where D is an n by n —1 dimensional matrix whose ith column, D,-, is

0

D.=
Vi+i - Vi

Vi - Vi+I

0

Thefirst i —1 elements and the last n —i —1 elements ofD,* are zero. Since C(c)~^ is well

defined for is unique and well defined for all D and c > 0. Finally, exploiting the

fact that C is symmetric we obtain

V5 = D^C-i(t;-d)

At first glance it might appear that the gradient computation would be very difficult to

accomplish in analog VLSI, as it involves a matrix inverse. However, it turns out that this

computation can be accomplished very simply using another resistive grid similar to the one

used to compute the approximation. Define p = C"^(u —d). Then

V5 = (2)

where p is the solution of

C(c)p = v-d (3)

Note the similarity between this equation and (1). The vector p is the unique nninimnm of

the functional

S{p) = 2(p,- - ^ Ci{pi - P(+l)'
(jj'

11

t=l tsl

which is the resistive co-content of the linear resistive array in figure 3 where d,- is replaced

and the nodal voltages correspond to pi rather than u,-. By (2) and the form of

the matrix D, the ith component of the gradient, V€i, is the negative of the product of the

voltages across the ith resistor of each grid

ee
. = ^ = - w<)(Fi+i - Pi)

Finally, the locations of the edges ofthe image aredetermined bythresholding the local
maxima of Vf. Since is a one-dimensional waveform, the detection of local maviTna



can be ax:complished by comparing the value of each VSi to its neighbors in some neighbor

hood to either side. The location of the local Tna.yima and thresholding can be effectively

accomplished using a post processing step implemented on a traditional digital computer.

As mentioned above, the edges detected are actually located between two adjacent pixels of

the image.

The generalization to two dimensions is quite straight forward. Assume a discrete m

by n pixel image space. We split the continuity control function into two paxts, and c",

corresponding to coefficients weighting variations in the horizontal and vertical directions.

The functionals and S are modified to

m n m n—1

i=l j=:l wsl •

m—1 n

+ EE
isl jsl

= ^EEKi
2 4.^1

The minimizing v and p can becomputed using a two-dimensional resistive grid where the
c** correspond to the conductances of the vertical grid resistances and the c'* correspond to
the conductances of the horizontal grid resistances. As in the one-dimensional case, the
derivative of S with respect to each resistance in the first resistive array is the negative of
the product of the voltages across the corresponding resistances in both arrays.

dS

dS
Qf,y . "" ~ Pi.j) ^€ {l,... m—l}j G{1,... n}

The problem of searching for the local maxima in two dimensions is simplified by the
fact that the continuity control function has been split into two parts, which control to the
horizontal and vertical smoothness of the approximation. Although it is possible to use more
complex methods, for the sake ofsimplicity we have exploited this partition to reduce the
problem to s^ching for local maxima along one dimension. For eaoh i € {l,...m}, we
define the one-dimensional waveform

12



Similarly, define for each j € {1,... n},

The detection of local maxima can be done by comparing the value at each point of each

one-dimensioned waveform to the values in a neighborhood to either side as in the one-

dimensional algorithm. However, in the two dimensional case, instead ofsimply thresholding
these values to find the edge locations, weusea thresholding with hysteresis process which

is similar to that usedby Canny's edgedetectionalgorithm[5]. In this process, two threshold

values ti and <2 are chosed where ti < t2. "Strong" edges are defined by the local maYiTna

which exceed <2' Similarly, "weak" edges correspond to local maxima which lie between ti

and <2* In thresholding with hysteresis, all strong edges are labeled as edge locations. In

addition, all weakedge contours whichare connected to the strong edges are also labeled as

edges. However, weak edges which are not connected to strong edges are not labeled. This

process leads to long connected edges while also reducing the number of isolated false edge

points which would arise if the image were simply thresholded at the lower value. Table 1

summarizes the two-dimensionad algorithm.

Before concluding this section, we briefiy digress to discuss the implementation of this

algorithm using a traditional digital computer. Since the post-processing phase consisting

of the detection of local ma.xima and thresholding is easily computed using conventional

digital hardware, we discuss only the digital computer solution of the resistive grid equa

tions. In the one-dimension2d case, C(c) is a non-singulax tridiagonal matrix so (1) and (3)
can be solved in 0{n) operations using the LU decomposition[28]. For general matrices,

the LU decomposition is not as efficient as in the the tridiagonal case. Fortunately, the

linear sets of equations resulting from Kirchofi's current law for the two uniform dimen

sional grid correspond exactly to the equations of the 5 point discrete approximation to the

modified Helmholtz equation with constant coefficients and Neumann boundary conditions
of vanishing normal derivativeat aU points of the boimdary. These can be solved on a se

rial computer using efficient relaxation algorithms such as the alternating direction implicit
method of operating splitting[28] or standard routines for solving discrete approximations
to elliptic partial difierential equations[2].

13



Table 1; Summary of the two-dimensional algorithm

Given: i

Step 0: Choose a; > 0, <2 > > 0, ^ > 0

Step 1: Compute Vmininniying

^(v) = w'2 + S JLi.'"!,) - Hi+l?
»=1 J=1 t=l J=1

m n—1

+S
•=1 j=i

Step 2: Compute p Tninimi^^Tig

m n j, m-1 n

G{p) =
Ksljszl ^ i-l

m n—1

+ E EKj - "i+lj)'
«=i i=i

Step 3: Compute for i e {1,... m}

= -(Vi,,+1 - fi,,)(Pij+i - Pi.j) i € {1,... n - 1}

and for j € {1,... m}

V£'J(i) = i € {1,...n - 1}

Step 4: Find local mayima by comparing the value of each element of the one di
mensional waveforms Vf/'(.) and V£J'(.) to the value of each element in a neigh-
borhood of size 6 aroimd it.

Step 5: Threshold local Tna.yima using hysteresis with ti and <2 to determine edge
locations.

14



4 Pareimeter Choice and Examples

In a forthcoming paper, we will give the details ofa quantitative analysis of the algorithm's

performance. For now, wewill highlight some of the key results pertaining to the choice of

parameter values and give some examples of the algorithms performance on realimages.

Forsimplicity we assume an infinite one-dimensional discrete image space. This is equiv

alent to restricting our attention to two-dimensional images with variation in only one di

mension. This is a good approximationin the case of long linear edges, but breaks down in

the caseof comers and jimctions in the image. In this case, the solution to steps 1 and 2 of

the algorithm can be solved using a discrete convolution.

Vi = G{i —k)dk (4)
k=—oo

where

a = cosh'
'

The linearityof the convolution and the fact that the only non-lineaxity in the algorithmis a

multiplicative non-linearity performed at the end ofthe algorithm considerably simplifies the

analysis ofthe algorithnL It is straightforward to show that the gradient waveform resulting

from an image consisting of a single step edgeof height h between pixels 0 and 1 is

V€i = g-2a|,|4-f-C4;2 \ 4+ (4-|-w2)l'
This expression attains its ma-ximnm at i = 0. The algorithm interprets an above threshold

local maximum of the gradient waveform at i = 0 as an edge between pixels 0 and 1, since

the 0th component of the gradient is the derivative of the error functional with respect to
the conductance of the resistance linking the nodes corresponding to the pixels 0 and 1.

Therefore given w, a threshold value of

~4+w2 ( ~4 +w»j
will ensure that all isolated step edges of height greater than h will be detected.

Similar to Blake and Zisserman, we demonstrate that the value of w determines the

characteristic distance for the interaction of discontinuities by considering the response of

15



the algorithm to an image waveform consisting of two step discontinuities of height hi and

^2 at pixels 0 and e respectively. The resulting gradient waveform is

+1^) +{'+i^)
where Xi is the step response to an isolated step of height 1. Thus, the response is equal

to the superposition of the responses of isolated steps except for a space-varying coefficient

parameterized by a. Consider a "top hat" input consisting, of two step discontinuities of

heights h and —h at pixel 0 and pixel e respectively. Then ^ is a characteristic length
.of discontinuity interaction. If e > ^ the response of each step is nearly the same as the

response to an isolated step edge. If e < then the response to eachstep decreases to zero

as €tends to zero. Since oc = cosh ^ ~ for small t*;, the choice of lj determines the

"scale" at which edges are detected.

Unfortunately, in the case ofgeneral discontinuities this superposition-type property may
lead to spurious responses to small edges. Equation (4) indicates that for coarse scales (small
w) the response to an edge is broader than for large w. At coarse scales, this may increase
the response to smaller edges aroimd a large edge, leading to a spurious responses to a small
edges near large edges. This is especially true in the presence of noise. Experimentally, we
have found that setting the size of the comparison neighborhood for detection of the local
maxunuzii detection to be a fixed fraction (of the value of ~provides qualitatively "good"
results. However, this is still an area of active research.

We now present several examples of our algorithm operating on real images. We give
examples of the edges detected over varying scales and over varying ranges of noise added
to the image. All of the images we use have a resolution of 8bits, corresponding to 256 gray
levels.

Figure 4illustrates that the algorithm detects edges which are well localized over varying
scale. We have run our algorithm on the image shown in figure 4(a). For comparison
purposes, note that this image was also used as input to the anisotropic diffusion algorithm
of Perona and Malik[24]. The algorithm was run with values of wof 0.505, 0.25 and 0.0625,
corresponding to characteristic discontinuity interaction lengths of 2, 4and 16 pixels. Using
(5), the threshold value ti was chosen so that all isolated step edges of height greater than
25 grey levels would be labeled as weak edges. The value of <2 was chosen so that all
isolated step edges of height greater than 50 would be labeled as strong edges. Using our
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Figure 4: The algorithm detects edges well localized over varying scales, (a) The image, (b)
Edges detected with u = 0.505. (c) Edges detected with oj = 0.25. (d) Edges detected with
w= 0.0625. (e) Edges detected by Canny algorithm with a = 1 pixel, (f) Edges detected
by Canny algorithm with <t = 2 pixels, (g) Edges detected by Canny algorithm with <7 = 4
pixels.

Figure 5: The algorithm is quite robust in the presence ofnoise, (a) The noise free image.
(b) The edges detected in (a), (c) The noisy image with <7 = 15. (d) The edges detected in
(c). (e) The noisy image with <7 = 30. (f) the edges detected in (e).

experimental rule of thumb, the sizes of the neighborhoods for comparison for the detection

oflocal maxima were chosen at 1, 1 and 4 pixels respectively. Note that the edges detected
do remain well localized and that as w decreases, the edges detecrted correspond to coarser

and coarser scales. Contrast these results with theresults ofthe Canny edge algorithm, also
shown in figure 4.

To show the performance of the algorithm in the presence of noise, uj was fixed at 0.25

and thesame values offi and <2 as above were used. The algorithm detected the edges of
the image infigure 5(a) corrupted by additive Gaussian noise of standard deviation <7 equal
to 0, 15, and 30 grey levels. Even at this fairly fine scale, the algorithm is quite robust in

the presence of noise.

Finally, figure 6 shows the effect of the threshol<iing with hysteresis. Our algorithm was
run on the image in figure 6a with w= 0.5 and a maximum comparison neighborhood of
size 1. The thresholds <i and <2 were chosen so that isolated step edges of heights 15 and 30
would be detected as weak and strong edges respectively. Figures 6b and 6c show the edges
detected by simple thresholding at the two threshold levels. Notice that thresholding at ti
leads most of the edges to be detected, but also (xintains many spurious responses. On the
other hand, thresholding at <2 eliminates these spurious responses but leads to many broken
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Figure 6: Thresholding with hysteresis gives better edges than simple thresholding, (a) The
input image, (b) The edges detected bysimple thresholding ti. (c) The edges detected by
simple thresholding at t2» (d) The edges detected using thresholding with hysteresis.

ormissed edges. Thresholding with hysteresis as shown in figure 6deffectively combines the
two sets ofedges, leading to long connected edges while avoiding spurious responses.

5 Implementation using GCNNs

In this section we describe two possible analog circuit implementations of this algorithm
under the framework of Generalized Cellular Neural Networks. Our strategy is to use ahybrid
analog-digital architecture. As we indicated at the end of section 3, the digital computer
implementation of the functional minimizations can be quite computationally intensive on a
traditional digital computer. However, as we indicated in that section, the solutions of the
functional minimizations can be realized using linear resistive networks. The post processing
of the gradient waveform to find the local mayima and thresholding can effectively be solved
using a digital post processing step. There seems little reason to incorporate this stage into
the analog network, as it would limit the number of nodes possible to put on asingle chip,

One possible hybrid architecture is to use achip consisting of a single resistive grid and
compute steps 1and 2in two separate steps. In other words, the independent voltage sources
are first initialized to the image data d. Once the array settles, the steady state node voltages
corresponding to v are read off the chip and the independent voltage sources reset to the
difference After the array settles again, the node voltages which now correspond to p
are read off and the multiplication done in adigital post processing step. The disadvantage
of this implementation is that it requires reading voltages onto and off of the chip twice.
Not only is this fairly slow, too much noise may be introduced into the signals, due to the
limited precision entailed with dealing with analog circuitry. Apreferable architecture may
be to build two identical resistive grids on asingle chip and linking them using Hnear voltage
controlled voltage sources. The first resistive grid calculates the minimization ofstep 1of the
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Figure 7: A double grid implementation of the edge detection algorithm.

algorithm. The voltage controlled voltage sources take the place of the independent voltage

sources in the second resistive grid. The output ofthesevoltage sources is the voltage across

the resistors between the independent voltage sources and nodes of the first resistive grid

multiplied by For small cj, the result of this multiplication may exceed the d3mamic

range of the circuit. Fortunately, however, this multiplication is actually unnecessary, as it

only l^ds to a scaling of the gradient waveform. In this architecture, it is also desirable to

implement the multiplication of step 3 on chip to reduce the amount of data which must be

read from the chip (figure 7). This architecturehas the disadvantage of high complexity.

In the absenceof parasitic elements, the stability of the analogcomponents ofboth hybrid

architectures is trivially guaranteed. Since all of the elements of a single resistivearray are

strictly passive, the resistive grid itselfis strictly passive and thus stable. In interconnecting

the two resistivearrays, although the input to the second resistivearray connection is time

varying, stability is not compromised since there is no feedback between the two arrays. For

stability results in the case of parasitic elements, see [29].

Like the circuits proposed by Harris et al. and Nordstrom, our implementation is de

signed to settle to the desired result of the computation. Therefore, unlike Perona and

Malik's analog implementation, no mechanism to stop the transient response or large space

consuming capacitors are required. On the other hand, unlike the resistive grids of Nord

strom 2tnd Harris, the resistive links of our resistive grids are linear. This linearity and the

associated strict convexity of the resistive co-contents of our arrays is the key to the ad

vantages of our implementation. The problem of non-uniqueness is eliminated. Therefore,

unlike Harris' implementation, no manual adjusting of the circuit is necessary during pro
cessing. Unlike Nordstrom's implementation, the edges detected using our architecture are

completely predictable, independent of the sequence the data is loaded onto the chip and
the values of parasitic elements. In addition, ICarplus has shown that resistive grids
are robust against random errors in the values ofthe resistances[16].
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Another consideration overlooked by previous analog implementations is the fact that the

amount of nodes possibleto place on a chip is limited. The chip built by Harris et al. contains

a resistive networkof 20 by 20 nodes. However, typical imageprocessing applications involve

images of 200 by 200 pixels and up. It is currently impossible to put that many nodes of

any of the proposed resistive circuits onto a single chip, although it may soon be possible

using wafer scale technology. Because resistive links between nodes are purely linear, it

should be much easier to effectively link chips together using appropriate drive circuitry.
Since the steady state nodal voltage distribution is independent of the time history of the
nodal voltages, any increased capacitance incurred bygoing off chip is irrelevant to the final

result. Incontrast, the performance ofNordstrom's and Perona and Malik's proposed analog
circuit arrays depends critically upon the time history of the circuit, Tnalfing the result of
the calculation much more sensitive to variations in the drive circuitry to linlf chips.

6 Conclusion

In this paper, we have described some of the problems in proposed analog implementations
of current edge detection algorithms. To solve these problems we have proposed a new edge
detection algorithm. We have provided some results regarding the choice of parameter values
and have shown by example that the algorithm detects edges which are well localized over
varying scales and fairly robust in the presence of noise.

This edge detection algorithm can be effectively implemented in a hybrid analog-digital
architecture under the framework of generalized CNNs. The analog circuit implementation
of this network overcomes many shortcomings of the previous architectures while preserving
their advantages of purely local interconnections and highly parallel computation.
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