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Abstract

Li this paper we generalize the horseshoe twist theorem of [Brown
& Chna, 1991] and derive a wide dass of ODEs, with and without dis
sipation terms, for which the Poincare can be expressed in dosed form
as FTFT where T is a generalized twist. We show how to approximate
the Poincare maps of nonlinear ODEs with continuous periodic forc
ing by Poincare maps which have a dosed form expression of the form
FT1T2... T„ where the T,- are twists. We extend the twist and flip to
three dimensions with and without damping. Further, we demonstrate
how to use the square-wave analysis to axgue the existence of a twist
and flip paradigm for the Poincare map of the van der Pol equation
with square-wave fordng. We apply this analysis to the cavitation
bubble oscillator that appears in [Parlitz, et. al., 1991] and prove a
variation of the horseshoe twist theorem for the twist and translate

used by Parlitz. We present illustrations of the diversity of the dy
namics that can be found in the generalized twist and flip map, and
we use a pair of twist maps to provide a spedflc and very simple illus
tration of the Smale horseshoe. Finally, we use the twist and translate
of [Parlitz, et. al., 1991] to demonstrate that the addition of suifldent
linear damping to a dynamical system having PBS chaos may cause
the chaos to become visible.



1 Introduction

In [Brown & Chua, 1991] three conjectures were stated about the presence of
horseshoes in a very general class of ordinary differential equations (ODEs).
For the case when the Poincare map is of the form FTFT where T is the
simple twist [Brown & Chua, 1991], all three of these conjectures have now
been proven. The proofs of these conjectures depend on an important in
termediate result. The conjectures and this intermediate result will all be
stated in Sec. 2, with a brief indication of the proofs which may be foimd in
detail in [Brown,1990].

Encouraged by our success in proving the existence of horseshoes for the
simple twist and flip map, it is reasonable to eisk if this result is simply a
special case, or is it part of a broader theory. We argue that it is indeed
part of a broader theory through the following steps: In Sec. 3 we show
that the class of ODEs having Poincare maps of the form FTFT, where T
is a generalized twist is very large, and we derived a lemma that gives us
some idea of how large this class is. This lemma provides a mechanism
for obtaining the Poincare map in closed form when a square-wave force
is present, and we demonstrate this by deriving five broad classes of non-
dissipative, nonlinear, square-wave forced ordinary differential equations and
their closed form Poincare maps.

In Sec. 4 we go on to show that what we have done for non-dissipative
equations of Sec. 3.2 can also be done for equations having a damping or
dissipative force, and thus we are able to obtain a closed form solution for
the Poincare map of a large class of damped ODEs.

In Sec. 5 we outline the proof of a generalization of the horseshoe twist
theorem.

In Sec. 6 we demonstrate how to extend the twist and flip paradigm from
square-wave forcing to the case of continuous periodic forcing.

In Sec. 7 we show how the twist and flip can be generalized to three
dimensional systems.

In Sec. 8 we extend the concept of the twist map by defining the concept
of a two dimensional shear map.

In Sec. 9 we indicate how to use the square-wave analysis to find a twist
and flip map in the van der Pol equation and suggest that the complexity of
the van der Pol equation is explained by the twist and flip paradigm.

In Sec. 10 we will show that in place of the twist and flip map, some



equations have a twist and translate paradigm. This fact, found in the cav-
itation bubble oscillator of [Parhtz, et. al., 1991], suggests an extension
of our results to include Poincare maps of the form LT where L denotes a
translation. In fact we may extend the twist and flip paradigm to include
maps of the form T2T1 where Ti is a twist map, and T2 is any combination
of twist maps, flip maps, translate maps, or diffeomorphism defined by any
linear second order ODE. In this section we prove the horseshoe twist and
translate theorem for the non-dissipative twist and translate map.

In Sec. 11 we illustrate the diversity of the dynamics of the twist and flip
map by presenting four figures consisting of unstable manifolds and elliptic
regions generated by generalized twist and flip maps. In this section we also
illustrate the Smale horseshoe using a map of the form FT2T1, where Tj axe
both simple twist maps. The computer code for this illustration is included.

In Sec. 12, we illustrate a basic mechanisn of the onset of chaos in a
broad class of dynamical systems using the damped twist and translate map
of Parlitz. In particular we show that in the case of linear damping, the
complexity of,a dynamical system can be fotmd in the non-dissipative form
of the equations describing the system and that this complejdty may become
visible with the addition of sufficient damping even though linear damping
cannot create horseshoes.

2 Proof of Conjectures for the Horseshoe
Twist Theorem

We have stated the horseshoe twist theorem for the Poincare map of the first
order non-linear, square-wave forced system of ODEs in [Brown & Chua,
1991]. We restate this ODE here for convenience of reference:

X= ( X- asgn(sin(a;<))) ^ (1)

y={ X—asgn(sin(wt))) x—a sgn(sin(a;t))) ^
where a > 0. In the following discussion we will adopt the same terminology
used in [Brown & Chua, 1991].

Let M be the unstable manifold of FT at a hyperbolic fixed point, where
M consists of two branches that are joined at the fixed point. It was proven



in [Brown h Chua, 1991] that the local unstable manifold of one of these
branches lies on the right side of the vertical axis. Recall that we labeled
this branch as Mrhs.

Our starting point is the horseshoe twist theorem of [Brown Chua,
1991], hereafter referred to as the horseshoe twist theorem I. The key to the
proof of the generalized horseshoe twist theorem, hereafter referred to as the
horseshoe twist theoremII, can be found in the following theorem,^ theorem 2,
which states that the right hand branch, M,iu, of every homoclinic manifold
(i.e., M=S, where S is the stable manifold) from a fixed point of FT lying
on the positive vertical axis lies in an annulus bounded away &om the fixed
points of T. From this we conclude that if M contains a fixed point of T it
cannot be homoclinic.

Before indicating the proof of these results we recall some definitions from
[Brown & Chua, 1991].

We have defined Cr to be the circle of radius r centered at (a,0) and
define to be the circle of radius r centered at (—a, 0).

Using these definitions we define Gr to be the intersection of Dr and
the right half plane {{x,y)\x > 0} and let Hr denote the intersection of
and the left half plane. We will use Sihs to denote the branch of the stable
manifold that originates on the LHS of the plane. This must exist by lemma
7 of [Brown & Chua, 1991]

Lemma 1 if M = S then Mrfis = Sihs-

Proof: Suppose that M=S and let be the circle centered at (—a, 0) having
radius r.

Assume that the right hand branch of the stable and unstable manifolds
meet, and thus coincide. By lemma 7 of [Brown & Chua,1991] Mrhs begins in
the interior of Dr . By the same lemma Srhs lies on the RHS of the vertical
axis and lies outside of Dr. To meet Srhs on the RHS of the vertical axis,

Mrhs must cross this circle by continuity. But this cannot happen unless Mrhs
h£is already intersected the vertical axis.

But if Mihs intersects the vertical axis, so does S and at the same point,
since by lemma 5 [Brown & Chua, 1991], R(M)=S, where R denotes refiec-

complete pioof of the horseshoe twist theorem II can be found in a recent Ph.D.
dissertation [Brown, 1990].



tion about the vertical axis. So if S=M, R(Mrhs) meets Suu, and so must
coincide. I

We recall without proof the following proposition [Brown & Chua, 1991]

Proposition 1 Let (0,y) he a hyperbolic fixed point of FT on the positive
vertical axis. Let M be the unstable manifold at (0,y). Then there is a point
where M crosses the vertical axis other than the fixed point (0,2/).

Before we state and prove theorem 1 we need the following 2 lemmas.

Lemma 2 Let {Q,y), y > 0 be a hyperbolic fixed point for FT and let Mrhs
be as in lemma 1. Let p be the point on the vertical axis that is in M, and has
shortest arc length measured along the unstable manifold to the point (0,y).
Let Za be (FT)"^(p). Let r = y/y^ + a^, and let = \\Za —a||. Define the
annulus Aa by the equation

Aa = {z|ra < ||z - a|| < r}

Let V = (M,h3 n A„) Then T(V - {p}) C H,..

Proof: We have the following facts: T(V) C Cr, T(0,j/) = (0, —2/)» and
T(za) = —p. By the choice of z®, there can be no other points of T(V) on
the vertical axis.other than (0,—y) and —p, so that T(V) must He entirely
inH,..!

Weneed the following lemma from [Brown, 1990] in the proof of theorem 1

Lemma 3 Given a hyperbolicfixed point of FT, let S be the stable manifold,
and M the unstable manifold at this fixed point. IfS = M., then

PT(M) = M

where P is reflection about the horizontal axis.

Proof: FT(M)=RPT(M)=M=R(M). Therefore RPT(M)=R(M), so that
PT(M)=M. I

Theorem 1 (Homoclinic Manifold Theorem) IfM is a homoclinic man
ifold of FT, then M^hs 1^^^ annulus bounded away from the fixed points
ofT.



Proof: Since M is homoclinic we have M = S = R(M). Let Mrfu, be the
branch of M Ijring in the RHS of the plane. R(Mriu,) = Sihs (where "Ihs"
stands for left hand side) and so

R(Mrhs USlhs) = (Mrhs u Sjhs)

forms a connected curve in R^. We will label this curve as N and note that

it contains the branch of the unstable manifold M lying in the RHS of the
vertical axis.

Let q be the point other than (0, y) where N meets and crosses the vertical
axisand let = (FT)~^(p). By lemma 7 [Brown & Chua,1991] and lemma3
above, PT(N) = N.

For any annulus A, we have PT(A) = A. So, PT(A fl M) = A fl M and
also, PT(A n N) = A n N. This relation must hold for Aa- By the choice
of Za we have T(Aa HMrhs) must lie entirely on the LHS of the vertical axis
(lemma 2 above), except for the point q which must lie on the vertical axis.
For convenience we define = (A® H Mhu,). Therefore PT(Ma) = Sihs-
Since Srhs lies entirely in Aa, we conclude that N is contained entirely in
A«UR(A„).

Now To ^ ra. If w is a fixedpoint of T that is in Mrhs? then FT(w) = F(w)
which is on the LHS of the vertical axis, i.e., ro < r^, hence cannot
intersect 0^ and so N cannot intersect Cro UDro*

We conclude that M is bounded away from the circle of fixed points of
T; namely, Cro- Thus N lies inside the circle C, and outside the circle C,
where s > tq. 1

Corollary 1 Assume the definitions of the above lemma. ^ a homo-
clinic manifold, it must meet and cross the negative vertical axis.

Proof: Follows directly from lemma 2 above. I

Corollary 2 Assume the definitions of the above lemma. If Mrhs crosses
the positive vertical axis at a point other than a fixed point, then it is a
c-manifold.

Proof: Follows directly from corollary 1 above. I



Theorem 2 (Horseshoe Twist Theorem 11) Let (0,y), y > 0, 6e a hy
perbolic fixed point of FT and let M he the unstable manifold of FT at this
hyperbolic fixed point. If Mrhs contains a fixed point of T, then FT ha^ a
horseshoe, and hence the Poincare map FTFT also has a horseshoe.

Proof: By theorem 1 if Mrhs contains a fixed point of T then it cannot
be homodinic. Mrfa must meet the vertical axis by proposition 1, at p amd
by lemma 5 [Brown & Chua, 1991] this is a homodinic point. If M meets
the stable manifold at this point there is a horseshoe by [Smale, 1965]. We
assert that M cannot be tangent to the stable manifold at this point. Thus
there exists a horseshoe. I

We may now restate conjecture 3 of [Brown & Chua, 1991] as a corollary.

Corollary 3 Given a hyperbolic fixed point (0, y), with r = y/y^ -{• and
To = 2a;[r/2a;], a sufficient condition for the unstable manifold M of this
fixed point to be a c-manifold is that the two circles,

(x - af + = To

and

(x + a)^ + y^ =

intersect.

Proof: Recall that by the definitions in [Brown & Chua, 1991] the first
circle above is denoted and the second is denoted D^. Assume these two
circles intersect. Note that the drcle Cro is a circle of fixed points of T.

If Mrhs crosses the positive vertical axis at a point other than the fixed
point we are done by corollary 2. Thus assume that Mrhs crosses the negative
vertical axis. By lemma 2 and the fact that Mrhs crosses the negative vertical
axis, this crossing must lie below the circle of fixed points of T. Hence there
are points in Mrhs that lie above the drcle 0^ and below C^o and so because
Dr intersects Cro ^rhs is connected, it must intersect Cro thus
contain a fixed point of T. By theorem 2, M must be a c-manifold. I

Remark 1: We recall that another form of this condition is given by the
following inequality:

r < 2a-{-ro



or

r mod (2a;) < 2a.

Remark 2: The horseshoe twist theorem I of [Brown & Chua, 1991] is
now a special case of corollary 3. In particular the horseshoe twist theorem of
[Brown & Chua, 1991] required that two conditions be satisfied. The second
condition of the two, namely, Tq > (c —a)^, is equivalent to the condition of
corollary 3. Therefore, corollary 3 is more general than the horseshoe twist
theorem I and, by inspection, can be seen to be much easier to verify.

3 Differential Equations Having Closed Form
Poincare Maps

Our success in deriving a formula relating the parameters of an ODE to chaos
depended on the existence of a closed form expression for the Poincare map.
This suggests the following question: How common are nonlinear, periodi
cally forced ODEs having closed form Poincare maps? To aid in answering
this question we have the following factorization lemma.

3.1 Factorization Lemma for the Poincare Map of
Certain ODEs

Lemma 4 Let x(t) be a solution of

X= G(x, t), and x(0) = Xq (2)

where (xo,f) € R" x R. Also, suppose that there exists a constant p such
that for all (x, t) G R" X R the function G satisfies the relation

- G(x, t -1- p/2) = G(-x, t) (3)

Let

y(<) = -x(( + p/2)

for 0 < f < CO. Then y(f) is a solution of the equation

y = G(y,t), and y(0) = -x(p/2).



Proof: Let u{t) = —x(f + p/2). Then u(0) = —x(p/2) and

u = -k{t + p/2) =

-G(x(^ + p/2), <+ p/2) = G(-x(t + p/2), t) =

G(u,<)

Therefore, u(i) = y{t) = —x(t +p/2). I
Remark We note that G in Eq.{ 2) is periodic as a function of t with

period p. If we let Tf be the one parameter family of phase plane diffeomor-
phisms in defined by Eq.( 2), then the Poincare map is Tp. We use this
fact in the following corollary.

Corollary 4 Let F be a 180 degree rotation about the origin in R^ and
let Tt be the one parameter family of phase plane diffeomorphisms defined
by Eq.( 2). Then the Poincare map for Eq.( 2), i.e. Tp, is given by the
diffeomorphism, $ o/R^ defined by

$(xo) = FTp/2FTp/2(xo)

Proof: Let x(t,Xo) be the solution of Eq.( 2) over the interval [0,p/2] with

x(0,Xo) = Xo, and let y(<,yo) he the solution of Eq.( 2), for 0 < t < p/2,
having the initial condition

yo =Xi = -x(p/2,Xo)

Then, by lemma 4, for 0 < t < p/2 we have

x(t+p/2,Xo) = -y(^,xi)

K we take t = p/2 in corollciry 4 we have the relation

x(p,Xo) = -y(p/2,xi)

where

Xi = -x(p/2,Xo)



We conclude that

x(p,Xo) = FTp/2FTp/2(xo)
•

Remark: This corollary is also true for R".
Since we will always assume p = 21^1uj we will henceforth drop the sub

scripts and write the Poincare map simply as FTFT.

3.2 Some Differential Equations for Which there are
Closed Form Poincare Maps

With the above factorization lemma in hand we now determine several classes

of ODEs for which the Poincare map can be obtained in closed form.
It may be readily verified that the equations of this section satisfy the

hypothesis of lemma 4, where p = 2t/uj, and therefore by corollary 4 the
Poincare map is of the form FTFT.

We have the following convenient definition used extensively in the fol
lowing sections:

Definition sg(t) = sgn(sin(<)).

Class 1 is determined by the pair of equations:

X = -yfW
y = (x-asg{(jjt))f{X)

where A= ^(a; —asg(a;<))2 -}- y^.
For f(u) = u this equation is the same as in [Brown & Chua, 1991].
The Poincare map is FTFT where T is the solution of the equations

^ = -yfW
y = (x-a)/(A)

a.t t = tt/w, where A= y(a; —a)^ y^, and F is the 180 degree rotation.
Note that A is a constant defined by the initial conditions and represents

a constraint on the variables x and y. Also note that since

J =-(x-a)/3,
10



in the last pair of equations above, the phase portrait of the solutions consists
of a continuum of circles centered at (a,0). In particular, {x{t),y(t)) must
lie on a circle of radius A centered at (ffl,0).

The matrix form of the twist map for class 1 is given by

( a:(f) \ / cos (/(A)f) —sin ( /(A)t) X/xo — /a^

V )/ \ sin (f(X)t) cos ( ) \ Vo ) \ 0>
Class 2 is determined by the following equations:

® ~ asg(wt))2 + (1 - P)y2 (4)

y = {x- - asg(wt))2 + (1 - h'̂ )y^ )H(x,y) (5)
Where k is the elliptic modulus and

_ ^(x - a3g(fa;<))^ + (1 -
y/(x-asg{wt)Y + y^

where /(r) is any function of r.

The Poincare map is given by FTFT where T is the solution of the equa
tion

^ = -yf{y/{x - ay -h (1 - A;2)y2 "jhix, y) (6)
y= {x- a)f{y/{x - af + (1 - fc2)y2 ^h{x, y) (7)

where,
^ ^(x- af + (1 -

h[x,y) = ^ / .
- a)2 + y2

evaluated at the time t = tt/w, and, cis above, F is a 180 degree rotation
about the origin. Note that as for class 1 equations the phase portrait of
Eqs. 6 and 7 is also a continuum of circles centered at (a, 0) since,

11



We may write out the solution of the latter autonomous vector ODEs
explicitly using the addition formulae for the Jacobi elliptic functions:

__ (xq - a)cn(/(r)t, k) - Kyosn(f{r)t, fe)dn(/(r)t, k)
CD?{f{r)t, fe) + K'̂ siL^(f(r)t, k)

, _ K(xo - a)sn(/(r)f, k) + yocn(/(r)t, fc)dn(/(r)t, k)
^ aa?{f(r)t, k) +K^sn^ k)

where a;(0) = Xq, y(0) = yo, r = \](xq - a)^-{• yl, K = ^1 - {kyolrf,
and sn, cn, and dn are the Jacobi elliptic functions having elliptic modulus
k. From this point on we will drop reference to the elliptic modulus k in the
elliptic functions unless it is needed for clarification.

The matrix form of the twist map for class 2 is given by:

( x{t) ^

KfW j

where

c(t) = l/[ cn^(/(r)t) + A''sn^(/(r)«)]
For k = 0 class 2 reduces to class 1.

Class 3 equations are obtained from class 2 equations by letting k = g{X)
in Eq. 4 and 5, where ^(A) is any function. Since A= yf(x —a)^ + y^ is
determined by the initial conditions we see that the elliptic modulus is also
determined by the initial conditions. In this case, the matrix form of the
twist map is the same as in class 2, except that k = ^(A).

Class 4 equations are those motivated by the function

x{t) = Acn(At + fc) + a

/ ca{f{r)t) -Ksa{f{r)t) dn(/(r)t) \ / xo-a

VKsa{f(r)t) cn(/(r)t) dn(/(r)t) / \ yo

where A^ = 0.5[ (1—2fc^)(a:o—— 2k^)^(xQ —aY + 4(i;§ + k^{xo —a^) ]
This function solves the ODE

X+ p(x,y)(l —2k^)(x —a) + 2k^(x —a)^ = 0

12



where, p(a;, y) = 0.5[ (1—2fc^)(a;—a)^+^(l —2k'̂ y(x — + 4(x^ + k^(x —a)^) ]
It should be noted here that the appearance of a term containing i, such

as occurs above, does not necessarily imply the presence of damping in the
ODE.^ On the contrary, the solution of this equation consists of concentric
closed curves parameterized by Adefined above. If we replace a in the above
equations by a sg(a;t) we obtain an ODE having a square-wave forcing term
whose Poincare map, is FTFT, where

T(r, y) = { Acn(At + ^) + a,—A^sn(At -f- ^)dn(At -H ^))

and where t = tt/o;.
When = 0.5, the equation for T reduces to a variation of Duflfing's

equation, namely,
r -1- (x —a)^ = 0

In this case A^/4 = 4xo + (xo —a)^. If we replace a by asg(a;t) we get a
square-wave forced variation of Duifing's equation:

X"f (x — = 0

The Poincare map of this equation is given by FTFT where the two
components of T are

x(t) = Acn(At -I- ) + a
x(t) = —A^sn(At -I- 0, "v/OlK )dn(A< + 0, )

Also note that by taking A; = 0 we obtain a special case where T is
expressible in terms of sines and cosines:

a;(t) = Acos (At + 0) a
x(t) = —A^ sin (At -t-

These two functions define a family of ellipses centered at (a, 0). If these
equations are expanded using the addition formula for sine and cosine and
we note that xo = Acos(^) + a and xq = —A^ sin(^) then

^To see this in a simpler case consider the equation

X+ x/{x^ -H 1)= 0

which is solvable in terms of elhptic functions.

13



= 0.5[ (a;o - a)^ + ^(xo - +4ig ]

and we have the following matrix form for the twist T:

^ cos(At) —sin(A<)/A

^ Asin(At) cos(A<)

^ Xq Qt

\ yo

In this case, the ODE associated with T is given by:

+

X+ 0.5[ (x —aY + y(x —— a). = 0

In this map, the twisting takes place around an ellipse rather than a circle.
When fc ^ 0 in class 4, it is possible to carry this generalization one step

further by cissuming that k = flr(A), where as before g{X) is amy function.
In this case the equation for A can be very complex. For example, if = A,
then this equation becomes

A^ = 0.5[ (1 —2A)(xo - aY + ^(1 —2A)2(xo —a)^ +4(xg + A(xo —a)^) ] .

Class 5 equations for T are given by general elliptic differential equations.
See pavis, 1960], page 209:

y = Ai- By Cy^ + Dy' (8)

This equation when considered as a complex ODE is solved in terms of elliptic
functions, [Davis,1960]. Unlike the case for linear equations, the real and
imaginary parts of the complex solution are not solutions of Eq. 8. To obtain
real solutions in terms of elliptic functions we consider only special cases, for
example:

y = -Ay - By^ (9)

where A > 0 and B > 0. This equation has the following real solution:

y{t) = Cdn(At + k)

where k^ = (2A + A)/A^ and = 2X^/B.

14



As in the above examples, the square-wave forced equation is obtained
by replacing y by (y —asg(a;t)) in the equation for T.

From the form of this solution we see that the initial conditions can

affect the amplitude, frequency, and the elliptic constant, fc, of the solutions
of Eq.( 9).

Remark: The above equations may be divided into two groups. Group
one arises from a first order vector system in R^. Group two arises from a
second order scalar ODE. Thus we see that Classes 1,2,3 are of increasing
complexity from group 1, whereas classes 4 and 5 are from group two and
also of increasing complexity.

4 Differential Equations with Damping which
have Closed Form Poincare Maps

Corresponding to the above described five classes of undamped DDEs there
are five classes of damped DDEs having Poincare maps in a closed form.
We illustrate how to introduce damping into these equations in a specific
example and a general example only, without deriving the five classes.

4.1 The Damped Twist

To obtain ODEs with damping having a Poincare map in closed form let us
begin with the following example which we will show how to generalize in
the following section. Consider:

a;(t) = Aexp(—at)cn(u) (10)

where u = A(exp(—at) —l) -f Aand 9 are arbitrary constants.
Taking the first derivative we get

X= —ax + aA^ exp(—at)sn('u)dn(u) (11)

The ODE for which a;(t) is the solution is given by

X-h 3ai -f lo^x 2a^k^x^ = —a^(l ~ 2k^)nx (12)

where ji = A^exp(—2at). The factor contains both the arbitrary constant
of integration. A, and time, t, and thus it appears at first that Eq. 12 is not

15



autonomous. However, by using identities for the Jacobi elliptic functions
the factor n may be eliminated. In particular we may do so by solving the
quadratic equation:

(1 — + (2A;^ —\)x^n —(Px"* + (x/or + x)^) = 0 (13)

This is a quadratic equation for and so the positive root must be cho
sen. The origin of this quadratic equation is as follows. From [Bowman,1961]
we know that the Jacobi cn satisfies the ODE:

X = —(1 —2P)x —2A:^x^

where fc is a parameter of the ODE which turns out to be the eUiptic modulus.
This equation has a first integral

x/2 = -(1 - 2P)a:2/2 - k'̂ x^l2 ^ H/2 (14)

where H is determined by evaluating the functions sn, cn, dn at t = 0.
Specifically H = (1 —fc^). By noting from Eq. 10 that

Ax = A^exp(--at)cn(u)

and

(x -|- ax)Ia = A^ exp(—Q;t)sn(u) dn(u)

we obtain Eq. 13 from Eq. 14.
The square-wave forced differential equation may be obtained as before

by replacing x by (x —asg(a;t)) in Eq. 12.
More complex relationships for (i may be obtained by allowing fc to be a

function of (jl. For example, if fc = /i, then the equation for fi becomes

—2x^fi^ —(1 -- x'*)/i^ -I- x^fi -H (x/of 4- x)^ = 0

Doing this makes the elliptic modulus^ fc, a function of the initial conditions
of the ODE.

4.2 Generalizations

We may generalize the idea presented in the preceding section by the follow
ing lemma:
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Lemma 5 Assume the solutions of the following the differential equations
are unique for each set of initial conditions:

x{t) = G{u){x —asg(a;<)) —H(u)yyfu^ —

y{t) = G{u)y + H{u){x - asg{u}t))yju'̂ - k^y^
where

= {x- asg(ijf))^ +

x(0) = Acn(0) and y(0) = Asn(^), and G^ H are continuous.
Define two functions g and f by the differential equations

g\t, A) = g{t, \)G{g(t, A)) and g(0, A) = A

f(t, A) = g{t, X)H{g(t, A)) and /(O, A) = 0
and then define

x{'kI(jj) = y(7r/a;, A)cn(/(7r/tj, A) + ^) + a

y(7r/a;) = y(7r/a;, A)sn(/(7r/cj, A) + 9)
If the map T is defined by the equation

T(®o,yo) = {x(ir/w),y{irlu))

then the Poincare map of the square-wave forced system above is FTFT.

Proof: Apply the factorization lemma to exchange the square-wave forced
system for an autonomous equation which determines T. Differentiate the
functions to obtain the autonomous ODEs and use the relation g^ =
(x —a)^ -f-y^ to eliminate the arbitrary constants from these equations. Then
by the uniqueness assumption we are done. I

For the case where A: = 0, the matrix form of the twist map given by this
lemma is:

( \ / cos(/(t)) -sin(/(t)) \ f Xq-a \ / a^
I = c(t, A) I I -f-

Vy(0 / \ sin(/(<)) cos(/(t)) J \ yo J \0 )

where c(t,A) = y(t, A)/A, y(0,A) = A, and/(0,A) = 0, A^ = (a;o-a)^+yo.
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Remark: Because we have above a pair of first order equations there
must be two arbitrary constants in the solutions. These constants are A and
0. Note, however, that 9 makes no contribution to the twisting action.

Remark: It would appear that if we add damping to a twist map that
appears in a twist and flip map the combined damped twist and flip would
converge to a fixed point since the effect of damping is to decrease the distance
between any point and the center of the twist. However, lemma 13 of [Brown
h Chua, 1991] implies that if the damped twist maps a point to the right
hand side of the vertical axis near the center of the twist (a, 0), then the flip
must map it to the left hand side of the vertical axis, away from the center
of the twist. At best, the damped twist and flip map can settle down to a
period-two point.

4.3 Generalizations of the Twist Map and the Damped
Twist Map

The preceding considerations lead us to a generalization of a twist map and
a damped twist map beyond that found in [Brown & Chua, 1991].

Definition: The following functions define a one parameter family of
generalized damped twist maps in R^, with parameter t:

x{t) = g{t, A)cn(/(<, A) -b 0) 4- a

j((t) =^(<,A)sn(/(<,A) + «)
where Aand $ are determined by a;(0), and y(0), and

and

In the event that
dg .

we have a generalized undamped twist map and the differential equations will
not have a damping factor.
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Remark: These equations define a twist map because both / and g de
pend on Awhich is determined by the initial conditions. This generalization
is consistent with our original definition in [Brown & Chua, 1991].

5 Horseshoe Twist Theorem III for Cleiss 1

ODEs

We have the following extension of the horseshoe twist theorem for the equa
tions of class 1:

Theorem 3 Let (0,y), y > 0, 6e a hyperbolic fixed point of FT where T is a
generalized twist having rotation /(r). Assume that f'{y/a^ + ) > 0- Let M
he the unstable manifold of FT at this hyperbolic fixed point. IfM,hs contains
a fixed point ofT, or t/Mrhs contains a point of the circle ||z —a|| = a, then
M is a c-manifold and therefore FT has a horseshoe.

Outline of Proof: It is sufficient to showthat the key lemmas of [Brown, 1990]
carry over under these assumptions. In the fixed point lemmas simply replace
r by /(r). We assume that / is such that there are hjrperbolic fixed points.
Note that all symmetry lemmas are independent of /. The generalized twist
is area preserving and the trace of D(FT) is given by:

tr =2(l +^^l^^)-4(a/rr
ur

The lemma for the slope of the expanding eigenvector is unchanged by /.
Further the "energy" lenunas are unchanged by /. Given these facts, the
theorem follows. I

We have the following corollary.

Corollary 5 Given a hyperbolic fixed point (0,y), with r = y/y^ -f a^ and
To < r such that /(ro) = 2ujn, a sufficient condition for the unstable manifold
M of this fixed point to be a c-manifold is that the two circles,

(x - af + = rj

and

(x -t- af -I- y^ =
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intersect, or the two circles,

{x —a)^ + = a^

and

(x + af +

intersect

A simpler form of this condition is

r —To < 2a

When /(r) = r this reduces to

r mod (2a;) < 2a.

We have the following conjecture:
Recall that the square-wave forced Duffing equation

X-{• x^ = a sg(a;f)

has the Poincare map FTFT, where T is defined by the map T(a;o,io) =
{x{Tr/(jj),x{T/u)) where a;(f) is the solution of

X -jr = a

having initial conditions (xo,xo)-

Conjecture 1 Given a hyperbolic fixed point of FT on the negative vertical
axis, FT has a horseshoe if the unstable manifold associated to this fixed point
contains a fixed point ofT.

Almost surely a similar theorem is true for classes 2 through 5, but at
this time it has not been proven.

It should be noted that by structural stability of the horseshoe, if a horse
shoe twist theorem is proven for classes 1-5, it will also be true for the damped
equations corresponding to classes 1-5 for some sufficiently small damping
factor.
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6 Extending the Square-wave Analysis

6.1 Generalizing Square-wave Forcing

The squaxe-wave forcing term is an example of a piecewise constant, periodic
function. Another example is as follows:

f(t) = ai forO < i < 7r/2

f{t) = a2 for7r/2 <t<ir

f(t) = —02 forir < << 37r/2

f(t) = —oi for37r/2 <t<2Tr

where / is extended to all real t to have period 27r. If this piecewise constant,
periodic function is used in place of the square-wave as a forcing term in the
equations of the previous sections, we obtain Poincare maps of the form
FT1T2FT1T2, where the T,- come from the same equations as T. The only
difference is that t is now evaluated at 7r/2u;. Thus the T,- are given by

^x('kI2u) \ / cos (/(A)7r/2u;) —sin Xq —ai \

^y(7r/2a;) / \ sin(/(A)7r/2a;) cos (/(A)7r/2w) / \ yo >
+

Note that the center of the rotation of Ti is a,*.
The above observations lead to a generalization that is suggested in

[Brown & Chua, 1991]. The forcing function of the equations of classes 1
through 5 may be any periodic function which is piecewise constant, and the
Poincare map is still obtained in closed form. As mentioned in [Brown &
Chua, 1991] we may approximate the sine function uniformly by a piecewise
constant function and thus obtain an approximation of the Poincare map
for sinusoidal forcing by a Poincare map of the form FTFT where T is a
composition of twists around centers a,-, determined by the sine function. In
this regard we have the following lemma suggested by Prof. Morris Hirsch
at U. C. Berkeley.

Lemma 6 Let

x = F{x,g(t))
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and

y = F(y,fe(«))

for 0 < i < r, where x and y are vectors in R", g,h are real valued (not
necessarily continuous) functions oft, and F is any function in
Then for any compact region o/R", we can find a number S small enough
such that if

f 1/1(5)^
Jo

for 0 <t <T, then (1)
||x(<) - !/(<)|| < e

for allO <t <T.
Further, (2) the derivatives of x,y with respect to their initial conditions

also satisfies this relationship.

Proof: Since F is we may find a compact neighborhood of N, call it Dr,
such that if the solution of the first ODE starts in N it remains in D,. for
all 0 < t < r. Likewise for the second equation we can find a compact
neighborhood of N, call it Dn such that the solution of the second equation
remains in Dn for 0 < i < r. We find a Lipschitz constant, K, for F on the
union of these two neighborhoods and apply theorem 3.3.1 of [Hille, 1969],
using the integral assumption to obtain the estimate

||a;(i) - y(<)|| < 8K exp{Kt)

For K fixed, we may choose 6 such that 6K exp(isrr) < e.
To prove (2) we invoke Peano's theorem, theorem 3.1 from [Hartman,

1964] and repeat the argument. I
This lemma states that the Poincare map of a periodically forced ODE

from any of the above described classes of DDEs may be approximated uni
formly on any compact subset of R^ by a map of the form FTFT, where T is
a finite composition of twist maps T,-, each of which can be obtained in closed
form. The conclusion we reach is that on any compact set, the Poincare map
of a periodically forced ODE from any of the above described classes can be
uniformly approximated on compact subsets by a closed form Poincare map.

We have the following theorem:
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Theorem 4 (Twist and Flip Approximation Theorem 1) Given the
conditions of lemma 6 abovej if the approximating Poincare map has a horse
shoe, then so does the periodically forced Poincare map.

Proof: If the approximating Poincare map has a horseshoe, it exists on a
compact set by [Smale, 1965]. Since the approximating Poincare map is
close to the periodically forced Poincare map, the horseshoe is preserved by
structural stability. I

Remark: By the same argument we have the following result given the
conditions of lemma 6 above. Let the first system be a square-wave forced
system and the second system be a approximation of the square-wave
obtained by "rounding-off" the comers of the square-wave forcing fimction. If
the square-wave Poincare map has a horseshoe, then there exists a "rounded-
off" C®® forced Poincare map having a horseshoe also.

Remark Numerical experiments indicate that the above generalizations
allow us to integrate many square-wave forced ODEs by the use of a compo
sition of twist maps followed by a flip. Doing this results in an integration
technique using about six lines of code that is about ten times faster than
conventional methods. The following is a computer program in QuickBASIC
for the integration of the following class 1 ODE with a sine forcing term:

X = -r{t)y

y = r(t){x —a sin(a;f))

where r(t) = —a sin(u;<))^ + y^.

FOR i=l TO 1000

FORj=l TO M
aa = osin(j7r/M)

r = —laY -{-

u = (x —aa) cos(r/M) —ysin(r/M) -1- aa

u = (r —aa) sin(r/M) -j- y cos(r/M)

X = u

y = v
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PSET (x,y),13
NEXT j

FORj=lTOM

aa = —asin(j7r/M)

r = y(x —aaY +

u = (x —aa) cos(r/M) —y sin(r/M) + aa

V= (x —aa) sin(r/M) + y cos(r/M)

X = w

y = v

PSET (x,y),10
NEXT j
NEXT i

END

RemarkiThe symbol aa in the above code denotes a programming vari
able.

7 Extensions to Three Dimensions

The Duflfing equation,

X+ ax x^ = a cos(u;<)

can be viewed as an autonomous equation of degree 2 in three dimensions.
This three dimensional system is iiot the usual autonomous system obtained
by considering time as a new variable but rather is the following:

X = y

y = z

((i -\-az + 3x^y)/(jj)^ = a^ - (zay + x^)^

For x = y = i = Owe have x = y = 0,2r = 0. This equation is related
to Buffing's equation by the correct choice of initial conditions. If the original
Duffing equation has the initial conditions x(0) = Xo,y(0) = yo then the
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third order equation must have the additional condition ^(0) = a —ayo —
Therefore, the Poincare map has a natural extension to these equations as
the map associated with the period of an implicit forcing term that is not
immediately visible in the three dimensional ODE.

This extension suggests that we should seek to expand our investigations
to three dimensions. In particular, we seek an extension of the twist and flip
map to three dimensions in such a way that FTFT is a three dimensional
Poincare map for a square-wave forced, nonlinear, first order system of DDEs.
We find that this can be done easily, and the three dimensional system is
considerably larger than the class 1, two dimensional system described earlier.

We now illustrate this generalization to three dimensions for the twist
and flip map. In particular, the following three dimensional system of ODEs
has a closed form solution for the Poincare map which is the analogue of the
cla^s 1 system.

Class 1, three dimensions

yj[x-asg{ujt)) +y2

y = _ (j, _ asg(a;i))s(r)
V(x-asg(a;t)) -\-y^

z=-yj(r - asg(a;i))^ -1- f(r)

where r = y(x —asg(a;t))^ +1/^ + and the functions f^g are any
functions. We note that for / = 0 then this system reduces to the two
dimensional, class 1 system. The three dimensional system defines a larger
class of equations than the two dimensional system due to the fact that in
three dimensions we are able to twist in two directions with rotation functions

/ and g.
These equations can be derived directly from the following polar equations

for a twist:

(r, <j>, 0) (r, -H g(r)T, 0-f /(r)r)
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and the polar equations for the associated three dimensional ODE:

(f,^,9) = {0,g{r)J{r))

The rectangular-coordinate matrix form of the twist map in three dimen
sions about the point (a, 6,c) is given by the following equations: Given a
point in three space, (a;, y,z), define = (x —a)^ {y —a)^ (z —c)^ and

—(z —c)^, then T(a;, y, z) = (u -1- a, u -|- 6, u; -f- c)
where,

and.

= C{r,T)
cos (y(A)T) —sin (y(A)T) \ / x —a

sin(y(A)r) cos(y(A)r) / \ y-b

C(r, r) = [cos (/(r)r) + (^ - c) sin (/(rjr/s)]

w= cos (/(r)r)(z —c) —ssin (/(r)T)
Of course we may introduce damping as we did in the two dimensional

case and obtain three dimensional damped ODEs with square-wave forcing.
Class 2, three dimensions
The three dimensional system of first order, nonlinear ODEs

X = —yz

y = xz

z = —k^xy

where,
a:(0) = Acn(^), y(0) = Asn(^), z(0) = Adn(0)

has the Jacobi elliptic functions as a two parameter set of solutions:

x(t) = Xcri{Xt 9^k)
y(t) = Asn(At -H 9, k)
z{t) = Adn(At -I- 9, k)

By the form of the above solutions, we see that these equations define a
twist.
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The following set of equations have, as a two parameter set of solutions,
a twist about the point (a, 0,0)

X = -yz

y = {x- a)z
z = —k^(x —a)y

By replacing the constant a by a sg{ujt) we produce a square-wave forced
equation whose Poincare map is of the form FTFT, where T is a twist map
and F is the flip in three dimensions, and T is defined by the Jacobi ellip
tic functions. By combining the solution of the above equations with a 180
degree rotation we obtain a twist and flip map in three space in which the
twisting takes place on a set of concentric elliptic surfaces. The map FTFT
determined by the twist and flip map is a Poincare map for a three dimen
sional system with square-wave forcing. The matrix form of this map may
be obtained by using the addition formulae for the Jacobi elliptic functions
and identifying the terms Acn(0), Asn(d), Adn(^) with the initial conditions.

Another generalization is suggested by the following set of functions:

x(t) = XcD.{f{X)g{X)t -}- k)
y{t) = XsTL{f{X)h{X)t + $,k)
z{t) = Adn(^(A)A(A)t + k)

The above equations define a general three dimensional twist which solve
the following system of equations, where A^ =

X = -yzf{X)g(X)IX
if = xzf(X)h{X)IX
z = —k'̂ xyg(X)h(X)IX

We may add square-wave forcing as before and generate nonlinear, square-
wave forced ODEs in three dimensions whose Poincare maps are of the form
FTFT, and where T has a closed form expression of a generalized twist.

This analysis can be extended to obtain further examples of twist on
surfaces. In particular, given any family of concentric, closed surfaces in
three spaces we may obtain a generalization of the twist and flip map. Such
a surface can be defined by a first order partial differential equation (PDE)
in three variables, [Sneddon, 1957]. Such a surface is made Up of the integral
curves of a system of three first order ODEs derived from the defining PDE.
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8 Genersdizing the Twist: She£iring

In this section we will describe a generalization of the twist map when con
sidered in isolation from its role as a Poincare map. Thus we now consider
the twist map as a transformation on and ask how it may be generalized.
The following example will provide the motivation for this generalization.

The function x{t) = At2tn(Af -h 9) solves the nonlinear ODE

X — 2xx = 0

where x(0) = lo = Atan(0) and i(0) = xo = A^sec^(^).
Similaxly, the function a;(f) = Aaexp(Af) where a = xq/xq and X= xq/xq

solves the ODE

X — = 0

where x(0) = xq, x(0) = Xq.
In these examples, the initial conditions affect both the "amplitude" and

"frequency" of the solution as in the case of the twist, except in this case
there is no "bending" action taking place etround closed curves because the
solution of this ODE is not a set of closed curves.

The presence of a stretching action without the bending action of a twist
indicates that the above examples are more general than the twist map. In
recognition of this fact we will define sudi maps as two dimensional shears.

Another example of a shear that is not associated with an ODE is given
by the formula:

T(x,y) = (Ax,2//A)

where, A = (xy)^ -j- 1. This map is modeled after the linear hyperbolic
map (x,y) —> (Ax,y/A), where A is any real number greater than 1, and is
determined by a partial differential equation.

The primary reason for defining the shear is that it can be used to demon
strate indirectly that the Poincare map of some nonlinear ODEs have a twist
and flip action. In the following two sections, we proceed to follow this pro
gram and we note that, at present, our methods are somewhat closer to art
than science.
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9 The van der Pol Equation

In this section we indicate that we can find a twist and flip paradigm in the
van der Pol equation with square-wave forcing; namely:

f —€(1 —x^)x -I- Aa; = a sg(w<)

Since it is not possible to drop the damping term in this equation at this point
without losing aUof the interesting dynamics, let us retain it for now. We first
note that the vector form of this equation in does satisfy the conditions of
the factorization lemma, hence the Poincare map can be factored as FTFT.
We now determine the nature of T from the following autonomous equation:

X—e(l —x'̂ )x \x = a

For |x| < 1, the coefficient of the x term is negative and therefore the solution
of this equation is spiraling outward from the point (a,0). For |a;| > 1, the
solution is spiraling inward. Clearly something must give in this autonomous
equation and so a periodic solution appears. We know from the solution
of the autonomous vein der Pol equation that the Poincare map contracts
inwaxd when ls| > 1 and expands outward when |x| < 1. In order to find
the twisting action in these two cases we consider them separately.

Case 1, |a:| << 1. In this case we drop the x^ term due to its size and
obtain the linear autonomous equation

X —ex -f Ax = a

which contains no twisting action. An approximate T map for |xl << 1 can
be obtained in closed form by solving the above linear equation by conven
tional methods. For |x| close to 1 we have an expanding version of the case
2 analysis which follows.

Case 2, [x] near 1 or |x| > 1. In this case we rewrite the equation as
foUows:

X—ex -f (A •+- exx)x = a

The twisting action of this equation, we conjecture, can be found by dropping
the linear terms and taking a = 0 to obtain the equation:

X+ (exx)x = 0
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Changing to (a;, x) coordinates and letting x = p the above equation reduces
to

p + ex^ = 0

where p is the derivative of p with respect to x. We find a shearing action in
this equation as follows. Integrate the above equation with respect to x to
obtain:

X= (H^ —ea;^)/3

or

x/H = H2(1 - e(a;/H)^)/3

where the constant of integration, H, is given by H = (exo + 3xo)^/® Letting
u = x/H and s = we have

/I 3>

which has a closed form, nonperiodic, solution u(s + c), see [Bois, 1961].
Changing coordinates back to x we have the solution

x{t) = lLu(H.H/^ + e,e)

As we now know, the key feature of a solution of an ODE that implies
shearing is the simultaneous presence of the constant of integration defined
by the initial conditions in both amplitude and frequency of the solution. For
class 1 recall that the twist map was defined by the equations

x(t) = Acos (/(A)t + ^) + a
y{t) = Asin(/(A)t + ^)

Hence, the appearance of the constant as a coefficient on the time
variable and H as a coefficient on u assures us of a shearing action. Although
we cannot find the Poincare map exactly, we know that it consists of compo
nents FTFT, where T spirals outward for |x| < 1, and T spirals inward for
other values of x. We indirectly conclude the presence of twisting in the map
T from the presence of shearing combined with the above described inward
and outward spiraling actions.
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10 The Cavitation Bubble Oscillator

We now consider the following equation in [Parlitz, et. al., 1991]

X+ ci + 1 —exp(—x) = asg(a;t)

where we have introduced a square-wave forcing function in place of a cos(tjf).
We decompose this non-autonomous equation into the following two au
tonomous equations:

X-hcx H-1 —exp(—x) = a

and

X-}- cx -h 1 —exp(—x) = —a

Our above factorization lemma does not apply to these equations because
the exponential function is not an odd function of x but we can stiU proceed
without it. First, as in [Brown & Chua, 1991] we drop the damping terms
and consider the pair of equations

X-H 1 —exp(—x) = a

X-1-1 —exp(—x) = —a

where a > 0. A first integral can be obtained to get the equations

x^/2 = (o —l)x + H —exp(—x)

x^/2 = —(a -h l)x + H —exp(—x)

where H is the constant of integration. Inspection of this equation reveals
two separate cases. Case 1 is when |a| < 1. In this case both equations have
periodic solutions which are generalized twists about the point (log(l/(l ^
a)),0). In place of a twist and fiip map we have the Poincare map a
composition of two generalized twists, TiT2, which cannot be written out
explicitly at this time.

For the second case where |a| > 1 we see that one component of the
Poincare map comes from the equation:

X-H 1 —exp(—x) = a
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This equation has the hrst integrsil:

x^/2 + exp(—x) = (a —l)x + H

where H is the constant of integration. This first integral shows that the
solutions are unbounded. Clearly if x(t) > 5 the exponential term is small
and this first integral tcikes the form

x^/2 = H+ (a —l)x

so that x(f) w + p3 which, as a function of time, is a translation
in the phase plane.

The second component of the Poincare map is determined by

X+ 1 —exp(—x) = —a

which has first integrals which are closed curves (periodic solutions) and looks
like a twist. These two cases suggest further generalizations of the horseshoe
twist theorem. In the case of the twist and translate we have the following
theorem where To is a twist centered at (a,0), and Lr(z) = z + rei, were
ei = (l,0)

Theorem 5 Let (c,y), y > 0 be a hyperbolic fixed point of the twist and
translate map L^To, where a > 0 and r < 0 and let M be the unstable
manifold o/LtTo at this hyperbolic fixed point, ijfMihs contains a fixed point
ofTl, then M is a c-manifold and therefore the map LrTo has a horseshoe.

From this we get the following corollary which assumes the existence of
a hyperbolic fixed point (c,y), for LtTo with r = + (0.5r)2. Define
To = (a;[r/a;]), where [x] is the integer part of x. Since tq = (2n + l)w, the
circle rj = (x —a)^ + y^ is made up entirely of fixed points of Tj.

Corollary 6 Given a hyperbolic fixed point (c, y), the unstable manifold M
of this fixed point is a c-manifold if the two circles,

(x - af + y2 = rj

and

(x —a —r)^ + y^ =

intersect.
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The above intersection may be restated as follows:

r < r + To

or

r mod (a;) < r.

We explain the connection of theorem 5 to the non-dissipative twist and
translate of [Parlitz et. al., 1991] at the conclusionof the proof of theorem 5.

The following subsections provide the proof of theorem 5. The figures used
in [Brown & Chua, 1991] can be adapted to this proof simply by translating
the coordinate origin to the point (a + 0.5r,0), Thus we refer the reader to
those figures.

10.1 Definitions

We will use To to denote the twist centered at the point (a,0) with a > 0
and a; > 0.

Let z denote a vector in and let a denote the vector (a, 0) then,

To(z) = A(;rr/u;)(z —a) + a

where

" cos{irr/uj) —sin(7rr/a;)
A(7rr/a;) =

sin(7rr/a;) cos(7rr/a;)

and r = ||z —a||.
For any vector z € R^ define the "energy" function as p{z) = ||z —a||.

Lr will denote a translation of r units horizontally from the origin. The
equation for is

Lr(z) = z + rei

where ei = (1,0).
Kt wiU denote a translation of r units vertically from the origin. The

equation for is
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Kr(z) = z + re2

where 62 = (0,1).
Define the refiection operator about the horizontal axis by the matrix

P =

1 0

0 -1

Define the refiection operator about any vertical line x = a by the rule

Rjj,(z) = 2a —z

We will define c by the equation c = a + 0.5r, and define d by the
equation d = a —0.5r. The refiection operator about the vertical line, x —c
is, therefore, given by the rule

Rc(z) = 2c —z

We wiU use to denote a fiip about the point (a,0) and therefore.
Fa = PRa.

We define C, to be the circle of radius r centered at (a, 0) and define Dr
to be the circle of radius r centered at (a 4- r, 0).

Using these definitions we define to be the intersection of and the
half plane {(x,y)|x > c} and let H,. denote the intersection of and the
half plane {(x,y)|x < c}

We will use [x] to denote the integer part of x. We will use tq to denote
w[r/a;].

For any transformation $ we will use D($) to denote the derivative of
We use the abbreviations RHS and LHS to denote the right-hand side

and left-hand side, respectively.

10.2 Lemmas

Lemma 7 (1) Let Zo G R^. //"Fc(zo) and Zq are on the same energy curve
Cr, then Zq = (c,yo) for some yo £ R. i.e., Zq is on the line x = c.

(2) IfTl{c,y) = (c,y) then LrTa{c,y) = Fc(c,y)
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Proof: Direct computation. I

Lemma 8 IfLrTa{c,y) = (c,y) then Ta(c,y) = {cf,y).

Proof: Direct computation. I

Lemma 9 LtTo has an infinite number of fixed points. Moreover, they all
lie on the line x = c and approach infinity in both directions.

Proof: At a fixed point, z, we have the equation:

T„(z) = l;Hz)

consequently the following equation holds:

A(7rr/u;)(z —a) = (z —a —r).

From this matrix equation follow three scalar equations

||z-a|| = ||z-a-r||

cos(7rr/w) = 1 —0.5(r/r)^

sin(7rr/a;) = ry/r^

The first of these equations shows that all fixed points lie on the vertical line
as stated.

The last two equations show where the fixed points lie exactly. From
the last two equations for the sine and cosine we may derive the following
equation:

tan(7rr/a;) = ry/(2r^ —r^)

The existence of an infinite number of fixed points follows directly from
this functional equation. I

Lemma 10 det(D(LTTo)) = 1 everywhere.

Proof: Clearly Lt is area preserving for any r and the same is true of the
twist thus the determinant is 1. I
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Lemma 11 The trace o/D(LrTo) at a fixed point is given by

tr = 2 -
ruj

and tr > 2 for —y > TLj/rir. Consequently, all fixed points for which
—y > ryulrir along the positive vertical line x = c are hyperbolic, and the
eigenvalues are also positive. For tr between -2 and 2, the fixed points are
elliptic.

Proof: Note that as a function of u, the rotation matrix A satisfies the first
order ODE,

A'(u) = BA(u)

where,
0 -1

B =

1 0

In this proof we will use the abbreviations, r^. = drjdx and ry = drjdy
The derivative of LtT®, i.e., the Jacobian matrix of LtTo with respect to

{x,y) is as follows: Let p = tt/lj. Note that

D(L,)(z) = I

and

D(L,Ta)(z) = I
dA(pr){z - a) dA(pr){z —a)

dx

(Note that in the above expression

dA(pr)(z —a)
dx

dA{pr){z —a)
and

dy

are two dimensional column vectors.)
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This is equal to

/z[ra.A'(^r)(z - a),rj,A'(/ir)(z - a)] + A(/ir)

Since A'(ti) = BA(u), we have

D(L^Ta)(z) = ijL[r^BA(fjLr){z - a), ryBA(//r)(z - a)] + A(/ir)

Using the equation from lemma 9, i.e.

A(7rr/a;)(z —a) = (z —a —r)

in the equation for D(Li.To) we have, at a fixed point of L^To:

D(LrTa)(z) = ii[rxB(z - a - r), ryB(z - a - r)] + A(/ir)

Therefore at a fixed point of LtTo, the derivative of L^To is given by the
matrix

D(L,Ta)(z) =
—/z?/r/2r + ocis{nr) —sm{fir) —(ly^/r

—(/zr^/4r + sin(/xr)) —p.Tyl2r + cos(nr)

Using this matrix equation we can compute the trace of D(LtTo):

trace(D(LTTa))(c,t/) = 2 - (r/r)^ - (rTry/ru;)

Lemma 12 For any hyperbolicfixed point o/LtTo on the positive line x = c,
each branch of the unstable manifold is mapped onto itself by LrTa.

Proof: For a hyperbolic fixed point the eigenvalues are given by

A= tr/2 ± y(tr/2)2 - 1

For tr > 2, tr/2 > y(tr/2)2 -- 1and so both eigenvalues are positive.
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Lemma 13 Let (c^y) be a hyperbolic fixed point ofLrTa on the vertical line,
X = c. The expanding eigenvector of the unstable manifold has a slope given
by

slope =
(tr/2) +1
(tr/2)-l-

Consequently, the unstable manifold meets the vertical line transversely at
{c,y).

Proof:

The eigenvalues of D(Li.Ta) at a fixed point are given by the formula:

A= tr/2 ± ^(tr/2)2 —1

where tr is the trace of D(LrTo). The slope of the expanding eigenvector is
given by

slope = —(A —tr/2)/(sin(/ir) + py^/r)

and this is equal to

-^(tr/2)2 - l/{sm{pr) + py'̂ /r).

Now, sm{pr) = ry/r"^ so that we conclude from this that the slope is
given by

slope =
(tr/2) +1
(tr/2) - 1

Lemma 14 Let Zo be a point on the line x = c. IfLrTa(zo) is on this line,
then Ta(zo) is also on this line and Zq is either a fixed point o/Tj or a fixed
point o/LtTo.

Proof: If LrTo(zo) lies on the line x = c then L7^Li.Ta(zo) must lie on the
line X = c' and hence the same energy curve as Zq. ToZq) must also be on
the line x = d, hence either 180 degrees from Zq or a fixed point of L^Ta. 1
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Lemma 15 (1) For any a, PTaPTa = I
(2) For any r, L^-P = PL^
(3) For any a, = L2aRo therefore RaL^ = L_^Ra
(4) For any a, R^Ta = T~^Ra.
(5) For any a, L~^ = L-a-

Proof: All are direct computations. I

Lemma 16 For any a, r Rc(LTTa) = (LrTa)"^Rc.

Proof: Recall that c = 2a —r. From (4) of lemma 15, RoTa(z) = T~^Ro.
The result follows from the observation that RcL-r = Ro- ®

Lemma 17 Given a hyperbolic fixed point o/L-rTo, let S be the stable mani
fold, and let M be the unstable manifold at this fixed point. Then Rc(M) = S

Proof: Lemma 16. I

Lemma 18 Given a hyperbolic fixed point ofLrTa, let S be the stable man
ifold, and let M be the unstable manifold at this fixed point. If M. = S, then

ReL,.T„(M) = M

or equivalently,
R,Ta(M) = M

Proof: LrTa(M) = Ra(M). I

We state without proof the following fact:

Lemma 19 Let A be a2x2 real matrix with positive eigenvalues of the form
A, 1/A, where A> 1. Let u,v be real eigenvectors for A and 1/A respectively.
Let w be any vector lying between u and v. Then A(w) lies between u and
w.

Lemma 20 Let px = (c,2/i) and p2 = (c^yf), yi < y2 two hyperbolic fixed
points o/LrTa on the positive line x —c having no other fixed point-^ofLrTa
between them. Then there exists a fixed point o/Tj on the positive line x = c
between pi and p2.
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Proof: By lemma 13 a branch of the local unstable mamifold of L^To at the
fixed point pi lies on the LHS of the plane. By the same lemma a branch of
the local unstable manifold at the fixed point p2 of LrTa lies on the RHS of
the plane. Let LL be the vertical line from pi to p2 on the line x = c. By
lemma 12 (positive eigenvalues) and lemma 19 LrTo maps a small segment
of LL, near pi, into the left half line x = c. Also, h^Ta maps a small segment
of LL, near p2} iiito fbe right side of x = c. By connectedness of the line
LL and the continuity of the diffeomorphism LrTa, there must be a point
between pi and p2 which is mapped onto the line x = c. We will call this
point Zq. By lemma 14 this must be a fixed point, or a period-two point for
To. By hypothesis Zq cannot be a fixed point and so it must be a period-two
point for To on the line x = c, i.e., a fixed point of T„. I

Lemma 21 IJxq lies on the RHS of the line x = c and if the LtTo(zo); lies
on the RHS of the line x = c, then p(LrTa(zo)) is strictly less than p(z).

Proof: H zo in on the RHS of the line x = c and LtTo(zo) in on the RHS of
this line, then Ta(zo) = z = (x,y) is on the RHS of the line x = cf. Since
a < the result follows. I

Lemma 22 Let (c, po) a hyperbolic fixedpoint o/L^To on the positive line
X= c. Letr = ^(t/2)2 -f pj. //Mrhs intersects the circle (x—o—r)^-|-y^ =
on the RHS of the vertical axis then it also intersects the line x = c.

Proof: H Mrfu, intersect this circle on the RHS of the vertical, then there is
a first intersection (minimum arc length from the fixedpoint). Call this point
p. Since we assume that Mriu has not intersected the line x = c, it must be
true that (LtTo)"'̂ (p) must be in the interiorof the circle (x—a—t)^-}-i/^ =
and must lie entirely on the RHS of this line. This is because the slope of the
unstable manifold at the fixed point is less than r/2y by lemma 13 and r/2y
is the slope of the circle (x —a —r)^ at the fixed point, (c,po)- But
(LtTo)"^(p) = T~^(p—rei) which must lieon the circle (x—a)^-|-y^ = and
thus is not in the interior of the intersection of the circle (x —a —r)^-l-y^ =
and the RHS of the vertical axis. I
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10.3 The Horseshoe Twist and Translate Theorem

As in the twist and flip map, theorem 5 is an easy consequence of two facts
about the unstable manifolds of LtTo. The first fact, proposition 2, states
that every unstable manifold of LrTa from a hyperbolic fixed point on the
positive vertical axis, meets and crosses the vertical axis at a point other than
the fixed point. The second fact is theorem 6, which states that the right
hand branch, Mrfu,, of every homoclinic manifold (i.e. M=S) from a fixed
point of LtTo lying on the positive vertical axis lies in an annulus bounded
away from the fixed points of Tj. From this we conclude that if M contains
a fixed point of To it cannot be homoclinic. •

Lemma 23 If M = S then Mrhs = Sihs-

Proof: Suppose that M=S.
Assume that the right hand branch of the stable and unstable manifolds

meet, and thus coincide. By lemma 13 Mrhs begins in the interior of Dr .
By the same lemma Sjhs lies on the RHS of the line x = c and lies outside
of Dr. To meet Syhs on the RHS of the vertical, Mrhs must cross this circle
by continuity. But this cannot happen by lemma 22 unless Mrhs has already
intersected the line x = c.

But if Mriis intersects this line, so does S and at the same point, since By
lemma 17, Rc(M)=S. So if S=M, RcCMrhs) meets Sihs and so must coincide.
This contradicts our assumption that Mrhs = Srhs* ®

Proposition 2 Let (c,y) be a hyperbolic fixed point of LtTo on the positive
line X= c. Let r = ^(t/2)2 + y^. Let Mbe the unstable manifold at (c,y)
and let S be the stable manifold at (c,y). Then there is a point where M
meets and crosses the line x = c other than the fixed point (c, y).

Proof: If M=S we are done by lemma 23.
Assume that S ^ M and that there is no point on the line x = c where M

meets and crosses other than the fixed point. M —{(c, y)} has two branches
(which, by lonma 12 are mapped onto themselves) and since the slope at the
fixed point is not vertical (lemma 13), one branch must lie entirely on the
RHS of the vertical. Call this branch Mrhs*

If p is amy point in Mrhs the iterates of p by LrTo define an infinite
sequence of points all on the RHS of the line x = c. The energy curves of
this sequence of iterates must have a limit (lemma 21).
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Consequently, the a;-limit set of the iterates consists of a fixed point or a
period-two orbit. But the w-limit set cannot contain a period-two orbit since
the unstable memifold of a fixed point cannot terminate at a period-two point.

Thus assume that the cj-limit set is a fixed point other than (c,y).
If the tmstable manifold is to reach another hyperbolic fixed point on the

positive axis it must first intersect a circle of fixed points of (lemma 20).
Let Tj(p) = p be a fixed point of which is on the RHS of the line x = c.
Then LtTo(p) = Lt(Fc(p)) which is on the LHS and hence M must intersect
the vertical axis.

The unstable manifold M cannot terminate at the stable manifold of a

h3q)erbolic fixed point on the negative axis without intersecting and crossing
the line x = c because of such fixed points have negative eigenvalues.

The only remaining possibility is that the a;-limit set is an elliptic fixed
point of LrTfl. But this is also impossible. Therefore every unstable manifold
of a positive fixed point of LtTo must meet the line x = c. I

Lemma 24 Let (c,y), y > 0 6e a hyperbolic fixed point for L^Ta and let
Mrhs as in proposition 2. Let p be the point on the vertical axis that is in
M, and has shortest arc length measured along the unstable manifold to the
point (c,y). Let Za be (LrTa)"Hp). Let r = -|- (r/2)2 and ra = ||za —a||
and define the annulus Aa by the equation

Aa = {z|ra < ||z - a|| < r}

Let V = (Mrhs n A„) Then Ta(V - {p}) C L;i(H,).

Proof: We have the following facts To(V) C Cr, To(c,y) = {(f^y), and
Ta(Za) = L~^{p). By the choice of z^, there can be no other points on the
line X= cf other than (cf^y) and L7^(p), so that To(V) must lie entirely in

I

Theorem 6 (Homoclinic Manifold Theorem) IfM is a homoclinic man
ifold o/L-rTa, then lies in an annulus bounded awayfrom the fixed points
ofTl

Proof: Since M is homoclinic we have M = S = Rc(M). Let Mrhs be the
branch of M lying in the RHS of the plane. Rc(Miha) = Sihs (where "lbs"
stands for left hand side) and so
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RcCMrhs U Slhs) = (Mrhs U Sihs)

form a connected curve in R^. We will label this curve N and note that it

contains the branch of the unstable manifold M lying in the RHS of the line
X = c.

Let q be the point other than (c, y) where N meets and crosses the line
X= c and let Za = (LTTa)"^(p). By lemmas 13 and 18, RcLT(N) = N.

For any annulus A centered at (a,0), we have RcLi.Ta(A) = A. So,
RcL-rTo(A n M) = A n M and also, RcLrTaCA D N) = A H N. This relation
must hold for A^. By the choiceof we have Ta(AanMrhs) must lie entirely
on the RHS of the line x = d (lemma 24), except for the point q which must
lie on this line. For convenience we define Mo = (A® fl Mxiis). Therefore
RcLtTo(Mo) = Slhs- Since Srhs lies entirely in A®, we conclude that N is
contained entirely in A® URc(Aa).

NowTo To- K w is the fixed point of that is in Mrhs? flien LrTa(w) =
LtFc(w) which is on the LHS of the line a; = c, i.e. ro < To hence M® cannot
intersect C^o and so N cannot intersect Cr^ U Dm-

We conclude that M is bounded away from the circle of fixed points of
Tj, C,.^. Thus N lies inside the circle and outside the circle C, where
s > To. 1

Corollary 7 Assume the definitions of the above lemma. /fMrhs is a homo-
clinic manifold, it must meet and cross the negative line x = c.

Corollary 8 Assume the definitions of the above lemma. If Mrhs crosses
the positive line x = c at a point other than the fixed point, then it is a
c-manifold.

Theorem 5 (Horseshoe Twist and Translate Theorem) Let (c,y),
y > 0, be a hyperbolic fixed point o/LrTo and let M be the unstable manifold
of LtTo at this hyperbolic fixed point. If Mrfuj contains a fixed point of
then M is a c-manifold.

Proof: By theorem 6 if Mrhs contains a fixed point of Tj then it cannot
be homoclinic. Mrhs must meet the line x = c by proposition 2, at p and
by lemma 17 this is a homoclinic point. If M meets the stable manifold at
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this point there is a horseshoe by[16]. If M is tangent to the stable manifold
at this point then there is still a horseshoe. Thus in any case there exist a
horseshoe, and M is a c-manifold. I

Corollary 2 Given a hyperbolic fixed point (c, y), with r =
and To (jj[tIu], a sufficient condition for the unstable manifold M of this
fixed point to be a c-manifold is that the two circles,

(x - ay -\ry^ = rl

and

(x —a —r)^ +

intersect.

Proof: Note that by the definitions in section 10.1, the first circle above
is denoted C^o and the second is the circle is denoted D^. Assume these two
circles intersect. Note that the circle C^o is a circle of fixed points of T^.

If Mjhs crosses the positive line x = c at a point other than the fixed point
we are done by corollary 8. Thus assume that Mrfm crosses the negative line
X = c. By lemma 24 and the fact that Mrhs crosses the negative line x = c,
this crossing must lie below the circle of fixed points of Tj. Hence there axe
points in Mrhs that lie above the circle C,.^ and below C^o and so because
intersects Cro and Myhs is connected, it must intersect C,.^ and thus contain
a fixed point of Tj. By theorem 5, M must be a c-manifold. I

10.4 Connection of the Twist and Translate to the

Map of Parlitz

We note that the map of Parlitz is a dissipative twist centered at (0,0) with
a translate of the form Kt(z) = z -h re2 where in the notation of their paper
T = a. If we define the matrix C by the equation

'0 1

C =

. 1 0

Then for any r,
= CL,.C
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and so the map of [Parlitz, et. al.,1991] is K^To = CLtTqC. This states that
the map of Parlitz is topologically conjugate to the map of theorem 5 and
the specific conjugacy is given by the matrix C. (Note that = I).

The addition of dissipation to a twist can remove all hjrperbolic fixed
points and thus eliminate chaos [Brown & Chua, 1991], but this requires a
very large damping term. In a subsequent paper we will provide a direct
theorem on the dissipative twist and flip or translate map that will avoid
the use of structural stability to establish chaos in a dissipative equation.
In the present case however, chaos is established in the dissipative twist and
translate by applying theorem 5 and then appecding to the structural stability
of the twist and translate map.

It is clear that a theorem is needed that places a specific limit on the
amount of dcunping that can be added to any of the maps in this paper
before an existing horseshoe is removed. This would provide the first of
two theorems needed to make chaos a design tool in the development of
dynamical systems. The second theorem needed is one describing when an
existing horseshoe in a dissipative twist and flip or translate map creates a
strange attractor.

We have two conjectures along these lines.

Conjecture 2 If a horseshoe exist for a non-dissipative twist and flip or
translate map, then it wUl continue to exist in the associated dissapitive twist
and flip or translate map until enough dissipition is added to remove the
associated hyperbolic fixed point.

Conjecture Z If a horseshoe exist in a dynamical system defined by a diss
apitive twist and flip or translate map due to a hyperbolicfixed point of min
imum energy, then a strange attractor may be created from the associated
hyperbolic period-two point, if it exist, by the addition of sufficient damping
to remove the hyperbolic fixed point.

This last conjecture is illustrated in section 12 using the map of Parlitz.
The above considerations suggest the following additional conjecture:

Conjecture 4 Let
X = F{x,y,g{t))
y = G{x,y,g(t))
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whtrt g{t) is periodic, F, G are nonlinear functions of x, y, and the above
equations admit a unique solution for each set of initial conditions in the
plane. Then, at any periodic point of the Poincare map of the above equa
tions, the Poincare map can be -approximated on a compact set which
contains the periodic point by maps of the form T1T2 where T2 is a finite
composition of maps at least one of which is a twist map, and Ti is some fi
nite combination of twist maps, flip maps, translate maps, or diffeomorphism
defined by some linear second order ODE.

A sort of converse to the above conjecture is the following lemma which
is true in n-dimensions but which we state in two dimensions for simplicity:

Lemma 25 Let C be a two dimensional constant, real matrix and let the
following linear matrix ODE be given:

X = Cx

Then for any time t = r, the solution of this equation defines a factor of a
Poincare map for a square-wave forced, two dimensional, non-linear ODE.
The non-linear ODE may be chosen so that the Poincare map is of the form
LTLT; where T is a simple twist.

Proof: We construct the required equation explicitly:

y = 0.5(1 +sg(u;i))F(y)+

0.5(1 - sg(u;t))exp(Cr)F(exp(-Cr)y)

where y is a two dimensional vector, and F is a two dimensioned vector
valued function of a two dimensional vector, and F is such that this defines
an ODE having a unique solution for each vector initial condition. T is the
diffeomorphism defined by the solution of

y = F(y)

evaluated at the time f = tt/w, and so the Poincare map of the square-wave
equation above is given by LTLT where

L = exp(C7r/a;)
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In the case where C is the flip map, and F(a;, i) = a —a:® The square-wave
forced ODE is given by x -1- = asg(a;<).

The same procedure shows how to construct square-wave forced DDEs
having Poincare maps of the form contained in conjecture 4. We may use a
variation of this procedure to construct an ODE having a twist and translate
as a Poincare map. This equation is:

x\ I y
= sgi(wt)

y / \ o -

where sgi(u) = 0.5(1 + sg(it)) and sg2(u) = 0.5(1 —sg(u)).

11 Modeling and Simulation Using the Non-
Dissipative Twist suid Flip Maps

The work of Parlitz [Parlitz, et. al, 1991] demonstrates the value of maps
as a tool for modeling and simulation of important dynamical systems. We
would like to provide support to their position by way of some examples.

The first fact which has been graphically revealed by a study of the twist
and flip (twist and translate may also be used) map is that a non-dissipative
twist and flip dynamical system is made up of elliptic and hyperbolic periodic
points. Around these periodic points are elliptic and hyperbolic regions.
Some of these hyperbolic regions are chaotic and some are not. Within the
chaotic regions can be found islands of elliptic regions. Of course, all of this
is known to be true for Hamiltonian systems as was mentioned in [Brown Sz
Chua, 1991], but these facts may be easily studied and analyzed very quickly
by the use of the twist and flip map.

For example, if one were to try to produce the portrait of the elliptic
and the hyperbolic regions shown in the following figures by conventional
numerical integration, it would take approximately 100 times longer than
using the twist and flip map. Moreover, it is possible to build dedicated
hardware made of off-the-shelf electronic components (e.g., DSP IC chips)
which implements the twist and flip map in real-time. Further, what can now
be revealed by the twist and flip map is the remarkable complexity of these
islemds in terms of size and number. This fact has implications for the study

+ sgaM)
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of dynamical systems in general by experts in signal processing, encryption,
control theory and the life sciences: The shape of the unstable manifolds and
their relation to the elliptic regions may provide a classification of dynamical
systems since it is likely to be unique for each Poincare map.^

The complexity of the unstable manifold and the elliptic regions that
appear with it can be seen in the examples in Figs. 1, 2, 3, and 4. Figs. 1, 2,
and 3 are hrom class 1 above; Fig. 4 is from class 3. We include detailed data
on these figures that will permit their reproduction. The first three figures
from class 1 differ only in the location of their periodic or fixed points and
the rotation function /. In Fig. 1, the unstable manifold is shown in green;
in Fig. 2 there are two, one is shown in red, the other in pink; in Fig. 3 it
is shown in orange. In Fig. 4 it is shown in pink. The other colors define
elliptic regions.^

The unstable manifolds in these figures are typically produced by iterating
5000 points from a small line segment of length eps. The elliptic regions are
obtained by iterating a single point or several points 1000 times. The number
of points iterated is denoted below as M. As mentioned, for an unstable
manifold M=:5000. To produce the various elliptic regions, M ranges from 1
to 7. When producing an unstable manifold, the length of the line segment
ranges from 0.02 to 0.0002. When the parameter eps is used in the generation
of elliptic points, it denotes the maximum spacing between the x—ordinate
of each initial point used.

To describe each figure we must only specify the class of twist from among
the five classes described above from which each twist comes, specify the
rotation function used within that class, and then specify the following six
parameters: amplitude, a, frequency, a;, the initial conditions of the fixed or
periodic points, xq, yo» slope of the unstable manifold, and the number of
iterations, N, of FT. The generic code used in Figs. 1- 3 is reproduced below.
It is adapted to each figure by changing the rotation function.

FOR i=l to M+1

X= xo + (—1 + (2(z —1)/M))eps

^This only provides a classification and not a unique signature for a dynamicalsystem
since the Poincare map is not unique to a dynamical system.

^The method of forming new twist maps by variation of the rotation function was
suggested by Morris Hirsch.
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FOR j=l to N

PSET (x,y)
NEXT j
NEXTi

2/ = t/0 + slope(x - Xq)

r = ^(x - a)2 + 2/2
r = /(r)

u = {x —a) cos(r) —y sin(r) + ct

V= y cos(r) + (x —a) sin(r)

X = —u

y = -v

The code used for computing the elliptic regions is the same except that
the parameters are different.

We have collected this data in the following four subsections.

11.1 Data for Reproducing Fig. 1

Fig. 1 is produced by a class 1 equation.

Rotation Function: /(r) = 10r/((l +rlog(r))

a = 0.2 UJ = IT xo = 0 yo = —0.21808 N=16 slope = .59 M=5000

eps = .0001

The parameters for computing the elliptic regions are as follows:

o II a
;=T
T Xo=—0
.6

yo=1
.1N=10

00
slop

e=1.1M=
7

eps=1
.0

Ellip
tic

Regi
on2data

:
a=0.

2
a
;=T
T xo=—0

.1
yo=-2N=1

000
slop

e
=1.1M=

7

eps=0.
6

Ellip
tic

Regi
on3data

:
a=0.

2
u;=T

T Xo=—0
.1

yo=-.9
3

o o o 1-H II slop
e=4M=
4

eps = 0.04
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11.2 Data for Reproducing Fig. 2

Fig. 2 is a class 1 equation.

Rotation Function: /(r) = —sin(4log(r))

g = 1.0 U = IT
o

II

Cn
O

II

1

1—*
o

o
to

N=10 slope = 1.24 M=5000

Unstable Manifold 2 Data (Period 5 Point):
g = 1.0 iO = IT xo = 0.0 1yp = —6.17665 N=35 slope = 0.09 M=1000

eps = .01

The parameters for computing the elliptic regions are as follows:

ElHptic Region 1 Data:
g = 1.0 (jj = IT

o

II

t—»
o

2/0 = 6 N=1000 slope = —1.0

II

eps = 0.5

Elliptic Region 2 Data:

II

o U
J

=Txp=
5.0 yp=
3.3 N=1000
slope=
1.0 M=2

eps = 0.5

Elliptic Region 3 Data:
g = 1.0 cj = ir Xo = 0.0 yp = —4.5 N=1000 slope =1.0 M=2

eps = 0.3

Elhptic Region 4 Data:
g = 1.0 uj = IT xo = 5.6 yp = —0.0 N=1000 slope = 0.0 M=3

eps = 0.15

11.3 Data for Reproducing Fig. 3

Fig. 3 is a class 1.

Rotation Function: /(r) = (1 +log(r))/r

g = 0.2 LJ = IT

lO
O

I—t
cq

o
I

II

o
o

II

o

N=12 slope = 0.0 M=5000

eps = .0001
The parameters for computing the elliptic regions are cis follows:

Elliptic Region 1 Data:
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a = 0.2 Xo = —0.8 t/o = -0.0 N=1000 slope = 0.1 M=7

epa = .3

a = 0.2 a; = TT xo = 0.5 yo = 0-1 N=1000 slope = 1.0 M=1

eps = .1

11.4 Data for Reproducing Fig. 4

We note that Fig 4 is produced by use of the Jacobi elliptic functions in place
of the sine and cosine.

Fig. 4 is a class 3, period 22 point.

Rotation Function: /(r) = 1/r; P = l/(r^ + 1)

a = 1.0 cj = TT Xo = O'O yo = —0.36 N=88 slope = —1.2 M=5000

eps = 0.02
The parameters for computing the elliptic regions are as follows:

Elliptic Region 1 Data:
a = 1.0 (jJ = IT

p
O

II

o

00
o

II

N=1000 slope = 1.0 M=1

II

p

Elliptic Region 2 Data:
a = 1.0 W = TT xq = 0.0 yo = 0.8 N=1000 slope = 1.0 M=1

Co

II

p
to

Elliptic Region 3 Data:
a = 1.0 (jJ = IT Xo = 0.0 yo = 0.7 N=1000 slope = —2.0 M=5

eps = 0.2

Elliptic Region 4 Data:
a = 1.0 CJ = TT Xo = 0.0 yo = 1.2 N=1000 slope = 100 M=1

eps = 0.2

11.5 Illustrating the Smale Horseshoe Using the Twist
and Flip Map

There axe numerous accounts of the Smale horseshoe paradigm, [Gucken-
heimer & Holmes, 1983] being a very good one. However, all of these expla-
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nations have one thing in common: none of them utilizes a concrete example
as an illustration, but instead all depend on defining the horseshoe map by a
description rather than a function. This abstract approach can be explained
by the general absence of simple, intuitive examples on which to ba^e an
illustration. In [Brown & Chua, 1991], we provided a simple, concrete illus
tration of homoclinic tangles that can easily be reproduced and studied. In
this section we provide a similarly simple, concrete illustration of the horse
shoe. In particular, the horseshoe is produced by using a map of the form
FT2T1 where the T,* are each a simple twist map (i.e., rotation function
/(r) = r). The only difference in these two twists is the center of the twist.
In particular, for Ti the center of the twist is (0.3,0.0) and for T2 the center
of the twist is (0.5,0.0).

In Fig. 5 we show the unstable manifold in green and a small arc of the
stable manifold in pink as a line of reference. The fixed point is approximately
(0.1887,1.12) and is seen in the figure as the highest point of intersection of
the two msmifolds. In Fig. 6 we have placed a white square whose far left
corner is at (0.139,0.935). As seen there the square is placed in just such a
way as to be intersected by the unstable manifold in green. This is essential
if a horseshoe is to be produced. In this figure we show the successive iterates
of the square by FT2T1 in different colors. For example the first iterate is in
light blue and is to the right and partly below the white square. Note that
is has been pulled toward the xmstable manifold, and conforms to the shape
of the paxt of the unstable manifold of Fig. 5 that it is located near and that
it has been stretched or "sheared". The second iterate is in red and is closer

still to the unstable manifold as can be judged by referring back to Fig. 5
again. The third iterate of the square is in pink, the fourth is in orange,
the fifth is in grey, the sixth is in blue. The seventh iterate is in green and
seems to duplicate an arc of the unstable manifold from Fig. 5. This iterate
cuts through the original white square in two places, producing the familiar
image of a horseshoe found in texts on nonlinear dynamics. In Fig. 7 we
have enlarged the area around the square and have suppressed the interior
points, leaving only the outline of the square. We have included the seventh
forward iterate of the square in green and the seventh backward iterate in
pink. As can be seen in the figure, both of these iterates intersect the square
and each other forming the first set of inter^^ections that will produce the
Cantor set on which the horseshoe map exists. If now we were to form the
seven forward and backward iterates of the green and pink intersections of
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the square, more components of the Cantor set would be created.
The essential data for reproducing these three figures is given in the fol

lowing tables:

Data for The Unstable Manifold Computation:
fli = 0.3

to

II

p

e

II

xq = 0.1887 yo = L12 slope = —1.2 N=ll
Length of fine segment is eps = .002 and the number of points in the line

segment is M=2000.
The QuickBASIC code used for these computations is as follows:

FOR i=l to M

FOR j=l to N

PSET (x,y)
NEXTj
NEXTi

r = xo + ((i + 1)/M)eps

y = yo-\- slope(x - xo)

r = \]{x-ai)2
u = (x —ci) cos(r) —y sin(r) + ai

r = y cos(r) -f (x —ai) sin(r)

r = —02)^ +

ul = (u —02) cos(r) —Vsin(r) -|- 02

ul = u cos(r) -1- (u —02) sin(r)

X = —itl

y = -ul
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12 Illustration of Conjectures 2 eind 3 Using
the Map of Parlitz

In this section we illustrate conjectures 2 and 3 using the map of [Paxlitz et.
al.,1991]. The illustration consists of six figures described in the following
four subsections. The map we use is given by

where

LTTa(z) = A(7rr/u;)(z —a) + a + rei

A(7rr/a;) = exp(—d7r/2ii;)
cos(^r/a;) —sin(7rr/a;)

sin(7rr/a;) cos(7rr/a;)

We now choose a = 0 so as to obtain a map that is conjugate to the
map of Parlitz by a simple conjugacy C, where

C =
0 1

1 0

For simplicity of illustration we take uj = ir and relabel t as a since
we have already set the original a in our definition above equal to 0. The
resulting map we will use for illustration is given by

LoT(z) = A(r)(z) + aei

where A is as given above. For convenience we define

a = exp(—d/2)

Recall that the map of Parlitz is given by KaT where Ko(z) = z + ae2
and that KoT = CLoTC. Thus there is no loss of generality in using La in
place of Ko. For convenience, since a is fixed, we will drop the subscript of a
in the following discussion and refer to our map from now on as LT.

We are going to illustrate what happens to the unstable manifold of a
fixed point of LT and a period-two point of LT as we increase d= —2 log(Q)
the damping factor from 0.0 to approximately 0.657. This is the same as
decreasing a from 1 to 0.72.
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What we are going to see first is a portrait of the two unstable manifolds
as they appear in the non-dissipative system. The fixed-point manifold is
in blue, the period-two point manifold is in green. Then we are going to
illustrate what happens to these two manifolds cis a taJces on the values of
0.9, 0.8, and 0.72. This will correspond to damping fax:tors of 0.21, 0.45, and
0.657, respectively.

We will see that as long as the fixed-point manifold exists, the attractor
of LT is a fixed point sink, and therefore only transient chaos is possible
except for initial conditions that start on a horseshoe. Once the fixed-point
manifold is destroyed by the addition of enough damping, which we may
prove is always possible to do, the period-two manifold becomes a strange
attractor and remains so until enough damping is added to destroy it also.
It will be seen that the period-two manifold will still exist when a = 0.72 or
d = 0.65, a very large damping factor.

These figures illustrate that some "small" damping of a map having a
horseshoe can produce transient chaos and that true chaos has a zero proba
bility of being found when the damping is small enough, although the horse
shoe does exist and so chaos is theoretically possible. What is interesting is
that sufficient damping must be added to destroy the fixed-point manifold
before a strange attractor can appear associated with the period-two unsta
ble manifold and thus produce chaos. These facts provide the illusion that
damping is the source of chaos. But damping does not produce horseshoes,
it can only destroy them and so this is only an illusion. The true chaos can
only arise in the presence of horseshoes or perhaps homoclinic tangencies.

In the following subsections the data for reproduction of the figures is
organized parallel to the previous figures.

12.1 Unstable Manifold for Fixed and Period-Two

Points for a = 1.0, d = 0.0

Fig. 8 is the unstable manifold for a fixed point in blue, and the unstable
manifold for a period-two point is green.

o II o CO I II <
3 Xq=—1

.5
yo=5.5

5600 IICO o I II & <
0o o o «—

1
II

eps = .01

Period-Two Unstable Manifold (Green):
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Figure 8 Figure 9

Figure 10 Figure II

Figure 13

Figure 12



o o II 'T
S

o CO I II C
Jxq=—1
.5

Vo=2.7
6

N=
12

slop
e=—1.4
6

M=4
000

eps = .01

12.2 Figure 8 with the Addition of Damping Factor
= 0.21

Fig. 9 is the unstable manifold for a fixed point in blue, and the unstable
manifold for a period-two point is green. The data is as follows:

a = —3.0 d = 0.21 Xq = —2.535 2/0 = 5.14

II

00

slope = —0.43 M=1000

eps — .1

a = —3.0 d = 0.21 Xq = —1.465 yo = 2.25 N=16 slope = —1.485 M=2000

eps = .05

The attractor in this case is approximately the point (-2.94,-6.069).

12.3 Figure 8 with the Addition of Damping Factor
= 0.45

In Fig. 10 the unstable manifold for the fixed point is gone thus this figure
is the unstable manifold for a period-two point in green. The data for this
figure is zs follows:

Period-Two Unstable Manifold (Green):
a = -3.0 d = 0.45 a;o = -1.46 yo = 2.285 N=16 slope =-lM M=2000

eps = .03

Fig. 11 is the strange attractor for LT when d = 0.45. The data used in
generating this figure is as follows:

Strange Attractor (Red):

o CO I II e d=0.4
5

Xq=—2.
535

II N=50
00

slop
e=—1.6
6

M=
1
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12.4 Figure 8 with the Addition of Damping Factor
= 0.656

Fig. 12 shows both the unstable manifold (green) for the period-two point
of LT when d = 0.656 and the stable manifold (violet) for this period-two
point.

The data used in generating this figure is as follows:

o = -3.0 d = 0.656 Xq = —1.4625 yo = 2.022 N=16 slope = —2.0 M=1000

eps = .005

Period-Two Stable Manifold Data (Violet):
a = -3.0 d = 0.656 xq =-1.4625 po = 2.022 N=8 slope = 2.0 M=1000

eps = .005

The transverse crossing of the stable and unstable manifolds for LTLT
assures us of a horseshoe and thus chaos still persists at this point. We see
in the next figure, the strange attractor is clearly in two parts.

Fig. 13 is the strange attractor for LT when d = 0.656. The data used in
generating this figure is as follows:

Strange Attractor (Red):
a = -3.0 d = 0.655 Xq = -1.4625 I yo = 2.022 N=5000 slope = -2.0 M=1

Fig. 13 suggests that it may be possible, through the careful addition of
damping, to produce homoclinic tangencies in a strange attractor.

12.5 Summary of Section 12

We have seen by the Figures that the fixed-point unstable manifold encases
the period-two unstable manifold with both manifolds having horseshoes.
With damping added, the fixed-point imstable manifold also has between its
folds areas of the basin of attraction of a fixed-point sink. Prior to the addi
tion of damping, this sink was an elliptic fixed point of FT. The fact that the
fixed-point unstable manifold prior to the addition of damping encircled the
elliptic region around the elliptic fixed point is significant. This meant that
upon the addition of damping, initial conditions near the fixed-point imstable
manifold could wind up in the basin of attraction of the sink that developed
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from this elliptic fixed point. In some sense, the outer unstable manifold
prevented chaos from appearing even though it was always possible for some
choices of initial conditions. Once enough damping was added to strip away
the fixed-point unstable manifold the period-two unstable manifold became
the attractor. It is likely that this happened because the period-two fixed
points are on a lower energy curve of the undamped twist than the elliptic
fixed point.

We conjecture that this genesis is common to second order square-wave
forced nonlinear dynamical systems of the Du£5ng class described in the
following section.

13 Concluding Remarks

Crucial to the advancement of any area of scientific research is the presence of
simple examples on which hypothesis may be tested quickly and efficiently.
In this paper we have shown how to construct countless such examples of
simple transformations that produce chaos. These simple examples differ
from the few predecessors such as the Henon map and the gingerbread map
[Devaney, 1984] which existed prior to the twist and flip, in that they are
Poincare maps. We consider this "road map" for construction of examples
to be one of our main contributions to the study of chaos.

However, the analysis of the van der Pol and cavitation oscillator equa
tions reveal something more of the genesis of chaos: There appear to be two
principal mechanisms for generating a twisting action in autonomous, non
linear, second order differential equations that can lead to the formation of
chaotic solutions of the equation when a periodic forced is added. We shall
refer to these two classes as the class of Duffing and the class of van der
Pol/Rayleigh.

Class of Duffing This class is defined by an equation of the form

X-I- V(r) = 0

and

X-I- ai -I- V(x) = 0

where V is a nonlinear function of x, and the first integral of the undamped
equation defines a one parameter system of closed curves in the phase plane.
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Such a system produces a twist or a damped twist and by adding a peri
odically forcing term to the equation, we may produce a twist or a damped
twist combined with a flip or some other factor in the Poincare map.

Class of van der Pol/ Rayleigh This dass is defined in two steps:
First we consider an equation of the form

5-t-W(i) =0

where W is a nonlinear function of x. The second step in the definition of
this class is to add a simple linear function of x. We require that the final
equation, which in general looks like

X+ W(x) -j- ax = 0

have a periodic solution. This equation will have a shear action arising from
the term W(i). The requirement that the solutions be periodic with the
addition of the linear potential term changes this shear into a twist. The
addition of a periodic forcing term produces a twist factor in the Poincare
map.

These two dasses axe very different physically and the twist factors in
their Poincare maps are also different. We note that in the van der Pol/Rayleigh
class the presence of a damping term is essential to produdng the chaos,
which is not the case for the Duffing class.

Clearly we may form hybrid equations by combining these two classes of
equations®

We conjecture that a horseshoe twist theorems is true for the Dufi^g
class equations when the periodic forcing term is a square wave if we replace
the circles that play an important role in the horseshoe twist theorem by the
closed curves defined by the first integral. A special case of this conjecture
was presented in [Brown & Chua, 1991].

As for the van der Pol/Rayleigh cleiss, we believe a variation of the horse
shoe twist theorem is true for square wave forces, but we do not conjecture
the form of the variation at this time.

The results of this paper suggest numerous questions, but of considerable
interest among all questions that we could ask are two sets.

The first set is concerned with the ergodic properties of the twist and
flip, or more generally, the ergodic properties of Poincare maps that are of

®Ueda's form of the van der Pol equation is an example, (Moon, 1987).
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the form $ o T, where $ is not a twist. Among the questions of interest to
engineers and scientist are:

(1) Given the existence of a horseshoe for such a Poincare map, what
are its asjonptotic properties when restricted to the closure of the unstable
manifold, M, which produced the horseshoe?

(2) What are the ergodic factors of such Poincare maps on M.
(3) Compute the topological entropy for these maps on M.
(4) Classify these maps on M in the categories of weak mixing, strong

mixing, Kolmogorov, or Bernoulli.
(5) Since it appears that M could be unbounded, extend the ergodic

concepts to include this case.
It should be clear that, in addition to questions of ergodic theory we have

posed, we may also ask many questions about the statistical properties of
the time series generated by Poincare maps of the form FT or $T.

The second set of questions pertcdn to the harmonic analysis of the chaotic
solutions of the classes of ODEs presented in this paper. In particular, for
square-wave forcing we can determine the form of the most extreme case of
a chaotic solution of these classes of ODEs by the following considerations.

By the Smale-Birkhoff theorem, some power of the Poincaxe map is tbpo-
logically conjugate to a bilateral shift on n-s3niibols on some Cantor set.
Therefore, there exist initial conditions in this Cantor set such that the suc
cessive iterates of this power of the Poincare map defines a pseudo-random
sequence of points in the plane. Since the forcing is a square wave, the
behavior of the solution between successive points is determined by an au
tonomous equation whose solutions are periodic functions or spirals. Hence
between two points of the Poincare map is an arc of such a curve. In the case
of the simple twist this is the arc of a circle. In the case of the undamped
Duffing equation it is the arc of a curve defined by the elliptic functions.
In any case, the solution of the ODE between two successive iterates of the
power of the Poincare map determined by the Smale-BirkhofF theorem is a
finite number of arcs of closed curves or spirals determined by an autonomous
ODE.

Given this description of the generic chaotic solution of a square-wave
forced nonlinear ODE from the classes we have presented we may now con
struct the simplest example of such a curve and pose some questions about
its harmonic malysis.
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Staxting with the one sided shift defined by the equation

®n+i = 2a;n niod 1

on the interval [0,1] we choose an initial condition which generates a dense
subset of [0,1]®. This sequence is the analogue of the successive iterates of
the Poincare map. Next we consider this sequence to define the values of
a function, /, by the rule f{n) = Xn- We now extend the definition of this
function, /(t), t > 0, to all positive real numbers by requiring that between
two points the function is linear and that the function is continuous for all
t > 0. Essentially we are using straight lines in place of the arcs of the closed
curves that appeared in the solution of the ODEs.

If we were to graph such a function we woidd start by plotting the points
(n,a;n)» or equivalently, (n,/(n)) in the plane and then we would connect
two successive points by a straight line. This process produces a bounded
continuous function. We now ask the following questions about this function:

(1) Does such a function, /(t), have a Fourier transform?
(2) What is the power spectral density of / as a function of the initial

condition of the iteration sequence and is the power spectral density contin
uous?

(3) What questions of spectral synthesis can be answered for such a func
tion?

(4) What does wavelet theory tell us about such a function?
Our ability to answer these questions about the function / will determine

to a great extent our ability to deal with chaos through the classical methods
of harmonic analysis.

The twist and flip map has suggested numerous directions of research into
the mechanism of chaos. We now suggest that all of the points we have been
considering so far can be formulated in terms of Lie Groups, and that the
twist and flip paradigm can be extended to this setting.

From what has been presented we conclude that the twist and flip or
translate map is fundamental in producing PBS (Poincar^Birkhoff-Smale)
chaos in second order nonlinear periodically forced ODEs and is likely to be
the fundamental paradigm found in many second order ODEs having chaos.

®This sequence should have positive complexity in the sense of Kolmogorov, see [Ford,
1986].
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The strange attractor, as was illustrated in [Brown & Chua, 1991], is also
accounted for with this paradigm. The twist and flip map can be extended
to any number of dimensions and may be the key process at work in the
equations of Lorenz, Rossler, and in the Chua circuit. We believe the reason
for the pervasiveness of the twist and flip map as a source of PBS chaos is
that the twist is actually a special case of shearing and the flip is a form
of folding. These two actions can be found in the formation of vortices in
turbulent flows, a form of chaos, and thus it is not surprising that they
produce chaos in ODEs.
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List of Figure Captions

Fig. 1 Selected Trajectories from Generalized Twist and Flip Maps when
the Twist is Defined by a Rotation Function f(r) = I0r/(1 + rlog(r)).

Fig. 2 Selected Trajectories from Generalized Twist and Flip Maps when
the Twist is Defined by a Rotation Function /(r) = —sin(4log(r)).

Fig. 3 Selected Trajectories from Generalized Twist and Flip Maps when
the Twist is Defined by a Rotation Function f(r) = (1 + log(r))/r.

Fig. 4 Selected Trajectories from Generalized Twist and Flip Maps when
the Twist is Defined by a Rotation Function f(r) = —1/r; = l/(r^ + 1)

Fig. 5 Unstable Manifold Used in the Formation of the Smale Horseshoe.

Fig. 6 Seven Forward Iterates of the Square Used in the Formation of the
Smale Horseshoe.

Fig. 7 Close-up of the Seventh Forward and Backward Iterate Used in the
Formation of the Smale Horseshoe.

Fig. 8 The Fixed-Point Unstable Manifold is in Blue and the Period-Two
Unstable Manifold is in Green. The Two Unstable Manifolds axe Wrapped
so Tightly Together that they Give the Illusion of Being Only One Unstable
Manifold.

Fig. 9 The Fixed-Point Unstable Manifold is in Blue and the Period-Two
Unstable Manifold is in Green. The Addition of Damping Has Contracted
the Unstable Manifolds. The Damping Factor is 0.21 and the Attractor is
the Single Point (—2.94, —6.069).

Fig. 10 The Fixed-Point Unstable Manifold is Gone. The Period-Two Un
stable Manifold Remains and is in Green. Sufficient Damping Has Eliminated
the Fixed-Point Unstable Manifold and Further Contracted the Period-Two

Unstable Manifold. The Damping Factor is 0.45.

Fig. 11 The Attractor for the Damping Factor of 0.45 Appears to be the
Period-Two Unstable Manifold. The Addition of Damping Has Eliminated
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the Fixed Point the Attractor in Favor of the Period-Two Unstable Man

ifold. Increased Damping Appears to have Caused the Onset of Chaos.

Fig. 12 The Period-Two Unstable Manifold is Seen in Green and has been
Further Contracted by Increasing the Damping Factor to 0.656. The Stable
Manifold in Violet Empirically Verifies the Presence of Horseshoes and thus
Chaos.

Fig. 13 The Period-Two Unstable Manifold Still Appears to be the At
tractor Which is Shown in Red. The Damping Factor is 0.656.
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