

Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AUTOMATED DESIGN MANAGEMENT

USING TRACES

by

Andrea Casotto

Memorandum No. UCB/ERL M91/22

15 March 1991

AUTOMATED DESIGN MANAGEMENT

USING TRACES

by

Andrea Casotto

Memorandum No. UCB/ERL M91/22

15 March 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AUTOMATED DESIGN MANAGEMENT

USING TRACES

by

Andrea Casotto

Memorandum No. UCB/ERL M91/22

15 March 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Automated Design Management Using Traces

Andrea Casotto

Department of Electrical Engineering and Computer Sciences,

University of California, Berkeley.

Abstract

Theproductivity ofmodern CAD systems can beincreased with alayer of software, called

the "automatic design manager," whose goal is to provide services such as automatic sequencing
and scheduling of the tools, coordination of team design and tracking of the design activity for
documentationpurposes.

An automatic management system for CAD is proposed, based on the idea that CAD

tools can leave a"trace" of their execution. The trace is represented as abipartite directed and
acyclic graph in which the nodes represent either design data orCAD transactions. The trace is

both arecord ofthe design activity and agraph representing the dependencies among the design
objects. The architecture ofthe system is distributed: aserver manages the trace, while anumber of
clients can concurrendy interact with the trace through the server. The system supports the notion
ofmeasurement on the design data, necessary to provide even more services such as tracking of
design specifications, validation of design data, design estimation. The system is non-intrusive,
because it does notaffect theway designers interact with thetools.

The design manager has been implemented in asystem called VOV. This prototype has
been tested by many designers, including novices and experts. The results ofthese tests are reported.

Professor Alberto Sangiovanni-Vincentelli

Thesis Committee Chairman

Acknowledgements

Finally a pause, a blank page to reflect upon the many people to whom I owe thanks.

My advisor, Alberto Sangiovanni-Vincentelli. He directed me towards design manage

ment and made available the resources for this research. Although I could never get enough of his

time, I need to thank him for his guidance and his trust. I thank my other advisor, Prof. Richard

Newton, for steering me away from the formalism of Petri nets and for his poignant criticism. He

has contributed to form a large part of the ideas presented in this thesis. I consider myself lucky to

work with these two stars of the CAD world. 1only regret not having been able to defeat either of

them in a tennis match.

Prof. Randy Katz is acknowledged for suggesting the use of the word "trace" in the

context of design management and for helpful discussions in the early stages of this research. I

thank Prof. John Wawr/ynek for being the first to trust VOV and to use it in his classes. Prof. Alice

Agogino has been kind accepting to be on my dissertationcommittee.

My office mates Mark Beardslee, Mitch Igusa and Chuck Kring, have been patient and

helpful, they have tolerated my demos and even tried the earliest and buggiest versions of the sys

tem. Chuck has been especially cruel in dissecting a draft of this thesis, and I owe it to him if this

thesis is now much more readable. The Octtools developers, in particular Rick Spiekelmier and

David Harrison, have produced a tremendous amount of great code that now is also part of VOV.

I thank them all. Gregg Whitcomb has invested a lot of energy into maintaining g++, which made

the development of VOV so much simpler.

The students in CS292i, who were the first to use VOV in Spring 90, and the students in

CS250, who were the first to use the assistant in Fall 90, have been instrumental in the progress of

this research.

Flora Oviedo, Irena Stanczyk-Ng, and Elise Mills, who really run the show here in Cory

Hall, have always been helpful in all office related matters. SRC has provided financial support

throughout my five and a half years as Graduate student.

Contents

Table of Contents iii

1 Introduction 1

1.1 A characterization of electronic design 3
1.2 Requirements of an automatic design manager 7
1.3 Background on the Octtools 10

1.3.1 The Octtools 10

1.3.2 Brief history of VOV and the Octtools 13

2 Previous Work 15

2.1 Representation of the design activity 16
2.1.1 Ad-hoc models for VLSI design 16
2.1.2 General models for design activity 20
2.1.3 Design environments 33

2.2 Intrusiveness of implementation 34
2.3 Classification of tools and data 35

2.4 Artificial intelligence techniques 37
2.5 Issues in data management 38
2.6 Commercial systems 40
2.7 Conclusion of the survey 41

3 The Design Trace 43
3.1 Design management based on design traces 43

3.1.1 Non-intrusive tracing 44
3.1.2 The trace 45
3.1.3 An example trace 48

3.2 The trace as a definitional language 50
3.2.1 Backtracking 51

3.3 Tools that run in place 52
3.4 The architecture 53

3.4.1 Communication between the tools and the server 55
3.4.2 Affinity of transitions 57

3.5 Interactive tools 59

iii

IV

3.6 The firing rule 60

3.7 Trace versus Petri net 61

3.8 Sets of nodes 62

3.8.1 Hierarchy in the trace 64

3.9 Services 67

3.9.1 Service: Design documentation 67

3.9.2 Service: data monitoring 70

3.9.3 Service: retracing 70
3.9.4 Service: Conflict detection 73

3.9.5 Management of refinements and alternatives 74

3.9.6 Archiving 76

3.10 Use of measurements 76

3.11 The assistant 78

3.12 Support of design methodology 84
3.13 Iteration in design 85

3.14 Principles that guided the development of VOV. 87

3.14.1 Simplicity 87

3.14.2 Non-intrusivcness 89

3.14.3 Distributed resources, localization of information 89

3.14.4 Focus on users 90

3.14.5 Emphasis on team design 91

3.14.6 No restriction to data visibility 92

3.14.7 Ignore design hierarchy 92

Implementation 96
4.1 The design trace 97

4.1.1 Attributes of nodes 97

4.1.2 Attributes of places and transitions 97
4.1.3 Canonical names for files 99

4.1.4 The representation of the trace 99
4.2 Special topics 102

4.2.1 Project identification 102
4.2.2 Robustness and safety 103

4.3 Software architecture 103
4.3. i The hierarchy of classes 106
4.3.2 User interface 108

4.4 Performance HO
4.4.1 Server latency HO
4.4.2 Capsule overhead HI
4.4.3 Trace size H2
4.4.4 Small designs 113
4.4.5 Large designs 113

5 Experimental Results 115
5.1 Statistics on the design 115
5.2 BRIC 117

5.3 Floorplanning an FPU 118
5.4 Compilation of VOV 119
5.5 VOV in a VLSI design course 120

5.5.1 The laboratory exercises 120
5.5.2 The final project 126
5.5.3 Comment 127

6 Conclusion 129

A Tutorial 132

A.l Introduction 132

A.2 TUTORIAL: Design of a seven segment display driver 133
A.2.1 Start mini-VOV 133

A.2.2 Enter the assistant 134

A.2.3 The graphical interface 135
A.2.4 Getting assistance from the assistant 135
A.2.5 Your turn to act intelligent 138
A.2.6 The trace as a dependency graph 138
A.2.7 Validity of nodes 140
A.2.8 Automatic retracing 142
A.2.9 Review what has happened 142
A.2.10 Possible problems 144
A.2.11 Substitution a transition 145

A.2.12 Check the results 145

A.2.13 Try something new 145
A.2.14 Suspension or end of the exercise 148

A.3 TUTORIAL: Second part 148
A.3.1 What does vov_mini really do 148
A.3.2 Add many slaves to your server 149
A.3.3 Start the server 150
A.3.4 Clients 150

A.3.5 The event queue and the journal 151
A.3.6 Theevent queue 151
A.3.7 The trace 151

A.3.8 Annotations 152

A.3.9 Affinity of transition, interactive transitions 152
A.3.10 Graphical interface using vem/RPC 153
A.3.11 Status of the trace 153
A.3.12 Protection 154
A.3.13 Sets 154
A.3.14 Forgetting nodes 154
A.3.15 Moving stuff around the file system 154

VI

A.3.16Handyutilities155

BQuickToolOverview156

Bibliography157

Chapter 1

Introduction

The complexity of modern human artifacts such as microprocessors, aircraft, and satel

lites, demands the power of computer tools to assist the designers in many of the design tasks. This

is particularly true in the electronic industry, which routinely deals with millions of components.

In recent years, CAD systems have come a long way towards freeing the designers from the com

plexity of design, but designers now have to cope with the ever growing complexity of the CAD

systems themselves.

Electronic design is the focus of this dissertation, because of the training of the author.

However, an ill concealed ambition of this work is to be applicable in other domains of automatic

design, that is wherever computers are used to assist the designers.

A "CAD system" is a collection of software programs that perform many tasks related to

the analysis and synthesis of electronic systems, such as integrated digital circuits, microprocessor

and printed circuit boards. Each autonomous component in aCAD system is a"tool." CAD systems

typically include, among others, tools to describe the behavior ofelectronic components, to simulate

a circuit, to synthesize logic equations, to generate, optimize, and verify layout.

CAD systems take many forms, varying in user interface, capabilities, target technology,

the number and complexity of the tools, and the way in which the tools communicate with each

other. However, all systems seem to share this unwanted characteristic: they are difficult to learn,

to use, and to master. There is a need for a new layer of software that can help the designers cope

with the tools in a CAD system. This new software is the"automatic design manager." A design

manager provides new forms of automation of thedesign activity: protection of the integrity of the

design data, guidance for the novice designer, and advice for the expert.

The focus of an automatic design manager is directed more towards the design method-

1

ology than towards the pursuit of the design solution. "Design methodology" is the sequencing of

the design tasks and the ordering in which the CAD tools are used, while the definition of "design

solution" is left for now to the intuition of the reader.

The interest developed by the CAD community in automatic design management has

strong industrial roots, namely the need to increase the productivity of CAD systems. But besides

the utilitarian interest, design management also raisessome genuinely theoreticalquestions regard

ing our understanding of the design process itself, as presented in the following sections and in the

survey of previous work.

The breadthof this young discipline is such that the relevant literature is hardly bounded.

Adjacent disciplines from which design management borrows freely include operating systems,

data management, system modeling, and information modeling.

The system presented in this dissertation is a concrete proposal for an automatic design

manager. A prototype of the system, implementing allof its essential features, has been developed,

and it has been tested by many designers with various degrees of experience. This prototype is

called VOV.1 Sometimes the name"VOV" is used to refer to the abstract proposed system, rather

than to the prototype.

This dissertation starts with an enumeration of the issues related to an effective use of

CAD systems. An even superficial overview reveals that the issues are many and that they appear

to be heterogeneous: automation of the design flow, bookkeeping of design alternatives, automatic

documentation, coordination of team design, guidance for the inexperienced designer, and others.

No issue has been discarded a priori, and an attempt has been made to provide a framework in which

all these issues can find a natural setting.

VOV's distinctive feature is that it does not attempt to lead the designers, telling them

what is legal and what is not. Instead, the system follows the designers and keeps a trace of their

activity. The trace is a graph that is used at once as the historical record of the design process, as

a representation of the dependencies among the design data and as an executable program to se

quence and schedule the tools. The traceis built automaticallyandnon-intrusively with information

generated by the tools at runtime. The server/client architecture used for the system is importantto

supportmulti-user designs anddistributed processing.

The trace is the basis to provide many design management services: the consistency of the

design data can be monitored and maintained, the design (low can be automated, concurrent tasks

1VOV isalso thenameof anItalian liquorsimilar to a mixtureof eggnogandrum, consumed preferably hot, in acold
winter day, and appreciated for its reinvigorating gusto.

Table of acronyms

ASIC Application Specific IC
CAD Computer Aided Design
IC Integrated Circuit
VLSI Very Large Scale Integration
ADM Automatic Design Manager/Management

DMS Design Management System

Table 1.1: Acronyms used in this dissertation.

can be coordinated, and novice designers can be guided. The trace also integrates the notion of

measurement on the design data, to provide other services such as tracking of design specifications

and performance estimation.

Some issues that are often associated with design management are only indirectly ad

dressed in this research. For example, there is no concern about management of human resources,

about how to keep designers motivated and productive, how to schedule the work week, or how to

complete a project on time and on budget. Nevertheless, an ADM can have an indirect but signifi

cant influence on these issues, if it makes the design activity faster, cheaper, and less frustrating.

The next Section contains some introductory comments on design and on the list of re

quirements for an automatic design manager. Chapter 2 contains a survey of previous work in

design management. Chapter 3 contains a detailed description of the design trace and of its uses.

Some implementation details are presented in Chapter 4, of interest to those who intend to imple

ment their own trace-based design management system. Finally, the results obtained during the use

of VOV in real designs can be found in Chapter 5. Appendix A consists of a tutorial introduction

to VOV. A brief synopsis of the tools mentioned in the examples is found in Appendix B.

1.1 A characterization of electronic design

The services provided by an automatic design manager depend greatly on the interpreta

tion given to the notion of design. The dictionary (the on-line Webster's7th Dictionary) suggests

that a design is "a mentalprojector schemeinwhichmeanstoanend are laiddown." This is enough

to agree on the fact that design is the conjunction link between some goals and their satisfaction,

but it says nothing on how such a link is generated.

The goals of design are usually described as a set of constraints that must be satisfied si-

multancously. Some constraints define the desired behavior and functionality of the solution, while

others may be more domain specific. For example, in the design of an electronic system, domain

specific constraints may be the minimum frequency of the operating clock, the maximum dissi

pated power, or the range of operating temperatures. Some design problems are characterized by

the availability of a cost function that can be used to rank the proposed solutions by their estimated

cost. These design problems are referred to as optimizationproblems, because their goal is to find

a solution that minimizes the cost function.

The availability of complex and powerfulCAD systems adds a new dimension to design.

Design is now more than just a search of a solution to a given set of constraints; it is also a search

for a methodology to produce such solution. The methodology should be automated, in the sense of

minimizing the manual interventionof the designers, and it should take full advantage of the power

of the tools. Contrast this with Bushnell's specific definition of VLSI design [10]:

VLSI chip design is essentially a search process in the design space at the floorplanning
level, to find a fioorplan that will lead to a correct and reasonably compact integrated
circuit layout, (page 48)

We believe that design is also a search in the "methodology space." The designer has to describe

not only "what" he wants, but also "how" he is going to get it. In electronic design this amounts to

choosing an appropriate sequence of tool invocations.

Complex designs are often partitioned into smaller designs, which in turn may still be

too complex and require further partitioning. This process adds a hierarchical structure to design.

Depending on the strategy used to traverse the hierarchy, one talks about different design styles: in

top-down design the focus is on how the constraints for the top-level problem are converted into

constraints for the subproblems, while in bottom-up design the subproblems are solved before the

top-level problem. It is also common to hear the loosely defined terms yo-yo design, and meet-ln-

the-mlddle design, which prove that reality is always more complicated than we would like it to be,

and requires some acrobatic balance between the two extremes of top-down and bottom-up design

styles.

Design need not be a linear process; instead, it is often iterative, because many actions

need to be repeated to refine and optimize thedesign data, and tentative, because many alternatives

are often explored [31].

Particularly stimulating and provoking is Sequin's definition of design: "design equal

documentation" [45]. Documentation constitutes a fundamental aspect of design, especially in the

contextof acompany that wants to protect itselfagainst therisk of seeing large chunks of know-how

depart together with its transient designers. Equally important is the role played by documentation

in the context of team design, as a communication medium between the components of the team.

Designers, however, often perceive documentation as a distraction from their pursuit of the design

goals, and tend to avoid it; hence the need to provide tools to support automatic documentation of

the design process.

Design is the act of conceiving a plan with some purpose in mind. A plan is the final

product of design, not an input or a constraint. Thus, design is goal-directed more than it is plan-

directed. The designers are going to do whatever is necessary to achieve their goals. They can

adopt a predefined design methodology (a plan) as long as they are performing routine activities.

But if their design has some new or unique feature that stresses the limitations of the existing design

methodology, the designers will not hesitate to change their course of action to achieve their goal.

During the design activity, a plan can be a useful resource but only a weak one. This

notion of a plan as a weak resource is borrowed from Alison Lee's research on the use of the history

mechanism as a means of support for human-computer interaction [35]. Lee's attention is on short-

term interactions, such as a session with a UNIX shell, such as csh. This type of interaction is found

to have two properties: it is recurrent, because users frequently repeat their actions, especially the

most recent ones, and it is situated, in the sense that the actions are never planned In a strong sense

because the circumstances ofthe actions are neverfully anticipated and are continuouslychanging.

Lee suggests that a history facility is the appropriate resource to relate knowledge and action. Such

a facility consists of four components:

The collection component records past user-computer interactions into a history. The
presentation component displays the history. The selection/modification component
allows the user to copy (and possibly modify) a history item. The submission com
ponent allows the user to use the selected history item in the context of the current
situation. ([35], page 4)

The history facility has many uses: it allows the reuseof an history item to reduce the

numberof keystrokes; itoffers navigation informationby reporting to the userwheretheyhavebeen

and where they are, or reminders on the status of the system; it provides examples on how some

commands can be sequenced to achieved certain goals; it can be the foundation for some automation

services, suchasmacrofacilities, automatic playback ofcommandsequences, prediction of thenext

user command.

Computer aided design is also a form of human-computer interaction that, justlike Lee's

interactions, is repetitive and situated (goal directed). To be accurate, it should be pointed out that

computer aided design is a long-term interaction and that it normally involves a team of designers,

but neither fact affects the role of history as portrayed by Lee.

In thenextchapter we showthat there isacommon thread that unifies mostof theprevious

work in design management, that is the focus on planning, expressed by the attempt to capture the

complexity of the design activity a-priori. VOV isthe onlyADM that focuses on the design history

as the fundamental vehicle of interaction with the designers.

Design is not always a creative process. Often design can reliably develop along a pre

defined plan, following a well established routine. One such example taken from the Octtools is

the design of a standard-cell circuit starting from its behavioral description: an effective method

ology calls for the execution of three automatic tools, bdsyn, mis II, and wolfe, with each tool

allowing just a few options to tune its behavior to the specific circuit. This methodology can be

described in a UNIX script that captures the known capabilities of the tools and that makes them

readily available to the users. For a routine activity, a simple scriptcan be a very effective design

management tool.

If design was purely routine, the design management problem would have been solved in

large part withexistingtechniques, such asscripts orotherprograms. The need for amore sophisti

cated system exists because, although a fraction however large of the design is normally routine, it

is the remaining fraction that is the most challenging one, the one the designers need most help with,

and the one that cannot be captured in an a-priori plan. Our experience with the Octtools confirms

that all designs have had some unique feature that required a special and innovative solution: a new

tool was needed, or the capabilities of some tool had to be stretched, or new testing strategies had

to be invented. Unpredictability of the methodology is a characteristic of many designs.

Finally, we consider the role of computers in the design process, and in particularthe new

opportunities offered by computers in terms of management of the design activity.

VLSI design is probably the most extensively computerized form of design. Almost all

the design information is stored in a computer memory, and most of the design activity consists

of the execution of computer programs. This extensive use of computers in VLSI design has two

notable consequences. First, it accentuates the iterative and tentative character of design by making

it easier for the designers to explore many alternatives. Second, it makes it possible to obtain a great

deal of data about the design process in a non-intrusive way, that is without disrupting the activity

of the designers. Intrusive systems that require the designers to explicitly record their decisions and

their actions, only add burden onto the designers and are often rejected.

One kind of information that can easily be collected is the design history. Computers

allow, in principle, the recording of every keystroke and mouse movement, as a way to capture the

complete history of a design. A more economical approach is to record all the tool invocations,

which is precisely what is captured by the design trace. The design history is an objective way to

document the design, because it records what has happened, although it does not always record why

it has happened.

In conclusion, the design history is not only a candidate to provide many useful services,

as supported by Lee [35], but it is alsoeasyto collectautomatically. That is whythedesignhistory,

captured by the design trace, is the focus of this research.

1.2 Requirements of an automatic design manager

An automatic design manager is a layer of software that assists the designers in their

interaction with complex CAD systems. In this section we present a list of requirements of an

ADM. The satisfaction of most or all of the items in the list is essential for the success of the ADM,

that is for its acceptance in the users' community.

The first requirement is user friendliness, which requires an understanding of the users

of the system. There is a variety of categories of potential users, and each category has different

needs. Expert designers require a system that is powerful and non-intrusive, novice designers ask for

simplicity and a high degree of automation, while project managers want to be able to exert control

over the design process. Friendliness also implies a good user interface, a robust implementation,

and a predictable behavior. Programmability of the user interface is important to give extensibility

and power to the system.

Some may contend that the first requirement for an ADM should be a clear model of

the design activity, complemented by a solid and effective set of algorithms that operate on the

model. Models and algorithms are fundamental, but they require experimental validation, which is

only possible with a strong user interface. Since an ADM is necessarily in close interaction with its

users, its success is more dependent upon its user interface rather than upon its fundamental model

or its algorithms. In fact, even good algorithmic solutions for design management can be made

completely useless by a poor user interface.

An ADMshouldbe adaptable andallowallexistingtools to beeasily integrated, because

large and small corporations that may use the system wish to protect their current investment in

CAD tools. The tool set may change because of the introduction of new versions of some tools,

or of altogether new tools possibly coming from many different vendors, and the ADM should

8

effortlessly allow such additions and changes.

As the tool set may change, so may the design methodology. The ADM mustcontinue to

assist the designers especially in the uncertain times in which the design methodology isevolving.

Established design methodologiesshouldalso besupported, byofferinga language todescribe them

and a technique to apply them in a design. Support can take the form of non-intrusive advice, as

favored by expert designers, or of strict enforcement, as preferred by the project managers.

The most challenging requirement derives from the large set of services that should be

provided by an ADM. The services fall into one of two categories: protection and automation. A

service provides protection if it prevents or corrects errors related to the consistency of thedesign

data. An important protection service is the coordination of team design, or, more generally, the

coordination of concurrent activities. When many designers workon the samedesign, it is nec

essary to coordinate the efforts of each person in the team to avoid conflicts, duplication of effort,

or wasteof lime. Coordination of teamdesign iseasilyachieved by a locking mechanism that gives

privilegedaccess to somedesigndata or resources toonedesignerat a time. The lockingmechanism

is conceptually simple, and its effectiveness depends on its granularity.

Another protection service is consistency maintenance, which is based upon the notion

of dependency among the design data. For example, the extracted view of a circuit is normally

derived from the layout view, and therefore it depends upon it. If the layout is modified, the extracted

view is no longer up-to-date and must be regenerated. The ADM should recognize dependencies

between objects, it should detect when consistency is lost and it should be able to perform the

appropriate actions to recover consistency.

A related service is the bookkeeping of the design data. For each piece of data, we want

to know how it has been obtained and whether it is referenced in other parts of the design. CAD

systems compound the bookkeeping problem, because they allow the exploration of many design

altematives, leading to an inflation in the number of pieces of data that have to be managed.

All the protection services are made more difficult by the heterogeneity of the design data.

Data are often stored in different databases and accessed using different procedures. In the Octtools

for example, there is a coexistence offacets, which are the storage unit in the database Oct, and

UNIX files, either executables or data files. An ADM should not make assumptions about databases.

The basic automation service is the automation of the design flow, that is the automatic

sequencing, scheduling and execution of CAD tools. The ADM should know how to invoke each

tools, taking careof all theoptions and of all the input andoutputdata. Upon completion, it should

check whether the tool was successful. The value of an ADM can be increased by some job con-

trol capabilities such as the dispatching of jobs to various machines on a local network, and the

possibility of terminating jobs that arc taking "too long," maybe because they arc stuck in infinite

loops.

There should be no need to stress the importance of documentation of the design pro

cess, but this service is often overlooked. The ADM should maintain a detailed history of the design,

by keeping track of what has been done, by whom, and when. The system should also allow free

annotation of the design.

Another service is assistance to novice designers, whereby the ADM guides the inex

perienced user through the CAD system and offers advice on what to do next to achieve a design

goal, or on how to fix a problem.

Design estimation is the capability of predicting the outcome of a design methodology

without actually running the tools; it is an important component in design decision support, for

example because it can help the designers choose one methodology instead of another. Estimation

provides tentative answers to questions about the performance of some tools, such as howfast will

this chip be ifI use this tool?, or about the design process itself as in how long will it take to route

this chip? Any estimation is a difficult task in itself and is best performed by specialized tools. An

ADM should however recognize the importance of estimation in design, and it should be able to

provide the estimation tools with the information they need.

The verification of design specifications is an essential element in the design activity,

because it determines whether the design goals have been achieved and therefore whether the design

activity can been terminated.

Upon completion, a design is normally archived so that it can be recalled at a later time.

Archiving can be expensive; it requires the storage of all the design data and of all versions of the

tools used in the design, and possibly even of a copy of the current operating system, as a form

of protection against software evolution that are not backward-compatible. It is the ADM's job to

indicate which data and which tools should be archived.

Finally, there is the important problem of coping with complexity: CAD systems may

consist of more than a hundred tools, and some designs may produce many thousands of design

objects. AnADM should be aware of thiscomplexity and beefficient andresponsive when dealing

with very large designs.

10

1.3 Background on the Octtools

This research is based in large part on a CAD system developed at UC Berkeley and

known as theOcttools. University software has some characteristics thatmake it a tough challenge

for an automatic design manager, much tougher than the challenge represented by other industrial

systems. University software is, first of all, the product of innovative research; its development

often terminates once the research contributions have been made. Only occasionally the software

is engineered and supported in order to provide an enabling platform for new research, or for edu

cational purposes. University software tends to be relatively fragile, unsupported, undocumented,

and rapidly changing, if compared with industrial strength systems. A design manager that suc

cessfully confronts all these difficulties in an imperfect CAD system, should stand a good chance

in the world of commercial CAD systems.

Despite the historical symbiosis between VOV and Octtools, it should be emphasized that

there is no dependency of one on the other and that theconcepts in VOV are also applicableoutside

Octtools.

The next section is a brief introduction to the Octtools; it is included because some fa

miliarity with this CAD system is useful to understand both the examples used in this thesis and

VOV's implementation.

1.3.1 The Octtools

The Octtools are a set of loosely connected tools that operate with Oct, a system for data

representation and storage management. [27]. Oct features a simple procedural interface and a

general entity-relationship based data model that captures the information commonly used for the

design of VLSI chips. Although Oct is not truly object-oriented in the C++ sense [48], it relies on

the concept of data objects and relationships among them to represent the design. Oct objects have

a type and a set of type specific attributes. The following objects are the most commonly used by

the Octtools:

Facets: the facet is the fundamental unit for storing and manipulating design data in Oct. It has

three main attributes called cell, view and facet. The cell represents the name of

the design object described by the facet, for example it could be "2-INPUT-NAND". A cell

can have many views to describe various aspects of it. For example the "physical" view

can be used to describe the geometric layout of the cell, while the "logic" view describes

11

its logic behavior. A view can have several facets, which are different representations of

the view. The Octtools use only two facets: the "contents" facet, which contains the actual

definition of the view, and the "interface" facet, which contains an abstraction of the view. It

is convention to refer to Oct facets with the notation cell: view: facet, although often

the last attribute is not mentioned and we just say cell: view.

Instances: facets can be instantiated within other facets using the instance object. The instantiated

facet is called the master of the instance.

Terminals and nets: these objects are used to represent connectivity information. A terminal rep

resents a connection point for facets and instances, a net represents a connection between

terminals.

Layers, Boxes, Paths and Polygons: these geometric objects are used to described the physical

layout of a cell.

Bags and Properties: bags arc used to group objects, properties to annotate them.

Oct supports the relationship "contains" and "is contained by," represented by a directed,

unnamed arc. Forexample, in Figure 1.1 the net"X" is contained by the facet buffer: logic: contents

and contains two terminals.

In order to allow flexibility of the data manager with respect to evolving needs in the

design methodologies, Oct provides only a set of general mechanisms to allow creation, editing

and retrieval of objects. This mechanism is independent of any particular design methodology or

representation. Several policies of use have been chosen to specify how the mechanisms are to be

used [32]. Adherence to these policies is the condition under which all of the Octtools can work on

each other's output. This is the key to the success of the system.

VEM is the users' mainchannel of interaction withOct becauseit provides thecapability

to view graphically and edit Oct facets. It also supports a remote procedure call protocol (RPC)

that enables other Oct applications to register commands that can be invoked from within VEM.

A major feature of the Octtools is thecapability tosynthesize layout starting from a high

level description of a combinational logic cell. The behavior of the cell is described using the

language BDS. The program bdsyn translates the BDS description into a multi-level network of

logic gates, stored in an ASCII format called BLIF. The program misll is used tooptimize the

BLIF description to minimize the area or the delay through the network. Depending upon the

FACET

FORMAL TERM

NET

INSTANCE

ACTUAL TERM

PROPERTIES LOGICFUNCTION
0=1

inv:logic:conients

in

— ! .

out

LOGICFUNCTION
out= !in

12

Figure 1.1: A buffer can be built as a chain of two inverters. The Oct objects that describe the

buffer are shown here. The inverter is represented by the graph on the right: there are two terminals

attached to the facet, and the output terminal contains a property that describes the logic behavior of

the inverter. The graph on the left represents the buffer. The net "X" connects the output terminal

of the first inverter to the input terminal of the second.

desired design style, mis 11 will perform a technology mapping of the logic network. Forexample,

if a standard cell circuit is desired, then misll will use a description of a standard cell library to

implement the logic network using the gates available in that library. A netlist of standard cells

produced by misll can be placed and routed with wolfe. Alternatively, misll can map the

logic network into a more restricted library of gates that are implemented with GEM, a gate-matrix

module generator. A PLA can be obtained directly from a BDS description using octpla.

The logic simulator musa is a multi-level simulator of combinational and sequential cir

cuits. It performs switch-level simulation and also understandshigher level models, such asbuffers,

RAM's and various types of latches. The typical usage of musa requires the preparation of a sim

ulation script containing the commandsto be executed as well as the tests that have to be verified.

The Octtools emphasize symbolic layout, which allows the specification of the topology

of the cell to be decoupled from concerns aboutlow level design rules. These concerns arcresolved

by the compactor spares, a tool that spaces the layout to minimize the area of the cell while

respecting all the layout rules.

13

A subsystem called Mosaico is available to place and route macro-cell chips. A pad

frame is built with padplace, and the core of the chip is placed using puppy, a program based

on Simulated Annealing. Once a satisfying placement is obtained, Mosaico routes the chip by in

voking a sequence of toolsto perform channel definition, globalrouting, two-layerdetailed routing,

and via minimization. The resulting symbolic layout is finally processed by the compactor.

1.3.2 Brief history of VOV and the Octtools

In Berkeley, the Octtools arc the thirdgeneration integrationenvironment, built upon the

experience gained with Ruby [19] in 1981-1982 and Squid [32] in 1982-1984. Oct, a revision

of the Squid architecture, was available in prototype form in early 1986. The development of the

OcT-bascd tools started in earnest in the spring semester of 1986, and proceeded at an intense pace

for about two years. In the Spring of 1988, the tools were introduced in a VLSI design class at UC

Berkeley, then taught by Prof. Randy Katz. This first semester was particularly hard on the students,

because the tools were fragile and not sufficiently tested. As the tools became more robust in the

course of the following semesters, more fundamental problems started to emerge, problems related

to the interaction of the students with the tool set as a whole: students were oblivious of some tools,

they did not seem to learn how to use some common and powerful options, they were forgetting

to run the tools in the right sequence and they were destroying each other's data when trying to

cooperate on the same project.

As a teaching assistant in the second semester in which the tools were used in the class,

the writer had a direct relationship with the students and came to understand their difficulties. Also,

as an author or coauthor of several of the tools that were being used (e.g. musa and the Mosaico

set), the writer was well aware of how much potential was not being used, of how much effort is

required to write CAD tools, of the extreme variability of user interfaces offered by the tools.

In Fall 88, we prepared some hand drawn "roadmaps," such as the one shown in Figure

1.2, to help the students understand the the design flow. These roadmaps were bipartite directed

graphs, with nodes representing either data or tools. The students found this representation very

useful and asked for more roadmaps. In January 1989 the development work on VOV began, as a

way to automate the roadmaps. In the Spring semester 1990, VOV was introduced in an advanced

graduate course on VLSI design, taught by Prof. John Wawrzynek. The eight students in the

class cooperated in a design of a large chip for music generation called BRIC. VOV was used in

conjunction with a large set of tools, including the Octtools, some commercial software such as

14

padolace -1

nlu:wolfe! alu:wolfc2 ilutwolfel

Figure 1.2: Roadmaps such as this are the precursors of the design trace.

Vcrilog, and some new tools especially written to address some of the peculiar problems in BRIC.

The designers of BRIC provided a number of encouraging comments and suggestions on how to

improve the user interface.

As the design of BRIC was proceeding, and the first feedback from real users was coming

in, the VOV assistant took form. The first use of the assistant in a class was in the Fall 90, in

an introductory graduate class on VLSI design. Once again, this class was taught by Prof. John

Wawrzynek. The results of these experiments are reported in the Chapter 5.

Chapter 2

Previous Work

Electronic design management is a young discipline and still lacks a precise identity. It is

also a broad discipline, including many issues relevant to other more specialized disciplines such as

operating systems, data management, system modeling, office automation and user interfaces. The

earliest work that can be considered specific to design management was published around 1985-86

14, 16, 11, 30, 33], while the roots can be traced back to studies on system modeling, data-flows

and Petri nets, in the seventies and before. Work in the neighboring field of office automation goes

back to the late seventies, but it is only marginally relevant because of the substantial difference

between office routine and design.

In the early eighties CAD researchers in Berkeley [41, 45] forecast the need to move

beyond tool development and onto design management. But it was not until later in the decade, after

the realization of complex CAD systems, that the need for design management became concrete

and pressing, and researchers could move from abstract speculations on design management to

proposals for practical engineering solutions. In Berkeley, the Octtools have played a key role in

making this research possible. The system proposed here can be seen as a modern descendent of

the make. chip utility first reported by Berkeley researchers in 1981 [41].

In this chapter, the contributions of previous work and the current trends in design automa

tion are reviewed. This survey tries to avoid the tedium of a chronological exposition, preferring

instead to present a few "cross sections" of the relevant literature, with each cross section looking

at a particular issue in design management. The first and most substantial cross section looks at the

fundamental problem of representation of the design activity. The second compares the intrusive-

ness of the proposed systems, the third analyzes the possibility of a taxonomy of design tools and

design data. The trend towards the use of artificial intelligence techniques and some relevant issues

15

16

in data management are each given a section. Finally some commercial systems are looked at.

2.1 Representation of the design activity

The choice of a model for the representation of the design activity is a central issue in

design management. With great generality, a CAD system can be thought of as a system of asyn

chronous concurrent processes, and the design activity can be thought of as the interaction between

ihc designers and those processes. In this section we review the many models that have been pro

posed.

A preliminary key to interpret the various models can be found in an early study in the

context of office automation. In [53] Zisman analyzes three models for asynchronous concurrent

processes: finite state machines, partial orderings, and Petri nets. He finds that finite state machines

arc inadequate, because if the processes can be performed in any order the number of states grows

exponentially with the number of processes. Partial orderings also lack modeling power due to

inability to express the possibility that tasks should be performed one at a time but in any order.

Zismanconcludes that only Petri nets have sufficientmodelingpower and that both FSM and partial

orderings are nothing else but restricted forms of Petri nets.

In electronic design, a consensus seems to be emerging towards the use of bipartite graphs

or of Petri nets to describe the CAD transactions and their inputs and outputs [3, 34,6, 13, 39,49],

but other models have also been proposed.

We propose a classification that separates the models that are specific to VLSI design

from those that are more generally applicable to other forms of design. In the second class we find

models based on directed graphs, others based on bipartite graphs, state machine models, and the

blackboard model. Finally, a mention is given to those systems that evade this simple classification.

2.1.1 Ad-hoc models for VLSI design

Since its conception [20], Gajski's Y-chart model of the design activity in VLSI has been

accepted with favor [21]. The Y-chart is not properly a model for asynchronous concurrent pro

cesses, but it has been used as a conceptual foundation to build such models. In the Y-chart, shown

in Figure 2.1, three semiaxes in a plane represent all the possible states of definition of a VLSI

system during the design process. The behavioral axis represents the degree of definition of the

behavior of the circuit. The closer to the origin a point lies along this axis, the more complete the

17

structural axis behavioral axis

'

physical axis

Figure 2.1: The Y-chart: a model for conceptual understanding of VLSI design, sometimes used

also for design management.

behavioral representation. Similarly, the structural axis and the physical axis represent the degree of

definition of the components used in the system and of their physical implementation. The design

process is represented as a trajectory in the plane, moving from one axis to another and spiraling

towards the origin, the point that represents the complete specification of behavior, structure and

physical implementation of the system, and therefore the termination of the design process. The

Y-chart has been used to compare qualitatively the performance and operation of various CAD

systems and silicon compilers [9,21].

Although not always explicitly, some management systems are based on the Y-chart and

stress the importance of the trichotomy of design into behavioral, structural and physical domain.

One example is Zimmerman's Playout [52, 46]. In Playout, the design flow is rigidly structured,

becausethe system supports only a particular style of top-downdesign,on the assumption thatsuch

style leads to betterdesigns and to fewer design iterations. CAD toolsare grouped intosix toolboxes,

one for each stepin the design flow: schematic entry, repartitioning, shape function generation (a

step unique to Playout), chip planning, cell synthesis, and chip assembly. A central data manager

provides permanent storage and supportscommunication between toolboxes, but each toolbox also

has its own special data structures thatare shared by all the tools in the toolbox. Each toolbox is a

separate unit, typicallya singleUnix process; it has itsown controller, whose role is not clear, and

its own user interface. A separate agent, the Design Manager, keeps track of the design process and

SyaUtm

man.fcr

I Data \
t in«n«(er ,'

Tool

, monofcr /

• syatam j
\jnterfacey

DOE MA

\ Aimt.nt/

Design Kngln

r\
1Design OBJ (i*l) | Design OBJ (i*0-
i __ I I I

~~\

transformation Teit consideration

•Design OBJ (I) J

Figure 2.2: The DOEMA model.

18

directs the database manager.

The design flow is described by a bipartite directed graph, but the system internally does

not use the graph. Some nodes in the graph represent the toolboxes, othernodes representdata types,

which arc either used or generated by the toolboxes. The graph is partitioned into three domains,

behavioral, structural or physical. The toolboxes that span a domain boundary (e.g. behavior to

structure) are those that perform a synthesis step. It is not clear if the graph represents the design

history or if it is just a plan of how a design should be done. The notion of iteration, represented

by cycles in the graph, is not clear. Parallel arcs represent alternatives, but there is no distinction

between compatible or exclusive alternatives. Playout deserves attention more as a platform for tool

integration and for the tools in its toolboxes than for its contribution to a conceptual understanding

of VLSI design.

Another example of a speculative system is the conceptual framework for ASIC design

proposed by Leung et al. [36]. Leung's goal is to bridge the gap between VLSI designers and

VLSI technology, especially in ASIC design. Design is seen as a decision making process, which

lies somewhere in the grayarea between"Art" and"Science," between "creation" and"mechanical

transformation." ModernCAD systems, Leung says, should first ofalloffer support forthis decision

making process.

The proposed unified conceptual model for ASIC designisshownin Figure 2.2. Itiscalled

DOEMA, as in Design Object, Design Engine, System Manager andexpert Assistant, and it does

19

not meet many of the requirements for an ADM, most of which are also listed in [36|: simplicity,

completeness, compatibility with existing tools, flexibility, case of use. The model consists of three

major units: the design engine, the system manager and the expert assistant. The design engine

operates uniformly on all design object at all levels of abstraction. The main purpose of the engine

is to invoke the appropriate tool to transform an abstraction of a design object into another more

detailed abstraction. The engine also takes care of verification, simulation and testing. The system

manager provides an integrated environment in which the engine operates, offering services such

as tool management, data management and interfacing with the operating system, but the authors

of [36] do not elaborate on the details of how such an environment could be implemented. The

function of the expert assistant is to make the designer aware of all the possible alternatives, to both

enable and help the decision making process. The assistant is an expert system based on two types

of knowledge: one to determine the available alternatives and one to determine when alternatives

should be considered.

DOEMA sounds like a designer's wish list: it would be nice to have a a set of tools that

operate uniformly at all levels of abstraction, a smart assistant and a versatile system manager.

However, there is little or no indication that tool sets are about to become so well structured, and

the claims about simplicity and versatility of the proposed model are not supported by any data.

The DOEMA is a weak conceptual model of the design activity, and is of little use in the context

of modem VLSI design.

Another system that emphasizes the decision making process in design is Yoda, by Dewey

and Director [18J. The observation that early design decisions are the most important in terms of

the performance of the final chip, leads Dewey to the notion of Conceptual Design, that is "the pro

cess of analyzing the outcome of alternative design decisions and their ramifications before actually

undertaking specific design and fabrication steps." Conceptual design replaces the expensive trial-

and-error approach of traditional design; its final productis a design plan, which is a set of design

decisions, each consisting of a choice of one of the possible design options for each of the rele

vant design issues. Design decisions are related to each other by a set of ordering and consistency

constraints. The designer is assisted in the decision process by a set of performance predictors and

by advice generated by a rule-based expert system. Yoda is a particular instance of the proposed

system for support ofconceptual design, specialized to thedesignofdigital filters, andit appears to

be successful in its restricted domain. The generalization of Yoda to other forms of design appears

to be difficultbecause of thechallenges associated with the acquisition of the knowledge base and

with the development of accurate prediction models.

20

2.1.2 General models for design activity

In this section we review someof themodels that, although in large partoriginated in the

context of VLSI design, do not rely on any specific characteristic of VLSI design, except perhaps

the fact that it is already automated to a large extent. We review four types of models of the design

flow. Two represent the design flow explicitly usingeither a directed graph or a bipartite directed

graph. The others represent the flow implicitly, and they are the blackboard model and a state

machine model.

Directed graphs

Knapp [33] reported some of the earliest works on VLSI design to give importancenot

onlyto thedata butalso to the operations of tools on thedata. Knapp proposes the useof a bipartite

acyclic directed graph for the representation of the circuits to be designed (the data), while the

tool flow is represented by a simple directed graph, calledplan; the nodes in the plan represent

abstract design states while the arcs represent abstract operators. A design state consists of a set

of assertions on thedesign, whilean operatordescribes operations on the designstate. Anoperator

O is described by five entities,

O = {F.E, Pre. Add, Del}

where F is the executable code of the operator, E is a set of estimators for the operator, Pre is

the set of assertions that must be true in order to allow the operator to execute, Add is the set of

the assertions that become true upon execution of the operator and Del the set of assertions that

become false. For example, the plan to produce a standard cell implementation of a combinational

logic circuit starting from a set of logic equations consists of three nodes and two arcs, as shown in

Figure 2.3. The first arc represent the logic minimizer, which requires the existence of a set of logic

equation (precondition) to produce a set of 2-level logic equations (postcondition). The new state

after the execution of the minimizer is described by the simultaneous existence of the initial logic

equations and the new two-level form. The second arc represents the layout tool, which requires

the existence of the two-level logic equations, an assertion that is true for the intermediate state in

Figure 2.3, to produce a new state characterized by the existence of a standard-cell layout.

Knapp is aware of the difficulties related to the development of exact and complete de

scriptions of what each program does and favors instead a simpler description of the behavior of

each operator basedon the preconditions Pre, and of the postconditions Addand Del. The design

logic minimizer layout tool
• »-• •-•

Log.Eq Log.Eq Log.Eq

2-Lcvel Eq. 2-Lcvel Eq.

Std-Ccll Layout

21

Figure 2.3: A plan produced by the DPE to transform a set of logic equations into standard-cell

layout is represented by a directed graph in which nodes represent design states and arcs represent

operators.

flow representation is both an executable plan and a design history; it is created as a plan, and it

progressively becomes history as each tool is run. A Design Planning Engine uses artificial in

telligence techniques to build a design plan tailored to each specific design. Such engine requires

information provided by estimators that predict the performance of the various operators. These es

timators need not be particularly accurate, but they should be at least monotonic, which means that

for any given set of designs, the predictions should yield the same ordering as the corresponding

actual performance measures.

One limitation of this model is that the notion ofmultiple inputs and outputs from a tool is

not captured graphically, but through an overloading of the meaning of design state as an arbitrarily

complex set of assertions. This can also lead to an exponential explosion in the number of states

required to describe even simple notions, such as the existence of design objects. Consider a set

of n design objects, each of which may or may not exist, independently from all the others. The

assertion that an object exists can be either true or false, and the number of distinct states required

to describe the existence of all objects is therefore 2".

Knapp's monolithic view of the design activity represents acaseof premature pursuit of a

totally automaticdesign system. His results are scarce, because the system requires idealized tools

such as the "almost monotonic" predictorsof the performance for each tool.

In contrast with Knapp's proposal, the Methodology Management System (MMS) devel

oped at MCC [3] inverts the roles of nodes and arcs in the directed graph describing the design

flow. In the MMS, nodes represent tools and arcs represent dependencies between tools. In most

cases, a dependency represents a file that iscreated by a tool and usedby another tool. In general,

(deftool bdsyn (bds-file blif-file Soptional collapse)
(version 1.1)

(tool-name "bdsyn") ;actual name of executable

(doc "Behavioral synthesis tool. See 'man bdsyn'")

(args

;<value> <default> <description> <label> <use-flag>
(nil nil "do not clean-up evaluation" "-b" nil)

((format nil "-c~A" collapse) nil "how much collapse to do" nil nil)
(nil nil "suppress vector notation for one-bit values" "-o" nil)
(nil nil "print table of non-assigned variables" "-n" nil)
(nil nil "change SELECTALL's to SELECT'S" "-s" nil)

(nil nil "provide periodic updates of progress" "-u" nil)
(nil nil "assign 'dont cares' to zero" "-z" nil)

)

)

(input-file bds-file nil "BDS file to be translated" " ")
(output-file blif-file nil "BLIF format file" ">")

22

Figure 2.4: Example of Process-Tool definition in the MCC's MMS.

however, an arc can represent any abstract form of temporal dependency between two tools. Time-

stamps arc associated with each node and each arc in the graph. As shown in Figure 2.4, the graph

is represented implicitly using LISP functions, with a LISP function associated with every tool in

the tool set. Complex tasks can also be represented with LISP functions that combine various tools

together. A separate tracing mechanism generates a textual log of the design activity, which is used

only for documentation, and not, for example, to enable the replay of tasks.

By operating in a LISP environment, MMS can be extended and tailored to satisfy the

particular needs ofeach design. But the need to maintainadetailed LISP description of the behavior

of each tool opens the door to problems in the maintenance of the system. Compare, for example,

the MMS description of the tool bdsyn shown in Figure 2.4 to the usage message produced by the

tool itself and shown in Figure 2.5. The MMS description is a redundant repetition of information

already easily available from the tool. It is alsoincomplete,because it does not mention the options

-d and -e nor the legal arguments for the option -c, and it is slightly inaccurate, because it changes

the meaning of the option -b. These areonly minor flaws in the encapsulation of one tool, bdsyn,

but imagine repeating the comparison for tens of tools and then remember that the tools are often

changing; the result is a complex problem of consistency maintenance, between what the tools

really do and what the MMS thinks they can do.

bdsyn [-bcdenosuz] [filename]
-b Turn off internal minimizing
-c [n] Specify less collapsing of logic

0 No collapsing

1 Local collapsing only
-d Give a dump of tokens during the parsing
-e [n] Specify execution level (0 ,..., 13)

0 PARSE only 1 then dump

2 through FOR 3 then dump
4 through EVAL 5 then dump
6 through LEAVE 7 then dump
8 through VERSION 9 then dump

10 through CLEANUP 11 then dump
12 through LIF 13 then dump

-n Give information about unspecified variables
-o Omit the trailing <0> for 1-bit variables
-s Map all SELECTALL's to SELECT'S
-u Give updates as to progress of execution
-z Set DONT_CARE's equal to zero

23

Figure 2.5: The usage message produced by the tool bdsyn is more detailed than the MMS Process-

Tool definition.

A model that bridges the gap between directed graphs and bipartite directed graphs is

described in the Task Manager by Chiueh, Katz and King [15]. Once again, an acyclic directed

graph is used, but this time the nodes in the graph are complex entities with many ports. Each

node represents a task and its ports represent the input and output data of the task. The ports are

characterized by a number of attributes that specify, for example, the type of data and whether it is

required or optional. Directed arcs connect an output of a task to an input of another task, as shown

in Figure 2.6, so that complex tasks can be built by combining elementary tasks in a hierarchical

fashion. This model fits in a four-layered scheme in which the entire design process is seen as

consisting of several design activities, which arc in turn composed by design tasks, which are a

sequence of tool invocations.

Chiueh et. al. [15] embrace the notion that design is unpredictable, that it cannot be

planned a-priori, but they do not carry this notion to its full extent. In fact, they restrict the unpre

dictabilityonly at the level of a design activity,while they claim thatdesign tasks can be planned.

Within a task, the system knows atany time which toolscan be invoked. The listof legal transaction

is presented to the designerwho choosesthe one to perform next. The invocationof anunexpected

tool within a task is possible, but it causes the system to react with a warning to the designer, al-

^̂ inl

in2

ITP ol

tooll

o2

^
I

tool2

o2

Optional input and output

Required input and output

24

S3

Figure 2.6: A node in the Task Manager is acomplex entity, with one port foreach input and output.

Complex tasks can be described hierarchicallyby using arcsto join outputs ofa subtask to the inputs

of other subtasks.

though no other record of the exception is maintained. To support the design activities, the system

maintains the Activity History, a possibly branching sequence of history records, each logging the

invocation of a task and its inputs and outputs.

Within an activity, backtracking is provided by the possibility of storing design points,

which are essentially copies of all the data that is relevant to an activity at a particular point in time.

If the designer performs a task, and then decides to invalidate it, he can backtrack by asking the

system to recover any of the previous design points. Although conceptually viable, this technique

can become prohibitively expensive unless it is complemented by a sophisticated mechanism to

reduce the redundancy in the storage of two adjacent design points, but there is no concern for this

problem in [15].

The Task Manager, if implemented, could be vulnerable to the problemof using multiple

representations forthedesigntasks: while theuserinteracts with the systemby meansofa graphical

representations of the tasks, the system itself operates internally on LISP-like expressions. Multi

ple representations must be kept consistent and for complex CAD systems this might become an

unwieldy job. Furthermore, there is the problem, already mentioned in the case of MCC's MMS,

of keeping the task descriptions up-to-date with the tool set.

25

Bipartite directed graphs

The use of a bipartite graph to represent a design flow has been proposed by many inde

pendent researchers. In many cases the bipartitegraph is an extension to the Petri net model.

Since their first appearance in 1962, in Carl Adam Petri's dissertation, Petri nets have been

used extensively to model systems that exhibit asynchronous and concurrent activities. Many ex

amplesof such uses can be found in theexcellenttutorialbyTadao Murata in the IEEEProceedings

[40|.

Following Di Janni [30], a marked Petri net PN is defined as a set of five entities:

PN = {P.T.I.O.M}

P = {in *l>2 Pn} is a finite set of places

T = {t\. ?2- ••••t,„} is a finite set of transitions

I: T -• P°° is the input function

O :T -* P°° is the output function

M : P -> {0.1.2,3,...} is the marking function

where

The places in a Petri net are conventionally used to represent data. The transitions repre

sent operations on the data. The directed arcs represent the relations of inputs and outputs between

data and operations. The marking function represents the number of tokens associated with each

place, and M{p) = k means that place p holds k tokens. The number of tokens in a place is normally

interpreted as the availability of that number of the item associated with that place.

The behavior of a Petri net is characterized in large part by itsfiring rule. A transition t is

said to be enabled if all of its input places contain at least one token. Only enabled transitions can

fire, but the actual firing is determined by extemal factors not necessarily represented by the net. If

a transition fires, one token is removed from each of the input places and one token is added to each

of the output places. Situations of conflict arise whenever the firing of a transition disables another

transition. If more than one transition is enabled, it is undetermined which one will fire first, but

certainly one will fire before all the others, because simultaneous firings are not allowed.

Theoreticians havestudied many behavioral properties of Petri nets, suchas reachability

of a marking from an initial marking, boundedness of the number of tokens held by places, and

26

Figure 2.7: Example of a Petri net. Both transitions t2 and t3 are enabled. If t2 fires, t3 is disabled,

and tl becomes enabled. If t3 fires first, t2 becomes disabled. This net is not live because all

evolutions lead to a marking with one or two tokens on p4 and no enabled transition.

liveness of a transition, that is the existence of a firing sequence that enables the transition. These

properties have found no useful interpretation when Petri nets have been applied in the domain of

design management, a circumstantial evidence that the Petri net formalism is perhaps more than

necessary for design management purposes. An example of a Petri net is shown in Figure 2.7.

The first use of Petri nets in design management is found in the system Monitor by Di

Janni [301 which is based on an extended Petri net with disabled transitions (DTPN) and with a

special marking function. As usual, places represent files and transitions represent CAD tools. A

DTPN is formally defined as a set of seven entities:

DTPN = {P,TJ,O.D,M,F)

where P. T. I and O are the same as in a marked Petri net and

M : P -• {- 3. -2, -1,0,1.2,3} is the marking function

D :T -> T°° is the disabling function

F :T -» B = {TRUE, FALSE} is the firing function

The marking function has an unusual range, the integers between -3 and 3, instead of the

set of nonnegative integers. The notion of negative marking was introduced in Monitor to denote

obsolete objects. The other markings represent possible conditions of the files: 0 = non existent,

1 = provisional, 2 = final, 3 = confirmed. The disabling function maps transitions into bags of

transitions. This could be represented by sets of arcs each incident on two transition nodes, thus

27

voiding the bipartite property of the graph. Di Janni, however, chose not to represent D explicitly

in the net.

The firing rule used in Monitor is the following: transition tj mayfire if themarking of

all Inputs p, oft j is greater than the number of arcsfrom theplace to the transition, and ifF[tj) is

TRUE :

Vpi G PAM(pt)>mp,J(tj)))AF(tj)

where the symbol #(.».-. D) is read as "the numberof occurrences of ;i- in the bag 5."

The new marking M' after transition tj has fired isgiven by these rules1:

M'(P,) =
M(pi) \f#(phO[tj)) = Q

#(PhO(tj)) if#(^,O(fJ))>0

F(ti) \f#(ti,D(tj)) = 0

F'(ti)=j FALSE \nnthD(tj))=l
{ TRUE if#itj.D(tj))> 1

In words, the marking of an output place after execution of a transition depends on the number of

arcs going from the transitions into the place. The net does not consume the tokens in the input

places, as expressed by the fact that the marking of an input place is not affected by the firing of a

transition. The disabling function D is designed to disable the tools that would overwrite the files

that have already been created by other tools, but it can also be used for the opposite purpose of

enabling some transitions.

Monitor has the notion of consistency of the design data and knows how to react when

consistency is lost, for example when a disabled transition is forcefully fired by the user. Parallel

paths represent alternative methods to obtain a particular piece of data. The choice of one path

disables all others. The designer interacts directly with the net which appears in a window on the

screen. An intelligent color coding scheme informs the designer on which transitions are enabled,

by making them appear green, while disabled transitions appear red. The designer can always force

the execution of transitions, even the disabled ones, but cannot change the topology of the net. The

interface towards the tools is simplified to the point that the input is just the name of the working

cell and the output is just a termination code.

Monitor hasmanyinnovative feature butit hasa simplistic toolinterface, it lacksexplicit

alternative management and it provides no way to maintain a history of thedesign. The operation

'The equation for F' is a corrected version of the onein[30]

28

Figure 2.8: The basic primitives used by decol in the program environment templates.

of the system with a multiple cell design or with a hierarchical design is also not clear. Monitor has

other weaknesses as an ADM, such as the rigidity of the Petri net, which cannot be changed by the

designer, the monolithic architecture and the single-user interface.

Kozminski at the Microelectronics Center in NorthCarolina (MCNC) [34] has proposed a

bipartite graph to represent program environmenttemplates, each representing the set ofall possible

input/output relationships between a program and its data files. The system is called decol, for

Design Control Language. The primitive entities used in the templates are shown in Figure 2.8.

These templates, entered in textual format, provide a rich set of functions. For example, they can

be used to rename program options so as to make them consistent with system-wide conventions,

to rename input and output files, to define the rules that construct the command line, and to specify

simple actions to perform before and after the execution of the program, although the notion of

simple action is not well defined. The templates can also express complex interactions among

different programs, such as the condition that the input of a program must be processed with a

particular option by another program.

All the program templates are linked together in a dataflow template that represents all

possible interactions and dataflow paths in the given design system. During a design, decol

inspects the file system to look for files that match the characteristics of nodes in the data flow

template. If more thanone match is found for the same node, the data flow template is augmented

with anew copy of thatnodeandof someof the adjacent nodes, but thedetails of the augmentations

arc not clear. The file system is inspectedagain afterthe executionof any program. Since no details

are givenon the way this inspection is actually performed, it is fair to suspect that in the case of

29

large file systems, and for large designs, this inspectioncould be very expensive.

Several other constructs are available in decol, but they are separated from the program

environment templates. For example, goals are groups of data files representing an objective that

the user wants to achieve, routes arc paths in the data flow template, selectors enable decol to

choose one of several alternative subdesigns by some criteriathat rank the quality of the alternatives,

overrides modify the default behavior of a program, comparators compare different revisions of

data files. Support for vcrsioning is provided through an interface to the UNIX Revision Control

System RCS.

By checking timestamps in the files, decol emulates the capabilities of the UNIX utility

make. Some heuristics allow decol to bypass the execution of a program if it is unlikely that

the output of the program will be different from what is already stored in the file system. This is

attractive for the savings in processing time, but it is also an imprudent design practice, because it

relies on weak heuristics to guarantee the consistency of the design data. The hierarchical structure

of the circuit is embedded in the unix hierarchy of directories, probably a reasonable arrangement

in many cases but in general restrictive and not justified. Perhaps the greatest limitation in decol

is the lack of support for concurrent activities.

The work at Siemens by Bretschneider and Lagger [6, 7] emphasizes the integration of

Petri nets and rules. The nets describe the flow of information, the rules are used by an expert system

to support design decisions and conflict resolution. This work is based on Predicate Transition nets

(Pr/T nets) [23], an extension to the Petri net model that allows many types of tokens. In comparison

with other models, these nets are remarkably complex. Transitions represent either tools or decision

nodes, places represent either data or abstract states of the design, such as error conditions. Tokens

represent the availability of design data, the occurrence of error conditions, or control information.

There are several types of arcs, each represented graphically by a distinctive symbol.

One type of arc represents the consuming access, where a transition consumes one of its inputs.

The reading access requires the presence of a token in an input in order to enable a transition, but

the token is not removed when the transition is fired. Other arcs are related to the hierarchical

structure of the design, and their meaning depends on the value of an inscription associated with

the arc. Forexample, the inscription"all y" on an arc going from a place representing a netiist

into a transitionrepresentinga schematic editor means thatall the subcomponents ofa module must

have a netiist before the schematic editing of the module can begin.

Arcs are also labeled with patterns that influence the firing rule for a transition. The

patterns identify the type of tokens that are required in the input places as well as the types of

30

tokens added to the outputs. A further complication arises because variables can be used in the

patterns; in such case, the firing rule requires that all variables in all arcs entering and exiting a

transition must be instantiated consistently.

In the Siemens system, the term conflict is used to refer to the choice among several

alternative paths in the net. The final decision, which is responsibility of the designer, is assisted

by a rule-based expert system. The decision point itself is explicitly represented by a transition

associated with the relevant decision-making rules. Deviating again from the classical Petri net

firing rule, thisparticular type of transition outputs different typesof tokensdepending on the actual

decision. Decision nodes are also used to terminate design loops, such as optimization or testing

loops. As with all decisions, the designer intervention is required to actually terminate each loop.

Entire subnets can be colored, where different colors represent differentscheduling poli

cies. Forexample, ascheduling policymay prescribe theenforcementofa particulardesignmethod

ology (e.g. do simulationbefore layout), while another may simply require a passivemonitoringof

the designers' activity.

The nets are used as a purelydescriptive device, which exploits the powerof a graphical

representation to give the users an intuitive understanding of the design flow. The nets are created

manually by experts who edit them with the assistance of a smart graphical editor. In order to be

used by the system, the nets have to be compiled into an executable format, that is into a set of rules

that are then fed into a rule-based expert system. Each transition in the Pr/T net is converted into

a set of three rules: a rule on the enabling of the transition, a rule to remove the tokens from the

inputs when tha designer decided to fire the enabled transition, and another rule to add tokens to the

output places upon successful completion of the transition. The rule-base is complemented with

the addition of other rules not derived from the Pr/T nets, such as rules about conflict resolution,

parameter selection, and the special rules associated with decision nodes.

Perhaps the only problem with this model is its overwhelming complexity, which over

shadows its remarkable modeling power. It is true that the real design world is complex and requires

a proportionally complex management system, but a balance between detail and abstraction must

be achieved to produce a system that designers can successfully use. The Pr/T net itself is diffi

cult to read, even in its graphical form, and it loses most of its intuitive value because of the many

annotations on the arcs and the many different tokens. Like other proposed models, this system

requires a large amount of setup work to create and maintain the Pr/Tnets and the other rules in the

rule-base.

31

State Machines

State machine models of the design activity interpret each CAD transaction as a transition

from a design state to another. The NELSIS project [37] has chosen this stare management approach.

The state of each design object is represented by the set of all transactions that have already been

performed on the object, and it determines which new transactions can be legally executed on the

object. The effect of each tool on the state of an object is determined by consulting an external

rule-base.

Tasks performed by the state manager include checking of the starting conditions for each

transaction and the possible automatic activation of pre-processing tools to enable a transaction for

which the starting conditions would otherwise not be satisfied. The information required to perform

these tasks is also stored in the external rule-base. The rule-base plays a key role in this system.

Since it depends on the tool-set, it must be updated as new tools are introduced and old tools are

modified.

NELSIS is an experiment in the development of a complete and sophisticated CAD sys

tem, including a substantial framework, open, efficient and configurable [50, 47]. The kernel of

NELSIS is a configurable data management module based on the OTO-D model (Object Type Ori

ented Data model). Design management is based on the management of the meta-data, that is the

data about the design activity. The meta-data represents the invariants of file design data orga

nization rather than the actual composition of the design. The design management meta-data is

organized on a per-project basis. A Project Server is in charge of managing the meta-data for the

project, and clients connect to the server to query the meta-data.

The blackboard model

A different model of the design activity has been developed at CMU by Director and

his coworkers. The model adopted by Bushnell and Director in the Ulysses system [11] is the

blackboard model. The blackboard is a global database used to coordinate the activities of tools

and designers. EachCAD tool is viewed as a self-activating asynchronous process, referred to as

a knowledge source (KS). The designer himselfis a specialKS. Knowledge sources communicate

with each other via the blackboard. A KS is activated when a specified set of files is present on

the blackboard. Any file modified by the KS is written back onto the blackboard. In Ulysses

the blackboard is partitioned into three parts: the CAD-tool blackboard containing specific design

data, the Assertion blackboard containing reasons for CAD tool failures, the Scheduling blackboard

32

containing the scheduling parameters for each KS. Resolution of conflicts among KS is performed

by a special KS, the scheduler, implemented as a knowledge based expert system.

The detailed description ofeach design task, including the tool sequencing, is done within

scripts, short programs written in the"Scripts Language" [10]. A scriptdescribesthe tool sequenc

ing, the motivation for each step in the sequence, the handling of exceptions, the rules for consis

tency checking, and other interactions between tools.

Aware of the evolving nature of CAD systems, Ulysses wants to offer an opportunistic

flow control, that is a mechanism that permits the selection of the "right tool" depending on the

available tools, and on other circumstances. By contrast, a deterministic flow control would instead

use the same tools, as dictated by a pre-planned logic. But Ulysses fails to be truly opportunistic

because of the scripts, which contain many explicit references to tools, and are therefore unusable

when the tools becomes obsolete and arc replaced by new ones.

Ulysses handles complex design dependencies, maintains data consistency and executes

tools whenever some data change. Control directives from the designer are expressed as posts to

the blackboard, such as "Run tool," "Translate file," "Place chip."

The blackboard model has a definite appeal, stemming from its conceptual simplicity and

from this idea of self-activating demons that come into play any time there is a need for them.

However the blackboard model does little to simplify the problem of managing the design activity.

Its simplicity stems from the fact that it pushes the complexity of the management problem into the

knowledge sources, which must be smart enough to know when to become activated. The need for

a scheduler, a super-KS capable of resolving conflicts arising between all the other KS, testifies to

the inadequate modeling power of the model.

A more recent development of the blackboard model is Cadweld, developed by Daniell

and Director [17]. The problems addressed by Cadweld are related to the interaction between de

signers and tools and to the introduction of new tools in a design framework. Designers often

encounter difficulties learning new tools, they become discouraged and prefer to use familiar tools,

even if they have become obsolete. Cadweld begins with a criticism of the scripts mechanism in

Ulysses. In order to write a script, a designerneeds a lot of knowledge about the environment and

the workings of the system. The scripts make explicit references to tools, so that the addition of

new tools require the modification of many existing scripts, and this complicates significantly the

use and maintenance of the system.

Cadweld separates the information about CAD tools from the information about design

tasks. Tools are once again seen as smart objects, capable of responding to certain posts on the

33

blackboard, but this time tools can only volunteer to perform a certain task. They respond to calls

for action, but it is cither the designer or a specialized program called CAD task to decide which

volunteer is most appropriate. In this way, Cadweld eliminates the need for a scheduler such as

the one in Ulysses, and it does so by placing the decision making burden upon the designers or

the CAD tasks. A CAD task chooses a volunteer on the basis of some tool characteristics, such

as its robustness, its computing effort, its input list, which are described by a CAD Tool Object

(CTO). The CTO is like a mushroom cap on top of each tool, and hides the low level details on the

invocation of the tool to simplify the interface between the tool and the CAD tasks. Theframework

administrator plays a decisive role in trying to keep up-to-date the CTO's, the CADtasks, and the

design rules that must be enforced by the system.

Another feature of Cadweld, its classification of tools, is described in Section 2.3.

2.1.3 Design environments

There is another category of design systems that take upon themselves some management

tasks: the design environments, which wc distinguish from the designframeworks. While a design

framework is generally open to outside contributions, such as tools from extemal vendors, a design

environment is a collection of tightly integrated tools. The value of a design environment is then

measured by the value of the tools in the environment and by the ease with which new tools can be

added. Design environments evade our classification based on the different models of the design

activity, mostly because these systems tend to be monolithic, and not a system of asynchronous

concurrent processes as assumed at the beginning of this section.

One such environment for VLSI design is Schema, the work developed at MIT by Clark

and Zippel [16]. Schema is a software engineering experiment on object oriented programming,

based on LISP and Flavors. Its goal is to simplify the development of synthesis and analysis tools

by providing libraries of standard routines, by prescribing the use of uniform data structures and

by providing libraries of advanced control structures deemed appropriate for CAD. Each design

component in Schema is a module, and consists of several descriptions, including one called the

topology of the module, which represents its structure. The system tries to maintain consistency

between the topology and the other descriptions by means of timestamps and limited edit trails, and

the designer is warned if two descriptions become inconsistent.

Schema, not the designer, defines which tools can be invoked and which cannot, although

the designer is the agent that invokes the tools. The sparsity of the tools landscape is such that the

34

problem of tool sequencing and scheduling is not fell. The issue of coordination of concurrent

activities is totally ignored, while data sharing among designers is treated superficially, simply by

allowing a hierarchical organization of design objects.

2.2 Intrusiveness of implementation

By intrusiveness of an ADM is meant ameasure of the extent by which the ADM changes

the way designers do design. One form of intrusiveness consists of confining the users within the

boundary of a prcspecified plan. Although this is generally helpful for the inexperienced designer,

it is too restrictive for the expert designer who may want to try a new tool or a new sequencing

of the tools. If the system prevents a designer from violating the predefined plan, the designer has

no option but to bypass the ADM, and may accidentally introduce chaos into the design process.

Monitor, decol, MMS, the Siemens manager, all these systems fall into this class.

The unrealistic goal of a fully automated CAD system which relieves the designer of any

need to make decisions is prominent in the literature. No system can claim to reach this goal. The

systems that pursue the goal tend to be intrusive, because they assume a leadership role in their

interaction with the designers. Designers are demoted to the level of tools, while the DMS claims

the privilege to define what is legal and what is right or wrong ([11, 16, 15]).

For many of the proposed systems it is difficult to attempt an objective evaluation of their

intrusiveness because the systems have not been developed enough to actually be used. Neverthe

less, it is possible to estimate their intrusiveness from the published descriptions.

The most intrusive systems are probably those based upon the blackboard model. The

whole design activity becomes a dialog between the system and the designers via requests posted

on the blackboard, and the designers have no direct access to the tools.

Other systems require a special environment to be used. MCC's MMS [3] requires de

signersto work from within amodified Emacs editorandto understanda good amountofLISP code.

Similarly, the Task Manager [15] requires that the design tasks be performed only from within a

certain activity.

Many systems, including MMS, the Task Manager, and decol, tend to order an undis

ciplined set of tools by assigningmeaningful andconsistentnames to tools andto theiroptions, but

the little gain obtained with this cosmetic change often has serious consequences. Some tools and

some options that do not fit the clean and consistent naming scheme are ignored or eliminated. In

the unspoken possibilitythat the design manager fails, the designers, who now have no choice but

35

to interact directly with the tools, will be forced to mentally switch back to the real names for both

tools and options. The problem of consistent naming conventions should be solved at the root, by

the tool developers and not by the design manager.

2.3 Classification of tools and data

Some design management systems require a classification of the tools, because they need

to distinguish routing tools from placement tools, simulators from module generators. The purpose

of such classification is to promote a better understanding of the tools set and to define groups

of interchangeable tools. The danger is the possible explosion in the number of classes required

to have a sufficiently refined classification. For example, the class of "placement tools" must be

further subdivided into standard cells, macro cells, gate arrays, sea of gates and PCB tools, because

they arc normally not interchangeable. Similarly, a simulator can be logic, switch level, gate level,

multi level, electrical, behavioral. The format of input and output data should also become a class

discriminator, because two tools performing conceptually the same function are not interchangeable

if they use two different input formats.

One classification hierarchy has been proposed by J. Daniell in Cadweld [17]. This hier

archy is a natural product of the object oriented approach used to describe the CAD tools, where

a CAD Tool Object (CTO) can be derived from another CTO, inheriting all its properties. This

derivation is represented as an arc in a tree, in which the nodes represent CTO classes.

The classification tree used by Cadweld includes more than thirty nodes, yet it is not suf

ficiently detailed to be useful as a design management device. This is shown explicitly in Daniell's

work itself, in a section that illustrates a typical session with the system. In response to a "post" on

the blackboard requesting the placement of a standard-cell circuit, the set of tools that volunteered

included the program puppy, which is specialized for macro-cell placement and is therefore totally

inadequate for the job. Not only did puppy volunteer, but it was also selected and executed, only

to conclude that it could not complete the job. Although one might always say that this type of

mistake is attributable to an oversight in the development of a prototype, the example does show

the dangers of relying on an unrefined tool classification.

However, it is not clear if any classification can properly capture the variety of all the

tools in a CAD system. In the Octtools there are several tools thatcan perform many and different

tasks. For example, padplace can be used to place pads or to route the power rings around a

chip, while misll can be used to optimize of a logic network or as a format translator. Other

36

tools complicate any classification scheme, because they perform specialized and unconventional

tasks. For example, cprep -c is called upon to patch a data structure produced by a faulty tool

to enable the use of the data by other tools, PGcurrent annotates the powernets so that they will

be properly sized by the routing tools. Some tools that are not traditionally regarded as CAD tools,

can nevertheless be included in a design methodology, e.g. the UNIX utilities dif f, sed, cp. The

only classification that takes into account the variability of design tools has a majority of classes

with just one representative, but such classification would be of little or no use, because it defeats

the purpose of identifying interchangeable tools.

Some systems, including MMS, NELSIS and Cadweld [3, 37, 17], distinguish the tools

that "do work" such as routers and simulators from the tools that perform "format translation,"

with the implication that format translations arc second rank operations. This distinction is a relic

from the days of tool centered CAD systems [28], where each tools had its own input format and a

large number of special purpose translators provided the fabric to integrate the tools into a system.

Format translation is traditionally regarded as an annoyance and designers would rather not deal

with it. Hence the tendency to separate translation tools from the other tools.

We see no conceptual difference between translators and other CAD tools. Translation

can be conceptually hard, in the case of two languages which use different semantics, and it can

be very time consuming. Like all CAD tools, translators also have inputs and outputs. Granting

special status to translators is not useful and could be potentially dangerous when it hides from the

designers the difficulties and the possible distortion introduced by these tasks.

Decol [34], the Task Manager [15] and the commercial EDMS [24] and the Integrator

[43] have in common the notion of "conceptually different types of data." This notion is often

referred to as strong typing of the design data. The purpose of strong typing is duplex: it enables

some safety checks on the inputs and outputs of tools and, as in the case of decol, it is used

as a pattern matching criterion to automatically deduce a plausible design flow from a set of tool

templates. The risk in strong typing is the same as in tool classification: once started, it cannot be

stopped, and strong typing becomes unmanageable because of the large number of data types that

must be considered. How large? In the Octtools, forexample, following the logic suggested by Katz

[15] or by Kozminski [34], one should consider at least the following sixteen types of ASCII files:

bdnet,bds, blif, esp, musa script,crystalscript, mis script, cif, cdif, spice decks, mask modification

scripts, wolfe parameters, puppy parameters, puppy constraints, padplace lists, spares rules. The

same process for Oct facets would produce asimilarly long listof types, the rule being thatalmost

every tool in the set contributes a new data type.

37

Without detracting anything to the beneficial contributes of strong typing in other con

texts, such as software development, strong typing for design management, although attractive,

becomes unwieldy and probably unnecessary. In fact, the safety checks on the inputs of tools arc

redundant because most tools already recognize inputs of the wrong type by either explicitly refus

ing to execute or by simply failing. As far as matchingof tool templates goes, type matching could

be replaced, for example, by name matching.

2.4 Artificial intelligence techniques

A prominent trend in electronic design is the application of artificial intelligence tech

niques in the development of CAD tools. The same techniques have also been applied in design

management, partly because the design process is heuristic and partly because an expert human

designer, given enough time, can outperform the most sophisticated CAD tool. Researchers have

tried to capture the designers' expertise in a set of rules used to drive an expert system. However, to

date, these expert systems have yet to prove that their value offsets the efforts necessary to acquire

and maintain the knowledge base.

One example is Steele's work at NCR [38] on a prototype expert system to provide ad

vice on performance, testability and quality for standard-cell designs. The knowledge is acquired

through interviews with several designers, including both experts and novices. Steele recognizes

that the applicability of his system is limited to domains which are well understood and relatively

stable over time, two characteristics which are rather uncommon in CAD.

Other systems have already been mentioned. One is the expert system proposed for the

DOEMA framework [36], which assists the designer by alerting him about the available design

alternatives. The Siemens system [6] is also rule-based, where the rules are in partderived from a

Petri net descriptionof the design flowandin part added to resolvesome specificdecision problems.

Yoda [18) indicates artificial intelligence as best suited to control thepart of conceptualdesign that

involves ill-defined knowledge, while imperative programming languages are moreappropriate for

the well-defined part of conceptual design. The mle-based expert system in Yoda provides two

forms of assistance: advice about theavailable alternatives, and prediction of the performance of an

alternative. In the domain of digital filtering, Yoda offers a powerful design environment complete

with an extensive set of accurate prediction models.

38

2.5 Issues in data management

Traditionally, the problem of efficient data management has been studied in its own, with

emphasis on the data alone. The same problem becomes more interesting in the context of design

management, in which both data and transformations on the data can be managed together. In

particular, the notions of consistency maintenance and version should be reconsidered.

Batory and Kim [5] arc mainly concerned about the problem of minimizing storage re

dundancy among versions. They propose a method based on version-derivation hierarchies that

minimizes redundancy while maintaining uniform access to any version. While this problem of

redundancy minimization is orthogonal to our current focus on design management, relevant is the

problem of change notification, also considered in the same paper. Change notification for Batory

and Kim is what could also be called consistency management, that is the problem of defining and

automatically maintaining a notion of consistency between design data. In particular, Batory and

Kim look at how changes in a particular design object should be propagated to other objects that

reference it.

Two techniques arc proposed, one based on timestamps, and another that uses auxiliary di

rectories to store a log of all changes. With the first technique, each design object is given two times

tamps: a change-notification timestamp (CN) that indicates the last time the version was changed,

and a change-approval timestamp (CA) that indicates the last time a designer has approved the lat

est changes. The consistency criterion requires that CA > CN, for each version V as well as for

each version referenced by V.

Change notification can be active or passive. In passive change notification, the designer

is notified of a change in a version the first time that version is referenced, while in active change

notification the system notifies all interested designers about a change right after the change hap

pens.

Batory and Kim talk about the possibility that a smallchange in an object A might have

no effect on an object V that references .4. In such a case, the notificationmechanismshouldstop at

V, because the objects that reference V need not be notified. Such a selective notificationstrategy

requires lesswork thana blind notify all strategy. Theobjection to thisapproach is thatthe notion of

"small change" has no formal definition, that could be used reliably in an automated CAD system.

Batory and Kim can afford to be informal, because theirdefinition of consistency is basedon CA,

thatis it requires the intervention of a designer who makes the decisions and assume responsibility

for them.

39

alu.mag.l

alu.mag.2 alu.mag.3 alu.mag.5

alu.mag.4 *

Figure 2.9: A version derivation tree in the Version Server. Nodes represent versions of the layout

of an ALU, arcs represent the relation of derivation of a version from another. Version 4 is marked

as being the current version, even if it is not the most recent one. What is missing is an indication

of how, and why, each derivation has occurred.

In the Version Server described by Katz ct al. [31] the design objects are arranged in

a space described by three axes: composition, derivation and equivalence. The objects are also

grouped into workspaces. A workspace operates as a metaphor of an electronic file cabinet, in

which objects arechecked-in and checked-out according to some rules. In a typical design environ

ment there are three types of workspace, which are distinguished by their check-in and check-out

policies. Public archives have a liberal check-out policy but a restrictive check-in policy, private

workspaces have a liberal check-in procedure and a restrictive check-out one. Group workspaces

lie somewhere in between archives and private workspaces and allow cooperation between design

ers. Workspaces offer some protection of the integrity of the design data, because the important

data are kept in the public archives, where the restrictive check-in procedure prevents accidental

corruption of the data. However, within each private workspace, the designer is dangerously free

to corrupt the design data.

The relationship among the versions of an object is represented by a derivation tree, such

as the one shown in Figure 2.9. The nodes in the tree represent the various versions, while the

arcs represent a generic relation of derivation of a version from another. Each derivation tree has

a currency indicator which points to the version "of interest," which is not necessarily the newest.

The derivation tree contains no mention of how a new version was derived from another one, nor

why.

There are many data managers and they each have different capabilities. For example,

Frank Halasz in his work on the next generation of hypermedia systems [26], insistson the need for

a richversioning scheme, like the one adopted in PIE [25]; notonly eachentity has itsown version

40

history, represented as a linear graph, but also whole sets of entities can have a version history,

which is used to keep track of coordinate changes to the objects in the set. For efficiency reasons,

Halasz recommends that a data management system allows a representation of both the versions

and the "deltas" between versions, rather than just the versions.

Since not all data managers have the samecapabilities, it is important to try to decouple

the ADM from thecapabilities of thedata manager. Inelectronic design, despite anintense effort by

CAD developers to integrate all data managementinto a single database, the integration is far from

complete. For example, in the Octtools there arc at least two databases: Oct for the management

of all layout, nctlists, and schematics, while UNIX is used for the management of ASCII files and

cxccutablcs. It is restrictive, to assume that all the dataarehomogeneous and managedby the same

database, but this is commonly done. For example the NELSIS system [50] manages only data

stored in its data manager (the sophisticated OTO-D), as does Playout [52], while Monitor [30]

deals only with UNIX files.

2.6 Commercial systems

The demand for automatic design management has recently become strong and a number

of players have appeared in the arena to compete for a share of the electronic design market. There

is probably no market for stand-alone design frameworks, because the value ofa framework without

tools is minimal. The most important part of a CAD system remains the tool set and users expect

the framework, and its services, to come with the tool set.

The Electronic Design Management System developed by EDA [8, 24] is probably the

most famous ADM available. EDMS appears to meet all the requirements of a powerful ADM: it

is programmable, expandable, customizable, and it offers a complete collection of services, includ

ing protection using workspaces, consistency management, history tracking, and maintenance of

profiles for each user authorized to work in a workspace. But all this is offered in the absence of a

clear model of the design activity.

One goal in EDMS was to remedy some of the shortcomings of standard operating sys

tems when applied to electronic design. In particular, the protection and versioning schemes of

conventional file systems were perceived as inadequate, because they offer only simple version

chains instead of alternative version paths. Another goal was to provide a framework for the in

cremental evolution of CAD systems, by allowing the integration of tools produced by different

vendors.

41

EDMS consists of three major parts: the Workspace server, the Application Run Time

System and the Desktop Shell. The workspace server implements most of the capabilities described

by Katz ct al. [311, including team design support, versioning with derivation trees, and the notion

of currentversion. Programmabilityof the framework is possible with an interpreted version of C,

called E-language, that is used for both tool encapsulation and to allow the user to specify design

policies that can be enforced by the Workspace Server. Some tasks are triggered by automatic

check-in/check-out procedures; others are invoked explicitly by the designer.

The system requiresacomplex and time consuming tools encapsulation [24]. The capsule

for each tool must describe all required and optional inputs and outputs, including their types, de

scription of the tool itself, pre-conditions and post-conditions. As reported in [24] the encapsulation

of the program hspice took three days to plan and seven days to write.

No particular assistance is offered to the inexperienced designer, other than through a

sophisticated menu-driven and graphical user interface. The interface represents the tools with a

slot for each of their required and optional inputs and outputs. The user fills the slots with the

appropriate data and then asks the system to run the tool.

Another example of design framework with management capabilities is the Integrator

by Interact [431. The system consists of a collection of sophisticated procedures for tool and data

management wrapped in a powerful graphical user interface. The system emphasizes distributed

processing and cooperation among designers, and provides a mechanism for active change notifica

tion. Design management is based on a static encapsulation ofeach tool's inputs, outputs, and other

characteristics, entered through the graphical interface. Strong typing of the data allows automatic

generation of tool sequences.

2.7 Conclusion of the survey

The systems presented in this survey are unsatisfactory as design management tools for

one or more of the following reasons.

• Implementation difficulties, particularly in rule-based expert systems like Yoda [18], which

face the challenging problem of knowledge acquisition.

• Intrusiveness.

• Poor quality of the final designs, due to a rigid interface to the tools, which prevents the

designers from having full access to the power of the tools.

42

• Incomplete set of services.

Mostof the literature on automation of design management assumes thatthe design pro

cess can be planned, and that it makes sense to try to write a program to capture the complexity

of the design activity a-priori. The preconditions, postconditions in Knapp's description of the

operators, the Petri net in Di Janni's Monitor, the scripts in Ulysses, the characterization of the

CAD-Tool-Objects in Cadweld, the mles in NELSIS, are all different ways of programming the

design activity. Such programs have been found to be extremely difficult to develop beyond the

stage of a prototype.

In Section 1.1, it is observed that design is a goal-directed activity that is not apt to be

confined within the boundariesof a predefined plan. The difficulties encountered by the developers

of the systems reviewed in this chapter are probably related to their approach of focusing upon an

a-priori description, rather than on the history of the interaction between the designers and the CAD

system.

Chapter 3

The Design Trace

In the previous chapters we have presented the design management problem, highlighted

some technical issues, and we have surveyed previous work to identify, by contrast, the innovative

contributions of this work. In this chapter we describe a design management system based on the

notion of design traces. Most ideas presented in this chapter have also been implemented in a

prototype called "VOV." The name VOV will also be used as a short-hand to refer to the proposed

trace based management system.

This chapter begins describing the design trace. In Section 3.4 the server/client architec

ture of the system is shown. Sections 3.8 and 3.8.1 introduce the notion of sets and of how they

are used to represent hierarchy in the trace. Section 3.9 is dedicated to the services provided by the

system. The notion of measurement and its uses are presented in Section 3.10. A most important

service is assistance to novice designers, as provided by the VOV assistant, a program that extracts

information from a library of example traces, all described in Section 3.11. The notion of itera

tion in design, is presented in Section 3.13. The principles that have been most effective in the

development of VOV are summarized in the final Section 3.14.

The next Chapter 4 contains a description of some implementation details of the system.

3.1 Design management based on design traces

The goal of this and previous research is to propose an ADM that adds value to current

CAD systems by making them easier to use and more productive. However, this research differs

from the previous, because it follows a differentconceptual itinerary to achieve the goal. Our basic

idea is to begin by building a system that does not try to lead the designers through a predefined

43

44

plan, but a system thatfollows thedesigners, by monitoring and recording their activity. The record

of the design activity is represented as a bipartite graph, called the trace, which is used as the

historical record of the design, as a way to capture data dependencies, and as a device to direct the

automatic execution of tools. The trace captures each tool invocation and registers all inputs and

outputs of each tool. This tracingmechanism is meant tosatisfytheneedsof theexpertdesigners; it

provides services such as consistency maintenance and coordination of concurrent activities, while

maintaining unrestricted access to the tools.

Once the tracing mechanism is in place, the capabilities of the system can be extended

to include services such as guidance and assistance for novice designers, and support for design

methodologies. These extensions are based on the analysis and reuse of the design traces.

The trace is not just a "model" of the design activity, it is also a "machine." A model is

an abstract representation of some features of a system, mostly used to do theoretical studies. The

trace is not only an abstract representation; it is also used to monitor, represent and automate the

design activity. Like all machines, the trace is used to modify reality.

3.1.1 Non-intrusive tracing

The trace should be captured in a manner that is as non-intrusive as possible, requiring

no effort from the users. One solution, the first considered but then soon discarded, is to provide a

shell in which the designers operate. The shell would feel like a regular UNIX shell, e.g. csh, but it

would also know about the CAD tools and about their effects on the design data. The DMS would

maintain the trace using the information generated by the analysis of the command lines intercepted

by the shell.

Such a shell would be too difficult to realize. First of all, it would require an immense

amount of knowledge, which would have to be maintained up-to-date with a rapidly changing tool

set. But, more fundamentally, no shell can predict the behavior of a tool from an analysis of its

command line, no matter how sophisticated the analysis. For example, the command line

misll -f script.msu file.blif

does mention a file called script .msu, but it does not say that the file could be either in the

current directory or in

-octtools/lib/misll/lib

45

nor docs the command line show that the file

-octtools/lib/mis11/lib/script

is also used as an input - it is referenced by a command contained in the file script .msu.

This digression is to prove that the rules to determine inputs and outputs of a tool can be

arbitrarily complex and are not derivable from an analysis of the command line. The only agent that

has complete knowledge of what a tool does is the tool itself, at runtime. This leads to the principal

assumption in VOV: the tools themselves, at runtime, generate the information used by the system

to maintain the design trace.

The system has no direct way to know whether the information provided by the tools is

reliable. The system has no choice but to trust the tools, even if this this might sound dangerous.

In practice, this has not been a problem. In section 3.4.1 we show two techniques that allow tools

to produce complete and correct information.

3.1.2 The trace

The trace is represented as a bipartite directed acyclic graph, sometimes called BAD

graph, similar to a Petri net, but simpler. From Petri nets we borrow some key terminology: the

nodes in the trace are either places or transitions. Each place represents a generic piece of design

data, forexample a unix file or an Oct facet. Each transition represents an atomic transaction that

can be initiated from a unix shell, such as the execution of a placement tool or a logic simulator.

Arcs express input/output relationships between places and transitions. An arc from a place to a

transition indicates that the place is an input for the transition; an arc from a transition to a place

indicates that the place is an output.

A place represents data of different types: ASCII files, executables, Oct facets, and oth

ers. In the graphical representation of the trace, different icons are used for each type of place, as

shown in Figure.3.1. All transitions are instead represented graphically by the same icon, shown

in Figure3.2. The direction of eacharc is not represented explicitly, but in our representations arcs

will always be directed downward, towards the footof the page.

The main attributes of a transition are its working directory and its command line. The

input/output lists of each transition are computed at runtime, and nothingcan guarantee that, for

46

Figure 3.1: Places of different type are represented by different icons. Left to right, in the top row

we have: ASCII files, OCT facets, and executables. In the second row: booleans, command line

options, exit status, and measurements.

Figure 3.2: All transitions in the trace are represented by this icon.

47

a given command line and a given working directory, the lists will remain the same each time the

transition is executed. This prompts the following taxonomy of transitions, consisting of three

classes:

Data-invariant: these are transitions that, when executed in the same working directory, always

produce the same set of inputs and outputs; for example, the transition

cp filel file2

which copies filel into file 2, always declares that f ile2 is an output and that filel

is an input.

Data-sensitive: these are transitions that look at the value of some of the input places to determine

other inputs and outputs. The classical example is a netlisting transition, such as

bdnet netlist_file

in which inputs and outputs depend on the value of the file net list_f ile.

Pathological: these are transitions that generate different input/output lists every time they run; it

is easy to construct a pathological transition, but only rarely would such transition be useful.

There are CAD tools that have a pathological behavior because, due to excessive zeal, they

create a new output rather than overwriting data that already exist. For example, consider a

tool that on its first run produces a file, say f 1. If the tool is invoked a second time, with an

identical command line, the tool sees that f 1 already exists, and, instead of overwriting it,

the tool produces the same file with a different name, say f 2. Upon a third invocation, the

tool ouputs f 3 and so on. For the purposes of design management, such a tool is pathological

and it has the annoying characteristic of cluttering the working directory.

Even a data-sensitive or a pathological transition may invariably declare some places as

inputs and outputs. We call these the essential inputs and essential ouputs for data-sensitive and

pathological transitions. VOV handles all classes of transitions.

Both transitions and places are nodes in the trace. For each node we can talk about

its inputs and outputs. The notion of input and output of a transition descends directly from the

definition of trace. In the case of a place, the input, if it exists, is the transition that generates the

place, and the outputs are the transitions that use the place as their input. A node with no inputs is

called a "primary input" Although it is conceivable to have a transition with no inputs nor outputs,

48

for practical purposes related to the scheduling of transitions, each transition must have at least one

input and one output.

Each place can have at most one input, that is it can be the output of at most one tran

sition. This is referred to as the single assignment property of the trace, a term derived from the

interpretation of the trace as a definitional language,as described in Section 3.2.

For a node n, its input set is denoted by I(n) and its output set by O(n). The outputs of

a node are said to "depend" on the node. The relation of dependency is transitive and the transitive

closure of the nodes that depend on a particular node /? is denoted by D(n). If m depends on

n then m e D{n) and there exists a directed path between n and m, denoted by P(n,m) =

{n0, n\,.. .,»•/*} where «o = «» np = m andVi € {1 — ,/>},»i-i £ I(ni). The pathneed not be

unique.

An attribute ofeach node is its status, which can take one of the following values: VALID,

NOT VALID, DEAD, TRACING, RETRACING, MISSING. For the time being, we only need to

be concerned about the two most common values, VALID and NOT VALID, while the other values

are described in Section 4.1. A VALID node is a node that is up-to-date; it is either a primary input

or the output of a successful transition, which is itself VALID. If a node n is modified, all of its

dependent nodes D(n) are no longer up-to-date, and they are marked as NOT VALID. A transition

can be fired if all its inputs are VALID; if it completes successfully, all its outputs and the transition

itself become VALID. According to these rules, the trace can also be interpreted as a data-flow

graph.

We call retracing the firing of a transition that is already in the trace. It is different from

tracing, which corresponds to the creation of a new transition in the trace. Automatic retracing

is an important service provided by VOV, as described in Section 3.9.3.

3.1.3 An example trace

Figure 3.3 shows a trace left by the execution of three Octtools that transform a textual

description of a combinational logic circuit into a standard-cell layout. Starting from a description

of the behavior of the circuit, in the file xx. bds in the top row, the tool vov_bdsy n has been in

voked to obtain an expanded set of logic equations (file xx. blif), which have been optimized by

vov_misI I, which also has mappedthe optimizedlogicinto a libraryof standardcells. The opti

mizer has produced the Oct netiist xx: logic: contents. Finally vov_wolf e has been used

to place and route the circuit producing the Oct facet xx: wolfe. All tools have other accessory

49

Figure3.3:Tracesshouldbereadfromtoptobottom:inputsareontop,outputsonthebottom.

Threetransactionsarerepresentedinthistrace.Althoughalltheplacesaretreatedsimilarly,they

arerepresentedgraphicallybydifferenticonsdependingonthetypeoftheplace.

50

outputs, including a file to store stdout and stderr.

3.2 The trace as a definitional language

The idea of keepinga trace of the designactivity emerged originally as a solution to the

problem of keeping a detailed design history. But a critical look at the trace reveals that the BAD

graph can also be interpreted, more formally, as a definitional language [1]: every transition is

an implicit definition of its outputs. Every place in the trace is defined as being either a primary

input or the output of a transition. A definitional language requires the definition of each entity

to be unique. In the trace this corresponds to the fact that each place is the output of at most one

transition. This property of the trace is also called the single assignmentproperty. It is important,

because it limits the dependencies among data toflow dependencies between the computation and

the use of data [22]. Other types of dependencies, such as outputdependencies between two suc

cessive computations of the same variable, and antldependencies, from the use of some data to its

rccomputation, are not represented in the trace.

There is one exception to the rule that a place is the output of at most one transition,

and that happens temporarily during retracing, as described in detail in section 3.9.3. Some tools

operate "in place" in the sense that they overwrite one or more of their inputs. These tools stress

the limit of the trace model. In order to maintain the single assignment property, VOV requires a

distinction between informationand container. A place represents the information, not its container,

and different places can have the same container. See section 3.3 for more details.

The trace has also the characteristics of a data-flow [22], namely asynchrony ofoperations

and functionality. Asynchrony means that the condition to fire a transition depends only on the

status of the input of the transitions and not on the status of other transitions or on a global clock.

Functionality means that all transitions behave like functions, with no side effects.

Like all data-flow graphs, the trace captures both dependencies and scheduling informa

tion. Every transition in the graph is a declaration of dependency: all the outputs depend on all

the inputs. The main difference with ordinary data-flow graphs derives from the fact that all de

pendencies are computed at runtime and nothing can guarantee that they will remain the same for

every execution, despite the fact that normally they do.

The interpretation of the trace as a declarative language implies that the management of

the design trace, and design itself, is a process of refinement of a set of definitions. Each time

a designer executes a transition, he is effectively saying: I want the outputs of this transition to

51

depend on the inputs, and consistency is obtained by successfully completing this transition. If

a place was already defined as the output of another transition, the system detects a conflict and

requires the designer to confirm the new declaration. More about conflict detection can be found in

section 3.9.4.

3.2.1 Backtracking

The interpretation of the trace as a definitional language has an impact on the notion of

backtracking in the design process. Backtracking is often mentioned in the literature with expres

sions such as "exploration of new alternatives" followed by "backtracking to an old alternative."

Cadweld [17] associates backtracking with its concept of design iteration, that is the

depth-first exploration of the design space. Backtracking is supported by explicit storageof context

information at several checkpoints, and by keeping backup copies of all modified files. No indica

tion is given on the cost of keeping such redundant storage, but it is probably expensive. Nor is it

clear if backtracking can be reversed, and if so under which conditions. A similar scheme has been

proposed by the Task Manager [15].

Bretshneider ct.al. [6] envision a knowledgeable DMS which is capable of reacting to

errors discovered in the design process (e.g. a chip is too slow). The system uses its knowledge

base to suggest ways to correct the design flow, or to backtrack to the point where the decision

leading to the error was made so that the designers can revise the decision. No proof of success is

provided.

In VOV, the exploration of new design alternatives corresponds to an expansion of the

design trace: new transitions are added and new places are created. VOV detects conflicts if, during

the new exploration, datacorresponding to theold alternative is about to be corrupted. But in general

the new exploration does not (or should not) destroy the old one. Under these conditions, adesigner

can "go back" to an old alternative by simply switching his attention to the old data and to the old

parts of the trace, which have always been available. Nothing prevents a designer from pursuing

simultaneously many alternatives.

Since many explorations are going to fail, the design trace will grow many branches

representing these failed experiments. Althoughthe system has no particular need to prune those

branches, designers often do. VOV offers them the choice to killorforgetparts of the trace thatare

deemed useless. Killingsomenodesmeans that their status becomes DEAD. Thishastheadvantage

that the killed nodes remain in the trace, asdocumentation of the failed exploration, but the server

52

ignores those nodes for most operations. Forgetting implies the deletion of nodes from the trace, as

if the corresponding transitions and places had never existed in the design.

3.3 Tools that run in place

Special attention must be given to the tools that run in place, those tools that modify

some of their inputs. These tools stress the trace model and force a distinction between information

and its container.

Assume for a moment that a place in the trace represents a container of information, for

example a unix file. A tool that modifies such place would have to declare it as both an input and an

output, thus creating a cycle in the trace. But cycles are not allowed, because they violate the single

assignment property, they create cyclic dependencies and they confuse the scheduling of transitions

during retracing.

In VOV a place does not represent a container of information, but the information itself.

A complication arises because the name used to identify a place is the name of the container, so

that when different pieces of information share the same container, they are represented by distinct

places with the same name.

Consider a transition t\ that uses as input the place p stored in container c{p). If t\ pro

duces some information that is stored back into c(p) we say that t\ runs in place. The output of

t\ is not p, which is already an input, but p', with c{p') = c(p). p and p' make a chain of places.

If ii is used by another transition <2 that also runs in place, the outputof *2 is />", c(p") = c(p'),

and the chain grows to include //'. In the example illustrated by the trace in Figure 3.4, the facet

counter: logic: contents is the container of three places: the primary input, the output of

the tool padplace, and the output of the tool wolfe. (Both padplace and wolfe run in place

unless otherwise specified.) The same is true for the other facet counter: logic: interface.

This distinction between information and container maintains the single assignment prop

ertyof thetrace andavoids cycles. Nevertheless, themanagement of tools thatrunin place remains

complicated, because the correspondence between files and places is no longerone-to-one. The

maindifficulty arises because users and tools normally refer to a piece of data by the name of its

container. A designer asks information about c{p), rather than about p, and if c(p) is thecontainer

fora chainof places it is ambiguous which place thedesigner means. VOV resolves theambiguity

by keeping a pointer to the current place in the chain. If thecurrent place is not theone meant by

the user, the user must be more specific andselect the desired place in the chain by referring to it

53

Figure 3.4: Trace left by a sequence of two tools that run in place.

as the output or the input of a particular transition.

Tools that run in place impose also some special scheduling constraints. Consider a place

p that is the only input to two transitions, a regular transition / and a transition tp that runs in

place, and call ;/ the output of /,,. Since c{p') = e(p) it is not possible to lire both /,, and t in

parallel, because there may be a read-write race between the two transitions, in the sense that it is

undetermined whether t would actually use as input/; or;/, or worse yet, an incomplete or corrupted

version of;/, as it would happen if t tries to read p just as tp is overwritingit. A partial remedy can

be provided by the database if it can prevent concurrent read-write situations, but this would still

not solve the ambiguity between p and ;/. VOV's solution is to schedule the in-placc transitions

first, on the assumption that tp is a non-destructive transition, so that t can operate indifferently on

p or on;/. If that is not the desired behavior, the designercan always modify the trace, cither by

making tp not run in place, or by making tp operateon a copy of;;.

3.4 The architecture

Structure of the System
• One design, one trace, one server.

• Many tools, many designers.

design trace"

Server:

'coordinates

access

to trace

user interface

(using VEM/RPC)

tools

users

*—— slaves

54

Figure 3.5: The structure of VOV. The server is the only process allowed to change the design

trace. Clients can be either tools that generate the information to build the trace, users that query

the server about the trace, or slaves that give the server access to CPU cycles on various machines

in the local network. The graphical user interface uses VEM and RPC and it can be either a client

or it can operate directly on the design trace.

As illustrated in Figure 3.5, VOV consists of several unix processes: a server and many

clients. The server manages the design trace for a particular project, and is designed to run contin

uously for the duration of the project. The clients are divided into three classes:

tools are clients that provide the information to build the trace;

users are clients who allow the designers to query or modify the trace;

slaves are clients that give the server access to some resources in the network, such as CPU cycles

on a machine, or access to a printer.

The slaves are the agents that execute the transitions on behalf of the server. Each slave

is characterized by a list of resources available to the slave (e.g. large memory, printers, software

licences) and by an integer number P, which expresses the computingpower of the slave. P is

defined as

P =
A" 1

(/+ l)t c

where t is the CPU time required to execute a test routine, / is the load on the host on which the

slave is running, K a normalization constant for all slaves and c > 1 is a correction coefficient

55

that can be specified for each slave and that is normally 1. If the load on the host is greater than

a user-specified threshold, the slave refuses to accept jobs. Since / changes over time, the slave

recomputes P every two minutes and transmits it to the server.

When the server determines that a transition must be retraced, it dispatches the job to the

one of the slaves taking into account both the resources offered by each slave and their relative

power. It is a good idea to have many slaves, connected to the server, say 10 to 20, because the

more slaves are available, the more work can be done in parallel.

The bidirectional interprocess communication between clients and server is implemented

with unix sockets. Typical unix implementations limit the total number of clients simultaneously

connected to the server to about 60. The server services its clients sequentially in a round-robin

fashion. While waiting for requests from clients, the server does not consume any CPU cycles. If

no request arrives within a time-out interval, the server performs routine tasks such as monitoring

of the design data, storage of the trace, and others. The time-out period ranges from a minimum of

one second in the periods of activity, to a maximum of about two hours when no designer is active.

The unit of design managed by VOV is called project. The definition of the scope of a

project is left to the user: it could be the implementation of an ALU, the compilation of a program,

or the design of an entire chip. VOV is designed to handle large projects, and there is little advantage

in breaking a large project into smaller ones. Each project has its own design trace.

At the beginning of the project the trace is empty. The designers use the tools normally,

as if VOV did not exist, while the tools leave the trace of their execution. An advanced use of VOV

also exploits the capabilities of the assistant to build the design trace, as described in Section 3.11.

3.4.1 Communication between the tools and the server

Whenever a tool is invoked, it should establish a connection with the server and say: I

am starting now, these are my inputs, these are my outputs, I am done now. These messages are

needed by the server to build the design trace.

The communication between the tools and the server is the main technical problem in

VOV. Two mechanisms are available: recompilation or encapsulation.

Recompilation is the preferred option. The source code of the tool should be modified to

include theappropriate procedure calls from the"VOVlibrary," consisting of theprocedures listed

in Figure 3.6, and available for both C and C++ programs.

VOVbegin () starts the connection with the VOV server and declares that a new transi-

void VOVbegin(int argc, char** argv);
void VOVinput(int type, char* name);
void VOVoutput{ int type, char* name);
void VOVend(int status);

56

Figure 3.6: The procedures in the VOV C and C++ library.

tion has begun. This routine should be called as soon as possible; in general it is called after the tool

hasestablished that it is goingto do something, thatis afterit has parsed the commandline options.

The arguments to VOVbegin () describe the command line used to invoke the transition. Each

input and output of the transition is declared usingVOVinput () or VOVoutput (). The type

argumentis used to distinguishbetween Oct facets, UNIX files, executables, or the other types of a

place. The name is the unique identifier of the place (sec also Section 4.1.3). VOVend () is used

instead ofexit () to let VOV know that the transitionhas terminated. The argument passed to the

VOVend () is the exit status of the process. If the transition ends without calling VOVend (), the

server assumes that the transition has failed. If the server does not respond during VOVbegin (),

the library turns itselfoffand all successive calls return immediately without effect, so that the tools

can be used whether VOV is operative or not.

Sometimes it is not possible to recompile a tool. In these cases the tools is left unchanged

while a capsule is provided to do all the talking on behalf of the tool. Figure 3.7 shows the capsule

for the UNIX utility dif f, which is a data-invariant transition. Each capsule is a shell-script and

consists of two parts. The first part contains tool-specific knowledge to interpret the command line

and derive the list of inputs and outputs for the transition. The second part is the invocation of the

program vov.capsule which establishes the connection with the server, declares all inputs and

outputs and invokes the tool. Figure 3.8 shows a more complex example of a capsule.

Recompilation is preferred because it offers the possibility of perfect accuracy in captur

ing all inputs and all outputs of a transition, with minimum modification of the sources and with

minimum runtime overhead. Encapsulation is somewhat more complicated because the capsule

must emulate the behavior of the tool to compute its inputs and outputs, which is paid with a few

seconds of runtime overhead.

Capsules for data-invariant transitions can be prepared easily, while capsules for data-

sensitive transitions can be quite difficult to write, because they often require, the parsingof a file.

Pathological transitions may be impossible to encapsulate. Although accuracy of the capsules is a

#!/bin/csh -f

Part 1: Compute inputs and outputs,
set PROG = vov_diff
set FILE1 = $1

set FILE2 = $2

set OUT = $l.$2.diff

Part 2: call vov_capsule.
vov_capsule -c "$PROG $argv" \

-i $FILE1 -i $FILE2 -R $OUT \

diff $FILE1 $FILE2

57

Figure 3.7: Example of a capsule: vov.diff. The UNIX utility diff does nothave to be modified.

The program vov_capsule connects to the server, exchanges information with it, and then calls

diff. The naming convention used for the capsules is that for each tool xyz the corresponding

capsule is called vov.xyz.

desirable features, it is also possible to operate with capsules that are not completely accurate, in

the sense that they do no declare all the actual inputs and outputs of the transition.

3.4.2 Affinity of transitions

A complete list of the attributes of places and transitions is presented in Section 4.1.2, but

it is important to explain now the affinity attribute, which expresses the fact that some transitions

require special resources to be executed. The resource list is an attribute of a slave, and is used

together with the affinity to properly match a transition with a slave.

As previously mentioned, it is possible to connect to the server several slaves, each run

ning on a different machine in the network. Two slaves are equivalent if any transition performed

on one slave would give the same results if executed on the other slave. Ideally, all slaves would

be equivalent and the dispatching mechanism could be based only on the greedy strategy that the

most powerful slave gets the transition with longest expected duration.

In practice, different machines offer different resources and slaves can lose equivalence

for several reasons: machine architecture, hardware and software resources. Some transitions,

cannot be executed interchangeably on machines with different architecture. The obvious example

is the compilation of a C program, because the C compiler on a SUN produces a different output

than the C compiler on a VAX. Other transitions that are unusually time-consumingor that require

a large amount of memory should be executed preferably on the large machines in the network. The

#!/bin/csh -f

set BIN = wolfe

set PROG = vov_$BIN
if ($#argv == 0) then

$BIN # Let wolfe print the the usage message
exit -1 #

endif

set IN = $argv[$#argv] # Get the input facet,
set OUT = $IN # By default wolfe runs in place,
set ARGS = { $argv)
set ARGS[$#argv] = "" # Clear last element in ARGS.
set OPTIONS = ($ARGS)

set INLIST = ()

set OUTLIST = ()

while ($#OPTIONS) # Parse the command line options,
switch ($OPTIONS[l])

case -o:

set OUT = $OPTIONS[2]

set OUTLIST = ($OUTLIST -O $OUT)

shift OPTIONS

breaksw

case -t:

set INLIST = ($INLIST -i $OPTIONS[2])

shift OPTIONS

default:

endsw

shift OPTIONS

end

if ($#OUTLIST == 0) then

set INLIST = ($INLIST -a $IN) # Wolfe runs in place,

else

set INLIST = ($INLIST -i $IN) # Not in place,

endif

vov_capsule -c "$PROG $argv" \
-x $BIN -x $PROG -x TimberWolfSC-4 \

$INLIST $OUTLIST \

-A "" $BIN $argv

58

Figure 3.8: The capsule for the tool wolfe. Most Octtools have been encapsulated with a similar

script.

59

licensing policies of some commercial programs might impose further constraints on the execution

of transitions that usesuch programs. For example, the logic simulator forver ilog canrun only

on the machines that have been licensed.

One solution to manage non-equivalent slaves could be todismiss the problem byusing

the largest subsetof equivalent slaves. This isunsatisfactory, eitherbecause it might be impossible

to find a set of equivalent slaves thatcompletely cover the set of resources needed to complete a

design, or because such a subsetcould be too small and not allow an adequate exploitation of the

parallelism expressed in the trace. Remember that the more slaves, the more transitions can be

executed in parallel.

VOV deals with the problem of non-equivalent slavesby considering the affinity of each

transition, as a way to express the resource demand for that transition. Eachslave, in turn,offers a

set of resources, and a transition can be executed on a slave only if there is a match between the

affinity and the slave resource list. When dispatching a transition to one of the slaves, VOV scans

the slaves in decreasing order of power, and chooses the first idle slave whose resource list matches

the affinity list of the transition.

Affinity and resource lists are represented by a stringof words separated by spaces. For

example, if a transition can only runon a Cray, itsaffinity would be "cray", while the affinity of

a transition thatcanonlyrunon the machines called "calvin"and"hobbes,"would be described by

two words, "calvin hobbes ". Fora transition that can run on any machine, the affinity is an

empty string. In a similar fashion, each slave has associated a list of resources, which defaults to a

listcontaining themachine name andthemachine type. Thus, theresource listof a slave running on

the VAX"calvin" would be "calvin vax". Both the affinity list of a transition and the resource

list of a slave can be controlled by the user.

Amatch between an affinity listanda resource listexists if eitherstringis empty or if the

two lists have one word in common.

3.5 Interactive tools

CAD systems are movingmore and more towards automaticsynthesis, but this does not

mean that one can dismiss and ignore interactive tools. Some tools such as layout editors, some

simulators, some data browsers, and some synthesis systems require user input! Other tools, for

example simulations withgraphical animations, require no inputbut theynevertheless require user

supervision. From a DMS's point of view, batch tools are preferable to interactive tools, for the

60

simple reason that they can be retraced automatically at any time, while interactive tools cannot,

because they require the special resource "designer."

From VOV's point of view, many interactive transitions are not worth tracing to begin

with. These transitions are all the editing of primary inputs, which cannot be retraced, and the

viewingof data, whichneed not be retraced. The other interactive transitions are given the affinity

"interactive", so that they can be retraced only when the designers connects to the server a

special slave that provides the resource "interactive".

An important interactive tool is called the vov_inspector and it allows a designer to

inspect a piece of data and assume resposibility for its conformance to some standards of quality.

For example, a designer might use the inspector to state that a piece of layout "looks good," or the

output of a simulation appears to be correct.

The whole design activity managed by VOV can be seen as a single interactive transition

involving many tools invoked from a UNIX shell by many designers, over a long period of time. This

suggests the possibility of scaling down VOV and using it to keep a trace of the activity within other

shells, for example misll, blis or slip. The main hurdle is that most of the transformations

available from these specialized shells run in-place, through destructive modifications of the state

maintained in virtual memory. The trace would be a long chain of in-place transitions, without any

parallelism and without possibility of a partial retracing, the only option being that of repeating the

whole sequence of commands.

3.6 The firing rule

The complete firing rule in VOV is as follows: a transition can be forcefully fired by

a designer at anytime, but during automatic retracing a transition is fired only if all the following

conditions are true:

• A designer has directly or indirectly requested its firing; this condition gives some control to

the designers.

• All inputs are VALID.

• All outputs are either NOT VALID or MISSING.

• There is an idle slave with matching affinity.

61

Just as important is the success criterion: a transition completes successfully if the following four

conditions are true:

• The transition terminates normally, i.e. not because it has caught a signal.

• The exit status is one of the expected legal ones.

• All the inputs are VALID and their timestamp precedes the starting of the transition.

• All the outputs have a timestamp that has been modified during the duration of the transition.

If any of the conditions is not satisfied, the transition has failed. By rephrasing the success criterion

we obtain a description of the four failure modes considered by VOV:

Aborted failure: occurs when a transition is aborted, for example because of a signal not caught,

e.g. with actrl-Corakill -9 command or a segmentation fault, or an arithmetic error.

Wrong exit status failure: applies to those transitions that return an unexpected status. For ex

ample, a logic simulator like musa normally returns zero, while other exit values mean that

something in the simulation has gone wrong.

Invalid input failure: applies to the transitions whose inputs, at the time of termination, are not

all VALID. The invalidation could have happened at any time antecedent the termination of

the transition, even during execution. Transitions fired by VOV can incur in this failure only

because the inputs become NOT VALID after the transition has been dispatched.

Missing output failure: occurs when one or more outputs declared by the transition are not found

or have a timestamp that precedes the firingof the transition, this being an indication that the

transition did not touch those places.

3.7 Trace versus Petri net

Like a Petri net, the trace is a bipartite directedgraph, and the nodes are called places and

transitions. But a Petri net allows cycles, while a trace is acyclic, more likea data-flow graph. The

most significant difference is in the firing rule: in a Petrinet the firing of a transition consumes the

tokens in the input places, while in the trace the input places are not affected.

In a Petri net the execution of the transitions is nondeterministic. If several transitions

are readyto fire the choiceof which one fires first is either random or determined by external rules

62

that are not modeled by the net. Furthermore, firing one transition may disable other transitions that

could have fired instead. The trace is deterministic because all the enabled transitions are always

executed. Although the order of execution is not fully deterministic, because it depends on the

availability of slaves, the final result is.

A cyclic Petri net has more modeling power than a trace. For example, the notion of ex

clusive use of a resource can be captured by a marked Petri net with cycles, but not by the trace. This

notion appears in design management when there are transitions that require a particular resource,

such as some special hardware, which can only be used by one agent at a time.

The exclusive access to a resource can be provided by an appropriate scheduling mecha

nism. A Petri net controls the scheduling with a place that represents the resource and by allowing

at most one token in that place. The place is an input to all the transitions that compete for that

resource. Since tokens are consumed when a transition is fired, whenever one of the competing

transitions fires, all the others become disabled. When the transition completes a new token is put

in the place to indicate that the resource is again available.

The trace alone is not sufficient to represent this type of scheduling, although VOV can

control competing transitions using the affinity mechanism. The condition to fire a transition re

quires the existence of a slave that matches the affinity of the transition. For example, suppose that

several transitions require a plotter, and suppose that it is not appropriate to fire more than one of

those transitions at the same time. The desired behavior can be obtained by setting the affinity of

the transitions to "plotter" and by providing only one slave with the resource "plotter".

3.8 Sets of nodes

There are many reasons to group nodes into a single set. A set can be used to identify

all the alternative implementations of an ALU, or to group together all the steps required to route a

macro-cell chip. Sets can also be used to identify the various alternatives explored in the evolution

of the design, or to group versions that are part of a coordinated change to the design.

Each set is identified by its name. For its internal operation, VOV maintains a few sets

that are characterized by a name with a leading and a trailing sequence of three semicolons:

;;;NODES;;; is the set of all nodes in the trace. This is the "universe" set in each trace.

;;;PLACES;;; is the set of all places;

;;;TRANSITIONS;;; is the set of all transitions;

SELECT NODES IN TRACE

j SELECTION_RULE
SELECTION FLAGS

JQ TRANSITION ^ WEIRD • F,LE
(jl VALID I® FACET

g] PLACE 11 NOT VALID 1] OPTION
H EXECUTING H EXEC

® NOJNPUTS |U RETRACING H EXIT
| ® DEAD Qj BOOLEAN| ®NO.OUTPUTS QM|SS|NQ QMEASURE
| REG EX *

SET NAN1E [isolated^

Ok Cancel | Help

63

Figure 3.9: This dialog allows the user to define a selection rule for a set. The rule selects only

places that have no inputs and no outputs, with any name (the regular expression ".*" matches

every string). MISSING nodes, boolean places or measures are not selected. The selected nodes

constitute a set named "isolated."

;;;PLACES TO CHECK;;; is the set of all places whose timestamp is checked at every server

timeout;

;;;TRANSITIONS TO FIRE;;; contains all the transitions that are scheduled to be fired;

Other sets collect the nodes that have been created by the same designer, thus establishing

a weak form of ownership over those nodes.

A designer can create a set by specifying the selection rule (Figure 3.9), which can be a

rather complicated expression that considers the connectivity of the trace, the types of nodes and

places, and the matching of the name of places to a regular expression.

The operations implemented on sets are complementation within another set, and union

and intersection of two sets. Other operations are fill, cover and collapse. Given a set S

and a set T, f ill(5, T) returns another set F containing S, T and all paths between a node in 5

and a node in T. The cover operation applies an operator to all the nodes in the set, visiting the

input nodes first. The collapse operation is described in the next section.

64

3.8.1 Hierarchy in the trace

The trace supports the operation of collapse of a set of nodes into a single node. With

this operation it is possible to model the design activity hierarchically, as shown in Figure 3.10. The

inverse operation is the expansion of a node.

In a simple collapse of a set, the entire set is reduce to a single node, but not all collapses

are simple, nor all sets arc collapsible. A set 5 is collapsible only if it is locally convex, and it is

simply collapsible if, in addition, its boundaries are homogeneous. A set 5 is locally convex if for

any two nodes a, be S with bdepending on a, b e D(a), all the directed paths bewteen a and bare

contained in 5: VP(«,6) C S. For example, a set with two unconnected nodes is locallyconvex,

and so is any trace as a whole. The disjoint union of locally convex subsets might not be locally

convex. Given any set .4, the set 5 = f ill(.4, A) is locally convex, so the fill operation can be

used to derive a collapsible set from any set.

The second property concerns the type of the nodes in the boundary of the set. A node

n e S is on the boundary B{ S) of S if at least one of its inputs and outputs does not belong in 5:

n e 5, n e B(S) o 3m G I{n) U 0(n), mg S

The boundary is said homogeneous if all nodes in it are of the same type, that is they are all places

or all transitions. If all the nodes in the boundary of a locally convex set are places, the set can be

collapsed into a place; if all boundary nodes are transitions, the set can be collapsed into a transition.

If the boundaries are not homogeneous, the set can be collapsed into either a place or a

transition, while the boundary nodes of the opposite type must be squeezed out of the collapsed

node to maintain the bipartiteness of the trace. This is illustrated by an example in Figure 3.11.

Both types ofcollapse, to a place and to a transition, make sense from an abstract point of

view; however, the collapse to a place is not used, because lumping a trace into a single place dis

rupts the relationship between places and database objects, and because the collapsed place might

become the output of more than one transition, in violation of the single assignment property. In

stead, the transition resulting from a collapse of a set has a natural interpretation as the set ofopera

tions that produce the outputs starting from the inputs, while the places collapsed into the transition

represent temporary and possibly non interesting data.

Collapse is essentially an abstraction operator, for it replaces a single node where before

there was a larger number, while retaining the same "interface." The utility of this abstraction

operation is clear especially from the user's point of view, because it reduces the complexity of the

65

Figure 3.10: The bipartite graph allows the abstractionof subsets of the graph into single nodes. In

this example, three transitions and their intermediate nodes, are collapsed into one transition.

Figure 3.11: A nonsimple collapse due to non homogeneous boundaries of thesetto becollapsed.

vov_mosaico -o routed chip:placed # Route chip:placed

is equivalent to

vov_atlas chip:placed chip:placed.cd # Channel definition
vov_cds chip:placed.cd chip:placed.gr # Global routing
vov_cprep chip:placed.gr chip:placed.h # Detailed routing
vov_octflatten chip:placed.h chip:placed.flat # Flattening
vovjmizer chip:placed.flat chip:placed.mizer # Via minimization
vov_sparcs chip:placed.mizer chip:routed # Compaction

66

Figure 3.12: Sometimes, a single command line is equivalent to a whole set of transitions. In this

case, the Mosaico scriptexecutes all the stepsnecessaryto routeamacro-cell chip. (The command

lines have been simplified.)

trace, allowing the user to understand better the flow of the design. The user interface should make

extensive use of this operation. On the other hand, there is no operative advantage in having the

system deal with a hierarchical representation of the trace. By lumping a part of a trace into asingle

transition one might lose parallelism.

A collapsible set 5 is equivalent to a single transition, call it T. All transitions should have

at least a command line and a working directory; but what are these in the case of T? In general,

for an arbitrary 5, the corresponding T is purely an abstraction, something that cannot be executed.

But let's consider the reverse reasoning. Suppose that there is in fact a single command, say C, that

initiates a sequence of several transitions, {*i,*2» — »*«}• Let's consider the set 5 consisting of all

those transitions and their intermediate places. 5 is a collapsible set, and its collapsed transition

T can be associated with a command line, which is precisely C, and the working directory of T is

also the working directory in which C was issued.

A concrete example can be found in Mosaico, the subsystem for placement and routing

ofmacro-cells in the Octtools. The command line C =vov_mosaico -o routed chip:placed

starts a shell script that executes the Mosaico sequence, as shown in Figure 3.12. The execution

of C leaves a trace consisting of six transitions, each using as input the output of the previous one.

If these transitions and their five intermediate places are collapsed, the resulting transition T has

chip:placed as its input and chip: routed as its output, and the command line associated

with T is precisely C.

From a user's pointof view it is more convenient to think of Mosaico as a single tran-

67

sition, while from VOV's point of view it is best to consider the atomic components of Mosaico,

with the detailed description of which tool precisely produced which data. This detailed bookkeep

ing allows the system to selectively retrace only the components that need it, rather than the entire

Mosaico set.

In the particular case of Mosaico there is no substantialdifference between retracing

the top levelscriptor itscomponents, because, nomatter whattheinput chiplooks like,Mosaico

always expands to thesame set of transitions. More interesting are the data-dependent scripts, i.e.

scripts thatmay expand into a different setof transitions depending on thedata. Examples of data-

dependent scripts aresome optimization scripts that iterate a series of steps until some criterion has

been satisfied. If the input data of a data-dependent script change, retracing the componentsof the

script may be the wrongthing to do, while the script itselfshouldbe retraced instead.

In conclusion, the collapse operation has two functions: one is to provide an abstraction

mechanism to hide details from the trace, which is mostly beneficial in the user interface; the other

is to create a correspondence between a data-dependent script and a set of transitions, to allow the

retracing of the script itself rather that its components. Collapse is normally done "on the fly,"

because VOV stores the trace in its most detailed form, that is at the level of the atomic transitions,

both for documentation and detailed bookkeeping purposes.

3.9 Services

In this section, we analyze the services that can be provided by a trace based system. All

services use the design trace and many rely on the server/client architecture of the system.

3.9.1 Service: Design documentation

The design trace, which is automatically and non-intrusively recorded, describes the de

tailed history of the design. It is, of course, a special notion of history, the one represented by the

trace, because it can be rewritten and edited, and some parts can be forgotten. For example, if file

f 1 was once declared as the output of transitiont\ and later rcdeclared as the output of transitionti,

the trace would only have a record of the most recentdeclaration, the older one being forever lost.

Evenwithoutbeinga pedantichistorical record, the tracecan answerimportantquestions aboutthe

current status of the design: How was this placeobtained? What data depends on this place? Did

anybody run the compactoron this chip? Howlong did it take to obtain this place?

" ' •".'•'.• "•:".• '.•!."• .•'•'.''..'..'.'.•'..(•'V..'.':....'>.i,..i...II..

dialog

EVENT QUEUE FOR TRACE 7seg

FILTERS

Qj start
S END
Ql FORGET
Q] CHANGE
1) ERROR

Toggle all

| EVENT 103, Tue Aug 21 13:47:03 1990
[transition HAS AN ERROR
vov_octpla 73eg
FAILED. REASONS FOR THE FAILURE:

_ . B./7seg:pla:content3 doe3 not exist.
™ . /7seg:pla:interface does not exist.

..,..., ,,.,..,,„,,.,,.„.„,,.,.,

Previous Next View/Edit Unreported Cancel Help

68

Figure 3.13: The dialog to browse the event queue allows the designers browse only the events they

are interested in.

The trace is a factual record of what happened in the design. A complementary anno

tation mechanism allows the designers to attach a note containing some text to any object in the

trace, for example to describe why some iransition has been executed, or the meaning of a place, or

why a set of nodes is important.

Any creation, modification, deletion, initiation, termination of a place, transition or set

is an event. All events arc permanently recorded in chronological order in an ASCII file called

the journal. Recent events are also stored in an event queue for easy inspection by the designers

(Figure 3.13). The journal is normally used only to analyze old events, a rare occurrence according

to experience.

The designers can ask many questions about the status of the design. The server maintains

data on the size of the trace, a list of the last few transitions initiated by each designer, a list of all

the transaction currently executing, and the status of all the slaves connected to the server. Figures

3.14 and 3.15 show some typical responses from the server.

VOV_SH: DEVELOPMENT VERSION: 2.05: FSM@eros
TRACE: PAGE FSM.page.O

PLACES: 35 TRANSITIONS: 8 SETS: 0

USER paul IDLE: 10.4 hours
vov__nova fsm.nova
vov_cp fsm.nova.esp fsm.esp
vov_mis_esp2blif fsm.blif
vov_octpla fsm

USER <vov server> IDLE: 20.5 hours

SLAVE 1 eros: 160 IDLE

SLAVE 2 fjord: 144 IDLE

SLAVE 3 orca: 146 IDLE

SLAVE 4 papaya: 148 IDLE

SLAVE 5 peking: 151 IDLE

69

Figure 3.14: The server is queried about the current status of the design. User Paul has been idle

for more than 10 hours. There are 5 slaves connected to the server. All of them are idle, and the

most powerful, with a relative power of 160, is the one running on eros.

$ vov_sh -h ccdp:padpMG

/net/canova/users/casotto/yu/ccdp:padpMG:contents
VALID Sat Nov 3 12:33:28 1990(canova)

VALID vov_padplace -g ccdp:symbolic
VALID vov_j?uppy -o fl0:puppy f10:symbolic
VALID vov_makeSoft ccdp:symbolic
VALID vovjmakeSoft mmdpcntl:symbolic
VALID vov_makeSoft pcreload:symbolic

Figure 3.15: The history of theobject called ccdp: padpMG, as reported by the server. The place

is VALID, and it is the immediate output of the first transition in the list. The other transitions are

those in the path from thementioned place backwards to the primary inputs of the trace.

70

3.9.2 Service: Data monitoring

When theserver times-out for lackof client requests, it performs somelight-weight rou

tine tasks. One of these tasks consists of checking the time-stamp of some places in the trace.

Young places are checked every time, while places that are more than three days old are checked

onlyaboutonce an hour, the rationale being thatplaces with a recent timestamp are morelikely to

change than places that have not been touched in a long time.

This continuous monitoring is computationally cheap, and it is actually not essential for

thecorrect behaviorof the system, because time-stamp checking mustbe performed again in order

to process correctly many client requests. One reasonto perform this monitoringis to get a detailed

chronology of events,another is thatsometools mightfail todeclare someof theiroutputs, and this

paranoid checking is the best hope to detect those faulty tools.

If a change in a VALID place is detected, for example because the place is a primary

input and a designer has just finished editing it, all the dependent nodes become out-of-date and are

therefore marked as NOT VALID. A less likely event is the change of a NOT VALID place, which

happens only when VOV is not notified of a design activity due to malfunction of the tools (or of

VOV itself). In this case the place becomes VALID while all its dependents become NOT VALID.

3.9.3 Service: retracing

Whenever a transition becomes NOT VALID, either because one of its inputs has changed

or because the transition itself has been modified, the most common action to re-establish consis

tency is to run the transition again. The trace contains all the information necessary to repeat any

transition in the trace, namely the working directory and the command line. As mentioned before,

the repetition of a transition in the trace is called retracing.

Retracing is always initiated by a user's request and it can be global or local. A global

retracing schedules for retracing all the invalid transitions in the trace. Local retracing comes in

two flavors: retracing with a target place or retracing with a source place. The first activates all

transitions that are necessary to update the specified place. The second form activates all transitions

that depend upon the.specified place. Global retracing is most often used during small, single

designerprojects. Sets of places can alsobe used as targets or sources for local retracing.

Amongall the transitions scheduled tobe retraced, theserverdynamically buildsa list of

those transitions that are immediately ready to be fired, i.e. the transitions whose inputs are VALID

andwhose outputs are not. The serverdispatches eachready transition to oneof the slaves, starting

71

from the transition with the longest expected duration, which is the time taken by the transition the

last time it was executed. Each transition is dispatched to the idle slave with the maximum relative

power, among those slaves whose resource list matches the affinity of the transition. If no match is

found, an error event is generated, because there is no slave with the resources required to execute

the transition, and the transition is removed from the retracing set. Dispatching is repeated until

all slaves are busy or until all the ready transitions have been dispatched. Upon termination of a

retracing transition VOV repeats the entire dispatchingalgorithm,bothbecause a slave has become

available for another transition and because new transitions may have become ready to fire.

This dispatching mechanism is useful to exploit the power of those machines that would

otherwise be idle, because if a slave is running on an unloaded machine, its relative power is large

compared to slaves running on similar loaded machines.

The retracing mechanism allows VOV to emulate the UNIX utility make, with the differ

ence that no Makefile has to be prepared, and that retracing can use multiple slaves to exploit

the parallelism in the trace.

Retracing detail

Retracing is complicated by the fact that the input/output dependencies of a transition

are recomputed at runtime, and in some cases the dependencies of the retracing transition may be

different from the dependencies already recorded by the trace. This happens, for example, with

data-sensitive or pathological transitions.

Let's consider the compilation of a "C" file. Suppose that the file contains the line

#include <foo.h>

When the compiler vov_cc is run, it indicates to the server that the file foo.h is used as an

input. Suppose now that the #include statement is deleted. Since the file has been modified, the

compilation should be repeated. But the compilation no longer uses f oo. h as an input, and the

trace has to be modified to take this intoaccount. This typeof events is normal but relatively rare.

Since it requires a change in the topology of thedesign trace, it is considered important enough to

notify the designers by posting an event on the event queue.

VOV detects these changes in the traces due to retracing by comparing the inputs and

outputsof the old and of the new transitions. In detail, this is whathappens:

72

1. The server dispatches the transition T to aslave: the status ofT ischanged toRETRACING.

2. The slave uses the description of T (working directory and command line) to initiate a new

transition T\

3. The new transition V connects to the server, just like any other transition initiated bya de

signer, but this timetheserver recognizes thatT' is a retracing transition because it identical

to T; the status of T' is set to TRACING, while T remains RETRACING. Some of the at

tributes of T which should be preserved during retracing and all the annotations are copied
from T to T\

4. T* declares its inputs and its outputs; someoutputs of T' are also outputs of T, whichcauses

those output places tohave two incoming arcs, intemporary violation of the rule that aplace

can have at most one input.

5. If T' aborts, it is deleted from the trace and the retracing of T has failed: T and itsoutputs

become NOT VALID.

6. If T' terminates normally, the server compares the input/output lists of T and T'; if they

differ, the designers are notified. The criteria to determine whether a transition has failed are

applied to T\ If V succeeded, T' and its outputs become VALID, otherwise they become

NOT VALID.

7. The slave communicates that the retracing of T is now done and the server deletes T; old

outputs of T that are not outputs of T', become NOT VALID and isolated.

Retracing deadlocks

Some sequences of events can lead to situations in which a transition cannot be retraced.

Suppose that, because of a mistake or a bug, a transition declares as input a place that does not

exist; the transition fails for lack of input and becomes NOT VALID. The condition that enables

the retracing of the transition is that all of its inputs are VALID. But a place that does not exist

cannot possibly be VALID, and the transition is therefore blocked into its NOT VALID state. This

deadlock situation requires the intervention of a designer, who has two options to proceed: the

offending place can be removed from the input list of the transition, thus changing the condition

upon which the transition becomes ready to fire, or the correct transition can be manually executed.

73

Another pathological situation can be caused by transitions that do not describe their

input/output behavior accurately. Suppose that a transition modifies one of its transitive inputs, but

docs not declare the place as its output: an example is a tool that runs in place without informing

the server. All dependents of undeclared output, and the offending transition in particular, become

invalid and have to be repeated, only to cause the same events to repeat, and so on in an infinite

loop. Since retracing must be explicitly requested by the designers, it can be argued that a loop that

includes human intervention is not really an infinite loop. In any case, the information produced by

the system, the journal in particular, should be enough to track down the reason for the abnormal

behavior.

3.9.4 Service: Conflict detection

The server can detect four types of conflicts:

Input conflict: An input conflict arises whenever a transition uses an input that is not VALID.The

designer who has invoked that transition is notified of the problem and given a chance to

avoid it, for example by aborting the transition. However, it often makes sense to continue

the transition anyway, for the purpose of establishing a path in the trace, and let VOV repeat

the transition whenever its inputs become VALID. If the transition had been invoked by VOV,

the transition is always aborted.

Output conflict: An output conflict occurs when a transition declares as output a place that is

already the output ofanother transition. But a place can be the outputof at most one transition,

and the designer is asked if he really wants to forget the old transition and replace it with the

current one. Data-sensitive and pathological transitions can cause this conflict even in the

case of transitions invoked by VOV, in which case the transition fails.

A special case of this type of output conflict applies to primary inputs. VOV notifies the user

if a place which was a primary input is about to become the output of a transition, or if a tool

is run in place on a primary input, because in both cases there is a risk of loss of data.

Lock conflict: Some operations, such as the editing of places, sets or transitions, require the ex

clusive access to some objects in the trace. This is provided by software locks managed by

the server. An attempt to lock an already locked object causes a lock conflict. A lock can

always be broken, but the user breaking it assumes responsibility for the action, which is also

recorded in the journal.

74

Cycle: The trace cannot contain cycles, and the server must check each dependency declaration to

make sure that it does not introduce one. Experience shows that this kind of conflict is rare.

Conflicts are detected in real time by the server. Conflict detection should be performed

efficiently, because it adds an overhead to most interactions between tools and the server. In the

current implementation, such overhead has been measured to be on the order of a few hundreths of

a second, which is acceptable.

3.9.5 Management of refinements and alternatives

In the literature the word version is overloaded to mean both refinement and alternative.

These two concepts should be distinguished, because they have different representations in the

design trace.

A refinement of a place is a modification that invalidates the current status of the place.

Correcting a typo in an ASCII file is a refinement, because no designer is interested keeping a copy of

the file with the mistake. In a refinement, the previous "version" of the object is no longer of interest,

and it is effectively lost, unless the designer uses some independent revision control mechanism,

such as the UNIX RCS. The refined place remains VALID, but all the dependent places become NOT

VALID, to indicate that they are no longer up-to-date with the recently refined place. A refinement

is represented by a process of invalidation ofnodes already in the trace, as illustrated in Figures 3.16

and 3.17. Figure 3.16 shows a fragment of a trace in which all the nodes are VALID. The trace refers

to the design ofa counter starting from the behavioral description counter. bds. Imagine that the

designer realizes that the counter. bds has an error, because instead of describing a counter with

an active-low reset signal, it describes an active-high reset. The designer has no interest in keeping

around the faulty description. Using a text editor, he refines counter. bds. The server notices

the change and invalidates all nodes depending on counter .bds, as in Figure 3.17, where the

different color of the nodes denotes that those nodes are NOT VALID. At this point, the designer

may request a local retrace from counter. bds to recover consistency.

A new alternative is represented by adding new nodes to the trace. An alternative for a

design object is created whenever one wants to try something new without destroying the current

status of an object. Alternatives are therefore distinguished by their history.

The trace does not capture the notion of"equivalence" between two alternatives, because

such notion is context dependent and extraneous to the design management problem. For example,

suppose that a designer has a standard-cell implementation of a controller and suppose that he wants

B'K<•

0
nJufe

•Vb

->;>;»eggi

,;««*§
*«**,

Figure3.16:Refinement:tracebeforerefinement.AllnodesareintheVALIDstate.

75

Figure3.17:Refinement:traceafterrefinement.Thefilecounter.bdsinthetoprowhasbeen

refined,andallitsdependentshavebecomeNOTVALID.

76

toexplore thepossibility ofa PLAimplementation. Thedesign methodology tobuild a PLAisquite

differentfrom the methodologyrequiredbya standard-cellblock. The standard-cell implementation

and the PLA might be equivalent in their logic behavior, but they are probably quite different from

both the layout and the performance points of view.

Figure 3.18 shows a step by step growth of an alternative. In the top left we see a trace

fragment that describes the synthesis of a FSM starting from the textual description contained in

the file f sm. bds. Suppose that the designer decides to try a different state encoding. He might,

for example, copy the primary input f sm. bds into f sml .bds, and edit the new file to represent

the new encoding (top-right). Regardless of the state encoding, the design methodology for the

new FSM is probably going to be quite similar to the previousone. With the same techniques used

by the automatic assistant (described later in Section 3.11), the designer can ask VOV to automat

ically extend the trace from f sml.bds following a flow similar to the one used for f sm.bds.

Dependingon the case, the extension can stop at the firststep (bottom-left) or continue all the way

(bottom-right).

3.9.6 Archiving

One of the requirements for an ADM is to help archive a design. Assuming that all the

tools leave a complete trace of all their inputs and outputs, the trace can become the primary source

of information to determine which data should be saved in the archive. By distinguishing between

deterministic and non-deterministic tools, it is also possible to save storage space by not archiving

the outputs of all deterministic tools, given that they can be regenerated automatically.

3.10 Use of measurements

Measurements on the design data are needed to provide important services such as verifi

cation ofdesign specification, validation of a piece of design data, and design estimation. A method

to measure the area of a circuit is needed to help the designer choose the smallest layout. A method

to decide whether a circuit has been successfully simulated (a "Boolean" measure) is needed to

inform the designers that more simulations should be performed. A method to count the instances

in a standard-cell netiist is the basis to build a predictor that estimates the area of a standard-cell

implementation given the numberof instances in the initialnetiist (assuming that such an estimate

is meaningful).

a
T';|"1

I b

'i ...r

~1

\ ;

i.itui.iurjc.

"TL, -r

I, |lt|,'|faj,

77

0

, mm

--,<_ j7

Figure 3.18: Alternative: The exploration of new alternatives corresponds to the addition of new

nodes to the trace. Differentalternatives can be distinguished by their history.

78

The measurement itself is just another type of place, more specifically a place which is

the output of a measuring tool. Each measurement consists of a value and a unit of measure. The

measurements can be kept up-to-date by the VOV with the normal built-in retracing mechanism.

The difference between a measurement and other places is a bidirectional link that associates each

measurement with the place which has been measured. These links are established at runtime by

the measuring tool itself.

The area of a chip can be computed by the tool vov_meter, which, upon execution,

declares the chip as input, its area as output andestablishes the linkbetween the chipand its area.

In thisway, it ispossible toquery about thearea of thechipandknow whether thereported number

is up-to-date or not.

Figure 3.19 shows a trace containing measurements. Here the tool vov_meter is used

to count instances and to measure chip area and total net length.

The knowledge required to perform the measurement is completely contained in the mea

suring tool. The DMS is not required to know anything about area or speed or any other measure

ment; only the measuring tools do.

Groups of measurement can be handled as regular sets of nodes, but new operators are

defined on these sets: a reduction operator is defined to find the smallest, largest, sum, product

of the measurements in the set. Besides the name, common to all sets, each measurement set is

characterized by an objective which describes whether the goal is to simply monitor the set, or to

minimize or maximize the figure of merit, or otherwise make it belong to a "good" set.

A technique that we plan to explore is to accumulate statistics on design parameters and on

the corresponding performance indices. For example, considering a trace relative to the execution

ofMosaico, the ADM can relate the total number of cells in a chip to its total area after placement

and routing. This information can be converted into a lookup table and interpolation techniques

can be used to obtain predictions for different values of the design parameters.

3.11 The assistant

VOV has been designed principallywith concern for the needs of experienced designers;

for their benefit, the system is non-intrusive and non-restrictive. The expert designerhas complete

freedom to choose the tools to be used in any situation, while VOV intervenes only in case of

conflict, as an adviserthat warns thedesigneraboutpotential lossof data or potential wasteof CPU

cycles.

79

r,tor:loqlc:i:oncanca

Figure 3.19: A trace complete with measurements. The tool vov_meter counts the number of

standard cells in the input netiist to the tool wolfe, and then measures area and total net length of

the placed and routed layout.

80

Not all designers are experts. A much larger segment of users of CAD systems are rel

atively inexperienced, or altogether novices, and they need assistance and guidance. For them, a

new resource is available: the collection of traces of previous designs.

A trace contains two types of information that can be useful to a novice designer: flow

information and data information. The information about sequencing and flowing of tools, the

representation of the dependencies between inputs and outputs of tools, together with examples of

use of command line options, are all valuable in teaching novices the role of each tool in the CAD

system. The data information available in the places is also valuable, because it represents concrete

examples of what should be expected as input and output of each tool and also because it provides

a set of examples that can be copied and modified by the novice designer.

The information contained in a trace refers to a particular design, and the degree in which

such information can be transferred to another design depends on the similarity between the two

designs. The transfer process is performed either by the designers themselves or by a program

called vov_assist.

A number of traces that represent routine tasks has been archived in a library, and are

easily accessible via vov_assist (Figure 3.20). For example, one trace shows the normal way to

synthesize a standard-cell layout using bdsyn, misll, and wolfe, another describes the use of

the tools for routing of a macro-cell layout and another describes the synthesis of a FSM. Each trace

in the library has been fully annotated with comments on the significance of places and transitions.

Any trace can be added "as is" to the library, but it is preferable if the traces in the library

are edited to make them more readable. Some obvious dependencies need not appear in the example

trace, such as those between a transitions and the executables required to run them. Although these

dependencies are useful for design management, they are obvious to the designers and tend to clutter

the appearance of the trace. In any case, all the dependencies will be recovered as the transitions

are executed.

The simplest way to extract information from a trace is to let the designers do it them

selves. Humans have a peculiar ability to learn by example; they find it easier to modify a piece

of data rather than to create it from scratch. The effectiveness of examples has been shown in [12],

where it is reported on the successful use of traces to teach students in a VLSI design class the

proper sequencing of the Octtools.

A novice designer can study an example trace either graphically or textually, to understand

its meaning. He can modify the data and the command lines to fit his own goals, and then he can

execute the tools directly.

VOV ASSISTANT: CHOOSE EXAMPLE TRACE

wolfe

fsm

boss

counter

mosaico

SSDD

labl

Iab2

lab 5

5 ad am

INFO

S Standard description of a FSM using
»bdsyn and bdnet Ho Layout generation

CLICK ME Show txace Assist. Cancel Help

81

Figure 3.20: The menu to select an example trace. The trace called fsm has been selected, and the

INFO field shows a short description of the trace.

The program vov_assist automates this process of modification of command lines.

The assistant considers a trace as a particular execution of an unwritten program, it tries to deduce

the program from the trace and then tries to guess the effect of running the program with different

inputs. From an abstract point of view this is a difficult task, because there is the problem of

recognizing conditional and iterative structures in the program, and because inputs and outputs

of many transitions cannot be known until the transitions are executed. The assistant makes two

simplifying assumptions:

1. A trace can be transformed into a program by simply performing substitution of variables

in the command lines of the transactions and in the names of the places.

2. The transitions represented in the trace are not pathological and the trace captures the non

data-sensitive dependencies of each transition.

For most traces one or two variable substitution rules are sufficient. The current imple

mentation of the assistant allows up to five (Figure 3.21). Heuristics are used to suggest automati

cally one or two variables that may be substituted.

The basic operation performed by the assistant is the copy of a transition from the ex

ample trace to the current design trace. After applying variable substitutions to the command line

and to the current working directory of the example transition, the assistantemulates the interac

tion of the transition with theserver, without executing the transition. The assistant connects with

the server, declares that the transition has started, declares as inputs and outputs the same inputs

1;
-V- -. f'.,., i, ..--nil I.. r.,;;, iJ,- •,,!,- .if -1- ,„,.
bit Mqpnlt. vhl<*h vmiH «t-t<»i\" •» .j-t- th« Mifrix <" •
Th* -: t.jg a»p» OONTj:aF£j -..-.nj J It ki^ht nc^ be..a ' -".^ - *•*•, ^^p? win* '.iu.

tU '""•
Vcd Apt .1 11 51 07 iiKO ^.3:ott5
'Jftiniu th* logic •jqpjstiir.j :r. rhs ' blif* fiL«
Al>: p^cfota -echnoLoqv »>Fpin:
Optinismon *fld lUppLrq st< Jirjctsd iv the tciic:
:,.»..f.*J by -.),* -f fUu

v l..r.-i f-ii I. In-t.

JET NAME. . NODES.. .

-LU-..
XO".
OLD.

cl:crms

VAKIABLH SUBST1TLTIO.NS

NEW J ••

NEV/ .

. .„. fil" -"
NEW .

NEW

ETors'* n't«* ?ro:*«d

82

Figure 3.21: A trace has been chosen, and the designer mustnow specify thevariable substitution

rules.

and outputs of theexample transition, although the names are modified by the variable substitution

routine. If an input place of the transition is also a primary input of theexample trace, theassistant

attempts to physically copy the place into the current working directory, unless the place already

exists. Then the transition is declared completed, and its status is made NOT VALID. The entire

example trace can be copied in this way, one transition at a time.

The program operates in both interactive and batch mode. It is possible to restrict the

assistant to operate on a subset of the example trace, and the current design trace itself can be used

as example.

After the assistanthas completed its job, the designer can modify the primary inputs and

request a retracing. With retracing, all dependencies are recomputed, and the trace will appearjust

as if the designer had directly invoked all the transitions in it.

The assistant was designed originally for the benefit of novice users, but it has become a

useful tool for the experts as well. For example, anyone who has ever designed with the Octtools

has probably needed a standard-cell counter. Given that this is a routine activity, a trace called

counter has been included into the VOV library. This trace represents the design of a 5-bit

binary counter implemented with standard-cells, including simulation and layout evaluation. The

behavioral description of the counter is contained in an ASCII file called counters . bds. The

description is parameterized, asallowed by the BDS languages, so thatit is easy todescribe another

counter with a different number of bits.

#!/bin/csh -f

set BLOCK_LIST = (bl b2 b3 b4)
set CHIP = mychip
foreach i (3BLOCK_LIST)

vov_assist -p wolfe -N $i # Describe and implement blocks,
end

vov_assist -p simul -N SCHIP # Simulate and verify,
vov assist -p mosaico -N $CHIP # Place and route.

83

Figure 3.22: A shell script can be used to specify a complex methodology as a combination of

several example traces processed by the VOV assistant.

A designer, expert or novice, who needs an eight bit standard-cell counter can invoke the

assistant in batch mode, by typing for example:

vov_assist -p counter -N 8bitCounter

vov_ass ist copies the counter trace into the current trace, and it copies the primary inputs of

the example trace in the working directory. The variable substitution mechanism replaces all occur

rences of the string counter5 in the trace with the string 8BitCounter. The string counter5

is deduced automatically by the heuristics coded in the assistant. The behavioral description of the

counter is now in the working directory, in a file called 8bitCounter. bds. The designercan

now edit the file, change the 5 into an 8, ask for a retracing, and the 8 bit counter is done.

Sometimes only the flow is of interest, while the primary inputs of the trace have no

relation with those in theexample trace. Suppose one wants to build a standard-cell decoder, using

a design flow similar to the one required for the counter. Suppose also that the file decoder .bds

has alreadybeen prepared in the current working directory. The command

vov_assist -p counter -N decoder

uses the assistant to transfer the flow in the example trace called counter into the current design

trace. The file decoder. bds isleft untouched bythe assistant, and the designer can immediately

ask for a retracing.

The batch interface to the assistant allows the description of complex methodologies in

ahierarchical fashion as acombination of smaller example traces, as shown in Figure 3.22, which

shows ashell script that produces the complete trace for the design of astandard cell chip.

84

3.12 Support of design methodology

The assistant can also be used in situations where awell defined design methodology
should be adopted by the designers. Aset of traces, complete with annotations, sets and measure
ments, can capture the design methodology, including alternative paths. The traces can then be
merged with the trace of the current design to guide the designers along the correct design method
ology.

The current version of VOV docs not allow strict enforcement of amethodology, on the
assumption that designers work better if they have freedom. The traces created by the assistant only
help guide the designers, but they can be overridden, if the designers decide to do so, by simply
executing other transitions.

In some cases enforcement of a methodology can be desirable, although enforcement
is usually paid with alimitation of the designers' freedom. For example, adesign division in a
company may have determined that it is more effective to postpone all layout activity until all
the components of the chip have been described, documented, and simulated. This constraint can
be represented in the trace by atransition whose output is aset of places required by the layout
tools, and such that the transition succeeds only when acertain condition is satisfied, for example
when high-level simulation of the chip has been completed. Such transition could correspond to an
interactive tool that succeeds only when an authorized designer, for example the project manager,
says that it should succeed and takes responsibility for this decision. Automatic tools to perform
such afunction are also conceivable. The bottom line is that the description of amethodology
requires the inclusion in the design flow of special tools that contribute the knowledge specific to
the methodology.

The actual enforcement ofamethodology is achieved by restricting the power to modify
the topology of the trace to some special clients, namely the assistant and the tools invoked by VOV
during retracing, thus preventing the designers from changing the design flow by executing other
transitions. Although this enforcement technique may not be bullet proof, it is overshadowed by
amore challenging enforcement problem: to make the designers use VOV throughout the design.
But this problem is beyond the scope of this research, because it belongs in the area ofdiscipline
enforcement within a design group.

Some methodology traces can be created by simply going through an example design. The
resulting traces can then be installed in the library, where they become available to all designers.
Other methodologies can be described as combination ofexample traces as already mentioned in

Loops can leave many traces

JO-
n t2 T3

0 f

0 f2

=C;f3

r"" f

0 out

forcach i (I 'i 3)

forcach i

cp f f$i
(1 2 3)

i

6 f4 grep Si f > out
end

end
forcach i (1 2 3) !

J == i+l i
cp f$i fSj i

end

1

85

Figure 3.23: The same control structurecan originatedifferent traces dependingon the operations

performed in the body of the loop. These examples use simple UNIX shell scripts.

the previous section and shown in Figure 3.22.

3.13 Iteration in design

In principle, all iterations can be reduced to the following elements [1]: a loop initial

ization, a loop body, a stopping criterion, a next-value function. Nevertheless, the execution of

each loop can leave its own peculiar trace, depending upon the actions performed inthe loop body.

Figure 3.23 shows three loops, all having the same control structure. In the first loop, each itera

tion is independent ofall the others and the corresponding trace consists ofacollection ofparallel
branches that can be executed in parallel or in any order. In the second loop each iteration uses

results from the previous one, thus establishing aprecise ordering among the iterations. In the third

loop, each iteration invalidates the previous one, so that only the lastiteration is useful.

In some sense, the design activity as a whole is a loop, whose stopping criterion is the

satisfaction of the design goals, and the body consists ofwhatever the designers decide to do. Al

though this might sound trivial, the main form ofiteration in design is expressed by the following
tautology: while the design is not finished, continue the design. These iterations take the form of

successive refinements of the design data and of the set ofdependencies among them. This basic

86

design iteration issupported by VOV's tracing and retracing mechanism. In the rest of the section,

other types ofiteration arc considered, such as optimization loops, and data-dependent loops.

Systems like ULYSSES J111 and Cadweld (17| provide limited support for iterative de

sign, by means ofthe backtracking mechanism (sec Section 3.2.1). The Siemens system [6| supports
a specific form of iteration which can be called "goal oriented refinement," in which a sequence of

operations is itcrativcly applied until some goal has been achieved, for example until the liming of
the chip is correct, oruntil a satisfactory fault coverage has been reached. The designer is directly
involved in the loop because he must decide when to terminate it, while the ADM supports this

decision making process by consulting its mle-based expertise. Another form of iteration is also

supported, which is based on the hierarchical structure of a design, in the sense that it allows the

specification of conditions thatshould besatisfied byall thesubcomponents of a module. TheTask

Manager [15| considers iterative processes such as tight edit/compile loops, although the loop is
completely controlled by the designer. The iterative nature ofthe process must be declared explic

itly by the designer at the beginning of the loop, and it must also be terminated explicitly. Such

declarations arc necessary to suspend temporarily the automatic backup mechanism for the design
data involved in the loop.

For VOV, the least-effort approach was chosen. Rather than supplying its own control

mechanisms, VOV tries to promote the use of existing mechanisms, in particular the unix shell

scripts.

One technique is to hide the iteration from the design manager. This can be done by

writing a shell script that contains all the elements of a loop, the initialization, the body, the next

value function, and by considering such script as an atomic transition. In this way, the iterative

nature of the task performed by the script is completely invisible to VOV. These scripts can be

written on demand and effortlessly incorporated in the design flow as new tools. This is possible

because a trace based system is open to the introduction of new tools, due to the great flexibility

derived from the absence of an a-priori description of the tools that can be used in a design.

The hiding technique is general, effective, and free, because it uses existing and familiar

software. However, in many ways, it defeats the purpose of this research, because it subtracts a

part of the design activity from the control of the DMS. This may be totally acceptable when the

scripts are self-contained and call fast and reliable tools, otherwise it may be better to try to use the

services of the DMS, to avoid conflicts and wasteful repetition of expensive transitions.

The second technique uses the mechanism of collapsable sets. Once again, a script is

used to represent the control logicof the loop, with the difference that the script is not executed as

87

an atomic transition, but as a set of many transitions, each leaving its trace. This corresponds to

unfolding the iteration, although nothingcan be said about the structure of the trace upon completion

of the script, as reminded by Figure 3.23. All the transitions invoked by the script are collected into

a set, call it 5. The set 5, or more precisely f ill(S. S), is collapsable, and the collapsed transition

corresponds to the invocation of the script. This technique offers all management services during

the execution of the loop, it allows local retracingof parts of the loop, and it also allows the retracing

of the entire script.

This second technique is insensitive to the type of iteration described in the script. It can

be a data-dependent loop, an optimization loop, a search loop, or even not a loop at all. Through the

command interface to VOV (section4.3.2), the scripts can also request services, such as retracing,

or query the server for information, for example about some measurements or about the status of a

place.

A third technique to support iteration is offered: the designer can define a set of nodes

and then perform an operation/or each node in the set. This is a more restricted technique, because

only a limited set of operations are allowed. These include many operations on nodes (edit, forget)

and on node attributes (status, name, affinity, etc.) most of which are performed directly by the

server.

3.14 Principles that guided the development of VOV.

The development of VOV has been characterized by the application of some ideas that

workedand by theexplorationof others thatdid not. Inhindsight, it is importantto becomeawareof

those principles which have been most successful: simplicity,non-intrusiveness, attention to users,

locality of information, distribution of resources, emphasis on implementation andexperimentation.

3.14.1 Simplicity

Despite the complexity of the design management problem, a conscious effort has been

made to keep things as simple as possible. Conceptual support has been provided by Occam's

razor ("Entia non sunt multiplicandapraeter necessitatem"), the well respected principle, in phi

losophy as well as inengineering, that gives preference to the simpler oftwo otherwise equivalent
descriptions of a phenomenon.

The one sentence summary of this research could bethat we propose the reduction of the

design management problem to the management of the design trace, the unifying clement used to

represent, document, and automate thedesign How, and to assist the designers.

In comparison, other systems provide much of the same functionality using two or rr j

separate subsystems. For example the MMS 131 uses LISP functions to automate the design l

while the history of thedesign isdocumented inaseparate ASCII file. A similar separation between

history and (low automation can be found in Ulysses [11 J, and in theTask Manager [15 j.

The design trace is similar to a Petri net, but it is simplerbecause it has no cycles and no

tokens. Other researchers [30, 6] have proposed the use of extended Petri nets, possibly attracted

by their theoretically intriguing propertyof being equivalent to Turing machines [2), and therefore

conceptually capable of modeling any algorithm. But such property of the extended nets is not

exploited in [30|or in [6|f just as many other properties of Petri nets have not found application ina

DMS. VOV explores the hypothesis that asimple BAD graph issufficient for design management.

The interface between VOV and the tools isalso simple. The trace-based system does not

need to know anything about the tools; it only needs to know something about the tool Invocations:

the command line, the working directory, the username, the host name, and the list of inputs and

outputs - information that is can be easily generated at runtime. By comparison, almost all other

proposed systems require detailed descriptions of the tools and of their behavior.

The trace-based system does not require informationabout the significanceof a placeor

about the meaning of running a tool. Places and transitions are treated as black boxes. All the

knowledge specific to a design style is confined within the tools, thus eliminating a great deal of

complexity from the DSM, and making it applicable in domains other than electronic design, that

is wherever there is a set of automatic tools to be managed.

The quest for simplicity is also responsible for a number of concepts that are absent from

VOV. Notable is the absence of any form of strong typing of either data or tools (see Section 2.3).

Data are recognized only by database and by name within the database, not by value, meaning or

type. There is no distinction between required and optional inputs of a tool, as in decol [34] or in

the Task Manager [15], because inputs and outputs are declared at runtime and are all equally

important.

Simplicity is key to the success of any system, because a simple system is easy to un

derstand, use, and implement. A successful implementation, that is a detailed, robust, and friendly

implementation, is thestrongest promoter of any system among itsusers. It isessential for an ADM

to haveusers, not only to validate the system,but also because the experience gained with use leads

to a better understanding of the design management problem.

89

3.14.2 Non-intrusiveness

An early goal of this research was to develop a non-intrusive design manager that does

not change the way designers use the tools. Tools should be easily incorporated in the system, and

the designers should have unrestricted access to all the capabilities of a tool.

Since the trace is managed automatically by the tools, a designer can be unaware of the

existence of VOV and yet benefit from its basic services, such as tracking of the design activity and

conflict detection.

The integration of a tool into the system, whether through recompilation or through en

capsulation, is simplified because the only objective is to provide communication with the server,

while maintaining the look-and-feel of the tool. The objectives of encapsulation vary among the

previously proposed DMS. For example, [24, 34, 15] require capsules to give every tool a com

mon look-and-feel, by renaming tools and options according to a consistent scheme. EDMS [24]

requires the encapsulation program to describe the type of the tool and of all its inputs and outputs,

to perform pre and post-processing and to check the success of the tool. Such capsules are compli

cated and require effort to be written. For example the encapsulation of Verilog required 7 days.

By comparison, the VOV capsule for Verilog has been written in about three hours.

3.14.3 Distributed resources, localization of information

The resources offered by modem design environments are distributed across many ma

chines in the network; CPU cyclesare available on several workstations and large mainframes, and

data can be distributed among many file systems.

VOV exploits distributed resources byallowing slavesanddesigners to useany machine

in the local network, as long as both the machine and the VOV server have visibility of the design

data. The coordination of slaves is completely decentralized; slaves can be added and eliminatedat

any time, and the powerand the resource listof each slave are determined by the slave itself. The

design trace models concurrency and allows parallel retracing to be used whenever possible. The

dispatching mechanism balances the load on the slaves to exploit the powerof idle machines.

In contrast to the scattered distribution of resources is the need to maintain a localized

distribution of information. All information related to a specific task should be organized so that

it appears localized and easily accessible. A parallel can be found in the software domain: as

a program that uses global variables is more difficult to maintain than one that uses only local

variables, soa DMS based ona central database isgoing tobeharder tomanage than a DMS which

90

emphasizes distribution and localization.

In VOV, the information about inputs and outputs ofeach iransition is generated locally
by the tool itself, or by its capsule. Locality has also a temporal meaning in the sense that the

information is generated while the tool is executing. If the behavior of a tool changes, the tool
developer must update, at most, the capsule of that tool only, while the rest of the system is not
affected.

Other DMS systems use centralized configuration files todescribe the capabilities of the

CAD system. Ulysses IK)| uses the blackboard as the central global database, the NELSIS system

[50] uses a centralized rule base to analyze the evolutionof the design. In both cases, the addition

or modification of a tool requires a complex change of the global information, to predict all the
possible implications of that change on the system.

Cadweld 117] isclosetoachieve locality of thetool description, bymeans of itsCADTool

Objects (CTO), but some aspects in the CTO description require global information. For example,
the "priority" or the "robustness" field, both used by CAD tasks to choose one of the CTO's that

volunteer for some operation, make sense only in a comparison between two CTO's. Therefore,

a developer of a new CTO needs to know the values of those fields for all potentially competing

CTO's in order to position accurately the new CTO in the global spectrum.

3.14.4 Focus on users

Understanding the users is a key element for the success of a software project. Paul

Heckel, in his study on friendly software design [29], ranks "know your audience" near the top

of the list of suggestions to the software developer, second only to the rather obvious "know your

subject." Similarly, Rubinstein and Hersh's [44] first advice is: "Know thy user, for he is not

thyself."

The audience of a DMS consists of a range of potential users, each with different needs

and expectations: expert and novices designers, project managers, system administrators and tool

integrators, corporations.

A novice designer asks for a fully automated system that minimizes the learning effort.

A novice designer wants to be led through the design and is probably willing to compromise on

design quality. Their designs are likely to be routine rather than aggressive. An expert designer

knows more about his design and his tools than he expects a computer to know; he does not want

to be told what to do, but demands a docile and non-restrictive DMS. A project manager wants to

91

have control over the design activity, and wants to know what the designers have done. Sometimes,

he also wants to enforce specific design methodologies that arc deemed safe and robust. A DMS

is valuable to a corporation when it reduces its vulnerability to the turn-over of designers, who

may take away with them precious information and experience [451. A DMS should therefore help

improve the documentationof each design.

In VOV, the initial focus has been on the more challenging needs of the expert users. The

attention has since been extended to novices with the development of the assistant. This approach

has been effective; after investing more than a year (Jan 89 to Mar 90) developing the non-intrusive

tracing and retracing mechanism, it was possible to develop the prototypeof the assistanton top of

the tracing mechanism in less than a month (June 1990).

Attention to the users requires emphasis on the user interface, the software layer that gives

the users access to the services provided by the DMS. All the three types of interface mentioned by

Rubinstein [44] have been implemented: command-based, menu-driven and graphical. The details

arc reported in Section 4.3.2. Of the DMS reported in the literature only EDA's system EDMS [24]

offers all three types of interface.

3.14.5 Emphasis on team design

Team design is the norm in the electronic industry. Some authors [51] state that the correct

approach to coordination of team design is to try to give each designer "the illusion that he/she is

working on a single designer system." This is an arguable statement. Even a single designer can

perform many tasks simultaneously, either on the same machine or on different machines in the

network. The conflicts that can be generated by two interfering tasks are the same whether the two

tasks have been initiated by the same designer or by two different designers. So the fundamental

problem is not coordination of team design, but rather coordination of concurrent activities.

VOV emphasizes that it ispossible and advantageous to work inparallel. Conflict detec

tion protects the integrity of the data and avoids wasteful duplication ofefforts. The design trace

promotes cooperation among designers, because the activity of each designer is visible to all de

signers. The notion ofownership ofparts ofadesign, a trademark ofthe workspace based systems
(e.g. [15, 3]), is relaxed and it is conceivable that one designer might pick up an activity where
another designer has left off.

VOV is anative multi-tasking system, not asingle-user system extended to handle many
users.

92

3.14.6 iNo restriction to data visibility

An important aspect ofdesign concerns the visibility of the data. Ahuman being prefers
to work with just a few objects at a lime; the visibility of other objects may be distracting and
confusing. This is why people prefer to work with hierarchical rather than flat file systems, and to
program with local rather than global variables.

A DMS should help focus the designer's attention on the objects of interest. In some

systems 131, 3], the data is fragmented using the notion ofworkspace: one workspace per designer,
and public workspaces for shared data. Each designer sees only the data in his workspace and none

of the data in anybody else's workspace. This arrangement accomplishes the additional purpose
ofprotecting the data in the public workspaces. However, we believe that this fragmentation is an
obstacle to true cooperation among designers.

In VOV, protection is already provided by theconflict detection services, so that there is

no reason tolink visibility with protection. To encourage cooperation, data visibility is not restricted

within a project, and all designers can, if they choose, inspect any piece ofdata represented in the

trace. Data can be organized according todesign tasks using UNIX directories and symbolic links.

A related issue is the visibility of the trace itself. The design trace is normally flat and

large, and a designer rarely needs to look at the entire trace at once. The burden of filtering out

uninteresting detailsshouldbe placed upontheuser interface. Instead of presenting theentire trace,

thegraphical interface shouldrespond dynamically totherequests of eachdesignerbyshowing only

the details of a subset of the trace, while the rest of the trace should be shown as an abstraction.

This smart graphical user interface has not been implemented yet for two reasons: the

objective complexity of its implementation, and the fact that the graphical interface is not critical for

the operation of the system, which can perform all of its functions without the designer ever seeing

the trace. A dumb graphical interface that presents the entire trace in full detail is nevertheless

available. Feedback from users of the system has already indicated that designers are interested in

looking at the trace, and that the dumb interface is not satisfactory.

3.14.7 Ignore design hierarchy

Hierarchy is normally introduced in a design for three reasons: to break down a large

problem into smaller ones, to allow reuse of components, and to hide details. However, hierarchy

doesnot unconditionally haveall these advantages, and there are situations in which a flat structure

ispreferable to a hierarchical one. Management ofthe design flow may be one of these situations.

93

The human inability to cope with a large number of entities at the same time forces de

signers to apply Ccasar's "divide et impcra, dividc-and-conqucr" rule - to break the design of a

large system into the design of smaller subsystems. This rule is often applied recursively with the

result that many designs gain a multi-level hierarchical structure.

Hierarchy is not a static property of a design. As the design evolves, hierarchical levels

can be flattened or added, to suit particular needs ofdesignersor tools. Forexample, the hierarchical

structure used to describe the behaviorof a system may be inappropriate from the layout pointof

view.

The hiding of details is made possible not by the hierarchy itself, but by the capability

of producing abstractions of the subproblems and of their solutions. Hiding details makes some

tools more efficient, but only if the tools arc capable of using information from the abstraction. For

example, a placement tool operates at only one level of the hierarchy and it only needs information

about the size and shape of the cells (the abstraction), rather than about the internal structure of each

cell. Forthe same circuit other tools may need to retrieve the detailed structure of each component

in the hierarchy, in which case hierarchy may be more of hindrance thanof help. For example, the

logic simulator musa must flatten the hierarchy of a circuit on the fly in order to function.

Reusability of components depends upon the regularity of a design. Regular designs,

such as RAM's and ROM's, used hierarchy effectively, because few components can be reused

many thousand times.

The importance of hierarchy and its relevance in the domain ofdata representation areno

longerissues open to debate, because most modernCAD systems support hierarchical representa

tions of design objects. But what is the role of hierarchy in design management?

In VOV, the design hierarchy is inconsequential. It is the tool's responsibility to under

stand the hierarchical structure of a design and to communicate to the system what use is made

of the hierarchical information. A tool that uses abstractions, for example a placement tool, will

declare as input only the abstractions at one level of the hierarchy, while a tool that traverses the

hierarchy, for example a logic simulator, will declare as input all the components of the circuit,

down to the lowest level. ForVOV, the difference between the two tools is in the number of inputs

and in their outputs.

Some previous work on design management believe that it is necessary to provide special

support for hierarchical design. For example, Brctschneider et.al. [6] use specially annotated arcs

in a Petri net to represent conditions that must be satisfied by all the components of a description

of a circuit. Kozminski [34] embeds the circuit hierarchy in the UNIX hierarchy of directories and

94

relics on this structure to provide management services.

Only few researchers (e.g. Chiuehet. al.]15|) have considered hierarchy in the design

(low, although it is clear that some form of hierarchy exists. For example, in the Octtools, the

task of routing a macro cell chip is performed by running the tool Mosaico, which in turn calls a

sequence of thirteen other tools (sec Figure 3.24). From the users' pointof view, it is advantageous

to associate the task of routing a chip to a single tool, that is Mosaico. From a DMS point of view,

there is a loss of detail (for example, loss of potential parallelism) in considering mosaico as an

atomic transition. The approach in VOV is to operate with a flat description of the design trace, for

maximum control, while the user-interface is capable of presenting a hierarchical view of the trace.

The advantage of using hierarchy in the design flow arises from the abstraction power of

hierarchy, that is from the possibility of hiding details. Little advantage can be obtained by reusing

a flow segment, as a subroutine can be reused in a program. Suppose that the "same" flow is used

to process two independent design objects, A and B, and to be more concrete, assume that A and

B arc two chips to be routed by Mosaico. We could think of Mosaico as a subroutine with one

parameter, and then apply the subroutine first to A and then to B, but this would not always be good

design management. Some of the steps in Mosaico can take minutes or even hours, and one should

avoid repeating those steps unless necessary. To do that, the DMS must maintain information about

the progress of A and B through the steps in the subroutine; for each operation in the subroutine,

the DMS needs to know when it was executed, if it was successful, and which data was used. But

by keeping all this data around, the DMS effectively replicates the Mosaico subroutine once for

A and once for B.

There is a tradeoff between efficiency and hierarchy: efficient design management de

mands a flat trace, while hierarchy is useful especially at the interface with the users. VOV offers

support for hierarchy in the trace through the notion of collapsable sets, as described in Section

3.8.1.

Chapter 5

Experimental Results

The ultimate goal of an ADM is to increase the productivity of CAD systems, reducing

the design time or the design cost, or improving the quality of the delivered product. The value of an

ADM should be measured in absolute terms by the difference in productivity level with and without

it, or in relative terms by comparing its productivity with some other ADM. Both tests are difficult

to perform, because of a lack of formal definitionof productivity, and because the comparisons arc

hindered by the impossibility to keep "all else" equal while switching the ADM.

However, it is possible to accumulate some statistics on the design process, such as the

total time spent by the tools and the total number of tool invocations, separating successes from

failures. These statistics are related to the design time, and they can provide insight about the

designers' style and the performance and reliabilityof the tool set.

In this chapterwe present thesestatistics for a numberof designs in whichVOV has been

used, including some projects developed by students of a VLSI design class.

5.1 Statistics on the design

VOV keeps arecord of count and duration of all transitions, distinguishing the transitions

invoked by the designers from those invoked by VOV itself as part of the retracing mechanism.

Duration ismeasure inseconds of elapsed time, not inCPU time. Successful and failing transitions

are counted separately,and for the failing transitionsall4 failure modes described in section 3.6 arc

considered: wrong exit status, invalid input, missing output, and interruption.

The following statistics are maintained automatically for each design trace:

115

116

TOTAL TRANSITION TIME (TTT) and COUNT (TTC):

TOTAL SUCCESSFUL TRANSITION TIME (TSTT) and COUNT(TSTC):

TOTAL FAILED TRANSITION TIME (TFTT) and COUNT (TFTC):

USER-INITIATED TRANSITION TIME (UTT) and COUNT (UTC):

AUTOMATICALLY-INITIATED TRANSITION TIME (ATT) and COUNT (ATC):

USER FAILED TRANSITION TIME (UFTT) and COUNT (UFTC):

USER SUCCESSFUL TRANSITION TIME (USTT) and COUNT (USTC):

AUTOMATICALLY FAILED TRANSITION TIME (AFTT) and COUNT(AFTC):

AUTOMATICALLY SUCCESSFUL TRANSITION TIME (ASTT) and COUNT (ASTC):

Some obvious relationsbetween the quantities mentioned above are:

TTT = TSTT + TFTT

TTC = TSTC + TFTC

TTT = UTT + ATT

ttc = utc + .-ire

UTT = UFTT + USTT

UTC = UFTC + USTC

The conflicts detected during the design process are also counted:

CYCLES CONFLICT (CC): Number of transitions that attempt to define a cyclic dependency

among design data.

INVALID-INPUT CONFLICT (IIC): Number of input conflicts.

OUTPUT-REDECLARING CONFLICT (ORC): Number of output conflicts.

LOCK CONFLICT (LC): Number of locking conflicts.

17

Another empirical measure of the quality of a design methodology is the ratio between

the total duration of the valid transitions (VTT) and the total transition time TTT:

A value of 1.0 for Q is an indicator of the "perfect" design methodology: each transition

has been executed exactly once, and all transitions have been successful and useful. The more the

transitions are retraced, the lower Q gets, because TTT increases and VTT docs not. The value

of Q fluctuates during the design process, as transitions are first invalidated (Q drops) and then

retraced (Q rises). This measure makes most sense after the design has been completed. A slightly

more stable measure is the perceived quality Q,, which takes into account the transitions that are

currently NOT VALID, and therefore do not contribute to VTT, but which are presumably going to

be executed sooner or later. Let NTT be the expected cumulative duration of those transitions; then

we define

_ VTT + NTT

5.2 BRIC

BRIC is an integrated circuit for music generation conceived by Prof. John Wawrzynek

of UCB. The design of this chip, which started in Spring 90 in an advancedVLSI design class, was

the first real design managed by VOV. A collection of about 30 machines (SUN-4 and DECstation

3100) running the operating system SPRITE [42] was available for this design. A large set of

tools were employed, including the Octtools, some commercial tools such as Verilog, and some

new toolsespecially created for thischip. This was achallenge to VOV's flexibility to encapsulate

many diverse tools. The most troublesome tool to encapsulate was Verilog, mostly because its

licence policy allowed it to run on only a few machines in thenetwork, and because it required the

use of a command line password that dependend on both the machine name and the month. The

encapsulation script notonly to described the input/output behavior of the tool, butalso computed

automatically the correct password.

The testing strategy involved acomparison of the logic simulation output witha behav

ioral model written in C.The trace therefore includes the compilation of the C file, the execution

of the modelwith several input stimuli, the Verilog simulation with the same stimuli and thecom

parison of the outputs using the UNIX utility diff, encapsulated by the script vov_dif f.

118

Figure 5.1: The trace for the BRIC project consists of more than 1200 places and 339 transitions.

Large traces such as this tend to be relatively wide and shallow.

A team of eight students, including the writer, cooperated on the design. These students

were experts, in the sense that they had already designed a chip using the Octtools. The reaction of

the designers was our main concern: whatdid they think of VOV, did they like it? There was no

negative response, but a general sense of acceptance. One clearly positive, even enthusiastic, re

sponse came from the student in charge of the pipelined multiplier array, who praised the automatic

parallel retracing mechanism.

Although we were all working on the same trace, VOV registered no conflict due to

concurrent activities of two designers. This was mostly due to a clear distribution of the design

tasks and because of the spontaneous organization of the data into an ordered directory structure.

Ina coupleof casesa designercontinueda task from whereanother designerhad stopped; the trace

was the media to communicate unequivocally to the second designer what the first designer had

done.

The BRIC trace is shown in Figure 5.1. The trace contains 1239 places and 339 transi

tions and 22 sets. 2141 tool invocations have been recorded, for a total of more than 105 hours of

execution time. When this snapshot of the trace was taken, the perceived quality was Qp = 0.173,

meaning that on average all transitions have been repeated more than 5 times.

5.3 Floorplanning an FPU

The FPU project consists of the floorplanning of a floating point unit obtained from an

industrial source. This is a single designer project, and its real objective is to test the floorplanning

capabilities of the Octtools. The FPU trace is shown in Figure 5.2. The long tail in the trace

corresponds to the tools in the Mosaico sequence, while most of the nodes in the top eight rows

are partof the floorplanning activity.

The chip consists of 16 blocks, each with a fixed aspect ratio and a large number of

floating pins, for a total of more than 3000 floating pins in thechip. The program puppy, used for

this floorplanning, runs in-place because it changes the location of the pins in the master copy of

o 4
00 -- aa eoaaoeea • 00 oacoaq 00 000 as a

...off"' '" •
•T'

I

iF ft

Figure 5.2: The trace for the llooorplan of an industrial FPU.

each block in the floorplan; themasters are bothinputs and outputs for puppy. After floorplanning,

each block is processed by a module generator that tries to satisfy theconstraints generated by the

floorplanner. Upon successful generation of the modules, anew netiist isassembled and the chip is

routed by Mosaico.

The trace consists of 16 branches, one for each block in the chip. These branches con

verge one first time intothe puppy transition, then they procede independently through themodule

generators and they finally converge again intothetransition that assembles the floorplanned netiist.

The double convergence of these 16 flows prevents any sensible partition of the trace into smaller

units, so that the whole floorplanning task and its trace should to bedealt with as it is, flat and large.

Other systems proposed inthe literature do not seem tobe able todeal with complex activities such
as this.

5.4 Compilation of VOV

Anotherproject that is used to testVOV is the compilation of VOV itself. VOV consists

of six executables and 4 libraries, generated from about 27000 lines ofC++ code, split into 131 files.

The compilation trace includes 448 places and 122 transitions. To date, a total of 5289 transitions

have been traced, for more than 171 hours ofcompilation and linking. The trace quality Q is 0.019,

119

120

a small number which means that the files have been compiled about 50 times since last March,

when the accounting began. Parallel retracing is the main reason to use VOV for compilation.

5.5 VOV in a VLSI design course

CS250 isa graduate course on VLSI design regularly taught at UC Berkeley. TheOcttools

have been used in the class since the Spring of 1988 as a way to expose the students to current

CAD technology and to enable them to complete a VLSI project of the complexity of a four-bit

microprocessor. Traditionally the course is divided into two halves: the first half of the semester

consists of a scries of five laboratory exercises that show the capabilities of the Octtools, while in

the second halfthe students, ingroups of three or four, use the tools for the final class project.

VOV was introduced in CS250 in the Fall semester 1990, when the class was taught by

Prof. John Wawrzynek and 25 graduate students were enrolled.

We felt that ourmoral responsibility was togive priority to the teaching of VLSI design

rather than to using the students as guinea-pigs in ourexperiment on VOV. That is why we only

recommended the use of VOV throughout the semester, but never enforced it. The results can be

compared with previous offerings of the same class.

5.5.1 The laboratory exercises

The automatic assistant was the last piece of VOV to be developed, but it is the first one

seen by a novice designer. Three of the five laboratory exercises (1,2 and 5) were based on an

example trace that was prepared by the teaching assistant (TA). Each trace was proposed to the

students as an example of what they were supposed to learn in the exercise. The other two labs (3

and 4) had no example trace because they consisted mostly of hand layout using VEM.

The design environment consisted of a cluster of 24 color VAXstation 3100, each with

8Mbytes of memory, all connected to the same disk server. Students who had access to other more

powerful workstations were allowed to use them.

The VOV tutorial, included in Appendix A, and a short twenty minute presentation on the

philosophy of the design manager, was all that was given to the students to understand VOV. The

tutorial leads the students through the design of a seven segment display driver, including automatic

synthesis, layout, and simulation.

The first lab was simpler than the tutorial, because it covered only synthesis and simu-

v:v_bdsyn 73egDriver.bds
v -,Y_:r.i.5 II -f .scrip". -T zct -o 73egCriver: logic 7SegDriver.blif
•/•':'/ bdr.et 73ea .b-'inet

v ; •/ _rr.\; 3a - i. ^ 3eg.mu 3 a 7 3eg:3 yrr.bc lie
? T^r.al estimated duration: lm56s.

121

Figure 5.3: The script corresponding to the example trace used in the first assignment. This trace

refers to the synthesis of a seven segment display driver; the students had to synthesize a 4-bit ALU.

Two variables substitutions were required: 7SegCriver -> bitsiice and 73eg -> alu.

lation of a logic network, without layout. The script of the trace prepared by the TA is shown in

Figure 5.3. This example trace dealt with the synthesis of a seven segment display driver, while the

students were requested to build a 4-bit ALU using a similar flow.

As in previous years, the first homework turned out to be easy. Many students used VOV

successfully. Others ran into trivial technical difficulties, that were caused by problems with their

UNIX account. A few of them quickly gave up the ADM preferring to use the tools without it. Of

those who used VOV, a few did not understand the distinction between the example trace and their

own design trace. This was because they did not have a chance to see their own trace, since the

tutorial did not leach them how to access the graphical interface. Others successfully navigated

through the menu-driven interface and discovered functions not described in the tutorial.

Many students did not understand the slave mechanism and did not know how to monitor

the activity of the slaves. A common operation that students wished to perform was the elimination

of transitions from the trace, but they were unable to do it because they had not been taught how.

The students had to overcome a difficulty with the VOV assistant, which in that period

allowed only one variable substitution, while the example trace would have required two (Figure

5.3). Some students executed the assistant twice; others built the trace by executing the transitions

manually.

The tracewas particularly useful toenable the TA to help the students in difficulty, because

it recorded precisely what the studentshaddone andmade the diagnosis of the problem much easier

than in the past.

For completeness we report the technical problems encountered with VOV in the first

homework. Due to a project name conflict one student could not start her server on the machine

she had chosen, and had to ask for assistance to understand what was happening. Some servers

entered an infinite loop caused by a bug that was discovered and fixed only later in the semester.

122

Those servers had to be killed and restarted by hand. A lew times, due to incomplete setup of

the students' unix accounts, no slaves were connected to the server and any retracing command

would hang, wailing forever lor a slave to become available. Some students were not familiar with

the notion of a server/client architecture and did not know how and when to kill the various VOV

processes. The capsules vov_bdnec and vov_musa were found to be incorrect.

The data collected during the first laboratory are shown inTable 5.1. The large variance

is an indication that the students have different ways to approach the tools. For example, student

aa's data shows only four transitions, suggesting that he must have turned VOV on and off, because

much of his work did not get traced. At the other extreme, student ak used VOV throughout the

process for atotal of 89 tool invocations, but he did not take advantage of the automatic retracing

mechanism, because only 9% of his toolexecutions were done automatically. Student wb had 76%

of his tools execute as part of automatic retracing. These results prompted the need for a quick

lecture on the retracing mechanism, which was betterexploited in the second homework, as shown

in Table 5.2.

The second laboratory dealtwith various optimizationtechniques usingmis 11 and with

the layout tools wolfe for standard-cells and octpla for PLA's. The example trace for this lab

is shown in Figure 5.4. As far as VOV is concerned, this lab was in large part a replay of the

first, except for some improvements in the understanding of thesystem and somemore users giving

up VOV, apparently because of problems caused by the limited disk space made available to the

students.

The thirdand fourth homeworks dealtwith symbolic layoutofanelaborate 4-bit datapath.

These labs were not based on example traces, and there was no particular need to use VOV. Some

students with access to powerful machines elected to use it anyway, asserting that it helped them

maintain the consistency of their hierarchical layout.

In the fifth exercise the students assembled a complete chip using the datapath prepared

in lab 4, the seven segment display driver used in lab I and an automatically synthesized controller.

The chip, complete with bonding pads, multiplies two 4-bit numbers and displays the product on

a pair of seven segment displays. The exercise required the use of several CPU intensive tools to

place and route the chip, including puppy and Mosaico. The complete trace of the design of a

similar chip was prepared by the TA was offered to the students as example.

The environment in which most students were forced to work was too restrictive; a disk

quota of 2.25Mbyte per student forced the students to a difficult bookkeeping to maintain enough

disk space so that the tools could run. The final chip alone required more than 1 Mbyte. VOV was

123

Results from Lab 1

Student id aa 11 af ak aq as be em wb

Total Trans Time 98 717 1030 2793 347 594 664 305 1346

Total Trans Count 4 45 38 89 23 27 32 20 32

User Tt 79 499 963 2546 227 580 269 195 319

User Tc 3 16 35 75 13 25 8 14 10

User Success Tt 76 140 827 1100 167 277 266 193 197

User Success Tc 2 9 28 33 8 12 7 13 5

User Failed Tt 359 136 1446 60 303 3 2 122

User Failed Tc I 7 7 42 5 13 I 1 5

User Failed Wrong Status Tt 3 41 136 815 36 103 3 61

User Failed Wrong Status Tc I 3 7 38 4 6 1 2

User Failed Generic Tt 314 593 2

User Failed Generic Tc 3 3 1

User Failed Defective Output Tt 200 8

User Failed Defective Output Tc 7 I

User Failed Invalid Input Tt 4 38 24 53

User Failed Invalid Input Tc 1 1 I 2

Auto Tt 19 218 67 247 120 14 395 110 1027

Auto Tc 1 29 3 14 10 2 24 6

Auto Success Tt 19 199 67 199 112 8 371 110 772

Auto Success Tc 1 25 3 10 8 1 20 6 15

Auto Failed Tt 19 48 8 6 24 255

Auto Failed Tc 4 4 2 1 4 7

Auto Failed Wrong Status Tt 17 43 5 6 20 255

Auto Failed Wrong Status Tc 3 5 I I 2 7

Auto Failed Generic Tt

Auto Failed Generic Tc

Auto Failed Defective Output Tt 2 2

Auto Failed Defective Output Tc 1 1

Auto Failed Invalid Input Tt 5 3 2

Auto Failed Invalid Input Tc 1 1 1

Conflict Redeclaring Output •y 9 33 72 11 25 5 3

Conflict Invalid Input
Conflict Cycle
Conflict Lock

Table 5.1: The statistics collectedby VOV for the first laboratory exercise show a large variance in

the way students have used the tools.

Results from Lab 2

Student id he aa aj au cm 11

Total Trans Time 1625 7266 6013 501 16998 11633

Total Trans Count 16 35 49 11 164 182

User Tt 441 4969 4584 421 4720 3409

User Tc 9 15 28 6 74 46

User Success Tt 379 4252 2812 409 3103 2814

User Success Tc 7 13 20 5 47 42

User Failed Tt 62 717 1772 12 1617 595
User Failed Tc ->

4. 2 8 1 27 4

User Failed Wrong Status Tt 62 717 35 12 213

User Failed Wrong Status Tc 2 2 2 1 2

User Failed Generic Tt 545

User Failed Generic Tc 2

User Failed Defective Output Tt 15 247 50

User Failed Defective Output Tc I 11 2

User Failed Invalid Input Tt 1722 1157

User Failed Invalid Input Tc 5 14

Auto Tt 1184 2297 1429 80 12278 8224

Auto Tc 7 20 21 5 90 136

Auto Success Tt 1184 2297 1158 41 11233 7456

Auto Success Tc 7 20 15 2 71 130

Auto Failed Tt 271 39 1045 768

Auto Failed Tc 6 3 19 6

Auto Failed Wrong Status Tt 267 741 40

Auto Failed Wrong Status Tc 5 12 1

Auto Failed Generic Tt 6

Auto Failed Generic Tc 1

Auto Failed Defective Output Tt 4 21 64

Auto Failed Defective Output Tc 1 2 2

Auto Failed Invalid Input Tt 18 234 728

Auto Failed Invalid Input Tc 1 4 5

Conflict Redeclaring Output 14 21 3 46 15

Conflict Invalid Input
Conflict Cycle
Conflict Lock 1 3

124

Table 5.2: The results of the second laboratory exercise confirm the large variance in the way

students use the tools, as observed in the first exercise. A better use of the retracing mechanism is

apparent.

25

»*»»?*-Ti-

Figurc 5.4: The example trace for lab 2.

one of the early victims of this cleanup effort, because even the 300kbyte or so used for the trace

and the journal were precious. VOV could, in principle, use the trace to determine which data arc

essential and which could be deleted to reclaim disk space, but in practice such service was not

available at the lime because its importance had been underestimated. The students with access to

private workstations did not have space limitations, and run VOV without problems.

Lab5 turned out to be relativelyeasy, mostly because the tools involved were quite robust.

By the end of the seventh week, most students produced a complete working chip, which could

have been sent out for fabrication. We also observed that the students were using the tools in a

more sophisticated mode thanever before; they wereexploringesoteric options and stretching their

capabilities.

Incomparison, the fifth assignment in the previous offering of the class (Fall 89) involved

theassemblyofamultiplierby connecting a4-bitalu and a PLA, with the storage elements provided

off-chip, resulting in a much simpler and smaller chip.

Each lab was anopportunity todebug VOV and to tune its performance. For example, lab

5 exposed an infinite loop bug related to the management of tools that run in place and excited onl>

by a particular sequence of tool failures. Theexcessive overhead that frustrated many students who

used VOV on the smallermachines was traced back to a timing interaction between some clients

and the paging mechanism inUNIX, which delayed the job-dispatching routine in the server b\ up

126

to several minutes.

5.5.2 The final project

Forthe final project thestudentscouldchoose between hardware, softwareor architecture.

Of the 25 students, 4chose asoftware project, 8chose the architecture project, and the other 13 split

into 4 groups, each designing a VLSI chip. Thus, there were only four VLSI projects that could

take advantage of VOV; two did.

The two groups that did not use VOV used the LAGER CAD system 1141, because they

were already familiar with it. One group designed a"low power color space translator," a digital

chip with about 6000 transistors, the other group produced a 5000 transistor chip for bus arbitration

in a particular multiprocessor architecture. The groups' own estimates ofdesign time range between
260 and 280 hours per person.

Another three person group designed a "medium access control chip" (MAC chip) for

interprocess communication. They produced two complete versions of the chip, oneusing wolfe,

the other containing some optimized hand layout. Each version had about 31,000 transistors, of

which about 18,000 belonged in a RAM. They said that VOV was helpful in managing and pro

cessing the more than 30 BDS behavioral descriptions of the circuit components, but they also

preferred to run some tools directly to avoid the capsule overhead. They used two servers because

they had access to two clusters of machines. They estimated their design effort to be at least 400

hours per person. The statistics from their two traces are shown under MAC in Table 5.3.

The last design group was formed by four students and developed a 9-band "spectrum

analyzer for audio signal" withvideooutput. The challengefor thischip was the useof experimental

software for layout of analog circuits such as switched capacitor filters. Most of those tools were

not encapsulated. In order to fit within the tiny-chip MOSIS frame, the group separated the analog

part form the digital part and produced two separate chips that communicate on a 6 bit bus. The

4150 transistor count for both chips is relatively small, because of the few transistors in the analog

part.

This group also used VOV, not for the entire design, but rather for the final assembly

of the two chips, the most automated part of the design. An interesting episode happened with

the compactor spares, which on one chip consistently crashed on the third iteration. In order to

overcome the problem, the students discovered that they could reliably obtain three iterations by

running spares twice, the first time for two iterations, the second time for just one. This was an

127

example of inventive design methodologythatcould not have been planned a-priori, simply because

nobody knew that spares could behave so strangely. The trace based system allowed the students

lo achieve their goal as soon as they discovered how 10do it.

The students estimated their design effort to have required about 250 hours per person.

The statistics captured by VOV arc shown under SAAS in Table 5.3.

5.5.3 Comment

All four chips designed in this class were more complex than in the past, and the two

chips managed at least in part by VOV were more complex than the other two.

Althoughthis increase instudentproductivity observed in the labs and in the final projects

was precisely the effect we hoped for when we introduced VOV in theclass, we are not in the posi

tion to singleout VOV as the one clement responsible for it. We must instead mentionother factors

that could have played major roles, namely the improved computingenvironment, the fact that the

labs were designed to avoid all tools known to be unreliable, and the extraordinarily competent

support offered by the TA.

Students who did not use VOV suffered the usual problems seen in previous semesters:

they forgot to run tools (mostly vulcan), they unnecessarily reran tools, and their concurrent

activities conflicted. The main justification to not using VOV was the overhead in running the

tools.

The students who used VOV expressed satisfaction for the system. Occasionally they

preferred to explore some design methodology without VOV, that is by calling the tools directly,

in order to avoid the capsule overhead. Then, when they were sure to understand the tool flow,

they invoked the encapsulated tools to store the flow in the trace. This is not the behaviorthat was

expected while developing VOV, but it is certainlyallowed, and it shows the importance of having

capsules that maintain the behavior of the tools.

The main lesson from this experience is that it is necessary to reduce the overhead due

to the encapsulation process. There docs not seem to be much space to improve the speed of the

interpreted shell scripts currently used to encapsulate the tools. On the other hand, the compilation

option, described in Section 3.4.1, has yet to be fullyexplored, and it promises the reduced overhead.

Results from the final projects

Project name MAC1 MAC2 SAAS

Total Trans Time 34h 10h48m 4h02m

Total Trans Count 592 129 152

User Tt I9h 10h25m lh58m

User Tc 194 85 56

User Success Tt 5h36m 4hl0m 51m23s

User Success Tc 182 79 43

User Failed Tt 13h 6hl5m lh07m

User Failed Tc 12 6 13

User Failed Wrong Status Tt 2h30m 3m49s 6ml5s

User Failed Wrong Status Tc 2 1 6

User Failed Generic Tt 21m30s 6hl0m 0

User Failed Generic Tc 4 2 0

User Failed Defective Output Tt 37s 51s 5m03s

User Failed Defective Output Tc 1 3 4

User Failed Invalid Input Tt 10h20m 0 57m47s

User Failed Invalid Input Tc 5 0 3

Auto Tt I5hl5m 23m28s 2h04m

Auto Tc 398 44 96

Auto Success Tt llh30m 2lm33s lh26m

Auto Success Tc 372 40 63

Auto Failed Tt 3h45m lm55s 38m08s

Auto Failed Tc 26 4 33

Auto Failed Wrong Status Tt 2h30m lm55s 10ml Is

Auto Failed Wrong Status Tc 12 4 12

Auto Failed Generic Tt 2m02s 0 2m38s

Auto Failed Generic Tc 2 0 3

Auto Failed Defective Output Tt lh03m 0 4m54s

Auto Failed Defective Output Tc 5 0 8

Auto Failed Invalid Input Tt 8m45s 0 20m25s

Auto Failed Invalid Input Tc 7 0 10

Conflict Redeclaring Output 28 3 13

Conflict Invalid Input 2 0 0

Conflict Cycle I 0 0

Conflict Lock 0 0 0

Table 5.3: Statistics for the final projects that used VOV.

128

Chapter 6

Conclusion

The use of design traces for management of the design activity is the main proposal pre

sented in this dissertation. The trace, a bipartite directed and acyclic graph, is builtand managed

dynamically using information provided by the tools at runtime; the trace captures both the history
of the design and the data dependencies. In the process ofmanaging the trace the system protects the

integrity of the design data, by detecting situations in which atool is about to destroy or overwrite
important data. The mechanism of retracing, the automatic repetition of the transactions repre

sented in the trace, can be used to maintain the consistency of the design data. The server/client

architecture of the system allows for acoordinated cooperation of concurrent activities, by one or

by many designers.

The trace is first of all a response to the needs of expert designers. The trace answers

the difficult questions about design. It is concerned about the details of the design activity. Other

systems arc concerned about the "high level" and stumble over the detail. Our trace based system

allows an unrestricted access to the tools. Its fundamental feature is that it is non-intrusive. This is

best demonstrated by the fact that the designers' activity is unaffected by the system being turned

on oroff. The designers see the same tools and work in the same familiar environment (e.g. the

UNIX shell). Of course, if the management system is turned off, no services are available, neither

tracing, nor automatic retracing, nor coordination of concurrent activities. But even without these

automatic services, design can continue.

For the large audience of novice designers, the traces constitute a precious set of well

documented examples of how tools can be sequenced to achieve a particular goal. An automatic

assistant helps thedesigners extract information from an example trace and apply it to the current

design problem. A library of traces can be assembled todescribe many of the routine activities pos-

129

130

siblc within aCAD system. Example traces showthe tools used in context, givingamore concrete

meaning to the tool capabilities, which were previously available through the sterile medium of

abstract manual pages. Through examples a novice designer can easily learn to use very complex

features of some tools. Forexample, while a command line such as

padplace -a -u _cFamiiy -D chip.pads -o chip:with_pads chip:symbolic

seems overwhelmingly complex if presented by itself, it is much more clearif presented in the con

text in which it is likely to be used. The command line means that the tool padplace should take

thechipintheOct facet chip: symbol ic, and produce anoutput facet called chip: wi th.pads

(option -o), inwhich all the formal terminals have been given an implementation using the pads in

a particular pad family (option -u _cFami ly). The pads should be positioned as described in the

file chip, pads andlaiddown within the perimeterspecified in chip: symbolic : interface

(option -a).

Other researchers (15, 34, 3, 17| direct their energies towards a particular form of tool

encapsulation which separates the tool invocation from the intention of the designer. This resolves

ineither a redundant renaming of tools and their options or in an elimination of someoptions which

do not fit in the mental scheme of whoever is doing the encapsulation, thuseffectively amputating

the capabilities of the tool.

As opposed to virtually all other proposed design management system, our trace based

system requires no a-priori description of the tools andof their capabilities. The only requirement,

that a tool be able to inform the server about its inputs and outputs, is easily achieved either by

linking the tool against a special library or by providing a capsule, normally a shell script that

emulates the tool's input/output behavior. In either cases the modifications are localized within the

tool, and can be done independently of all the other tools in the CAD system. In this way, new tools

can be added to the design flow by the designers themselves.

A prototype ofour DMS has been implemented and tested by a number ofdesigners, both

expert and novices. The feedback from users has been essential to identify many relevant issues

in design management, such as the key role of the user interface, the need to be concerned about

keeping the DMS small and responsive. Many traces have been generated, and many statistics

have been collected on the number and duration of tool invocations. The statistic discriminate

between automatic and manual invocations, and between successful and failing termination. The

largevariance in the statistics is the first hard evidence that each designer has a very personal style,

some favoring a lot of manual interaction with the tools, others relying more on the automatic

131

retracing mechanism.

Our experiment in design management continues, strengthened by the direct experience

and by the users' feedback. Research is under way to complement the system with a new tool

to do statistical analysis of the performance of the tools in a CAD system, finding correlations

between some measurements performed on the input data of a trace and some other measures on

the corresponding outputs of ihe trace. It is hoped that these correlations can be used to provide

statistical estimators of the performance of the toolset.
Automation of design management is a part of the CAD framework problem, so that the

following aphorism applies |28|:

(...) there will never be a "right answer" to the CAD framework problem, only good
answers and better answers.

VOV has been proposed as a good answer; I hope it will help find, sometime soon, a better one.

Appendix A

Tutorial

The objective of this tutorial is to help you become familiar with VOV, a design man
agement system developed at UC Berkeley and integrated with the Octtools. Ina simple exercise,
you will use some of the Octtools to layout a combinational logic circuit starting from a behavioral
description of the circuit. No knowledge of the Octtools is required. You will describe the be
havior of a seven segment display driver (SSDD) using the language BDS, convert the description
into logic equations using vov-bdsyn, optimize the logic equations with vov_misII, simulate
the description with vov_musa, implementthe layoutwith vov.padplace and vov.wolfe; all
this under VOV's supervision, and with VOV's assistance.

Theexpected duration of theexercise is about an hour, but you cansuspend it at any time
and continue later.

A.l Introduction

VOV is a design management system that provides many services: coordination of team
design, history tracking, design data monitoring, data dependency analysis and others.

VOV non-intrusively monitors the activityof individuals as well as teams of designers,
and maintains a record of each transaction invoked by the designers. All the design activity is
captured in the design trace. The design trace is a bipartite directed graph, in which nodes are
called either "places" or "transitions." Places representdesign data, while transitions represent tool
invocations, also referred to as "CAD transactions." Each transaction is characterized by a set of
input places and a set of output places.

The trace can also be interpreted as a data-dependency graph. All the outputs of a tran
sition are dependent upon the inputs of that transition. If any of the inputs changes, the transition
must be repeated, that is, it must be "retraced."

A useful feature of VOV is its ability to automatically retrace (re-execute) a design se
quence by using a previously generated design trace. This provides something like an automatic
make facility, with the difference that you do not have to write any makefile. Instead, you
simply have to execute a transaction once; after that, VOV knows when the transaction should be
repeated and can repeat it automatically.

132

133

A.2 TUTORIAL: Design of a seven segment display driver

A seven segment display driver is a circuit with one 4-bit input called data<3 : 0> and
8 outputs a, c, .;, i, e, f, g, dp. The top segment is called "a", then, if you move clockwise, you
find segments "b" "c" "d" (the bottom) "e" and "P\ The middle horizontal segment is "g". The
decimal point is usually called "dp". The input is interpreted as an hexadecimal digit, while each of
the outputs controls the corresponding segmentof a seven segment display unit, so that the segment
is lit if it is needed to represent the input number. The outputs arc active high.

A.2.1 Start mini-VOV

Because you will only need a few of the functions of VOV to complete this exercise, you
can use the "mini" version of VOV.

Make sure you have both -octtools/bin and -octtools/bin/vov in your path.
If they arc not. please edit your -/.cshrc file and modify your path variable.

Decide a name to describe the activity you will perform to complete this exercise. The
name is important, because it identifies your work from that of other people who might be working
on the same machine. The project name can be any alphanumeric string with no spaces. Examples
arc: cpu badge microprocessor goophy xyz99. It is a good idea to use a name which
includes your initials, or your login name. Suppose that you choose the name ACtut.

Move in whatever directory you plan to do your work. For example itcould be ~/vov tutor la:
There you should type:

mkdir -/vovtutorial

cd -/vovtutorial

vov_mi ni ACtut

The vov_mini command starts what is called the "vov server," a program that runs in the
background and monitors the activity of the tools you invoke. To get information from the server
use the program vov_sh. For example,

vov_sh -I

asks the server to provide information about the status of the design. Like almost all the tools in the
Octtools, vov.sh with no optionshas theeffectof producing a usage message, withall theoptions
understood by the tool. Try this,even if at thispointthenumberof optionsof vov.sh might appear
overwhelming.

Using vov.sh -I willalsoshow you if the serverisup and running. Ifnothing happens
within a minute, or in the unlikely event that vov_mini fails, you should choose another name
for your activity and try again.

Every timea tool isexecuted, whether it isinvoked byyouor byVOV, thetool connects to
yourserverand declares allof its inputs and outputs. Theserver checks thatall inputs arc uptodate
and that the outputscan beoverwritten. If that is thecase, the toolproceeds withits task, otherwise
a conflict has been detected and the user is queried to decide on how to resolve the conflict.

For this exercise, it is best if you work only from the shell that vov_mini gives you. If
you want to open another window (even if running on another machine) and use that window as

VOV ASSISTANT: CHOOSE EXAMPLE TRACE

B wolfe Q| S5DD
Ql fsrn CJ labl
Q| boss Qj iab2
•3 counter Qj Iab5
5 mosaico
Q adam

INFO

^

Go from a high level description of a
combinational logic circuit to layout
using standard cells. Trace named after
the standard cell layout tool "wolfe".

CLICK ME Show trace Assist Cancel Help

Figure A.1: The first pop-up dialog from the assistant. The trace called fsm has been selected, and
the INFO field shows a short description of the trace. The designer can take a look at the trace
(Show trace) or decide to use this trace as example (Assist).

34

well, you can do it, provided that you set the two environment variables V0V_H0ST_NAME and
vov_PROJECT_NAME to the appropriate values. This can be done easily withan alias createdby
vov_mini called the same as the project name.

If the server is running, let's begin our design. If you knew the Octtools, you could
start using them as if VOV did not exist. Thus you would probably write a BDS file with the
description of theSSDD and then you would invoke the various tools vov_bdsyn, vov_musa,
vov_misl I, vov_wolfe in the right order, with the proper command lines.

But, let's assume that you do not know much about the Octtools. You need help, and you
wonder if anybody else has ever done anything similar to what you have to do.

A.2.2 Enter the assistant

The steps that transform a behavioral description of a circuit into layout have been per
formed many hundreds of times by many expert designers. Each time, the tools have left a trace of
their execution. Some traces have been saved and installedin a library. The program vov_as s ist
can be used to extract information from such existing traces.

For this exercise, it is best to use vov_assist in its interactive mode:

vov assist -i

You will get a pop-up dialog, with a list of all the example traces currently present in the
VOV library (Figure A.l). The assistant is designed to be self explanatory. Make sure to click the
buttons labeled CLICK ME and "Help" (or Ctrl-h) whenever you do not know what to do. For this
exercise, here is the hint: choose the trace labeled wolfe.

35

Use of dialogs

The operation of the dialogs in VOV is mostly done with the left button of the mouse to
select items in lists and to click on control buttons. The scroll-bar widget uses all three buttons,
in a rather intuitive way: the left button moves the bar to the left, the right to the right, the middle
allows you to drag the bar continuously.

The left button is also used to select text: you just have to click on it from two to live
limes. Two clicks select a word, three select a line, four a paragraph, live the entire text. One click
simply moves the cursor. The selected text can be deposited into another window using the middle
button.

If there arc several edit fields in a dialog, you can use Tab and Mcta-Tab to move from
one to the other. Some control buttons have "accelerators," that is you can type a key rather than
pointing and clicking. In VOV. the Help button is accelerated by both Ctrl-h and by the Help key.
Cancel and Dismiss are accelerated bv Mela-Del.

A.2.3 The graphical interface

It is interesting to see what the trace looks like. Youcan do this by clicking Show trace.
This starts the editor VEM on the trace, and an associated process, called an "RPC application,"
that lets you browse the trace. At this point you arc probably not familiar with either VEM or RPC.
This is not a big problem if you arc a bit adventurous and use this hint: Clicking the middle button
on a VEM window pops up the VEM menu, while clicking the middle button with the "Shift" key
pops up the RPC menu. The most useful commands have a "key binding" for quick invocation.
The command you need is view, which is bound to the lower case v. To quit VEM use Ctrl-d in
the console window.

The trace (sec Figure A.2) is a bipartite directed graph with "places" which represent
data, and "transitions" which represent tools. Each transition has some inputs and outputs. Move
the mouse over the trace and view some of the nodes. Notice that at the top there is a place which is
a behavioral description of a counter, while at the bottom there is a place which represent the layout
of the counter. It is the purpose of this exercise that you learn what each of the intermediate steps
docs.

A.2.4 Getting assistance from the assistant

Nowgobacktothe vov_ass ist dialogandclick Ass ist. You willget anotherdialog,
with more help (Figure A.3). Please spend some time to understand this dialog.

This dialog contains a script, consisting of all the command lines that have been used to
generate this example trace. This is an alternative way to represent the trace. The trace has been
fully annotated to help you understand it. To see some of the notes, click on the Toggle not- s
button. Please notice that the first transition to be executed was vov_bdsyn counter. Ids.
Why did the designer run this tool? What other tools where used? Why was vov_wolfe used?

You will soon notice that the example trace refers to a counter. In fact, all the tiles
mentioned in the trace are called counter. someSuf fix and all the OCT facets arc called
counter: someViewName. The assistant uses some heuristics to determine the "topic" of an

36

jftmBBWB"

£x:t status:C

Figure A.2: This example of a trace should be read from top to bottom, inputs are on top, outputs
on the bottom. Three transactions arc represented in this trace. Although all the places are treated
similarly, they arc represented graphically by different icons depending on the type of the place:
circles represent UNIX data files, octagons are used for oct facets, X's denote executables, O's
command line options and S's exit status of transactions.

•«*»«OM»WJO»OW<*

VOV ASSISTANT

vow tisyri :ount*i. z<ii
vov ni'II -f script :*iu -T ocr "> :ountei -ogic
•.-•••.•"jjdplsce -D <o':n<:*r pad* -; •:o-;n'-.*c p*4p ::'jnter ->jic
vov~Tolr« -f -i* 2 -o -.ovntef voLm counter P**P

vov :hics»:Jr.= vjuncec v-'_f*
4 Total'•utisited Juc*i:ioft 4n23>

.•; covnttc blif

:-:p.ipt I

•:et name MODES.

VARIABLE SUBSTITUTIONS

NEW counter

NEW.
/IEW-.
NEW «.

MEW .

^^g^^^SSti»^^^^S^^Sx^^^w^^«v^Bsxtea

137

;i;

Figure A.3: The second dialog from the assistant.

example trace. For this trace, the topic is described by the string counter, which appears in the
dialog next to the OLDROOT label.

You want to design aSSDD, not another counter. Thus, it is better to rename the hies in
volved in the trace. Instead of counter, something, you might want to call your files 7seg. something.
Write 7seg, or the new name ofyour choice, in the NEWROOT box and click on Proceed.

You will get yet another menu, titled VOV ASSISTANT: COPYING A TRANSITION.
This is the fi rst transition that you have to perform to go from aBDS description to layout: vov_bdsyn
7seg.bds The annotations below the transition explain why you want to run this tool. Please read
the annotations. Since you probably trust your assistant, you should simply read the information in
the dialog, and click Copy. This means that the transition in the example trace is copied into your
own trace! with the appropriate modifications to the command line. vov_bdsyn is not actually
run at this point, but now VOV knows that you want to execute this transition, sooner or later.

Now another dialog has popped up. This says COPYING A PRIMARY INPUT. Inorder
to run vov_bdsyn you need a file called 7seg. bds which does not yet exists. You could very
well write it from scratch, but here the assistant gives you an opportunity to get a good start. It
offers you the possibility to copy the description of the counter into the file 7seg. bds. At least,
you get asyntactically correct file that should be relatively easy to modify later with a text editor
like vi or emacs. Again, click on Copy.

Keep going: you will get about ten dialogs, in each of which you will have to click the
Copy button. Eventually, you get a dialog that informs you that the transfer of information has
been completed. Dismiss the last dialogs in vov_assist and go back to your shell.

For future reference

You could have obtained the same result you have justobtained by simply saying:

38

vov_assist -p wolfe -N 7seg

This batch use ofthe assistant will be useful if you want to use the example trace to process another
cell. You will still use the dialogs ifyou want to copy only a part ofan example trace.

A.2.5 Your turn to act intelligent

The assistant has done the best it could to help you, but it is not smart enough to do the
design for you. You still have to make an effort to read some manuals and to understand the steps
involved in your design. You won't have to read any manual to complete this tutorial, but you arc
encouraged to take a look at them soon, so that you can become a "power-user" of the Octtools.

At this point, the assistant has transferred into your design trace a modified version of a
design How which was used by some expert to build acounter. The SSDD can be built with avery
similar How. Also, the assistant has given you a good start on all the primary inputs that you need
to design the SSDD. But now it is up to you to modify those files so that they contain meaningful
information. Suppose that you have chosen the root name "7scg" for your files. In your working
directory you will find the following files: 7seg. bds 7seg. musa 7seg. pads. By now, you
should know the purpose ofeach file, and you should modify them appropriately.

You should describe the behavior of the SSDD in the 7seg. bds file. Then, you must
also specify the position ofthe terminals in the layout, say inputs at the bottom, outputs on top,
in the file 7seg. pads. Finally, you must provide a complete simulation script to be used with
vov_musa, by modifying 7seg. musa. Figures A.4, A.5 and A.6 offer a very clear suggestion
on how to do this. It would be nice if you could do this exercise without copying the figures1.

A.2.6 The trace as a dependency graph

From the trace, we know that the final layout isgoing tobeanOCT facet called 7seg: wo 1f e.
Even if it does notevenexistyet, the server already knows how to obtainit. Try

vov_sh -h 7seg:wolfe

to get a short history of this piece of data. The use of the term "history" might sound strange at
this point: how can the design have a history if we have done nothing, if no tool has ever been
run? In fact, the term history is not being used properly. Instead we should say "dependency."
7seg:wolfe depends upon all the transitions shown by vov_sh -h 7seg:wolfe (Figure
A.7).

Try also

vov_sh -h 7seg.blif

vov_sh -h 7seg.bds

to see the history of other places.
The trace can be interpreted as a dependency graph. By default, with the -h option of

vov_sh, you get a report on the visited transitions, four levels backwards, that is looking at the
nodes "above" the one you query about. Using the -H option, you can also ask a report on all the

'If youarc lazy, the files are in octtools/lib/vov/DATA/SSDD

139

criot ion of seven segment

"7:seg"

,c,d,e,f,g,dp
MODEL

a, c

data<3:0>

CONSTANT

Xzero

Xtwo

Xfour

Xsi:-:

Xeight

XA

XC

XE

! ! The '='

display driver.
!! Declare the name of this description.
!! Comma separated list of outputs,
is the separator between outputs and inputs

!! Terminator of I/O list.

1111110*2,

1101101*2,

0110011*2,

0011111*2,

1111111*2,

1110111*2,

1001110*2,

1001111*2,

Xone = 0110000*2,

Xthree = 1111001*2,

Xfive = 1011011*2,

Xseven = 1110000*2,

Xnine = 1111011*2,

XB = 0011111*2,

XD = 0111101*2,

XF = 1000111*2;

STATE out<6:0>;

ROUTINE main_routine;
dp = 0;
SELECTONE data FROM

Intermediate signal.

Only one routine in this description.
Decimal point is always off.

[0] out = Xzero; [11 : out = Xone ;

[2] out = Xtwo; [3] : out = Xthree;

[4] out = Xfour; [5] : out = Xfive;

[6] out = Xsix; [7] : out = Xseven;

[8] out = Xeight; [9] : out = Xnine;

[10] : out == XA; [113 : out = XB;

[12] : out == XC; [13] : out = XD;

[14] : out •-= XE; [15] : out = XF;

ENDSELECTONE;

a = out<6>; b = out<5>; c = out<4>;

e = out<2>; f = out<l>; g = out<0>;

ENDROUTINE;

ENDMODEL;

Figure A.4: File 7seg.bds.

d = out<3>;

TERMTYPE SIGMAL

DIRECTION INPUT

7S?>!_EDGE 30TT0M

7E~m _?eiat:ve_?os iticn o.i
7erm_?elat:ve_positicn_3tep 0.2

FCRMAL_7ERMIMAL data<3>
rCRMALJTERMINAL data<2>
F0RMAL_7ER>!IMAL data<1>
F0RMAL_7ERMINAL data<0>

DIRECTION OUTPUT

TERM_SDGE TCP
7ERM_RELATIVE_P0SITI0N 0.1

TERM_RELATIVE_?OSITION_3TE? 0.1
FORMAL_TERMINAL a
FORMAL_TERMINAL b
FORMAL_TERMINAL C
FORMAL_TERMINAL d
FORMAL_TERMINAL e
FCRiMAL_TERiMINAL f
FORMALJTERMINAL g

FORMAL_TERiMINAL dp

140

Figure A.5: The tile 7seg.pads specifics the desired position of the terminals of the SSDD.

places visited, oron all the nodes visited (i.e., both transitions and places), with the graph traversed
either backward or forward, going as many levels deep as you want. Try forexample:

vov_sh -H -t2 -h 7seg:wo' e # transitions, 2 levels back
vov_sh -H -p2 -h 7seg:wolfe # places, 2 levels back

vov_sh -H -n20 -h 7seg:wolfe # nodes, 20 levels back

vov_sh -H -tpn400 -h 7seg:wolfe # everything, many many levels back
vov_sh -H +t3 -h 7seg.bds # transitions, 3 levels forward

A.2.7 Validity of nodes

Each node in the trace, whether it is a place or a transition, has a status. Normally the
status is cither VALID or NOT VALID, but there are other possibilities described in the second
part. A VALID status means that the node is "good." If the node is a transition, the transition has
successfully completed. If the node is a place, it is up to date and consistent with all the other places
it depends upon. If a transition is NOT VALID, it has not been run successfully yet, or it should
be run again, probably because one of its inputs has been modified since the last time the transition
was executed. If a place is NOT VALID, it is the output of a transition which is also NOT VALID.

The status of the nodes is managed by VOV. It is possible for the user to change the status
of a node, but it is best that you do not do it in this exercise.

!! Make some vectors for convenience.

mv CUT a b c d e f g

mv IN data<3:0>

!! Macro with one parameter.

macro test

set #c = #c + 1

set IN *c

ev

Show IN OUT

Send

macro test4

test

test

test

test

$end

!! Now try all possible inputs.
set #c = 1111 !! So we start simulation from 0

test4

test4

test4

test4

Set the input.

Evaluate circuic.

Show signals.

quit !! This quit is a clean way to complete a script.

Figure A.6: File 7seg.musa.

$ vov_sh -h 7seg:wolfe

.../vovtutorial/andrea/7seg:wolfe:contents
NOT VALID Fri Aug 24 14:56:56 1990(fornax)

NOT VALID vov_wolfe -f -r 2 -o 7seg:wolfe 7seg:padp
NOT VALID vov_padplace -D 7seg.pads -o 7seg:padp 7seg:logic

Figure A.7: The history of 7seg:wolfe.

141

142

A.2.8 Automatic retracing

When all ofyour files are ready, you can ask VOV to run all the tools for you, that is to
retrace your design. It is always agood idea to begin slowly. In this case, try retracing one step
at a time. The lirst iransition to be executed should be vov.bdsyn 7seg.bds which outputs
^seg. blif. Ifyou just want to regenerate 7seg. blif you'll say:

vov_sh -r 7seg.blif

The server determines what needs to be done to bring 7seg. blif up to date (in our case, it will
simply run vovjodsyn).

VOV estimates the time it should take to do the retracing by adding up the estimated
duration ofeach transition which is scheduled to be retraced, with the assumption that each transition
is going to require as much time as when it was executed last. This estimation is sometimes wrong,
but it tends to become accurate as the design data becomes more stable.

There might be some syntax errors in your BDS file. Read carefully the output you get
from VOV. If there arc errors, try to fix them, and do the retracing again.

If you arc more confident in the correctness ofyour data, you could say, for example:

vov_sh -r 7seg:wolfe # All the way down to 7seg:wolfe
vov_sh -k 7seg.bds # Anything that depends on 7seg.bds
vov_sh -k 7seg.pads # Anything that depends on 7seg.pads
vov_sh -R # Retrace all (won't work, but try anyway)
vov_sh -AR # Retrace all (this works)

Please note that someof these retracings will fail, as explained later in sectionA.2.11.
It is OK to ask for a global retrace (option -R) as long as you work alone. If you are

part of a team, retracing everything would also retrace parts of the trace which "belong" to your
teammates. Although this is not dangerous, it might result in a waste of CPU cycles.

If there are mistakes in your files, you will probably have to iterate this process a few
times: modify files, retrace, modify, retrace.

A.2.9 Review what has happened

Use vov_sh -n to get a dialog that allows you to examine the most recent events related
to the evolution of your design trace . This is especially useful to find out what, if anything, went
wrong.

All the important events in the trace are recorded in a queue until a designer has inspected
them. The inspectionof the event queue gives you quick access to data and transitions, by a simple
click of the Edit button. Please spend some time to experiment with this dialog (Figure A.8),
because it is very useful. Try the Previous and the Next button, and see how they interact with
the "FILTER" flags. Also notice how the horizontal scroll-bar on the top of the dialog gives you
tine control on the event displayed on the lower window.

You can also interact with VOV using vov.sh - i, which brings up the dialog shown in
Figure A.9. You are encouraged to experiment with this dialog, because you will find it useful.

iPde."

dialog

EVENT QUEUE FOR TRACE 7seg

H] TRANSITIONS
Q| PLACES
Qj RETRACE
Q| SLAVES
Ql SETS

FILTERS

Q START
HjEND
Q FORGET
Qj CHANGE
g|| ERROR

Toggle all

"3 EVENT 103. Tue Auq 21 13 47:03 1990
|^frtAHSITION HAS AW ERROR
~j vov_octpla 7-3ea
| FAILED REASONS FOR THE FAILURE

_ J /7jeg:pla contents does not exist
tv.nt 3§ /litq pla interface does not exist

|- Previous | Next Yiew/Edil Unreported | Cancel Help

Figure A.8: The dialog to browse the event queue.

VOV_SH: src90@peking

MAIN COMMANDS

BROWSING EVENTS

Browse F.ecent All

RETRACING VARIOUS

Check Monitor Mice placement

SETS TRACE

Create Edit Clean To disk View

Dismiss

INFORMATION

(j| TRACE

QSLAVE

Ql SERVER

B USER

Get Info

Help

Figure A.9: Use vov.sh -i to get this control panel.

143

JJJ_

TRACE EDIT DIALOG

•:••.'<•! ^•'nec/eroj/'ro'jl/cajon'io. t»snvov

te«J-?I •i.-ll >t9tll'> .

jffinitv

INTO E:u>: }iyv:i 0 vov server *»{•:>> ducitricn 3t»2>:

STATUS VALID

ij- | See notes | Add notes | Change status | In | Om | Retrace | Edit | Cancel | Help |

Figure A. 10: The dialog to edit a transition.

! j

ji-i dialog

NAVIGATION DIALOG

[T| VALID vov_dnpatat3 7seg voLfe <4433>

2 INPUTS

J (P| VALID /segwolfecontenls<1 i32>

B < disconnectetl —>

Go Out I Disconnect Cancel

Lv^vifllMXa^BS^^

144

Figure A. 11: This dialog shows the inputs of a node and allows the user to navigate the trace or to
disconnect nodes.

A.2.10 Possible problems

It is not possible to list all the problems that can arise during your exercise. There can be
syntax errors in some of the files, which can be resolved by studying the output of the tool which
has detected the error.

Sometimes VOV will not retrace a transition because one or more of its inputs in not
valid. This can happen for several reasons:

• VOV has just realized that an input has become invalid. Just ask for another retrace.

• The invalid input is bogus, it is never going to become valid. This is a situation of deadlock
from which VOV cannot get out without your help. You can either repeat the transition
by hand (type it again from your shell), or you can decide to remove the input from the
dependency list. From the event-queue dialog locate the event describing the failed retracing
of the transition and click on Edit. You get a dialog describing the transition (Figure A.10).
Click on In to look at the inputsof the transition(Figure A.11). Select the offending bogus
input(one at a time) and click on Disconnect. This removes the place from the inputlist
forthe transition thus effectively changing the criterion for the re-execution of the transition.

145

A.2.11 Substitution a transition

Theexample trace is notgoing to work with the datadescribed in this tutorial. The reason
is ratherobscure lor a novice: youshould run vov.bdsyr. with the -o option, whichwillomit the
trailing <0> lor 1-bil variables — what is expected by the files 7seg.pads and 7seg.musa.
Thus, insteadof the vo v.bdsy n 7seg. bds, as suggested to you by the assistant, youshould use

vov_bdsyn -o 7seg.bds

How do you get rid ol* the old transition and add the new one instead? Just run the tran
sition by hand. Since you arc effectively suggesting a new way to produce the file 7seg .blif,
VOV will ask you to confirm what you arc doing. This isa case of "output conflict" detected by
VOV: a place that is already the output of a iransition is being declared as the output of another
transition, i.e. the place is being •'defined" again. Since the definition of a place must be unique,
either the new transition is a mistake, or the old one must be removed (forgotten): you must decide.

For such a small change in a command line, you could have also edited the transition
directly, using the event queue to find an event that mentions the transition and clicking on Edit.

A.2.12 Check the results

When the retracing hascompleted successfully, somewhere you haveobtained the layout
of the SSDD, in an OCT facet called 7seg: wolfe. You can use VEM to take a look at it. The eas
iest way is toscan the event queue until you find the event describing the change of7seg:wolfe.
click on Edit, double-click on the VEM command displayed in the edit dialog, and then deposit
the command in the VEM console by clicking the middle button of the mouse (easier done than
said.)

Ina similarwayyoushouldfind theevent relative to achange in theoutputof vov.chipst: at s
and take a look at the file. How large is the layout? How many nets are there? How many cells
(instances)?

A.2.13 Try something new

Untilnow, you have followed a prepared trace, and it is finally time to start breaking new
ground. Suppose that, by reading the Octtools manuals, you find out that vov_musa offers a nice
graphical way to simulate seven segment displays, and you become convinced that this graphics
would be the best way to test the correctness of the SSDD.

What is needed is a way to connect together your SSDD with a model of a seven segment
display. You need a new circuit with one instance of a driver and one instance of a seven segment
display. The terminals of the SSDD should be appropriately connected to the terminals ol the
display by means of nets. The new circuit should also have someformal terminals to talk to the
outside world. All this can be done with the BDNET language, which is very useful to write netlists.

In the manuals you discover the syntax for BDNET and write the file shown in Figure
A.12, which actually uses two displays, a red one and a yellow one, just for the fun of it.

Type:

vov bdnet 7seg.bdnet

MODEL 73eg:3ymboiic;

TECHNOLOGY 3cmos; !! Required properly.
VIEWTYPE SYMBOLIC; !! Required property.

!! Terminals of this circuit.

INPUT data<7:0>; SUPPLY Vdd; GROUND Gnd;

INSTANCE 7seg:wolfe NAME = HIDEC

data<3:0> : data<7:4>;

a : hiA; b : hiB;

c : hiC; d : hiD;

e : hiE; f : hiF;

g : hiG; dp : UNCONNECTED;
wolfe_Vdd : Vdd; wolfe_Gnd : Gnd;

INSTANCE 7seg:wolfe NAME = LODEC

data<3:0> : data<3:0>;

loA

loC

loE

loG

loB;

loD;

loF;

dp : UNCONNECTED;

wolfe Vdd : Vdd; wolfe Gnd : Gnd;

INSTANCE "-octtools/lib/musa/redseg":physical [50,0] NAME = HISEG;
COMMON : Gnd;

A hiA; B : hiB;

C hiC; D : hiD;

E hiE; F : hiF;

G hiG; DP : Gnd;

146

INSTANCE "~octtools/lib/musa/yellowseg":physical [200,0] NAME = LOSEG;
COMMON : Gnd;

A : loA;

C : loC;

E : loE;

G : loG;

B. :

D :

F :

DP

loB;

loD;

loF;

: Gnd ;

ENDMODEL;

Figure A. 12: The file 7seg.bdnet describes a netiist of two decoders each connected to a display.

rr.v DATA data<7 :0>

rnacro test

set *c = *c - 1

set 3ATA 4c

sleep 200

Send

macro test4

test

test

test

test

Send

macro test 16

test4

test 4

test4

test4

Send

macro test64

testl6

testl6

test!6

testl6

Send

set #c - 11111111

test64

test64

test64

test64

sleep 2000 !! Rest for a while
quit

147

Figure A.13: The simulation script to test the circuit with two sevensegment displays.

The tool vovJodnet connects to the server and registers itself, with its inputs and out
puts. From now on, VOV knows that you want to run vovJDdnet on the file 7seg. bdnet. If
you change the file, you can ask for a retrace using, for example,

vov_sh -k 7seg.bdnet

When your nedist is correct, you can run vov_musa on the new circuit. Of course you
need acompletely different script tosimulate this circuit, so you write the file shown inFigure A.13
which you call double7 seg. musa.

Then you run the simulator:

vov_musa -i double7seg.musa 7seg:symbolic

This transition is interactive. It does not make sense to run it if there is nobody watching
the graphical output to decide if it iscorrect ornot. If, for any reason, you ask VOV to retrace the

148

transition, VOV will obediently do it, but you will loose all the graphical display. If you want more
control on retracing of interactive transitions, please read the second part ol* this tutorial.

A.2.14 Suspension or end of the exercise

II you want to end or suspend the tutorial, it is better that you kill the server. This is op
tional, more than anything it isa courtesy toyour colleagues that might want to use the machine. For
a real design, it will be better to keep the server running continuously, until the project is completed.

vov_sh -AK *# Kill the server gently.

The server saves the trace one last time in the directory -/minivov (with the name
<cro jectname> .page . 0 :symbolic) and exits. You can obtain a hardcopy of your trace
using the program vov_hardcopy:

vov_hardcopy <projectname> [printername]

You can use vov_mini again to restart the server.

A.3 TUTORIAL: Second part

The program vov_mini, used inthe tutorial, is aconvenient way toget VOV started. It
is called "mini" only because it isso easy to stan, but in reality itgives you the full capabilities of
VOV, the only limitation being that only one slave is connected to your server.

A.3.1 What does vov_mini really do

The steps involved in vov_mini arc:

• Create, if it does not exist already, the directory ~/minivov.

• Prepare a "slaves" file, containing only one entry for a slave to be run on the local machine.
The file is called <pro jectname>. vov. slaves.

• Start the program vov_server with the options -B -S. The option -B makes the server
run in batchmode, whichmeansthat theserver automatically recovers in caseof errors (e.g.
errors in the communication protocol). The -S option makes the server start the slaves de
scribed in the "slaves" file.

• Create a new alias in the file ~/ . vo vpro ject s. The nameof the alias is the prpojectnamc.
The alias can be used to set the two environment variables used by the VOV clients to locate
the server in the among the machines in the network. The two environment variables arc:
VOV_HOST_NAME and VOV_PROJECT_NAME.

If you want to work with your server from another window (possibly in another machine),
you simply have to invoke this alias and then all clients will connect to the server.

You can have more control on VOV if you perform each of these steps by hand. For
example, you can decide the working directory of the server, or you can have a dozen slaves to
work for you.

149

Slave list for project: BRIC
4 Lines beginning with '$' are comments.
4 Each Line MUST contain:
HOST MAME: name of the host where you want the slave to run.
4 COEFF: An integer number used to balance the relative
4 power of the slaves.
$ COEFF = 1 means: Use actual power of the slave
$ COEFF = 4 means: Divide actual power of slave by 4.
4 MAX LOAD: Maximum load allowed on the host in order to dispatch a
~" job to the slave. If the load on the host is greater
4 than MAX_LOAD, no job will be dispatched to the slave.
4 Optionally, you can add a list of resources provided by each slave
within a pair of parentheses. Example: hostname 1 4 (vax verilog)
4 IMPORTANT': leave blanks before and after the paretheses.
HOST_NAME COEFF MAX_LOAD (AFFINITY)

aahz 2 0.9

chumly 2 0.9
ero3 1 8 { bigvax vax)

sequent 1 0.8

Figure A. 14: Example of a "slaves" file.

A.3.2 Add many slaves to your server

Aslave is aspecial client, which simply waits to be assigned something to do. When the
server has something to be retraced, it chooses the best possible slave for that job. It is convenient
to have one slave running on all the machines on which you have accounts (ofcourse, all the slaves
must be able toget to the design data, possibly through NFS).

The best way to connect several slaves is to prepare a"slaves" file, such as the one shown
in Figure A. 14, which should be called <pro jectname>.vov.slaves and should reside in
the current working directory of the server (-/minivov if you use vov_mini).

All slaves are ranked by "power," a number which takes into account the speed of the
CPU and the load on the machine. Thecoefficient COEFF is a politeness coefficient: it should be
a positive integer. It is used as adivisor in computing the power ofa slave. Thus, a slave with a
COEFF=2 has half the power ofan identical slave with COEFF=1. Ifyou start aslave on amachine
normally used by somebody else, it is agood practice to have VOV use that slave only ifall other
slaves running on your machines are already busy. This behavior can be controlled by COEFF. In
most cases, however, it is always a good idea to leave COEFF=l. The number in the MAX-LOAD
field specifies that the slave should not accept jobs if the load on the machine is greater that the
number. The AFFINITY is an optional field. Be careful if you use it: you need to put spaces
between the parenthesis and anything else. See section A.3.9 for more details.

When the file is ready, you should type:

vov_start_slaves <hostname> <projectname>

to get all the slaves started. <hostname> is the name ofthe host in which the server is running.
Youcan also have the server start the slaves automatically by using the "-S" option in vov.ser ve r.

150

The status of the slaves can be checked with vov.sh -m, or with the "Monitor" button in vo v.s h

You should not have more than one slave running on each machine, or you will only
overload that machine. The server can have at most 61 clients connected at the same time. It is
better not toconnect more than about 20 slaves, or you will run outof connection points.

Slaves can be killed at any time with an ordinary ctrl-c or with kill -9.
You can also start slaves on the fly. Just log onto a machine, set the correct environment

variables and say:

vov_slave

When you no longer need this slave, just kill it with ctrl-c.

Each slave makes available a setof resources, identified by a setof words. By default, a
slave provides two resources, the name of the host on which the slave is running and the machine
type. For example a slave runningon the VAX called "fornax" offers the resources"vax fomax".
You can override the setof resources offered by the slave with the -A option. Aspecial slave which
uses the -A option is

vov_interactive

which offers the resource "interactive", which makes the slave eligible to accept transitions whose
affinity is "interactive".

A.3.3 Start the server

You must decide which host you want the server to run on. A good host is one that has
NFS access to all files used for the project. You can run several servers on the same host, as long
as they arc given different project names. Typically, there is one server per project.

To restart the server use:

cd <server_working_directory>
vov_server -S -B <projectname} >& outfile &

If you are starting a new project, you have to use the -C option as well. Do not use this
option when you RESTART the server, or you will lose the trace.

The server has been designed to run continuously for the whole duration of the project.
You should not kill the server if you log out.

A.3.4 Clients

How do clients find which server to connect to? They use two environment variables:
V0V_H0ST_NAME and VOV_PROJECT_NAME. These variables are set with the setenv command:

setenv VOV_HOST_NAME <hostname>

setenv VOV_PROJECT_NAME <projectname>

It is convenient to create an alias to set those environment variables. All this is done for

you by vov_setup, which updates or creates the file -*/ .vovpro jects. For example, if you
have a project called BRIC with the server running on eros, you would say:

151

vov_setup eros BRIC

and you would then have a new alias

alias BRIC 'setenv VOV_KOST_MAME eros; setenv VOV_PROJECT_MAME 3RIC

In this way, you just have to type BRIC to set the variables.
Another environment variable used by the clients is VOV_TRACE_ONLY which, if set to

TRUE, tells the client that we are only interested in the trace left by the execution, and not in the
execution itself. This is useful when you want to build a large trace involving many time consuming
transactions. Setting vov_TRACE_OMLY, you have a quick way to produce a large trace and than
you can let VOV do the retracing lor you.

A.3.5 The event queue and the journal

The server keeps a record of everything that happens in the trace. All events arc recorder
inajoumal file which resides in the working directory of the server. The journal is called journal .<pro
The journal is of little practical utiility, and it is mostly used to do detective work to find out why
something strange and unexpected happened.

A.3.6 The event queue

To lake a look at the latest events, you can also use vov.sh -n, where "-n" should
remind you of the word "notify." You should already be familiar with the dialog that allows you to
browse the event queue. It offers you the quickest way to the objects in the trace. For example, if
you want to change the command line of a transition, without retyping everything, you can find an
event that mentions the transition, click the "Edit" button, and do the changes you want to do in the
transition editing dialog that has popped up.

A.3.7 The trace

The trace is stored in an OCT symbolic facet, called BRIC .page. 0 : symbolic. It
might be interesting to look at the trace with vem. The most current version of the facet is always
in the memory of the server, which saves the trace occasionally (about once every hour). If you
want to see the latest version of the trace you can force the server to save the trace onto disk with
vov.sh -w. Also you can use vov_rpc to browse through the trace.

vov_sh is the main tool to get information from the server. In particular:

vov_sh -I

vov_sh -h place
vov_sh -w

vov_sh -t place
vov sh -AR

Get information on what is going on.

Gives you the history of a place (file or facet)

Force the server to write the trace to disk.

Toggle the status of the place.

Retrace everything that has to be retraced.

vov_sh -r place : Retrace what is needed to make *'place'' consistent
vov_sh -k place : Kick "place", i.e. retrace all its dependents.
vov_sh -n : Be notified about the latest events.

vov_sh -i : Start the interactive interface for vov_sh.

You will most frequently use the interactive interface of vov_sh.

152

A.3.8 Annotations

Adding annotations to the trace is like adding comments to a program. Everyone agrees
that it is important, but no one really does it because it is ahassle. In case you are awell" disciplined
designer and want tocarefully document what you are doing, foryourownbenefit of for the benefit
ofyour teammates. VOV gives you the possibility to add annotations to any clement in ihe design
trace. An annoiation is a piece of text attached to the object. Use annotations to explain why you
did something, or the meaning ofa place. Whenever you are editing orviewing an object, please
notice in the lower left cornerof thedialog the buttons labeled "Sec notes" and "Add notes". The
"See notes" button appears only if the object already has annotations attached to it, theotherbutton
is always there. Ifyou click either button you gel a dialog to browse, add or forget the annotations
for the object.

A.3.9 Affinity of transition, interactive transitions

In VOV it is possible to connect to the server several slaves, each running on a different
machine in the LAN. The slaves provide VOV with CPU cycles to perform the necessary retracing.
Two slaves arc equivalent if any transition performed onone slave would give the same results if
executed on the other slave.

It would be ideal if all slaves were equivalent: the dispatching of transitions could be
based only on the greedy strategy that ihe best slave gets the transition with longest expected du
ration. In practice, different machines offer different resources and slaves can lose equivalence for
several reasons:

architecture: the outputof a compilation depends on the architecture of the machine;

hardware resources: some transaction could be very time consuming, or require a large amount
of memory, so that it should only be executed on the large machines in the network, rather
than on the smaller workstations;

software resources: some commercial software such as "verilog" can run only on the machines
which have been licensed.

One unsatifactory solutionis to limitVOV to the largestsubsetof equivalent slaves. This
mightnot work because in general, a subsetof equivalent slave does not completely cover the set
of resources needed to complete a design, or the subset could be too small for the design.

VOV deals with the problemof non-equivalent slaves by considering the affinity of each
transition. If a transition, for licensing reasons, can only run on the machines called "pinocchio"
and "geppetto," its affinity is"pinocchio geppetto". If a transitioncan only run on vax'es, its affinity
would be "vax". For the special case of a transition that can run on any machine, the affinity would
be an empty string. By default, the affinity list of a transition contains only the machine type.

In a similar fashion, each slave has an associated list of resources, which defaults to a list

containing the machine name and the machine type. Thus, the resource list of a slave running on
the VAX "pinocchio" would be "pinocchio vax".

Both the affinity list of a transition and the rcsorcc list of a slave can be overridden by the
user.

153

A match between an affinity list and a resource list exists if either string is empty or if
the two lists have one word in common. When dispatching a transition to one of the slaves, VOV
scans the slaves in decreasing order of power, and chooses the first idle slave whose resource list
matches the affinity list of the iransition.

A.3.10 Graphical interface using vem/RPC

A simple RPC application is available to browse the trace. Move to your project directory
before you type: vov.rpc BRIC This starts vem and an RPC application called vovRpc.

The color coding used has the following meaning:

pink (MET2) : valid trace

blue (MET1) : invalid trace

red (POLY) : active tracing (a transaction is currently executing)

orange (NWEL) : active retracing.

The places in the trace use different icons to case the understanding of the graph. Here is
the key to interpret the icons:

circle : Data file (often an ASCII file)

octagon : OCT facet

X : Executable

S : Exist status

0 : Command line option

A.3.11 Status of the trace

Each node in the trace has a "status," which can be one of the following:

VALID: The node is "good." If the node is a transition, the transition has successfully completed.
If the node is a place, it is up to date and consistent with all the other places it depends upon.

NOT VALID: If the node is a transition, it has not been run successfully yet, or it should be run
again, probably because one of its inputs has been modified since the last time the transition
was executed. If the node is a place, it is the output of a transition which is also NOT VALID.

TRACING: If the node is a transition, it is currently being executed for the first time. All the
outputs of such transition are also in the same status.

RETRACING: If the node is a iransition, it is currendy being retraced. All the outputs of such
transition are also in the same status.

DEAD: The dead parts of the trace arc ignored by the server. A node can become DEAD only if
a designerdecides so. Dead nodes are kept for documentation purposes, or to prevent the
server from retracing them.

MISSING: This status is used for places which suddenly disappear.

WEIRD: You might occasionally see this as a possible status, but in reality it is not used, and it
will soon disappear.

154

A.3.12 Protection

Currently VOV is an open sysicm, which ignores protections. All the data generated by
VOV is not protected. Although this isonly a temporary siluaiion, it should not be a problem.

A.3.13 Sets

You can create sets of nodes. You can do this from the vov.sh -i menu. When you
create a sei you must specify a name for the set, and a selection rule. The selection rule iscompli
cated: you can select nodes by lypc (PLACE or TRANSITION), by status (VALID or NOT VALID
or DEAD or any of theothers), by type of place (UNIX FILE, OCT FACET, EXECUTABLE, etc.)
or by regular expression matching. You can also select nodes with no inputs, with no outputs, or
isolated nodes, those with no inputs and no outputs.

The regular expression matching routines use the "emacs" syntax. The dot . stands for
any character, the star * stands for an arbitrary repetition of the previous expression. Thus the
regular expression . * matches every string (any character repeated any number of times). If you
want to make a set of all the files whose name begin with . std. you should specify the regular
expression . *\ . std\ . . * in which \ . matches the dot. Fora more complete description of the
syntax, ask emacs.

Why should you want to make sets? A number of reasons, the most important being
documentation and because you can use sets to delete (forget) nodes from the trace.

A.3.14 Forgetting nodes

VOVmakes it purposely hard to eliminate nodes from the trace. The simplestway to tell
VOV to ignore parts of the trace is to change the status of the uninteresting nodes to DEAD. Do this
with the "Change status" button you can see in many dialogs. But if you are positively sure that
you want VOV to forget aboutsomething, here is what youdo. First you muststart vov_sh -i
to get the menu that allows to create and edit sets. Then you create a set containing the nodes you
want to forget. Then you edit the set and ask for a list of its elements. Then you select the nodes in
the set that you want to forget and hit the "Forget" button.

Sometimes, before you forget a place, you might want to delete it from disk and throw it
in the trash. Thus you can select some nodes and hit 'Trash". Actually VOV does not remove the
files form disk, it just puts them in another directory called vov_GARBAGE_CAN in the working
directory of the server.

A.3.15 Moving stuff around the file system

Would you like to change the path name of a place in the trace? Use the "Mvlib" button
in the vov_sh -Ai dialog. Alternatively you can use the -0/-N pair of options in vov_sh.
Example. Suppose you have built a pla in a directory /users /joe/mypla and have decided to
move all the data in another directory, for example by doing:

cd /users/joe

mv mypla reallygoodpla

Appendix B

Quick Tool Overview

The tools listed below in alphabetical order arc mentioned in the examples.

bdnet is used to create Oct nctlists starting from a textual description.

bdsyn is a translator of logic equations, from the compact BDS format into the expanded BLIF
formal that is suitable input for logic optimizers such as misll.

chipstats measures area and net-length of a chip.

misll is a manipulator of logic equations. It is mostly used to perform logic optimization and
occasionally to do format translation, forexample between BLIF and Oct.

mosaico is a collection of tools for routing of macro-cell chips. The main tools in Mosaico are:
atlas, for channel definition, the global router eds, the detailed router pair consisting of
cprep and spider, the via minimizer mizer, the hierarchy flattener oct flatten, the
symbolic compactor and spacer spares.

musa is the multi-level logic simulator of the Octtools.

padplace is a multi-purpose tool used to handle the formal terminals ofOct facets, with specialized
routines for pads.

spares is the compactor and spacer for symbolic layout.

vulcan creates abstractions of layout, by computing simplified protection frames for each layer in
the layout.

wolfe places and routes standard-cell circuits.

156

155

Now VOV issurely confused. It knew about some files in the old directory and now ii is unable to
find them. So you now just tell VOV what happened:

vcv_sh -0 /users/joe/mypla -N /users/joe/reallygoodpla

A.3.16 Handy utilities

vov.cleanup : get a report on what files arc useful and what can be removed.

vov_setup : create a new alias to set the VOV environment variables.

vov_start jslaves : start slaves described in the slaves file.

vovJdlLslaves : kill slaves described in the slaves file.

158

14) C.B. Shung, ct.al. An Integrated CAD System for Algorithm-Specific IC Design. IEEE Trans
actions on Computer Aided Design, 1990. Accepted for publication.

I5| T/iCher Chiueh. Randy Katz, and Valerie King. A history model for managing the VLSI
design process. In ICCAD. 1990.

16| G.C. Clark and R.E. Zippel. Schema: An architecture for knowledge based CAD. In ????,
1985.

171 James Daniell and Stephen W. Director. An object oriented approach to CAD tool control. In
26th Design Automation Conference, pages 197-202, June 1989.

I8| Allen M. Dewey and Stephen W. Director. Yoda: A framework for the conceptual design
VLSI design systems. In Proc. of ICCAD. November 1989.

19| Susan A. Ellis. A symbolic layout language and a database for an integrated vlsi design
system. Technical report, Electronics Research Lab, University of California, 1981.

1201 D. D. Gajski and R. H. Kuhn. New VLSI tools. IEEE Computer Magazine, 16, December
1983.

[211 Daniel D. Gajski and Donald E. Thomas. Introduction to Silicon Compilation, chapter 1.
Addison-Wesley Publishing Company, 1988.

221 D.D. Gajsky, D. A. Padua, D. J. Kuck, and R. H. Kuhn. A second opinion on data flow
machines and languages. Computer, 15(2), Feb 1982.

[231 G. Genrich. Predicate/Transition Nets, volume 254 of Lecture Notes in Computer Science,
pages 207-247. Springer Publishing Company, 1987.

[241 Kyle Goldman and Ted Stout. Adesign automation environment. VLSI Systems Design, pages
46-49, June 1988.

[251 I. Goldstein and D. Bobrow. A layered approach to software design. In Interactive Pro
gramming Environments. McGraw-Hill, New York, 1987. D. Barstow and H. Shrobc and E.
Sandwell.

126) Frank G. Halasz. Reflections on Notecards: seven issues for the next generation hypermedia
systems. Communications of the ACM, 31(7), July 1988.

127] D. Harrison, P. Moore, Rick L. Spickelmier, and A. R. Newton. Data management and graph
ics editing in the Berkeley Design Environment. In Proc. ICCAD, pages 24-27, 1986.

[281 D. S. Harrison, A. R. Newton, R. L. Spickclmier, and T. J. Barnes. Electronic CAD Frame
works. Proceedings ofthe IEEE, pages 393-417, Feb 1990?

[29J Paul Heckel. The Elements ofFriendly Software Design. Warner Books, 1984.

130| Alberto Di Janni. A Monitor for complex CAD systems. In Proc. 23rd Design Automation
Conference, pages 145-151, 1986.

Bibliography

111 William B. Ackerman. Data flow languages. Computer, 15(2), Feb 1982.

m T. A. Agcrwala. A complete model for representing the coordination of asynchronous pro
cesses. Technical report, Hopkins Computer Research Report No. 32, July 1974.

[3| Wayne Allen, Ken Fiduk, and Doug Rosenthal. Distributed methodology management for
design in-thc-largc. In ICCAD, 1990.

[41 Francois Bancilhon, Won Kim, and Henry F. Korth. A model of CAD transactions. In Pro
ceedings ofVLDB 85, Stockholm, 1985.

[5] D.S. Batory and Won Kim. Support for versions of VLSI CAD objects. Technical report,
MCC, Austin TX, 1985.

[6] Felix Brctschncidcr and Helmut Lagger. Knowledge based design flow management. In Proc
ofConference onAl,Simulation andplanning inHigh Autonomous Systems, Tucson, Arizona,
26/27 March 1990.

[7] Felix Bretshncidcr, Christa Kopf, Helmut Lagger, Arding Hsu, and Elizabeth Wei. Knowledge
based design flow management. In ICCAD, 1990.

[81 Jean Brouwers and Moshe Gray. Integrating the electronic design process. VLSI Systems
Design, June 1988.

[9] Misha R. Buric and Thomas G. Matheson. Silicon compilation environments. In Proc. of
Custom Integrated Circuits Conference, pages 208-212,1985.

[10] Michael L. Bushnell. ULYSSES-An Expert-System Based VLSI Design Environment. PhD
thesis, CMU, research report CMUCAD-87-15, May 1987.

[11] Michael L. Bushnell and S. W. Director. VLSI CAD tool integration using the Ulysses envi
ronment. In 23rd Design Automation Conference, pages 55-61,1986.

[12] Andrea Casotto, Chuck Kring, and Randy Katz. Using the Oct-tools in a VLSI design course.
In 1989 VLSI Education Conference & Exposition, pages 105-117, July 1989.

[13] Andrea Casotto, A. Richard Newton, and Alberto Sangiovanni-Vincentelli. Design manage
ment based on design traces. In 27th Design Automation Conference, Orlando, FLA, June
1990.

157

160

|48| Bjame Stroustrup. The C++Programming Language. Addison-Wesley. 19X6.

[491 P. van dcr Hamer and M.A. Trcffcrs. A data How architecture lor CAD frameworks. In Proc.
of ICCAD. pages 4X2-4X5. 1990.

|5()| P. van der Wolf. P. Bingley. and P. Dcwildc. On the architecture ol" a CAD framework: the
NELSIS approach. In Proc. EDAC 90, 1990.

|5l | I. Widya. T.G.R van der Leuken. and P. van der Wolf. Concurrency control in a VLSI design
database. In 25th Design Automation Conference. 19XX.

|52| Gerhard Zimmerman. PLAYOUT - a hierarchical design system. In IFIP. 19X9.

1531 Michael D. Zisman. Use of production systems lor modeling asynchronous concurrent pro
cesses. Academic Press Inc.. in PATTERN-DIRECTED INFERENCE SYSTEMS. 1978.
University of Pennsylvania.

159

[311 Randy H. Katz. Rajiv Bhatcja, Ellis E-Li Chang, David Gcdyc, and Vony Trijanto. Design
version management. IEEE Design & Test, pages 12-21, Feb 1987.

1321 Ken H. Keller. An electronic circuit cad framework. Technical report, M84/54, Electronics
Research Lab, University of California, July 1984.

[33] David W. Knapp. A Planning Model of the Design Process. PhD thesis, USC, tech. rep.
CRI-87-06, Dec 1986.

|34| Kr/ystof Kozminski. Design control in MCNC's open architecture silicon implementation
system OASIS. Technical report, MCNC, Technical Report TR89-54, Dec 1989.

[351 Alison Lee. Use of history for user support. Technical Report CSRI-212, University of
Toronto, Computer Systems Research Institute, May 1988.

1361 Steven S. Leung, P. David Fisher, and Michael A. Shanblatt. A conceptual framework for
ASIC design. Proceedings of the IEEE, pages 741-755, July 1988.

[371 Willcms W. G. H. M. A VLSI Design Managerbased on State Management. Technical report,
Master thesis, Delft University ofTechnology, September 1987.

138] Robin L. Steele (NCR Microelectronics). An expert system application in semicustom VLSI
design. In ACM/IEEE Design Automation Conference, pages 679-686, 1987.

[391 Toshiaki Miyazaki, Tamio Hoshino, and Makoto Endo. A CAD process scheduling technique.
In ICCAD, 1990.

[401 Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541-580, April 1989.

(411 A.R. Newton, D. 0. Pedcrson, A. L. Sangiovanni-Vincentelli, and C. H. Sequin. Design aids
for VLSI: the Berkeley perspective. IEEE Trans. Circuit and Systems, CAS-28:666-680, July
1981.

1421 John K. Ousterout, Andrew R. Cherenson, Frederick Douglis, Michael N. Nelson, and
Brent B. Welch. The Sprite network operating system. COMPUTER, pages 23-36, February
1988.

[43] Interact advertisement, June 1990.

[44] Richard Rubinstein and Harry Hersh. The Human Factor. Digital Press, 1984.

[451 Carlo H. Sequin. Managing VLSI complexity: an outlook. Proceedings of the IEEE, 71(1),
Jan 1983.

146] Ernst Siepmann. A data management interface as part of the framework of an integrated
VLSI-design system. In ICCAD, 1989.

[47] G.W. Sloof, P. Bingley, P. Dewilde, T.G.R. van Leuken, and P. van der Wolf. Design data
management inadistributed hardware environment. In Proc. EDAC 90, 1990.

95

Figure 3.24: The Mosaico trace shows the sequence of tools required to route amacro-cell chip.

Chapter 4

Implementation

The development of a DMS is more an engineering problem than a scientific one. The

solutionderives from a balance of optionsand tradeoffs thatcannotbe abstracdy validated on paper.

The only experiment that can validate a DMS is to see how the system reacts to the complexity of

the real world, a world in which real designers arcdetermined to achieve a particular goal. This is

an expensive experiment, because it requires the investment of a lot of energy into the development

of the DMS. It is in fact necessary that the DMS is robust and reliable, powerful and lightweight,

friendly and predictable, or the experiment will be corrupted by the designers' understandable un

willingness to cope with a sluggish and unreliable system.

The implementation of VOV has been a key clement of this project, and is tightly con

nected to the conceptual development of the system. For example, the importance of the notion of

affinity of transitions became clear when a prototype of VOV that did not have such notion was

impossible to use because it could not dispatch some transitions to certain slaves. Once the notion

of affinity was implemented, its implications on the firing rule became clearer, and its usefulness

was extended to include the management of transitions competing for the same resource and of

interactive transitions.

In the following sections, we overview some implementation issues encountered in the

development of VOV. Section 4.1 develops some topics about the implementation of theobjects in

the trace and about the representation of the trace. Section 4.2 presents some some special topics

such as safety and identification of traces. Some key features of the software implementation are

highlighted in Section 4.3. The final section reports the raw performance of thecurrent implemen

tation of the system.

96

97

4.1 The design trace

4.1.1 Attributes of nodes

The most important attribute of a node is itsstatus, which can take one of the following

values: VALID, NOT VALID, DEAD, TRACING, RETRACING, MISSING.

VALID nodes arc up-to-date and do not need retracing; they are cither a primary input or

the output of a successful iransition. If a primary input changes, all of its dependent nodes become

NOTVALID. NOTVALID nodesneed to be retraced. DEAD nodes are ignored by theserver; they

arc neither checked nor retraced. DEAD nodes arc often used by novice designers who try some

tools and then tell VOV to ignore what they have done. A DEAD node is useful for documentation

purposes.

A currently executing iransition and its outputs are in the TRACING status. The RE

TRACING status is reserved for transitions that are being retraced and for their outputs. A place

can also be MISSING, when it is no longeron thedisk. This is the normalstatus for temporary files

that arc created by some transition and then deleted by the designer.

Users can control the status of a node, and a number of rules determine the effect of a

changeinstatusof a nodeuponitsdependent nodes. If a userinvalidates a node,allof thedependent

nodes also become NOT VALID (unless they are DEAD, in which case they stay DEAD). If a user

forces a node to become VALID, its dependentnodes are not affected. Expert users can alter this

default behavior and decide the status of entire subtraces. User cannot set the status of a node to

citherTRACING or RETRACING, because those values are reserved by the system.

4.1.2 Attributes of places and transitions

A place represents a piece of design data. In particular, VOV considers the following

types of data: UNIX ASCII files, UNIX binaries, Oct facets, command line options, exitstatus of

transitions, boolean conditions, measurements.

The type of a place determines the database that is managing the place and therefore it

also determines the methods to operate onthe place. For example, ASCII files are managed by unix

and are manipulated with UNIX routines suchas write, read, stat, unlink, while Oct

facets are manipulated with the analogous procedures provided by Oct. Command line options,
boolean places, exit status, and measures, are managed by VOV, which provides the methods to
create, edit and delete such places.

98

Places have two other attributes: the name, which is aunique string used for identification

of the place initsdatabase, and the timestamp, which is the date inwhich the place was last modified.

Timestamps for unix files arc obtained directly from UNIX, but VOV must overcome two problems,

caused by clock skews between different machines, and by theNFS caching mechanism. A file can

be on a file system physically mounted on adifferent host from the one where the server is running.

If the clocks on the two hostsarc skewed the timestamp of the file must be adjusted to a reference

clock, which is the one of the server.

If files arc accessed through the Network File System protocol (NFS), one must consider

that the protocol is not completely transparent, because some information is cashed on the server

side and caches arc sometimes refreshed with a 30 to40 second delay. It is therefore possible for

a file to change and for the server to be unaware of the change until the caches are refreshed. This

can cause a lot of confusion.

Consider a transition with aduration of justacouple of seconds. Suppose thatthe transi

tion executes on ahostdifferent from the server's, and that the transition declares asoutput the file

File. If, upon termination of the transition,.the VOV servercannot see any change in the times

tamp of File, because it is seeing the cached copy, it must conclude that the transition has failed,

because it has not produced one of the outputs it had promised; File is marked as NOT VALID.

30 to 40 seconds later the server suddenly sees a change in File, and it becomes confused on what

the status of File should be, so it sets it to VALID hoping for the best. To this date, no solution

has been found to this NFS caching problem. The only clean solution is to eliminate NFS from the

loop and have the server running on the same host where the data are stored (the clients can still

be running on any host), but this defeats the stride for a really distributed system. It is hoped that

some of other protocols developed for distributed file systems, such as the one implemented in the

SPRITE [42] operating system, will soon become available on most UNIX platforms.

The attributes of a transition are the command line, the working directory, the user name

who initiated the transition, the host name of the machine used for the transition, the start date,

and the finish date. The process id is useful for job-control, because it permits VOV to stop the

transition if it has been determined that its outcome is no longer of interest. The exit status of each

process is also recorded and matched against a list of legal exit status to help determine whether

the transitionwas successful. Finally, the affinity of the transition indicates if the transitionrequires

special resources.

Some attributes of transitions are preserved during retracing, namely the original user

name, the affinity, and the list of legal exit status.

99

4.1.3 Canonical names for files

Except for chains of places (Section 3.3), each place in the trace must have a unique

name. In the case of UNIX files, this name should be meaningful for all processes involved in VOV,

regardless of the host on which the process is executing. If all files are managed by one file server,

then it is normally possible to use as name of the place the full path of the file. In the case in which

the data is distributed across several file servers, the full pathmay point to different files if computed

on different machines. The rule to generate a name meaningful for all machines depends of course

on the particular way in which the file systems are mounted among the machines. For example,

in the Berkeley CAD group, a file system aaa physically mounted on the machine hostl can be

accessed by another machine through the path /net/host1/aaa, using NFS. On hostl itself,

the path / net /host 1 exists and points to the root directory. The rule is therefore to add the prefix

/net/<host name > to a full path to obtain a file name that is valid network wide.

The mechanism of hard links and symbolic links allows UNIX to refer to the same file with

two different names. While hard links arc not considered, VOV repeatedly expands symbolic links

and removes all occurrences of"." and ".." in a path until a full path without symbolic links and

dots is obtained. This path, possibly with a network prefix is the canonical name for the file, and

it is the name used to identify the place that represents the file.

4.1.4 The representation of the trace

An early implementation of VOV used an internal C++ data structure to represent the

trace, while another representation in Oct was used to provide persistency and the graphical user

interface. That implementation failed because of difficulties in maintaining the consistency of the

two representations. Using Oct also for the internal representation turned out to be a good choice

because the code was greatly simplified.

The graphical representation of the trace is important for the designer, because it is a

powerful way tocommunicate information about the flow ofdata. Inorder toexploit this potential,

care has been taken to improve the readability of the graphical rendering of the trace, resulting in

images such as those in Figure 4.1.

Each node in the trace is represented in Oct by an instance of some icon depending on

the type of the node, as shown inFigures 3.1 and 3.2. The input/output relationship between nodes

isrepresented by attachments among the instances: each node contains its outputs and iscontained

by its inputs. These attachments, however, have no graphical representation. Thus, for the benefit

decoder:padp:interface

decoder:wol

.,-Jtt:;.::t::

X2

TT
« jfc&E?

m \k Jl •ifcii ^j;

t:n ':u:tt:i:i;>!t::t

r:padp

decoder:wolfe

Figure 4.1: A small trace to highlight the features of the graphical representation.

100

101

Figure 4.2: The grid used to place the nodes in the trace. The vertical coordinate of a node is

determined by its level, the horizontal direction is chosen so that the total length of the arcs is

minimized.

of the users, each dependency between two nodes is also represented by a straight colored path

stretching from one node to the other. The color of the arc is the same as the color of its inputnode.

A color coding scheme has proved to be particularly effective to communicate informa

tion on the status of a design. For example, the designer can immediately see which nodes are

VALID and which are not, because VALID nodes are pink, NOT VALID nodes are blue, DEAD

nodes are dark green, TRACING nodes are red and RETRACING nodes are orange, MISSING

nodes are brown.

The nodes are placedat the vertices of a gridthat isderived from a semi-infinite rectangu

lar grid by offsetting all thenodes on odd rows byone halfof the row spacing, as shown in Figure

4.2. The origin of the grid is in the top left comer. The vertical coordinate of a node is determined

by its level, withlevelzerocorresponding to thetop row. The levelof a node represents itsdistance

from the furthest primary input. More formally, the level /(n) of node n is assigned in two steps.

Step 1 assigns a level 1 to each primary input and to all othernodes it assigns the maximum level

of their inputs increased by 1:

Kn) =
1 if I{n) =

maxm6/(n)/(m)+ 1 ifI{n) ^0

Step 2 ispurely cosmetic, inthe sense that ittries to bring the primary inputs closer to the transitions

that uses them first:

\/n\I{n) = 0 =»/(«.) = min /(/»)- 1
m€0(n)

During the evolution of the trace, a nodemay become disconnected, in whichcase its level is zero.

102

Afterlevels have been assigned, the relative position of the nodes on each level has to be

decided. Once again, the goal is to optimize the readability of the trace; this is achieved hcuristi-

cally by minimizing the total length ofthe arcs. VOV uses a force-directed method for dynamical
placement ofeach new node in the trace. Ifthe location determined by the force directed algorithm
is already taken, the node is placed in the closest empty location at that level. Although this dy
namical placement is suboptimal, it is fast and itcan be done on the fly. Upon a user's request, or

automatically in periods of inactivity, VOV repeats the one dimensional force-directed placement
on one row at a time following it with one pass of pairwise interchanges of neighboring nodes to
get out of obvious local minima.

The complete placement of a large trace with 1000 nodes and 15 rows takes about a

minute on a DECstation 3100. This is a long time, but the data structures used for the trace arc

not optimized for this placement problem. Five to ten iterations of the algorithm generally yield a

reasonably readable trace, that isone where the major flows of the design are easily recognized.

To facilitate the visual inspection of the trace, and to case the identification of each node,

a short black label is placed next to each node. The label ofa place isobtained by taking the last

few components of the place's name, while the label of a transition consists of the first few words

in the transition's command line.

4.2 Special topics

4.2.1 Project identification

All VOV clients mustestablish a connection with the server, which can be running on

any host in the network, while that host could be runningseveral servers. Thus, the problem is to

assure that the clients connect to the correct server.

Other systems have a similar problem. For example, NELSIS [47] also has a server/client

architecture, and itidentifies the server by meansof slproject identifierof the form hostname:access-

path, where the component to the left of the colon is the name of the host running the server and

the access path is the root directory that contains the entire project.

VOV does not require the design to be contained in the same directory. Instead of the

access path, each trace is identified by its project name, an arbitrary alphanumeric string, and by

the host in which the server is running. The project name is hashed into an 8-bit integer, which is

then added a constant to obtain a port number used to initiate the TCP connection with the server.

103

Each host can support up to 256 projects, provided that their names do not hash to the same integer.

The clients get the project name and the host name by means of two environment vari

ables, vov_HOST_MAME and vov_PROJECT_NAME. If cither one is missing, the connection can

not be established and the client continues to run as if VOV did not exist.

4.2.2 Robustness and safety

So much important information is stored in the trace that no precaution to protect the

trace can be excessive. VOV keeps two copies of the trace, of which at least one should always

be uncorruptcd and no more that 30 minutes out-of-date, even in the case of systemcrash or filling

of the disk. In case both copies of the trace become corrupted, VOV has another partial recovery

mechanism, based on a compact ASCII dump that can be generated from the trace. This file is in

the form of a shell script, and it can be executed direedy to rebuild the entire trace, except only for

annotations and sets.

The server should be robust to possible misbehavior of its clients. The current imple

mentation of the server can survive any crash of its clients, even during handshaking. It is also

not possible for a client to block the server, that is the server will never be in the status of wailing

indefinitely for a message from a client.

VOV does not explicidy address the problem of security against malicious intruders.

Anyone who knows the project name and the name of the host on which the server is running

can connect to the server and force the slaves to do virtually anything. However, all server and

slave processes are user processes, without root privileges. Although files of the designers are at

risk, the security of the whole computing system is not affected. The data stored in the journal

generally allows to track down the intruder. Other ADM's (e.g. 150,3]) rely on root processes and

are therefore increasing the vulnerabilityof the computer system.

4.3 Software architecture

The main concern in the implementation of VOV was to produce an prototype to test the

concepts of a trace-based DMS. Speed and efficiency have also been a concern, because the non-

intrusiveness of the system depends in large part onthem. However, functionality has had priority

over performance, especially because it was not clear, until the system was used, which routines

were critical and needed to be optimized.

104

VOV is written in C++ (481 and it exceeds 27,000 lines of code. It consists of the follow

ing seven programs:

vov_server: is the VOV server.

vov_capsule: is used in the encapsulation scripts.

vov_sh: is used as the command based interface of VOV.

vov_assist: is the VOV assistant.

vov-slave: is the VOV slave.

vov_rpc: is the RPC extension to the Octtools editor VEM, and provides the graphical user interface.

vov.meter: is the prototypical measurement tool.

These programs operate on the trace through the routines in a library called trace. a.

A smaller library called libvov. a is available for the programs like vov_meter that only run

as client processes.

Traces are represented by the VovTrace class that contains the methods to create, mod

ify and destroy nodes in the trace, as well as methods to alter the connectivity between nodes, to

manipulate sets of nodes and so on (Figure 4.3). All routines operate either on a local representa

tion of the trace or on a representation managed remotely by the server. The structure of a typical

routine is illustrated in Figure 4.4. Each trace can be either local, client or server. The member

functions isLocal(), isClientO, isServerO distinguish the various types. In ref

erence to Figure 4.4, if a client wants to create a new node in the trace it will use the method

VovTrace : : create (), which makes the client send a request to the server and then wait for

an answer. When the server gets the request and decides to satisfy it, it executes the same method

VovTrace : : create (), but this time the flow of control is such that the node is actually created.

If the trace is local, all the communication protocols are bypassed.

This structure of the routines gready reduces the amount of code to be maintained, and

localizes within the same function the details of the communication protocol between the client and

the server.

The information between clients and server is transferred in packets of arbitrary length.

These packets are sent through UNIX sockets and delivered using the TCP/IP protocol. Packets are

processed only when they have been completely delivered. Each packet has a free format, consisting

105

class VovTrace (

String projectName; // This is the name of the project.
String hostName; // Host on which the server is running
int type; // Server, client, local.

VovEventQueue workQ; // Queue for all trace events.

VovPage* pageArray; // Array of pages.

// . . .

int isClient();

int isServer(int);

int isLocal();

public:
VovStatus open(Strings project,Strings host,Strings mode, int type),
// . . .

VovStatus create(VovSuperObjects) ;
VovStatus find(VovSuperObjects) /
VovStatus modify(VovSuperObjects) ;

VovStatus edit(VovSuperObjects, int viewonly=0);
VovStatus lock(VovObjectS,Strings,int force,intS Id,Strings msg) ;
VovStatus unlock(VovObjectS,int lockld);
VovStatus forget(VovSuperObjects);
VovStatus changeStatus(VovNodeS,VovNodeStatus, int flag);
VovStatus history(VovNodeS,int flag,int dir,int lev,Strings);
VovStatus measure(VovPlaceS place, VovPlaceS measure);

VovStatus initiate(VovTransitions);

VovStatus terminate(VovTransitions,VovStatus,int,Strings);
VovStatus dispatchTransition(Clients,VovTransitions);

VovStatus setOperation(VovNodeSetS,VovNodeS,VovSetOperation);
VovStatus fill(VovNodeSetS,VovNodeSetS,VovSelectRuleS,VovNodeSetS)
VovStatus subselect(VovNodeSetS,VovSelectRules);

VovStatus declarelnput(VovTransitions,VovPlaceS,int);
VovStatus declareOutput(VovTransitions,VovPlaceS,int,int,Strings);
VovStatus declarelOs(VovTransitions,VovPlaceListS);

VovStatus disconnect(VovNodeS,VovNodeS) ;

VovStatus addAnnotation(VovSuperObjects, VovAnnotationS) ;
int getAnnotations(VovSuperObjects, VovAnnotation*S, int);

VovStatus checkPlace(VovPlaceS,int* exist,Date* timeStamp);
VovStatus evolve(VovRetraces,int mode,Strings);
VovStatus evolve(VovRetraces,VovNodeS,int dir,int mode,Strings);
VovStatus stopRetracing(VovTransitions, Strings);

void doPlacement();

void journalLog(const Strings);

Figure 4.3: The VovTrace class contains all themethods to operate on the trace.

VovStatus VovTrace:rcreate(VovNodeS node)
I

if (isClientO) {

// Send data to the server.

} else (

if (isServerO) {

// Receive data from client.

}

II

node.create(); // Actually create the node.
//

if (isServerO) {

// Send return info to client.

}

}

if (isClientO) {

// Receive return data from server.

}

return VOV OK;

106

Figure 4.4: Skeleton of a routine that can be executed cither locally by the calling process, or
remotely by the server.

ofany sequence of numbers and strings, with the only restriction that allpackets sent by a client to

the server must begin with a number that corresponds to the routine that should be executed by the
server.

4.3.1 The hierarchy of classes

A limitation of Oct is that it is not extensible, because it does not allow the definition of

new data types. Nevertheless,Oct provides a rich set of primitiveobjects that, in conjunctionwith

some featuresof C++, allow the emulation of new typesof data used to representnodes, places and

transitions (see Figure 4.5).

The class VovOb ject is a simple C++ wrapper for the octOb ject. A class derived

from VovObject isVovProp that is specialized for the handling of Oct properties. VovProp's

are used extensively in the definition of other classes.

The class VovNode is derived from VovObject and its members are of type VovProp.

The classes VovPlace and VovTransition are derived from VovNode and are themselves

composed of VovProp's. The retrieval of an object from OCT is performed by the member func-

class VovObject : struct octObject {
// . . .

};

class VovProp : public VovObject {
// . . .

};

class VovNode : public VovObject {
VovProp type;

VovProp level;
VovProp status;

// ...

};

class VovPlace : public VovNode {

VovProp placeType;

VovProp name;

VovProp timestamp;
// . . .

};

class VovTransition : public VovNode {
VovProp cwd;

VovProp commandLine;

VovProp affinity;
// . ..

};

107

Figure 4.5: A hierarchy of classes has been defined to describes nodes, places and transitions.

tion get (), which retrieves each VovProp by name. The retrieval of a place, which must be

performed many times during trace operations, requires about 0.5 milliseconds on a DECstation

3100. In order to speedup the operation of the server, future implementations should exploit the

fact that for each particular task not all the fields inaobjects are needed, and is should replace the

indiscriminate retrieval of all VovProps with a selective retrieval of only the necessary fields on
demand.

Virtual functions are used rarely and all objects are explicitly given a type. Virtual

functions use information that is managed by C++ and not accessible by the programmer; this

information would be lost when objects are transferred between clients and server through sockets.

108

4.3.2 User interface

The designers have access to the trace through three interfaces differing in weight and

in power: a command interface, a menu-driven interface, and a graphical interface. The primary

objective of these interfaces is to minimize the number of user actions such as key-strokes, mouse

pointing and clicking, required to perform the most common tasks, and to minimize the mixing of

keyboard and mouse actions within a single task.

The most used interface is a lightweight command based interface that requires only a

simple alphanumeric terminal. Command based interfaces are useful because they can be pro

grammed and extended. This interface allows control and monitoring of retracing, editing of the

trace, querying about the history of places in the trace. The program vov.sh and its many options

(Figure 4.6) arc the key elements of this interface.

The second interface is based upon pop-up dialogs and requires a terminal supporting X

windows. This interface iseasier to useandmore powerful, but it cannot be programmed because it

requires pointingand clicking. The control panel for this interface is shownin Figure 4.7. The user

caneditand create sets, control retracing and the activity of the slaves, browse the trace and inspect

theeventqueue. Alldialogs have an"Help" button thatactivates a subordinate dialog containing a

textual description of the dialog and its functions.

Since the trace is itself stored as an Oct facet, it was easy to develop a graphical user

interface capitalizing on the Oct editor VEM and its Remote Procedure Call (RPC) mechanism.

VEM is a multi-window graphical editor, that can be used to browse the trace and to follow the

flow of the tools. The RPC mechanism allows VEM to be extended with some commands specific

to VOV, such as the command view that can be issued whenever the mouse pointer is over a node

to pop-up a dialog describing the attributes of the node. Other RPC commands allow the editing of

the status of the nodes and of the connectivity of the trace. Nodes can be selected and connected to

other nodes, or deleted from the trace.

The performance of Oct does not affect the performance of VOV, which is dominated

by the interaction with the file system. The only unsatisfactory performance has been observed in

the RPC interface, which slows down some data base intensive operations, such as the placement

of the trace, by a factor of 10 or more.

109

usage: vov_sh [-=E on_error] [-ADEF] [-H params] [-LK] [-N string] [-0 string;
[-RSVd] [-p project] [-t name] [-u name] [-w] [-f place]
[-e place] [-r place] [-k place] [-h name] [-mnil]

-=E: cause fatal errors to core dump (on_error = "core") or exit
(on_error = "exit")

-A: Advanced user flag
-D: Dump trace in ASCII format (used for emergency save)
-E: Show all events during retracing
-F: Set speed of retracing to FAST (default SLOW)
-H: History : ;ameters. Examples: -T30, +N2, -TP1000.
-L: Local trace (expert users only).

-K: Kill server

-N: New string for mvlib function
-0: Old string for mvlib function
-R: Retrace all

-S: Stop all retracing
-V: Print version number

-d: Debug communication with server
-p: Specify a different project name than VOV_PROJECT_NAME.
-t: Toggle status of place
-u: Is the place used in the design?
-w: Write trace onto disk (also force check of all places)

-f: Forget place (Use with caution!!)
-e: Edit place
-r: Retrace TO specified place (retrace the place)
-k: Retrace FROM specified place (kick the place)
-h: Print history of place
-m: Monitor slaves

-n: Notification: get all unreported events

-i: Interactive

-I: Get info about design

Figure 4.6: The usage message generated by the vov-sh shows the options that give access to many

of VOV's services.

VOV_SH: sre90@peking

MAIN COMMANDS

BROWSING EVENTS

Browse Recent | All
RETRACING VARIOUS

Check Monitor Mice placement

SETS TRACE

Create Edit Clean To disk View

INFORMATION

g TRACE

Q SLAVE

Q SERVER

SlUSER

Get Info

10

Figure 4.7: The control panel for the menu driven interface toVOV puts the most common opera

tions only a few mouse clicks away.

4.4 Performance

4.4.1 Server latency

The server can become a performance bottleneck of the system, because all accesses to

the design trace must go through it. For a client, the server latency is the time required between

the submission of a request for service and the arrivalof the response from the server. The latency

should be minimized.

The most common server/client interaction is the declaration of inputs and outputs of

a transition, which may become critical when many transitions are executing concurrently. For

example, in the recompilation of VOV, there can be up to about twenty files being compiled in

parallel, with each compilation declaring thirty or more inputs.

For each declaration the server must perform:

• a search by name in the set of all places to determine whether the place is already in the trace;

• some checks for input, output and lock conflict (see Section 3.9.4);

• a cycle detection check (also in Section 3.9.4).

The search by name uses hash tables and requires a constanttime, and the detection of conflicts is

also fast. The critical step is cycle detection.

Given a trace T = (2\ P, E) and the declaration of a new arc (t.p).t e T.p € P, we

want to know if the new trace T = (I\ P. E'). E' = E u {(t, p)} contains cycles. A worst case

Cycle detection work

Trace name Nodes Max nodes visited

octtcst

vovmips
369

616

17

30

Table 4.1: Experimental observation of the maximum work required by the cycle detection routine.

analysis shows that all the arcs in the trace may have to be traversed, so that the amount of work

necessary for cycle detection is 0(\E\), with |£| < \P\2/2. But this is pessimistic, because only

the arcs reachable from t or p need to be visited. In practice traces tend to be wide and shallow, so

that the number of nodes reachable from any node is a small fraction of all the nodes, as shown in

Table 4.1. In most cases the cycle detection can be resolved immediately because p has no inputs

or no outputs, and cannot therefore belong to a cycle.

We have measured the throughput of the server for common operations such as input

and output declarations. Those measurements on a DECstation 3100 show that each declaration

requires between 0.01 and 0.10 seconds (elapsed time), which means that the server can process

between 10 and 100declarations per second. The most complex transitionsobserved to date (e.g.

compilations or floorplanning) declare close to 40 inputs and outputs, in which case the overhead

due to the server's operation is less than 4 seconds, usually a negligible fraction of the transition

duration. Most transitions declare between 3 and 6 inputs and outputs.

The actual overhead seen by each tool depends on the latency due to theTCP/IP protocol

and the number of clients concurrently competing for services. In order to limit the number of

round trips between a client to the server and back, an entire array of input and output places can

be declared at once.

4.4.2 Capsule overhead

In the current implementation, a capsule is a shellscriptconsisting of twoparts:

1. The first part computes the inputs and outputs of the transition, using information extracted

from the command line arguments, and possibly even parsing some of the input data. The

same operations will be performed by the tool itself.

2. The second part is a call to the program vov.capsule, which takes care of all communi

cationwith the serverand then forks a new process to execute the actual tool with thesame

Capsule overhead in seconds

Tool

Elapsed time

OverheadTool Capsule
min max min max min max

bdsyn 1 4 9 16 5 17

misll 14 20 23 32 3 18

bdnet 3 8 17 19 9 16

padplace 1 3 5 16 2 15

wolfe 87 109 103 105 0 18

12

Table 4.2: Capsule overhead for some brief transitions.

arguments used to call the capsule. The overhead introduced by vov_capsule is related to

the server latency.

Table 4.2 shows the results of an experiment to measure the capsule overhead for some

transitions of shortduration. Each tool has been run three times in rapid succession, followed by

three runs of the encapsulated tool, always measuring the elapsed time. A DECstation 3100 run

ningonly the server and the transition was used for these measurements. The operating system is

responsible for variations of several seconds in the elapsed time of repeated experiments. Other

measurements have determined that the largestcontribution to the overhead is due to the interpre

tation of the encapsulation script. The capsule overhead is in the range of 2 to 20 seconds for most

of the Octtools. Users of VOV considered this overhead to be too large. The reduction of this

overhead is an important objective in the further refinements of the system, in a continuing effort

to make the system as non-intrusive as possible. The best solution, of course, will be recompilation

of the tools with the VOV library.

4.4.3 Trace size

Table 4.3 shows the size of the disk representation of the trace for a few designs. The

important column is the third, showing the number of kbytes per node. Each node requires between

610 bytes and 910 bytes of memory on disk. The larger number is from the trace of the compilation

of VOV, which contains many transitions with long command lines (more than 80 characters),

and several transitions with extremely long commands (more than 400 characters). The in-core

requirements for each node are difficult to measure, butthey are estimated to be 3 to4 times those

for the persistent disk representation.

Disk usage for the trace

Nodes (placcs+transitions) Size (kbytes) kbytes/node Comments

0 (0+0) 2
- Empty trace (overhead)

3(2+1) 4 0.73 Smallest possible trace
23(18+5) 16 0.61 4 slides

35(27+8) 26 0.69 One cell design
201(157+44) 122 0.60 40 slides

254 (208+46) 160 0.62 Compilation
576(453+123) 532 0.92 VOV compilation
674(484+190) 616 0.91 VOV compilation
1294(1012+282) 792 0.61 DSP chip

13

Table 4.3: Memory usage for disk representation of trace. The overhead due to the requirements

of the empty trace is subtracted from the trace size before computing the memory requirements per

node.

4.4.4 Small designs

Designers do not ask for any assistance while performing simple activities such as running

three tools in sequence, because they believe that they can easily handle it. This became clear only

after talking to some students in a VLSI class who preferred not to use VOV while doing their

homeworks, for the simple reason that the homework itself was straightforward.

Small designs are those in which the overhead introduced by the capsules and by the

server/client communication is most prominent. Most designers form their first opinion about a

DMS using simple tests, which makes the performance of the system on small designs critical for

the acceptance of the system.

The transition between a small hand-managed design and a more complex one requiring

automatic assistance is a good test of the non-intrusiveness of a DMS. In VOV this transition re

quiresonly the activation of the tracing mechanism: all toolsremain exactlythesame, thedesigners

do not have to switch to new tools or to new names for the same tools.

4.4.5 Large designs

To date, the largest designs managed by VOV have traces consisting of less than 2000

nodes, and for these designs there is no appreciable degradation in the performance of the server.

However, we can expect designs many times more complex, with 10or 20 thousand nodes in the

114

trace. This raises the questions of whether VOV will scale gracefully, and if not of what can be

done to handle large designs.

It is definitely possible to improve the efficiency of the current implementation, for ex

ample by streamlining the communication protocol and optimizing the retrieval of nodes from the

database. But there arc other possibilities: partitioning the trace into pages, and having multiple

servers.

In the current implementation the entire trace is held in one Oct facet, called page. 0,

which is always loaded in the virtual memory of the server. Since only a few nodes in the trace

show activity at any one time, it would be advantageous to limit the memory size of the server by

keeping in page . 0 only the active nodes, while all other nodes are pushed onto other pages that

arc normally stored onthe disk. Themain difficulty inthis approach lies in the need tomove rapidly

an inactive node into page. 0 as soon as it becomes active, which can happen suddenly, without

warning.

Multiple servers can also cooperate for the same design. For example, it is possible to

adopt the recommendation by Katz et al. in [151 that the design process consists of several design

activities, each withitsown history, and have oneserver for each activity. The rule for cooperation

is thatthe set of design transitions must be partitioned among the servers to avoidduplication.

Communication among servers is achieved through the data. For example, consider a

place that is a primary"input for one server S2 and the output of a transition for anotherserver SI.

When the transition isexecuted, the place changes its timestamp. The serverS2 detects the change

in the place, and itcan therefore invalidate andthenretrace allthe nodes thatdepend upon the place

in its own trace. No server has a complete representation of the dependencies among design data,

and data consistency is only guaranteed when each server believes that its own data are consistent.

	Copyright notice1991
	ERL-91-22

