Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AUTOMATED DESIGN MANAGEMENT
USING TRACES

by

Andrea Casotto

Memorandum No. UCB/ERL M91/22

15 March 1991

AUTOMATED DESIGN MANAGEMENT
USING TRACES

by

Andrea Casotto

Memorandum No. UCB/ERL M91/22

15 March 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

AUTOMATED DESIGN MANAGEMENT
USING TRACES

by

Andrea Casotto

Memorandum No. UCB/ERL M91/22

15 March 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Automated Design Management Using Traces
Andrea Casotto

Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley.

Abstract

The productivity of modern CAD systems can be increased with a layer of software, called
the “automatic design manager,” whose goal is to provide services such as automatic sequencing
and scheduling of the tools, coordination of team design and tracking of the design activity for
documentation purposes.

An automatic management system for CAD is proposed, based on the idea that CAD
tools can leave a “trace” of their execution. The trace is represented as a bipartite directed and
acyclic graph in which the nodes represent either design data or CAD transactions. The trace is
both a record of the design activity and a graph representing the dependencies among the design
objects. The architecture of the system is distributed: a server manages the trace, while a number of
clients can concurrently interact with the trace through the server, The system supports the notion
of measurement on the design data, necessary to provide even more services such as tracking of
design specifications, validation of design data, design estimation. The system is non-intrusive,
because it does not affect the way designers interact with the tools.

The design manager has been implemented in a system called VOV, This prototype has
been tested by many designers, including novices and experts. The results of these tests are reported.

Y e

Professor Alberto Sangiovanni- Vincentelli
Thesis Committee Chairman

ii
Acknowledgements

Finally a pause, a blank page to reflect upon the many people to whom I owe thanks.

My advisor, Alberto Sangiovanni-Vincentelli. He directcd me towards design manage-
ment and madc available the resources for this research. Although I could never get enough of his
time, I nced to thank him for his guidance and his trust. I thank my other advisor, Prof. Richard
Ncwton, for stecring me away from the formalism of Petri nets and for his poignant criticism. He
has contributed to form a large part of the idcas presented in this thesis. I consider myself lucky to
work with these two stars of the CAD world. I only regret not having been able to defcat either of
them in a tennis match.

Prof. Randy Katz is acknowledged for suggesting the use of the word “trace” in the
context of design management and for helpful discussions in the early stages of this research. I
thank Prof. John Wawrzynek for being the first to trust VOV and to usc it in his classes. Prof. Alice
Agogino has been kind accepting to be on my dissertation committee.

My officc matcs Mark Beardslee, Mitch Igusa and Chuck Kring, have been patient and
helpful, they have tolerated my demos and even tried the earliest and buggiest versions of the sys-
tcm. Chuck has been especially cruel in dissccting a draft of this thesis, and I owe it to him if this
thesis is now much more rcadable. The Octtools developers, in particular Rick Spiekelmier and
David Harrison, have produced a tremendous amount of great code that now is also part of VOV.
I thank them all. Gregg Whitcomb has invested a lot of energy into maintaining g++, which made
the development of VOV so much simpler.

The students in CS292i, who were the first to use VOV in Spring 90, and the students in
CS250, who were the first to use the assistant in Fall 90, have been instrumental in the progress of
this research.

Flora Oviedo, Irena Stanczyk-Ng, and Elise Mills, who really run the show here in Cory
Hall, have always been helpful in all office related matters. SRC has provided financial support

throughout my five and a half years as Graduate student.

Contents

Table of Contents jii
1 Introduction 1
1.1 A characterization of clectronic design L oL 3.
1.2 Requircments of an automatic design manager L. 7
1.3 BackgroundontheOcttools o .. 10
1.3.1 TheOcttools e e e e e 10
1.3.2 Bricfhistoryof VOV and the Octtools 13
2 Previous Work 15
2.1 Representation of the design activity 16
2.1.1 Ad-hoc modcls for VLSIdesign 16
2.1.2 General models for design activity 20
2.1.3 Designenvironments ot it 33
2.2 Intrusiveness of implementation 34
2.3 Classificationoftoolsanddata 35
2.4 Artificial intelligence techniques L L. L. 37
2.5 Issuesindatamanagement i 38
2.6 Commercial SYSIEMS i e e e e 40
2.7 Conclusionofthesurvey. e 41
3 The Design Trace . 43
3.1 Design management based ondesigntraces 43
3.1.1 Non-intrusivetracing 44
312 Thetrace o i it i e e 45
3.1.3 Anexampletrace 48
3.2 The trace as a definitional language 50
32,1 Backtracking., 51
33 Toolsthatruninplace 52
34 Thearchitecture 53
34.1 Communication between the tools and theserver 55
342 Affinity of transitions 57
35 Imteractive tools 59

iii

3.6

The firingrule e 60
37 TraceversusPetrinet oL L 61
38 Sctsofnodes e e e 62
3.8.1 Hierarchyinthetrace 64
39 Scrvices e e e e e e 67
39.1 Service: Designdocumentation L. L. 67
39.2 Service: datamonitoring oL Lo 70
3.9.3 Scervice:retracing ... oL Lo e 70
394 Scrvice: Conflictdetection, 73
3.9.5 Management of refinements and alternatives L. 74
39.6 Archiving e e 76
3,10 Uscof MEasurcments v v v vt v e e e e e e e e e e e e e 76
311 TheasSiStant o o i e e e e e e e e e e e 78
3.12 Supportofdesignmcthodology 84
3.13 Iterationindesign L e 85
3.14 Principles that guided the developmentof VOV, . . o o0 o oo o oL oL L L 87
3141 Simplicity o .. e e e 87
3.14.2 NON-NWUSIVENESS © + o v v v i v e e e e e e e e e e e e e e e 89
3.14.3 Distributed resources, localization of information 89
3.14.4 FOCUSONMUSETS - -« v v v v o e e e e e e e e e e e e e e e e e e 90
3.14.5 Emphasisonteamdesign 91
3.14.6 Norestrictiontodatavisibility. 92
3.14.7 Ignoredesignhicrarchy0 L. 92
lmplementation 96
4.1 Thedesigntrace o i e 97
4.1.1 Attributesofnodes L Lol 97
4.1.2 Attributes of places and transitions 97
4.1.3 Canonical names forfiles, 99
4.14 The representationofthetrace, 99
42 Special tOPICS . . . v v i e 102
42.1 Projectidentification. L 102
422 Robustnessandsafety oL 103
43 Software archilecCture« « v v v e e e e e 103
43.1 Thehierarchyofclasses 106
432 Userinterface o o i i e e 108
44 PerfOMMANCE . . .« v v v e e e e e e e e e e e e e e 110
441 ServerlatenCy v o i e e e 110
442 Capsuleoverhead 111
443 TIACESIZE . . o v v o e et e e e e e e e e e e e 112
444 Smalldesignso 113

445 Largedesignso 113

5 Experimental Results 115
5.1 Statisticsonthedesign oL L e 115
5.2 BRIC. . . . e e e e e e 117
5.3 Floorplanningan FPU 118
54 Compilationof VOV e e 119
5.5 VOVinaVLSIdesigncourse, 120

5.5.1 The laboratory €Xercises ¢« v i ittt e e 120
5.5.2 Thefinalproject e 126
553 Comment e e e e e e e e 127

6 Conclusion 129

A Tutorial 132
A.l Introduction e e e e 132
A.2 TUTORIAL: Design of a scven segment display driver 133

A2.1 Startmini-VOV e 133
A22 Entertheassistant e, 134
A.2.3 The graphical interface 135
A.2.4 Getting assistance fromthe assistant 135
A2S5 Yourtumtoactintelligent 138
A2.6 Thetraccasadependency graph 138
A27 Validityofnodes. e 140
A28 AutomaticretraCing e 142
A29 Reviewwhathashappened 142
A210 Possibleproblems L. 144
A.2.11 Substitutiona transition, 145
A2.12 Checktheresults, 145
A2.13 Trysomethingnew 0iu.o.... 145
A.2.14 Suspensionorendoftheexercise 148
A3 TUTORIAL:Secondpart, . 148
A.3.1 Whatdoes vovaminireallydo 148
A32 Addmanyslavestoyourserver 149
A33 Starttheserver. 150
A34 Clients e e e e e e e 150
A3.5 Theeventqueueandthejoumal 151
A36 Theeventqueue 151
A37 Thetrace. o i e 151
A38 Annotations e e 152
A.3.9 Affinity of transition, interactive transitions 152
A.3.10 Graphical interface usingvem/RPC 153
A3.11 Statusofthetrace 153
A312 Protection L 154
A313 Sets e 154
A.3.14 Forgettingnodes 154

A.3.15 Moving stuff around the filesystem 154

1A

..................................

Aydeadonqrg
MIARAQ [00L YN g

saniun Apueq 91°¢'v

Chapter 1

Introduction

The complexity of modem human artifacts such as microprocessors, aircraft, and satel-
lites, demands the power of computer tools 10 assist the designers in many of the design tasks. This
is particularly truc in the clectronic industry, which routinely deals with millions of components.
In recent ycars, CAD systems have come a long way towards freeing the designers from the com-
plexity of design, but designers now have to cope with the ever growing complexity of the CAD
systems themsclves.

Electronic design is the focus of this disscrtation, because of the training of the author.
However, an ill concealed ambition of this work is to be applicable in other domains of automatic
design, that is wherever computers arc used to assist the designers.

A “CAD system” is a collection of software programs that perform many tasks related to
the analysis and synthesis of electronic systems, such as integrated digital circuits, microprocessor
and printed circuit boards. Each autonomous component in a CAD system isa “tool.” CAD systems
typically include, among others, tools to describe the behavior of electronic components, to simulate
a circuit, to synthesize logic equations, to generate, optimize, and verify layout.

CAD systems take many forms, varying in user interface, capabilities, target technology,
the number and complexity of the tools, and the way in which the tools communicate with each
other. However, all systems seem to share this unwanted characteristic: they are difficult to learn,
to use, and to master. There is a need for a new layer of software that can help the designers cope
with the tools in a CAD system. This new software is the “automatic design manager.” A design
manager provides new forms of automation of the design activity: protection of the integrity of the
design data, guidance for the novice designer, and advice for the expert.

The focus of an automatic design manager is directed more towards the design method-

ology than towards the pursuit of the design solution. “Design methodology” is the sequencing of
the design tasks and the ordering in which the CAD tools arc used, while the definition of “design
solution” is Icft for now Lo the intuition of the rcader.

The interest developed by the CAD community in automatic design management has
strong industrial roots, namely the need to increase the productivity of CAD systems. But besides
the utilitarian intcrest, design management also raises some genuinely theoretical questions regard-
ing our undcrstanding of the design process itsclf, as presented in the following sections and in the
survey of previous work.

The breadth of this young discipline is such that the relevant literature is hardly bounded.
Adjacent disciplines from which design management borrows freely include operating systems,
data management, system modcling, and information modeling.

The system presented in this dissertation is a concrete proposal for an automatic design
manager. A prototype of the system, implementing all of its essential features, has been developed,
and it has been tested by many designers with various degrees of experience. This prototype is
called VOV.! Sometimes the name “VOV” is used to refer to the abstract proposed system, rather
than to the prototype.

This disscrtation starts with an enumcration of the issues related to an effective use of
CAD systems. An even superficial overview reveals that the issues are many and that they appear
lo be heterogencous: automation of the design flow, bookkeeping of design alternatives, automatic
documentation, coordination of team design, guidance for the inexperienced designer, and others.
No issue has been discarded a priori, and an attempt has been made to provide a framework in which
all these issues can find a natural setting.

VOV’s distinctive feature is that it does not attempt to lead the designers, telling them
what is legal and what is not. Instead, the system follows the designers and keeps a trace of their
activity. The trace is a graph that is used at once as the historical record of the design process, as
a representation of the dependencies among the design data and as an executable program to se-
quence and schedule the tools. The trace is built automatically and non-intrusively with information
generated by the tools at runtime. The server/client architecture used for the system is important o
support multi-uscr designs and distributed processing,.

The trace is the basis to provide many design management services: the consistency of the

design data can be monitored and maintained, the design flow can be automated, concurrent tasks

YOV is also the name of an Italian liguor similar to a mixture of eggnog and rum, consumed preferably hot, in acold
winter day, and appreciated for its reinvigorating gusto.

| Table of acronyms

ASIC | Application Specific IC

CAD | Computer Aided Design

IC Intcgrated Circuit

VLSI | Very Large Scale Integration

ADM | Automatic Design Manager/Management
DMS | Design Management Systcm

Table 1.1: Acronyms uscd in this dissertation.

can be coordinated, and novice designers can be guided. The trace also integrates the notion of
measurement on the design data, to providc other services such as tracking of design specifications
and performance cstimation.

Some issucs that arc often associated with design management are only indirectly ad-
dressed in this research. For example, there is no concern about management of human resources,
about how to kcep designers motivated and productive, how to schedule the work week, or how to
complete a project on Llime and on budget. Nevertheless, an ADM can have an indirect but signifi-
cant influence on these issues, if it makes the design activity faster, cheaper, and less frustrating.

The next Section contains some introductory comments on design and on the list of re-
quirements for an automatic design manager. Chapter 2 contains a survey of previous work in
design management. Chapter 3 contains a detailed description of the design trace and of its uscs.
Some implementation details are presented in Chapter 4, of interest to those who intend to imple-
ment their own trace-based design management system. Finally, the results obtained during the use
of VOV in real designs can be found in Chapter 5. Appendix A consists of a tutorial introduction
to VOV. A brief synopsis of the tools mentioned in the examples is found in Appendix B.

1.1 A characterization of electronic design

The services provided by an automatic design manager depend greatly on the interpreta-
tion given to the notion of design. The dictionary (the on-line Webster’s 7th Dictionary) suggests
that a design is “a mental project or scheme in which means to an end are laid down.” This is enough
to agree on the fact that design is the conjunction link between some goals and their satisfaction,

but it says nothing on how such a link is generated.

The goals of design are usually described as a set of constraints that must be satisfied si-

multancously. Some constraints define the desired behavior and functionality of the solution, while
others may be more domain specific. For example, in the design of an clectronic system, domain
specific constraints may be the minimum frequency of the operating clock, the maximum dissi-
patcd powcr, or the range of operating icmperaturcs. Some design problems are characterized by
the availability of a cost function that can be used to rank the proposed solutions by their estimated
cost. These design problems are referred to as optimization problems, because their goal is to find
a solution that minimizes the cost function.

The availability of complex and powerful CAD systems adds a new dimension to design.
Design is now more than just a scarch of a solution to a given set of constraints; it is also a scarch
for a methodology to produce such solution. The methodology should be automated, in the sense of
minimizing the manual intervention of the designers, and it should take full advantage of the power
of the tools. Contrast this with Bushnell’s specific definition of VLSI design [10]:

VLSI chip design is essentially a search process in the design space at the floorplanning

level, to find a floorplan that will lead to a correct and reasonably compact integrated

circuit layout. (page 48)
We believe that design is also a search in the “methodology space.” The designer has to describe
not only “what” he wants, but also “how” he is going to get it. In clectronic design this amounts to
choosing an appropriate scquence of tool invocations.

Complex designs are often partitioned into smaller designs, which in turn may still be
too complex and require further partitioning. This process adds a hierarchical structure to design.
Depending on the strategy used to traverse the hierarchy, one talks about different design styles: in
top-down design the focus is on how the constraints for the top-level problem are converted into
constraints for the subproblems, while in bottom-up design the subproblems are solved before the
top-level problem. It is also common to hear the loosely defined terms yo-yo design, and meet-in-
the-middle design, which prove that reality is always more complicated than we would like'it to be,
and requires some acrobalic balance between the two extremes of top-down and bottom-up design
styles.

Design need not be a linear process; instead, it is often itcrative, because many actions
need to be repeated to refine and optimize the design data, and tentative, because many alternatives
arc often explored [31].

Particularly stimulating and provoking is Sequin’s definition of design: “design equal
documentation” [45]. Documentation constitutes a fundamental aspect of design, especially in the

context of a company that wants to protect itself against the risk of secing large chunks of know-how

depart together with its transient designers. Equally important is the role played by documentation
in the context of tcam design, as a communication medium between the components of the team.
Designers, however, often perceive documentation as a distraction from their pursuit of the design
goals, and tend to avoid it; hence the need to provide tools to support automatic documentation of
the design process.

Design is the act of conceiving a plan with some purpose in mind. A plan is the final
product of design, not an input or a constraint. Thus, design is goal-directed more than it is plan-
directed. The designers are going to do whatever is necessary to achieve their goals. They can
adopt a predefined design methodology (a plan) as long as they are performing routine activities.
But if their design has some new or unique featurc that stresses the limitations of the existing design
methodology, the designers will not hesitate to change their course of action to achieve their goal.

During the design activity, a plan can be a useful resource but only a weak one. This
notion of a plan as a weak resource is borrowed from Alison Lee’s research on the use of the history
mcchanism as a means of support for human-computer interaction [35]. Lee’s attention is on short-
lcrm interactions, such as a session with a UNIX shell, such as csh. This type of interaction is found
o have two propertics: it is recurrent, because uscrs frequently repeat their actions, especially the
most recent onces, and it is situated, in the sensc that the actions are never planned in a strong sense
because the circumstances of the actions are never fully anticipated and are continuously changing.
Lec suggests that a history facility is the appropriatc resource to relate knowledge and action. Such

a facility consists of four components:

The collection component records past user-computer interactions into a history. The
presentation component displays the history. The selection/modification component
allows the user to copy (and possibly modify) a history item. The submission com-
ponent allows the user to use the selected history item in the context of the current
situation. ([35], page 4)

The history facility has many uses: it allows the reuse of an history item to reduce the
number of keystrokes; it offers navigation information by reporting to the user where they have been
and where they are, or reminders on the status of the system; it provides examples on how some
commands can be sequenced to achieved certain goals; it can be the foundation for some automation
services, such as macro facilities, automatic playback of command sequences, prediction of the next
user command. ‘

Computer aided design is also a form of human-computer interaction that, just like Lee’s

interactions, is repetitive and situated (goal directed). To be accurate, it should be pointed out that

computer aided design is a long-term intcraction and that it normally involves a team of designers,
but neither fact alfects the rolc of history as portrayed by Lee.

In the next chapter we show that there is a common thread that unifies most of the previous
work in design management, that is the focus on planning, expresscd by the attempt to capture the
complcxity of the design activity a-priori. VOV is the only ADM that focuses on the design history
as the fundamental vehicle of interaction with the designers.

Design is not always a creative process. Often design can reliably develop along a pre-
defined plan, following a well established routine. One such example taken from the Octrools is
the design of a standard-ccell circuit starting from its behavioral description: an effective method-
ology calls for the cxecution of three automatic tools, bdsyn, misII, and wolfe, with each tool
allowing just a fcw options to tunc its behavior to the specific circuit. This methodology can be
described in a UNIX script that captures the known capabilities of the tools and that makes them
rcadily available to the users. For a routine aclivity, a simple script can be a very effective design
managcment tool.

If design was purely routine, the design management problem would have been solved in
large part with existing techniques, such as scripts or other programs. The need for a more sophisti-
cated system cxists because, although a fraction however large of the design is normally routine, it
is the remaining fraction that is the most challenging one, the one the designers need most help with,
and the one that cannot be captured in an a-priori plan. Our experience with the Octrools confirms
that all designs have had some unique feature that required a special and innovative solution: a new
tool was nceded, or the capabilities of some tool had to be stretched, or new testing strategies had
to be invented. Unpredictability of the methodology is a characteristic of many designs.

Finally, we consider the role of computers in the design process, and in particular the ncw
opportunities offered by computers in terms of management of the design activity.

VLSI design is probably the most extensively computerized form of design. Almost all
the design information is stored in a computer memory, and most of the design activity consists
of the execution of computer programs. This extensive use of computers in VLSI design has two
notable consequences. First, it accentuates the iterative and tentative character of design by making
it casier for the designers to explore many alternatives. Second, it makes it possible to obtain a great
deal of data about the design process in a non-intrusive way, that is without disrupting the activity
of the designers. Intrusive systems that require the designers to explicitly record their decisions and
their actions, only add burden onto the designers and are often rejected.

One kind of information that can easily be collected is the design history. Computers

allow, in principle, the recording of cvery keystroke and mouse movement, as a way to capture the
complete history of a decsign. A more economical approach is to record all the tool invocations,
which is precisely what is captured by the design trace. The design history is an objective way to
document the design, because it records what has happenced, although it does not always record why
it has happened.

In conclusion, the design history is not only a candidate to provide many useful services,
as supported by Lee [35], but it is also easy to collect automatically. That is why the design history,

captured by the design trace, is the focus of this rescarch.

1.2 Requirements of an automatic design manager

An automatic dcsign manager is a layer of software that assists the designers in their
intcraction with complex CAD systems. In this section we present a list of requirements of an
ADM. The satisfaction of most or all of the itcms in the list is csscntial for the success of the ADM,
that is for its acccptance in the users’ community.

The lirst requirement is user friendliness, which requires an understanding of the users
of the system. There is a variety of categorics of potential uscrs, and each category has different
needs. Expert designers require a system that is powerful and non-intrusive, novice designers ask for
simplicity and a high degrec of automation, while project managers want to be able to exert control
over the design process. Friendliness also implies a good user interface, a robust implementation,
and a predictable behavior. Programmability of the user interface is important to give extensibility
and power to the system.

Some may contend that the first requirement for an ADM should be a clear model of
the design activity, complemented by a solid and effective set of algorithms that operate on the
model. Models and algorithms are fundamental, but they require experimental validation, which is
only possible with a strong user interface. Since an ADM is necessarily in close interaction with its
users, its success is more dependent upon its user interface rather than upon its fundamental model
or its algorithms. In fact, even good algorithmic solutions for design management can be made
completely useless by a poor user interface.

An ADM should be adaptable and allow all existing tools to be easily integrated, because
large and small corporations that may use the system wish to protect their current investment in
CAD tools. The tool set may change because of the introduction of ncw versions of some tools,

or of altogether new tools possibly coming from many different vendors, and the ADM should

cffortlessly allow such additions and changes.

As the tool sct may change, so may the design methodology. The ADM must continue to
assist the designers especially in the uncertain times in which the design methodology is cvolving.
Established design methodologies should also be supported, by offering a language to describe them
and a technique to apply them in a design. Support can take the form of non-intrusive advice, as
favored by cxpert designers, or of strict enforcement, as preferred by the project managers.

The most challenging requirement derives from the large sct of services that should be
provided by an ADM. The services [all into one of two categories: protection and automation. A
scrvice provides protection il it prevents or corrects crrors related to the consistency of the design
data. An important protection scrvice is the coordination of tcam design, or, more generally, the
coordination of concurrent activities. When many designers work on the same design, it is nec-
cssary to coordinate the efforts of cach person in the tcam to avoid conflicts, duplication of effort,
or waste of time. Coordination of tcam design is casily achicved by a locking mechanism that gives
privileged access 1o some design data or resources to one designer at atime. The locking mechanism
is conceptually simple, and its effectivencss depends on its granularity.

Another protection scrvice is consistency maintenance, which is based upon the notion
of dependency among the design data. For example, the extracted view of a circuit is normally
derived from the layout vicw, and therefore it depends uponit. If the layout is modified, the extracted
view is no longer up-to-date and must be regenerated. The ADM should recognize dependencies
between objects, it should detect when consistency is lost and it should be able to perform the
appropriate actions to recover consistency.

A related service is the bookkeeping of the design data. For each piece of data, we want
to know how it has been obtained and whether it is refcrenced in other parts of the design. CAD
systems compound the bookkeeping problem, because they allow the exploration of many design
alternatives, leading to an inflation in the number of pieces of data that have to be managed.

All the protection services arec made more difficult by the heterogeneity of the design data.
Data are often stored in different databascs and accessed using different procedures. In the Octtools
for example, there is a coexistence of facets, which are the storage unit in the database OCT, and
UNIX files, cither executables or data files. An ADM should not make assumptions about databases.

The basic automation service is the automation of the design flow, that is the automatic
scquencing, scheduling and execution of CAD tools. The ADM should know how to invoke each
tools, taking care of all the options and of all the input and output data. Upon completion, it should

check whether the tool was successful. The value of an ADM can be increased by some job con-

trol capabilitics such as the dispatching of jobs to various machines on a local network, and the
possibility of terminating jobs that arc taking “too long,” maybe because they are stuck in infinite

loops.

There should be no need to stress the importance of documentation of the design pro-
cess, but this service is oficn overlooked. The ADM should maintain a detailed history of the design,
by keeping track of what has been done, by whom, and when. The system should also allow free

annotation of the design.

Another scrvice is assistance to novice designers, whercby the ADM guides the inex-
perienced user through the CAD system and offers advice on what to do next to achieve a design

goal, or on how to fix a problem.

Design estimation is the capability of predicting the outcome of a design methodology
without actually running the tools; it is an important component in design decision support, for
cxample because it can help the designers choose one methodology instead of another. Estimation
providcs tentative answers Lo questions about the performance of some tools, such as how fast will
this chip be if I use this tool?, or about the design process itself as in how long will it take to route
this chip? Any estimation is a difficult task in itself and is best performed by specialized tools. An
ADM should however recognize the importance of cstimation in design, and it should be able to

provide the estimation tools with the information they nced.

The verification of design specifications is an cssential clement in the design activity,
because it determines whether the design goals have been achieved and therefore whether the design

activity can been terminated.

Upon completion, a design is normally archived so that it can be recalled ata later time.
Archiving can be expensive; it requires the storage of all the design data and of all versions of the
tools used in the design, and possibly even of a copy of the current operating system, as a form
of protection against software evolution that arc not backward-compatible. It is the ADM’s job to
indicate which data and which tools should be archived.

Finally, there is the important problem of coping with complexity: CAD systems may
consist of more than a hundred tools, and some designs may produce many thousands of design
objects. An ADM should be aware of this complexity and be efficient and responsive when dealing
with very large designs.

10

1.3 Background on the Octtools

This rescarch is based in large part on a CAD system developed at UC Berkeley and
known as the Octzools. University soltware has some characteristics that make it a tough challenge
for an automatic dcsign manager, much tougher than the challenge represented by other industrial
systems. University software is, first of all, the product of innovative research; its development
often terminatcs once the rescarch contributions have been made. Only occasionally the software
is engincered and supportcd in order to provide an cnabling platform for new research, or for edu-
cational purposcs. University software tends to be relatively fragile, unsupported, undocumented,
and rapidly changing, if comparcd with industrial strength systems. A design manager that suc-
cessfully confronts all these difficulties in an imperfect CAD system, should stand a good chance
in the world of commercial CAD systems.

Despite the historical symbiosis between VOV and Octools, it should be emphasized that
there is no dependency of onc on the other and that the concepts in VOV are also applicable outside
Octtools.

The next section is a brief introduction to the Octtools; it is included because some fa-
miliarity with this CAD system is useful to understand both the examples used in this thesis and
VOV’s implcmentation.

1.3.1 The Octtools

The Octtools are a set of loosely connected tools that operate with OCT, a system for data
representation and storage management. [27]. OCT features a simple procedural interface and a
general cntity-relationship based data model that captures the information commonly used for the
design of VLSI chips. Although OCT is not truly object-oricnted in the C++ sense [48], it relies on
the concept of data objects and relationships among them to represent the design. OCT objects have
a type and a set of type specific attributes. The following objects are the most commonly used by

the Octtools:

Facets: the facet is the fundamental unit for storing and manipulating design data in OCT. It has
threc main attributes called cell, view and facet. The cell represents the name of
the design object described by the facet, for example it could be “2-INPUT-NAND”, A cell
can have many views to describe various aspects of it. For example the *“physical” view

can be used to describe the geometric layout of the cell, while the “logic” view describes

11

its logic behavior. A vicw can have scveral facets, which arc different represcntations of
the view. The Octtools use only two facets: the “contents” facet, which contains the actual
dcfinition of the view, and the “interface” facet, which contains an abstraction of the view. It
is convention to refer to OCT facets with the notation cell:view: facet, although often

the last attribute is not mentioned and we just say cell:view.

Instances: facels can be instantiated within other facets using the instance object. The instantiated

facet is called the master of the instance.

Terminals and nets: thesc objects are used to represent connectivity information. A terminal rep-
rcsents a conncction point for facets and instances, a net represents a connection between

terminals.

Layers, Boxes, Paths and Polygons: these gcometric objects are used to described the physical

layout of a cell.

Bags and Properties: bags arc usecd to group objccts, properties to annotate them.

OcT supports the relationship “contains’ and “is contained by,” represented by a directed,
unnamed arc. Forexample, in Figure 1.1 the net*“X” is contained by the facet buf fer : logic:contents
and contains two terminals.

In order to allow flexibility of the data manager with respect to evolving needs in the
design methodologies, OCT provides only a set of general mechanisms to allow creation, editing
and retrieval of objects. This mechanism is independent of any particular design methodology or
representation. Several policies of use have been choscn to specify how the mechanisms are to be
used [32]. Adherence to these policies is the condition under which all of the Octtools can work on
each other’s output. This is the key to the success of the system.

VEM is the users’ main channel of interaction with OCT because it provides the capability
to view graphically and cdit OCT facets. It also supports a remote procedure call protocol (RPC)
that enables other OCT applications to register commands that can be invoked from within VEM.

A major feature of the Octtools is the capability to synthesize layout starting from a high
level description of a combinational logic cell. The bchavior of the cell is described using the
language BDS. The program bdsyn translates the BDS description into a multi-level network of
logic gates, stored in an ASCII format called BLIF. The program misII is used to optimize the

BLIF description to minimize the area or the delay through the network. Depending upon the

12

FACET | buffer:logic:contents | | inv:logic:contents |
FORMAL TERM ‘i—l out
NET
INSTANCE
ACTUAL TERM
PROPERTIES LOGICFUNCTION} LOGICFUNCTION

O=I out=‘in

Figure 1.1: A buffcr can be built as a chain of two inverters. The OCT objects that describe the
buffer arc shown here. The inverter is represented by the graph on the right: there are two terminals
attached to the lacet, and the output terminal contains a property that describes the logic behavior of
the inverter. The graph on the Icft represents the buffer. The net “X” connects the output terminal

of the first inverter to the input terminal of the second.

desired design style, misII will perform a technology mapping of the logic network. For example,
if a standard cell circuit is desired, then misIT will use a description of a standafd cell library to
implement the logic network using the gates available in that library. A netlist of standard cells
produced by misII can be placed and routed with wolfe. Alternatively, misII can map the
logic network into a more restricted library of gates that are implemented with GEM, a gate-matrix

module generator. A PLA can be obtained directly from a BDS description using octpla.

The logic simulator musa is a multi-level simulator of combinational and sequential cir-
cuits. It performs switch-level simulation and also understands higher level models, such as buffers,
RAM’s and various types of latches. The typical usage of musa requires the preparation of a sim-

ulation script containing the commands to be executed as well as the tests that have to be verified.

The Octtools emphasize symbolic layout, which allows the specification of the topology
of the cell to be decoupled from concemns about low level design rules. These concems are resolved
by the compactor sparcs, a tool that spaces the layout to minimize the area of the cell while

respecting all the layout rules.

13

A subsystem called Mosaico is available to place and route macro-cell chips. A pad
frame is built with padplace, and the core of the chip is placed using puppy, a program bascd
on Simulated Anncaling. Once a satisfying placement is obtained, Mosaico routes the chip by in-
voking a scquence of tools to perform channel definition, global routing, two-layer detailed routing,

and via minimization. The rcsulting symbolic layout is finally processcd by the compacior.

1.3.2 Brief history of VOV and the Ocrrools

In Berkeley, the Octtools arc the third generation integration environment, built upon the
cxpericnee gained with Ruby [19] in 1981-1982 and Squid [32] in 1982-1984. OCT, a revision
of the Squid architecture, was available in prototype form in early 1986. The development of the
OcT-based tools started in carnest in the spring semester of 1986, and proceeded at an intense pace
for about two years. In the Spring of 1988, the tools were introduced ina VLSI design class at UC
Berkeley, then taught by Prof. Randy Katz. This first semester was particularly hard on the students,
because the tools were fragile and not sufficiently tested. As the tools became more robust in the
course of the following semesters, more fundamental problems started to emerge, problems related
10 the interaction of the students with the tool sct as a whole: students were oblivious of some tools,
they did not scem to learn how to usc some common and powerful options, they were forgetting
to run the tools in the right sequence and they were destroying each other’s data when trying to
cooperate on the same project.

As a teaching assistant in the second semester in which the tools were used in the class,
the writer had a direct relationship with the students and came to understand their difficulties. Also,
as an author or coauthor of several of the tools that were being used (¢.g. musa and the Mosaico
set), the writer was well aware of how much potential was not being used, of how much cffort is
required to write CAD tools, of the extreme variability of user interfaces offered by the tools.

In Fall 88, we prepared some hand drawn “roadmaps,” such as the one shown in Figure
1.2, to help the students understand the the design flow. These roadmaps were bipartite directed
graphs, with nodes representing cither data or tools. The students found this representation very
useful and asked for more roadmaps. In January 1989 the development work on VOV began, as a
way to automate the roadmaps. In the Spring semester 1990, VOV was introduced in an advanced
graduate course on VLSI design, taught by Prof. John Wawrzynek. The eight students in the
class cooperated in a design of a large chip for music generation called BRIC. VOV was used in

conjunction with a large set of tools, including the Octtools, some commercial software such as

14

odret oadpiace -1

}n::‘.p:.:.‘sul Iulu:ioqic l alu.pads |

nadplace =D t vi

|alu: logic

alu.pads I

octflatten

alu:flat |

Ialu:miniml

~h

l:lu:wnl(c?l Ialu:wolfell

Figure 1.2: Roadmaps such as this are the precursors of the design trace.

Verilog, and some new tools especially written to address some of the peculiar problems in BRIC.
The designers of BRIC provided a number of encouraging comments and suggestions on how to
improve the uscr interfacc.

As the design of BRIC was proceeding, and the first fecdback from real users was coming
in, the VOV assistant took form. The first use of the assistant in a class was in the Fall 90, in
an introductory graduate class on VLSI design. Once again, this class was taught by Prof. John

Wawrzynek. The results of these experiments are reported in the Chapter S.

Chapter 2

Previous Work

Electronic design management is a young discipline and still lacks a precise identity. It is
also a broad disciplinc, including many issucs rclevant to other more specialized disciplines such as
opcrating systems, data management, systcm modeling, office automation and user interfaces. The
carlicst work that can be considered specific 10 design management was published around 1985-86
(4, 16, 11, 30, 33], while the roots can be traced back Lo studies on system modeling, data-flows
and Petri ncts, in the scventies and before. Work in the neighboring field of office automation goes
back to the latc scventics, but it is only marginally relevant because of the substantial difference
between office routine and design.

In the carly cighties CAD researchers in Berkeley [41, 45] forecast the need to move
beyond tool development and onto design management. Butit was not until later in the decade, after
the realization of complex CAD systems, that the necd for design management became concrete
and pressing, and researchers could move from abstract speculations on design management to
proposals for practical engineering solutions. In Berkelcy, the Octtools have played a key role in
making this research possible. The system proposed hcre can be seen as a modern descendent of
the make . chip utility first reported by Berkeley rescarchers in 1981 [41].

In this chapter, the contributions of previous work and the current trends in design automa-
tion are reviewed. This survey tries to avoid the tedium of a chronological exposition, preferring
instcad to present a few *“cross sections” of the relevant literature, with each cross section looking
at a particular issue in design management. The first and most substantial cross section looks at the
fundamental problem of representation of the design activity. The second compares the intrusive-
ness of the proposed systems, the third analyzes the possibility of a taxonomy of design tools and

design data. The trend towards the use of artificial intelligence techniques and some relevant issues

15

16

in data management are cach given a scction. Finally some commcrcial systems are looked at.

2.1 Representation of the design activity

The choice of a model for the representation of the design activity is a central issuc in
design management. With great generality, a CAD system can be thought of as a system of asyn-
chronous concurrent processes, and the design aclivity can be thought of as the interaction between
the designers and thosc processes. In this section we review the many models that have been pro-
poscd.

A preliminary key to interpret the various models can be found in an carly study in the
context of office automation. In [53] Zisman analyzcs three models for asynchronous concurrent
processcs: finile state machines, partial orderings, and Petri nets. He finds that finite state machines
arc inadequate, because if the processes can be performed in any order the number of states grows
cxponentially with the number of processes. Partial orderings also lack modeling power due to
inability to cxpress the possibility that tasks should be performed one at a time but in any order.
Zisman concludes that only Petri ncts have sufficicnt modeling power and that both FSM and partial
ordcrings are nothing clse but restricted forms of Petri nets.

In electronic design, a consensus seems to be emerging towards the use of bipartite graphs
or of Petri nets to describe the CAD transactions and their inputs and outputs [3, 34, 6, 13, 39, 49,
but other models have also been proposed.

We propose a classification that separatcs the models that are specific to VLSI design
from those that are more generally applicable to other forms of design. In the second class we find
models based on directed graphs, others based on bipartite graphs, state machine models, and the

blackboard model. Finally, a mention is given to those systems that evade this simple classification.

2.1.1 Ad-hoc models for VLSI design

Since its conception [20], Gajski’s Y-chart model of the design activity in VLSI has been
accepted with favor [21]. The Y-chart is not properly a model for asynchronous concurrent pro-
cesses, but it has been used as a conceptual foundation to build such models. In the Y-chart, shown
in Figure 2.1, three semiaxes in a plane represent all the possible states of definition of a VLSI
system during the design process. The behavioral axis represents the degree of dcfinition of the

behavior of the circuit. The closer to the origin a point lies along this axis, the more completc the

17

structural axis behavioral axis

y
physical axis

Figurc 2.1: The Y-chart: a model for conceptual understanding of VLSI design, sometimes used

also for design management.

bchavioral represcntation. Similarly, the structural axis and the physical axis represent the degree of
definition of the components used in the system and of their physical implementation. The design
process is represented as a trajectory in the plane, moving from one axis to another and spiraling
towards the origin, the point that represents the complete specification of behavior, structure and
physical implementation of the system, and thercfore the termination of the design process. The
Y-chart has been used to compare qualitatively the performance and operation of various CAD
systems and silicon compilers [9, 21].

Although not always explicitly, some management systems are based on the Y-chart and
stress the importance of the trichotomy of design into behavioral, structural and physical domain.
One example is Zimmerman’s Playout [52, 46]. In Playout, the design flow is rigidly structured,
because the system supports only a particular style of top-down design, on the assumption that such
style leads to better designs and to fewer design iterations. CAD tools are grouped into six toolboxes,
one for each step in the design flow: schematic entry, repartitioning, shape function generation (a
step unique to Playout), chip planning, cell synthesis, and chip assembly. A central data manager
provides permanent storage and supports communication between toolboxes, but cach toolbox also
has its own special data structures that are shared by all the tools in the toolbox. Each toolbox is a
scparate unit, typically a single UNIX process; it has its own controller, whose role is not clear, and

its own user interface. A separate agent, the Design Manager, keeps track of the design process and

18

DOEMA

i
Systom | / % I
manager ' ’/‘ xperl .
' \ Assistant |
R F — | e '

] Design 003 (lol){ Design OBJ(»IJ

i 6“1\ Denlgn Engins = - -
| L i
o Ll
| | — |

: ; ; transformation || verification ! Jation | [Test consideration |
l TR - -

‘1 nlct!m - Deslgn o8y () I Test data]

| — -

Do

Figurc 2.2: The DOEMA model.

dirccts the database managcer.

The design flow is described by a bipartite directed graph, but the system internally does
not use the graph. Some nodes inthe graph represent the toolboxes, other nodes represent data types,
which arc cither used or generated by the toolboxes. The graph is partitioned into three domains,
bechavioral, structural or physical. The toolboxes that span a domain boundary (e.g. behavior to
structure) are those that perform a synthesis step. It is not clear if the graph represents the design
history or if it is just a plan of how a design should be done. The notion of iteration, represented
by cycles in the graph, is not clear. Parallel arcs represent alternatives, but there is no distinction
between compatible or exclusive altemnatives. Playout deserves attention more as a platform for tool
intcgration and for the tools in its toolboxes than for its contribution to a conceptual understanding
of VLSI design.

Another example of a speculative system is the conceptual framework for ASIC design
proposed by Leung et al. [36]. Leung’s goal is to bridge the gap between VLSI designers and
VLSI technology, especially in ASIC design. Design is seen as a decision making process, which
lies somewhere in the gray area between “Art” and “Science,” between “creation” and “mechanical
transformation.” Modern CAD systems, Leung says, should first of all offer support for this decision

making process.

The proposed unified conceptual model for ASIC design is shown in Figure 2.2. Itis called
DOEMLA, as in Design Object, Design Engine, System Manager and cxpert Assistant, and it does

19

not mect many of the requirements for an ADM, most of which are also listed in [36]: simplicity,
completeness, compatibility with existing tools, fiexibility, case of use. The model consists of three
major units: the design engine, the system manager and the expert assistant. The design engine
operates uniformly on all design object at all levels of abstraction. The main purpose of the engine
is to invoke the appropriate tool to transform an abstraction of a design object into another more
detailed abstraction. The cnginc also takes care of verification, simulation and testing. The system
manager provides an intcgrated environment in which the engine operates, offering services such
as tool management, data management and interfacing with the operating system, but the authors
of [36] do not claborate on the dctails of how such an cnvironment could be implemented. The
function of the expert assistant is to make the designer aware of all the possible alternatives, to both
cnable and help the decision making process. The assistant is an expert system based on two types
of knowledge: one to determine the available alternatives and one to determine when alternatives
should be considered.

DOEMA sounds like a designer’s wish list: it would be nice to have a a set of tools that
operate uniformly at all levels of abstraction, a smart assistant and a versatile system manager.
However, there is little or no indication that tool sets are about to become so well structured, and
the claims about simplicity and versatility of the proposed model are not supported by any data.
The DOEMA is a weak conceptual model of the design activity, and is of little use in the context
of modemn VLSI design.

Another system that emphasizes the decision making process in design is Yoda, by Dewey
and Director [18). The observation that early design decisions are the most important in terms of
the performance of the final chip, leads Dewey to the notion of Conceptual Design, that is “the pro-
cess of analyzing the outcome of alternative design decisions and their ramifications before actually
undertaking specific design and fabrication steps.” Conceptual design replaces the expensive trial-
and-error approach of traditional design; its final product is a design plan, which is a set of design
decisions, each consisting of a choice of one of the possible design options for each of the rele-
vant design issues. Design decisions are related to each other by a set of ordering and consistency
constraints. The designer is assisted in the decision process by a set of performance predictors and
by advice generated by a rule-based cxpert system. Yoda is a particular instance of the proposed
system for support of conceptual design, specialized to the design of digital filters, and it appears 10
be successful in its restricted domain. The generalization of Yoda to other forms of design appears
to be difficult because of the challenges associated with the acquisition of the knowledge base and
with the development of accurate prediction models.

20

2.1.2 General models for design activity

In this scction we review some of the models that, although in large part originated in the
context of VLSI design, do not rely on any specific characteristic of VLSI design, except perhaps
the fact that it is already automated to a large extent. We review four types of models of the design
flow. Two represent the design flow cxplicitly using either a directed graph or a bipartite directed
graph. The others represent the flow implicitly, and they are the blackboard model and a state

machinc modecl.

Directed graphs

Knapp (33| rcported some of the earliest works on VLSI design to give importance not
only to the data but also to the operations of tools on the data. Knapp proposes the use of a bipartite
acyclic dirccied graph for the representation of the circuits to be designed (the data), while the
lool flow is represented by a simple directed graph, called plan; the nodes in the plan represent
abstract design states while the arcs rcpresent abstract operators. A design state consists of a set
of asscrtions on the design, while an opcrator describes operations on the design state. An operator
O is described by five entities,

O = {F.E,Pre. Add, Del}

where F is the executable code of the operator, E is a set of estimators for the operator, Pre is
the set of assertions that must be true in order 10 allow the operator to execute, Add is the set of
the assertions that become true upon execution of the operator and Del the set of assertions that
become false. For example, the plan to produce a standard cell implementation of a combinational
logic circuit starting from a set of logic equations consists of three nodes and two arcs, as shown in
Figure 2.3. The first arc represent the logic minimizer, which requires the existence of a set of logic
equation (precondition) to produce a set of 2-level logic equations (postcondition). The new state
after the execution of the minimizer is described by the simultaneous existence of the initial logic
cquations and the new two-level form. The second arc represents the layout tool, which requires
the cxistence of the two-level logic equations, an assertion that is true for the intermediate state in
Figure 2.3, to produce a new state characterized by the existence of a standard-cell layout.

Knapp is aware of the difficulties related to the development of exact and complete de-
scriptions of what each program does and favors instead a simpler description of the behavior of

cach operator based on the preconditions Pre, and of the postconditions 4Add and Del. The design

21

logic minimizer layout tool
[> @ > 0
Log.Eq Log.Eq Log.Eq
2-Level Eq. 2-Level Eq.

Std-Cell Layout

Figurc 2.3: A plan produced by thc DPE to transform a set of logic equations into standard-cell
layout is represented by a directed graph in which nodes represent design states and arcs represent

operators.

flow rcpresentation is both an cxccutable plan and a design history; it is created as a plan, and it
progressively becomes history as cach tool is run. A Design Planning Engine uses artificial in-
telligence techniques to build a design plan tailored to cach specific design. Such engine requires
information provided by estimators that predict the performance of the various operators. These es-
timators need not be particularly accurate, but they should be at least monotonic, which means that
for any given set of designs, the predictions should yield the same ordering as the corresponding
actual performance mcasures.

One limitation of this model is that the notion of multiple inputs and outputs from a tool is
not captured graphically, but through an overloading of the meaning of design state as an arbitrarily
complex sct of assertions. This can also lead to an ¢xponential explosion in the number of states
required to describe even simple notions, such as the cxistence of design objects. Consider a set
of n design objects, each of which may or may not exist, independently from all the others. The
assertion that an object exists can be either true or false, and the number of distinct states required
to describe the existence of all objects is therefore 2",

Knapp’s monolithic view of the design activity represents a case of premature pursuit of a
totally automatic design system. His results are scarce, because the system requires idealized tools
such as the “almost monotonic” predictors of the performance for each tool.

In contrast with Knapp’s proposal, the Methodology Management System (MMS) devel-
oped at MCC [3] inverts the roles of nodes and arcs in the dirccted graph describing the design
flow. In the MMS, nodes represent tools and arcs represent dependencies between tools. In most

cases, a dependency represents a file that is created by a tool and used by another tool. In general,

22

(deftool bdsyn (bds-file blif-file &optional collapse)
(version 1.1)
(tool-name "bdsyn") ;actual name of executable
(doc "Behavioral synthesis tool. See 'man bdsyn’")

(args
;<value> <default> <description> <label> <use-flag>
(nil nil "do not clean-up evaluation™ "-b" nil)
((format nil "-c~A" collapse) nil "how much collapse to do"™ nil nil)
(nil nil "suppress vector notation for one-bit values"™ "-o" nil)
(nil nil "print table of non-assigned variables" "-n" nil)
(nil nil "change SELECTALL’s to SELECT’s" "-s" nil)
(nil nil "provide periodic updates of progress™ "-u" nil)
(nil nil "assign ‘dont cares’ to zero" "-z" nil)

)

(input-file bds-file nil "BDS file to be translated™ " ")
(output-file blif-file nil "BLIF format file™ ">")

Figure 2.4: Examplc of Process-Tool definition in the MCC’s MMS.

howcver, an arc can represent any abstract form of temporal dependency between two tools. Time-
stamps are associated with cach node and each arc in the graph. As shown in Figure 2.4, the graph
is represented implicitly using LISP functions, with a LISP function associated with every tool in
the tool set. Complex tasks can also be represented with LISP functions that combine various tools
together. A scparate tracing mechanism generates a textual log of the design activity, which is used

only for documentation, and not, for example, to enable the replay of tasks.

By operating in a LISP environment, MMS can be extended and tailored to satisfy the
particular nceds of each design. But the need to maintain a detailed LISP description of the behavior
of each tool opens the door to problems in the maintenance of the system. Compare, for example,
the MMS description of the tool bdsyn shown in Figure 2.4 to the usage message produced by the
tool itself and shown in Figure 2.5. The MMS description is a redundant repetition of information
already casily available from the tool. It is also incomplete, because it does not mention the options
-d and -e nor the legal arguments for the option -c, and it is slightly inaccurate, because it changes
the meaning of the option =b. These are only minor flaws in the encapsulation of one tool, bdsyn,
but imagine repeating the comparison for tens of tools and then remember that the tools are often
changing; the result is a complex problem of consistency maintenance, between what the tools
really do and what the MMS thinks they can do.

23

bdsyn [-bcdenosuz] [(filename]
-b Turn off internal minimizing
-c [n] Specify less collapsing of logic
0 No collapsing
1 Local collapsing only

-d Give a dump of tokens during the parsing
-e [n] Specify execution level (0 ,..., 13)

0 PARSE only 1 then dump

2 through FOR 3 then dump

4 through EVAL 5 then dump

6 through LEAVE 7 then dump

8 through VERSION 9 then dump

10 through CLEANUP 11 then dump

12 through LIF 13 then dump
-n Give information about unspecified variables
-0 Omit the trailing <0> for l-bit variables
-s Map all SELECTALL’s to SELECT’s
-u Give updates as to progress of execution
-z Set DONT_CARE’s equal to zero

Figure 2.5: The usage message produced by the tool bds yn is more detailed than the MMS Process-
Tool definition.

A modecl that bridges the gap between directed graphs and bipartite directed graphs is
described in the Task Manager by Chiueh, Katz and King [15]. Once again, an acyclic directed
graph is used, but this time the nodes in the graph are complex entities with many ports. Each
node represents a task and its ports represent the input and output data of the task. The ports are
characterized by a number of attributes that specify, for example, the type of data and whether it is
required or optional. Directed arcs connect an output of a task to an input of another task, as shown
in Figure 2.6, so that complex tasks can be built by combining elcmentary tasks in a hierarchical
fashion. This model fits in a four-layered scheme in which the entire design process is seen as
consisting of several design activities, which arc in turn composcd by design tasks, which arc a

sequence of tool invocations.

Chiuch et. al. [15] embrace the notion that design is unpredictable, that it cannot be
planned a-priori, but they do not carry this notion to its full cxtent. In fact, they restrict the unpre-
dictability only at the level of a design activity, while they claim that design tasks can be planned.
Within a task, the system knows at any time which tools can be invoked. The listof legal transaction
is presented to the designer who chooses the one Lo perform next. The invocation of an unexpected

tool within a task is possible, but it causes the system to react with a warning to the designer, al-

24

inl ol '—J ol X

tooll tool?2

in2 02 R in o2 —_]

Optional input and output

N
& Required input and output

Figurc 2.6: A nodc in the Task Manager is a complex entity, with one port for each input and output.

Complex tasks can be described hicrarchically by using arcs to join outputs of a subtask to the inputs
of other subtasks.

though no other record of the exception is maintained. To support the design activities, the system
maintains the Activity History, a possibly branching sequence of history records, each logging the

invocation of a task and its inputs and outputs.

Within an activity, backtracking is provided by thc possibility of storing design points,
which are esscntially copics of all the data that is relevant to an activity at a particular point in time.
If the designer performs a task, and then decides to invalidate it, he can backtrack by asking the
system Lo recover any of the previous design points. Although conceptually viable, this technique
can become prohibitively expensive unless it is complecmented by a sophisticated mechanism to
reduce the redundancy in the storage of two adjacent design points, but there is no concern. for this

problem in [15].

The Task Manager, if implementcd, could be vulnerable to the problem of using multiple
representations for the design tasks: while the user interacts with the system by means of a graphical
representations of the tasks, the system itself operates internally on LISP-like expressions. Multi-
ple representations must be kept consistent and for complex CAD systems this might bccome an
unwieldy job. Furthermore, there is the problem, alrecady mentioned in the case of MCC’s MMS,

of keeping the task descriptions up-to-date with the tool set.

25

Bipartite directed graphs

The usc of a bipartitc graph to represent a design flow has been proposed by many inde-
pendent rescarchers. [n many cases the bipartite graph is an cxtension to the Petri nct model.

Since their first appcarance in 1962, in Carl Adam Petri’s dissertation, Petri nets have been
uscd cxtensively to model systems that exhibit asynchronous and concurrent activitics. Many ex-
amples of such uses can be found in the cxcellent tutorial by Tadao Murata in the IEEE Proccedings
[40].

Following Di Janni {30], a marked Petri net P.V is defined as a set of five entities:

PN ={P.T.1.O.M}
where

P = {p1.p2....pn} isafinitc set of places

T = {t;.t7..... t,n} isa linite set of transitions

I:T— P> is the input function
O0:T— P> is the output function

M:P— {0.1.2.3,...} isthe marking function

The places in a Petri net are conventionally used to represent data. The transitions repre-
sent operations on the data. The directed arcs represent the relations of inputs and outputs between
data and operations. The marking function represents the number of tokens associated with each
place, and A/(p) = k means that place p holds k tokens. The number of tokens in a place is normally
interpreted as the availability of that number of the item associated with that place.

The behavior of a Petri net is characierized in large part by its firing rule. A transition t is
said to be enabled if all of its input places contain at least onc token. Only enabled transitions can
fire, but the actual firing is determined by external factors not necessarily represented by the net. If
a transition fires, one token is removed from each of the input places and one token is added to cach
of the output places. Situations of conflict arise whenever the firing of a transition disables another
transition. If more than one transition is enabled, it is undetermined which one will fire first, but
certainly one will fire before all the others, because simultaneous firings are not allowed.

Theoreticians have studied many behavioral properties of Petri nets, such as reachability

of a marking from an initial marking, boundedness of the number of tokens held by places, and

26

Figurc 2.7: Example of a Petri nct. Both transitions (2 and t3 are enabled. If (2 fires, (3 is disabled,
and t1 becomes enabled. If 3 fires first, 12 becomes disabled. This net is not live because all

cvolutions Icad to a marking with one or two tokens on p4 and no cnabled transition.

liveness of a transition, that is the existence of a firing sequence that enables the transition. These
propertics have found no uscful interpretation when Petri nets have been applied in the domain of
design management, a circumstantial evidence that the Petri net formalism is perhaps more than
nccessary for design management purposes. An example of a Petri net is shown in Figure 2.7.
The first usc of Petri nets in design management is found in the system Monitor by Di
Janni [30] which is based on an extended Petri net with disabled transitions (DTPN) and with a
special marking function. As usual, places rcpresent liles and transitions represent CAD tools. A

DTPN is formally defined as a sct of seven entities:
DTPN = (P,T.I,0.D, M. .F)
where P.T.I and O are the same as in a marked Petri net and

M:P— {-3.-2,-1,0,1.2,3} isthe marking function
D:T — T* isthe disabling function
F:T - B={TRUE,FALSE} is the firing function

The marking function has an unusual range, the integers between —3 and 3, instead of the
sct of nonnegative integers. The notion of negative marking was introduced in Monitor to denote
obsolcte objects. The other markings represent possible conditions of the files: 0 = non existent,
1 = provisional, 2 = final, 3 = confirned. The disabling function maps transitions into bags of

transitions. This could be represented by sets of arcs each incident on two transition nodes, thus

27

voiding the bipartitc property of the graph. Di Janni, however, chose not to represent D explicitly
in the nct.

The firing rule uscd in Monitor is the following: transition t; may fire if the marking of
all inputs p; of t; is greater than the number of arcs from the place to the transition, and if F(t ;) is
TRUE:

Vpi € P.(M(pi) > #(pi. I(t;))) A Flt;)

where the symbol #(.:. B) is read as “the number of occurrences of « in the bag B.”
The new marking M’ after transition ¢, has fired is given by these rules!:

’ M(p;) if#(p;.0O(t;)) =0
M (1),’) =
#(pi. O(t;)) if#(pi, O(t5)) >0

F(t;) if#t;,D(t;))=0
F'(t;)=q FALSE if#(¢.D(t;)) =1
TRUE if#(t;.D(t;)) > 1

In words, the marking of an output place after cxecution of a transition depends on the number of
arcs going from the transitions into the place. The net does not consume the tokens in the input
places, as cxpressed by the fact that the marking of an input place is not affected by the firing of a
transition. The disabling function D is designed to disable the tools that would overwrite the files
that have already been created by other tools, but it can also be used for the opposite purpose of
enabling some transitions.

Monitor has the notion of consistency of the design data and knows how to react when
consistency is lost, for example when a disabled transition is forcefully fired by the user. Parallel
paths represent alternative methods to obtain a particular piece of data. The choice of one path
disables all others. The designer interacts directly with the net which appears in a window on the
screen. An intelligent color coding scheme informs the designer on which transitions are enabled,
by making them appear green, while disabled transitions appear red. The designer can always force
the execution of transitions, even the disabled ones, but cannot change the topology of the net. The
interface towards the tools is simplified to the point that the input is just the name of the working
cell and the output is just a termination code.

Monitor has many innovative feature but it has a simplistic tool interface, it lacks explicit

alternative management and it provides no way to maintain a history of the design. The operation

"The equation for F" is a corrected version of the one in [30]

optional data

optional result

Figurc 2.8: The basic primitives used by decol in the program environment templates.

of the system witha multiplc cell design or with a hierarchical design is also not clcar. Monitor has
other weaknesses as an ADM, such as the rigidity of the Petri net, which cannot be changed by the
designer, the monolithic architecture and the single-user interface.

Kozminski at the Microclectronics Center in North Carolina (MCNC) {34] has proposed a
bipartitc graph to represent program environment templates, cach representing the set of all possible
input/output relationships between a program and its data files. The system is called decol, for
Design Control Language. The primitive cntitics used in the tcmplates are shown in Figure 2.8.
These templates, entered in textual format, provide a rich set of functions. For example, they can
be used to rename program options so as to make them consistent with system-wide conventions,
to rcname input and output files, to define the rules that construct the command line, and to specify
simple actions to perform before and after the execution of the program, although the notion of
simple action is not well defined. The templates can also express complex interactions among
different programs, such as the condition that the input of a program must be procecssed with a
particular option by another program.

All the program templates are linked together in a data flow template that represents all
possible interactions and data flow paths in the given design system. During a design, decol
inspects the file system to look for files that match the characieristics of nodes in the data flow
template. If more than one match is found for the same node, the data flow templatc is augmented
with a new copy of that node and of some of the adjacent nodes, but the details of the augmentations
arc not clear. The file system is inspccted again after the execution of any program. Since no details

are given on the way this inspection is actually performed, it is fair 10 suspect that in the case of

29

large file systems, and for large designs, this inspection could be very cxpensive.

Scveral other constructs are available in deco1l, but they are scparated from the program
environment templatcs. For example, goals are groups of data files rcpresenting an objective that
the user wants to achieve, routes arc paths in the data flow template, selectors cnable decol to
choose one of several alicrnative subdesigns by some criteria that rank the quality of the alternatives,
overrides modify the default behavior of a program, comparators compare different revisions of
data files. Support for versioning is provided through an interface to the UNIX Revision Control
System RCS.

By checking timestamps in the files, decol emulates the capabilitics of the UNIX utility
make. Some hcuristics allow decol to bypass the exccution of a program if it is unlikely that
the output of the program will be different from what is already stored in the file system. This is
attractive for the savings in processing time, but it is also an imprudent design practice, because it
rclics on weak heuristics to guarantce the consistency of the design data. The hierarchical structure
of the circuit is cmbedded in the UNIX hicrarchy of directorics, probably a rcasonable arrangement
in many cases but in gencral restrictive and not justified. Perhaps the greatest limitation in decol
is the lack of support for concurrent activities.

The work at Sicmens by Bretschneider and Lagger [6, 7] emphasizes the integration of
Petri nets and rules. The nets describe the flow of information, the rules are used by an expert system
to support design decisions and conflict resolution. This work is based on Predicate Transition nets
(Pr/T nets) [23], an extension to the Petri net model that allows many types of tokens. In comparison
with other models, these nets are remarkably complex. Transitions represent either tools or decision
nodes, places represent either data or abstract states of the design, such as error conditions. Tokens
represent the availability of design data, the occurrence of error conditions, or control information.

There are several types of arcs, each rcpresented graphically by a distinctive symbol.
One type of arc represents the consuming access, where a transition consumes one of its inputs.
The reading access requires the presence of a token in an input in order to enable a transition, but
the token is not removed when the transition is fired. Other arcs are related to the hicrarchical
structure of the design, and their meaning depends on the value of an inscription associated with
the arc. For example, the inscription "all y" on an arc going from a place representing a netlist
into a transition representing a schematic editor means that all the subcomponents of a module must
have a netlist before the schematic editing of the module can begin.

Arcs are also labeled with patterns that influence the firing rule for a transition. The
patterns identify the type of tokens that are required in the input places as well as the types of

30

tokens added to the outputs. A further complication ariscs because variables can be used in the
patterns; in such case, the firing rule requires that all variables in all arcs cntering and exiting a

transition must be instantiated consistently.

In the Sicmens system, the term conflict is used to refer to the choice among several
alternative paths in the net. The final decision, which is responsibility of the designer, is assisted
by a rulc-bascd cxpert system. The decision point itsclf is explicitly represented by a transition
associated with the relevant decision-making rules. Deviating again from the classical Petri net
liring rule, this particular typc of transition outputs diffcrent types of tokens depending on the actual
decision. Decision nodes are also used to terminate design loops, such as optimization or testing

loops. As with all decisions, the designer intervention is required to actually terminate each loop.

Entirc subncts can be colored, where different colors represent different scheduling poli-
cies. Forcxample, a scheduling policy may prescribe the enforcement of a particular design method-
ology (c.g. do simulation bcfore layout), while another may simply require a passive monitoring of
the designers’ activity.

The nets arc used as a purely descriptive device, which exploits the power of a graphical
representation to give the users an intuitive understanding of the design flow. The nets are created
manually by experts who edit them with the assistance of a smart graphical editor. In order to be
uscd by the system, the nets have to be compiled into an executable format, that is into a set of rules
that arc then fed into a rule-based expert sysicm. Each transition in the Pr/T net is converted into
a sct of three rules: a rule on the enabling of the transition, a rule to remove the tokens from the
inputs when tha designer decided to fire the enabled transition, and another rule to add tokens to the
output places upon successful completion of the transition. The rule-basc is complemented with
the addition of other rules not derived from the Pr/T nets, such as rules about conflict resolution,

parameter selection, and the special rules associated with decision nodes.

Perhaps the only problem with this model is its overwhelming complexity, which over-
shadows its remarkable modeling power. Itis true that the real design world is complex and requires
a proportionally complex management system, but a balancc between detail and abstraction must
be achieved to produce a system that designers can successfully use. The Pr/T net itself is diffi-
cult to read, even in its graphical form, and it loses most of its intuitive valuc because of the many
annotations on the arcs and the many different tokens. Like other proposed models, this system
requires a large amount of setup work to create and maintain the Pr/T nets and the other rules in the

rule-base.

31

State Machines

State machine models of the design activity interpret cach CAD transaction as a transition
from a design state to another. The NELSIS project [37] has chosen this state management approach.
The state of each design object is represented by the set of all transactions that have already been
performed on the object, and it determines which new transactions can be legally exccuted on the
object. The cffect of cach tool on the statc of an object is detcrmined by consulting an external
rulc-base.

Tasks performed by the state manager include checking of the starting conditions for cach
transaction and the possible automatic activation of prc-processing tools to cnable a transaction for
which the starting conditions would otherwisc not be satisfied. The information required to perform
these Lasks is also stored in the external rule-basc. The rule-base plays a key role in this system.
Since it depends on the tool-sct, it must be updated as new tools are introduced and old tools are
modificd.

NELSIS is an experiment in the development of a complete and sophisticated CAD sys-
tem, including a substantial framework, open, efficient and configurable [50, 47]1. The kemel of
NELSIS is a configurable data management modulc based on the OTO-D model (Object Type Ori-
cnted Data model). Design management is based on the management of the meta-data, that is the
data about the design activity. The meta-data represents the invariants of the design data orga-
nization rather than the actual composition of the design. The design management meta-data is
organized on a per-project basis. A Project Server is in charge of managing the meta-data for the

project, and clients connect to the server to query the meta-data.

The blackboard model

A different model of the design activity has been developed at CMU by Director and
his coworkers. The model adopted by Bushnell and Director in the Ulysses system [11] is the
blackboard model. The blackboard is a global database used to coordinate the activities of tools
and designers. Each CAD tool is viewed as a self-activating asynchronous process, referred to as
a knowledge source (KS). The designer himself is a special KS. Knowledge sources communicate
with each other via the blackboard. A KS is activated when a specified set of files is present on
the blackboard. Any file modified by the KS is written back onto the blackboard. In Ulysses
the blackboard is partitioned into three parts: the CAD-100! blackboard containing specific design

data, the Assertion blackboard containing reasons for CAD tool failures, the Scheduling blackboard

32

containing the scheduling parameters for cach KS. Resolution of conflicts among KS is performed
by a special KS, the scheduler, implemented as a knowledge based cxpert system.

The detailed description of cach design task, including the tool sequencing, is donc within
scripts, short programs writlen in the “Scripts Language” [10]. A script describes the tool sequenc-
ing, thc motivation for cach step in the sequence, the handling of exceptions, the rules for consis-
tency checking, and other interactions between tools.

Aware of the cvolving naturc of CAD systems, Ulysses wants to offer an opportunistic
flow control, that is a mechanism that permits the selection of the “right tool” depending on the
available tools, and on other circumstances. By contrast, a deterministic low control would instead
usc the same tools, as dictated by a pre-planncd logic. But Ulysses fails to be truly opportunistic
becausce of the scripts, which contain many explicit references to tools, and are therefore unusable
when the tools becomes obsolete and arc replaced by new ones.

Ulysses handles complex design dependencics, maintains data consistency and executes
tools whenever some data change. Control dircctives from the designer are expressed as posts to
the blackboard, such as “Run tool,” “Translate file,” “Place chip.”

The blackboard model has a definite appeal, stemming from its conceptual simplicity and
from this idca of sclf-activating demons that come into play any time there is a need for them.
Howecver the blackboard model docs little to simplify the problem of managing the design activity.
Its simplicity stems from the fact that it pushes the complexity of the management problem into the
knowledge sources, which must be smart enough to know when to become activated. The need for
a scheduler, a super-KS capable of resolving conflicts arising between all the other KS, testifies to
the inadequate modeling power of the model.

A more recent development of the blackboard model is Cadweld, developed by Daniell
and Director [17]. The problems addressed by Cadweld are related to the interaction between de-
signers and tools and to the introduction of new tools in a design framcwork. Designers often
encounter difficulties learning new tools, they become discouraged and prefer to use familiar tools,
even if they have become obsolete. Cadweld begins with a criticism of the scripts mechanism in
Ulysses. In order to write a script, a designer needs a lot of knowledge about the environment and
the workings of the system. The scripts make explicit refercnces to tools, so that the addition of
new tools require the modification of many existing scripts, and this complicates significantly the
use and maintenance of the system.

Cadweld separates the information about CAD tools from the information about design

tasks. Tools are once again seen as smart objects, capable of responding to ccrtain posts on the

33

blackboard, but this timc tools can only volunteer to perform a certain task. They respond to calls
for action, but it is cithcr the designer or a specialized program called CAD task to decide which
volunteer is most appropriatc. In this way, Cadweld climinates the need for a scheduler such as
the onc in Ulysses, and it docs so by placing the decision making burden upon the designers or
the CAD tasks. A CAD task chooscs a volunteer on the basis of some tool characteristics, such
as its robustness, its computing effort, ils input list, which are described by a CAD Tool Object
(CTO). The CTO is like a mushroom cap on top of each tool, and hides the low level details on the
invocation of the tool to simplify the intcrface between the tool and the CAD tasks. The framework
administrator plays a dccisive role in trying to kecp up-io-date the CTO’s, the CAD tasks, and the
design rules that must be enforced by the system.

Another featurc of Cadweld, its classification of tools, is described in Section 2.3.

2.1.3 Design environments

There is another catcgory of design systems that take upon themselves some management
tasks: the design environments, which we distinguish from the design frameworks. While a design
framcwork is gencrally open to outsidc contributions, such as tools from extemal vendors, a design
environment is a collection of tightly integrated tools. The value of a design environment is then
measured by the valuc of the tools in the cnvironment and by the ease with which new tools can be
added. Design environments evade our classification based on the different models of the design
activity, mostly because these systems tend to be monolithic, and not a system of asynchronous
concurrent processes as assumed at the beginning of this section.

One such environment for VLSI design is SCHEMA, the work developed at MIT by Clark
and Zippel [16]. SCHEMA is a software engineering experiment on object oriented programming,
based on LISP and Flavors. Its goal is to simplify the development of synthesis and analysis tools
by providing libraries of standard routines, by prescribing the use of uniform data structures and
by providing libraries of advanced control structures deemed appropriate for CAD. Each design
component in SCHEMA is a module, and consists of scveral descriptions, including one called the
topology of the module, which represents its structure. The system tries to maintain consistency
between the topology and the other descriptions by means of timestamps and limited edit trails, and
the designer is warned if two descriptions become inconsistent.

SCHEMA, not the designer, defines which tools can be invoked and which cannot, although

the designer is the agent that invokes the tools. The sparsity of the tools landscape is such that the

34

problem of tool scquencing and scheduling is not felt. The issuc of coordination of concurrent
activitics is totally ignored, while data sharing among designers is treated superficially, simply by

allowing a hicrarchical organization of design objccts.

2.2 Intrusiveness of implementation

By intrusivencss ol an ADM is mcant a measurc of the extent by which the ADM changes
the way designers do design. Onc form of intrusiveness consists of confining the users within the
boundary of a prespecified plan. Although this is gencrally helpful for the incxperienced designer,
it is too restrictive for the cxpert designer who may want 1o try a ncw tool or a new sequencing
of the tools. If the system prevents a designer from violating the predefined plan, the designer has
no option but to bypass the ADM, and may accidentally introduce chaos into the design process.
Monitor, decol, MMS, the Sicmens manager, all these systems fall into this class.

The unrealistic goal of a fully automated CAD system which relieves the designer of any
nced 1o make decisions is prominent in the literature. No system can claim to reach this goal. The
systcms that pursuc the goal tend to be intrusive, because they assume a lcadership role in their
intcraction with the designers. Dcsigners are demoted to the level of tools, while the DMS claims
the privilege to define what is legal and what is right or wrong ([11, 16, 15]).

For many of the proposed systems it is difficult to attempt an objective evaluation of their
intrusiveness because the systems have not been developed enough to actually be used. Neverthe-
less, it is possible to estimate their intrusiveness from the published descriptions.

The most intrusive systems are probably those based upon the blackboard model. The
wholc design activity becomes a dialog between the system and the designers via requests posted
on the blackboard, and the designers have no direct access to the tools.

Other systems require a special environment to be used. MCC’s MMS [3] requires de-
signers to work from within a modified Emacs editor and to understand a good amount of LISP code.
Similarly, the Task Manager [15] requires that the design tasks be performed only from within a
certain activity.

Many systems, including MMS, the Task Manager, and decol, tend to order an undis-
ciplined set of tools by assigning mcaningful and consistent namcs to tools and to their options, but
the little gain obtained with this cosmetic change often has serious conscquences. Some tools and
somc options that do not fit the clean and consistent naming scheme are ignored or eliminated. In

the unspoken possibility that the design manager fails, the designers, who now havc no choice but

35

to interact directly with the tools, will be forced to mentally switch back to the real names for both
tools and options. The problem of consistent naming conventions should be solved at the root, by

the tool developers and not by the design manager.

2.3 Classification of tools and data

Somc design management systems require a classification of the tools, because they need
to distinguish routing tools from placement tools, simulators from module generators. The purpose
of such classification is to promolc a better understanding of the tools set and to define groups
of interchangcable tools. The danger is the possible explosion in the number of classes required
to have a sufficiently rcfined classification. For example, the class of *“placement tools” must be
further subdivided into standard cclls, macro cells, gate arrays, sca of gates and PCB tools, because
they arc normally not interchangeable. Similarly, a simulator can be logic, switch level, gatc level,
multi level, clectrical, behavioral. The format of input and output data should also become a class
discriminator, becausc two tools performing conceptually the same function are not interchangeable
if they use two different input formats.

One classification hicrarchy has been proposed by J. Daniell in Cadweld [17]. This hier-
archy is a natural product of the object oriented approach used to describe the CAD tools, where
a CAD Tool Object (CTO) can be derived from another CTO, inheriting all its properties. This
derivation is represcnted as an arc in a tree, in which the nodes represent CTO classes.

The classification tree used by Cadweld includes more than thirty nodes, yet it is not suf-
ficiently detailed to be useful as a design management device. This is shown explicitly in Daniell’s
work itself, in a section that illustrates a typical session with the system. In responsc to a “post” on
the blackboard requesting the placement of a standard-cell circuit, the set of tools that volunteered
included the program puppy, which is specialized for macro-cell placement and is therefore totally
inadequate for the job. Not only did puppy volunteer, but it was also selected and executed, only
to conclude that it could not complete the job. Although one might always say that this type of
mistake is attributable to an oversight in the development of a prototype, the example does show
the dangers of relying on an unrcfined tool classification.

However, it is not clear if any classification can properly capture the variety of all the
tools in a CAD system. In the Octtools there are several tools that can perform many and different
tasks. For example, padplace can be used to place pads or to route the power rings around a
chip, while misII can be used to optimize of a logic network or as a format translator. Other

36

tools complicate any classification scheme, because they perform specialized and unconventional
tasks. For cxamplc, cprep -c is called upon to patch a data structurc produced by a faulty tool
to cnable the usc of the data by other tools, PGcurrent annotates the power nets so that they will
be properly sized by the routing tools. Some tools that are not traditionally regarded as CAD tools,
can neverthcless be included in a design methodology, e.g. the UNIX utilities di £ £, sed, cp. The
only classification that takes into account the variability of design tools has a majority of classes
with just onc representative, but such classification would be of little or no use, becausc it defeats
the purposc of identilying interchangeable tools.

Some systems, including MMS, NELSIS and Cadweld (3, 37, 17], distinguish the tools
that “do work™ such as routers and simulators from the tools that perform “format translation,”
with the implication that format translations are second rank operations. This distinction is a relic
(rom the days of tool centered CAD systems [28], where each tools had its own input format and a
large number of special purposc translators provided the fabric to integrate the tools into a system.
Format translation is traditionally regarded as an annoyance and designers would rather not deal
with it. Hence the tendency to scparate translation tools from the other tools.

We sce no conceptual difference between translators and other CAD tools. Translation
can be conceptually hard, in the casc of two languages which usc different semantics, and it can
be very time consuming. Like all CAD tools, translators also have inputs and outputs. Granting
special status to translators is not uscful and could be potentially dangerous when it hides from the
designers the difficulties and the possible distortion introduced by these tasks.

Decol [34], the Task Manager [15] and the commecrcial EDMS [24] and the Integrator
[43] have in common the notion of “conceptually different types of data.” This notion is often
rcferred to as strong typing of the design data. The purpose of strong typing is duplex: it enables
some safety checks on the inputs and outputs of tools and, as in the case of decol, it is used
as a pattern matching critcrion to automatically deduce a plausible design flow from a set of tool
templates. The risk in strong typing is the same as in tool classification: once started, it cannot be
stopped, and strong typing becomes unmanageable because of the large number of data types that
must be considered. How large? Inthe Octtools, for example, following the logic suggested by Katz
[15] or by Kozminski [34], one should consider at least the following sixteen types of ASCII files:
bdnet, bds, blif, esp, musa script, crystal script, mis script, cif, cdif, spicc decks, mask modification
scripts, wolfe parametcrs, puppy parameters, puppy constraints, padplace lists, sparcs rules. The
same process for OCT facets would produce a similarly long list of types, the rule being that almost

every tool in the set contributes a new data type.

37

Without detracting anything to the bencficial contributcs of strong typing in other con-
texts, such as software development, strong typing for design management, although autractive,
becomes unwicldy and probably unnccessary. In fact, the safety checks on the inputs of tools arc
rcdundant becausce most tools alrcady recognize inputs of the wrong type by either explicitly refus-
ing to cxccute or by simply failing. As far as matching of tool templates goes, type matching could

be replaced, for example, by name matching.

2.4 Artificial intelligence techniques

A prominent trend in electronic design is the application of artificial intelligence tech-
niques in the development of CAD tools. The same techniques have also been applied in design
management, partly because the design process is heuristic and partly because an expert human
designer, given cnough time, can outperform the most sophisticated CAD tool. Researchers have
tried to capture the designers’ expertisc in a sct of rules used to drive an expert system. However, to
date, these expert systems have yet to prove that their value offsets the efforts necessary to acquire

and maintain the knowlcedge base.

Onc cxample is Steele’s work at NCR [38] on a prototype expert system to provide ad-
vice on performance, testability and quality for standard-ccll designs. The knowledge is acquired
through interviews with several designers, including both experts and novices. Steele recognizes
that the applicability of his system is limited to domains which are well understood and relatively

stable over time, two characteristics which are rather uncommon in CAD.

Other systems have already been mentioned. One is the expert system proposed for the
DOEMA framcwoﬁ([36], which assists the designer by alerting him about the available design
alternatives. The Siemens system [6] is also rule-based, where the rules are in part derived from a
Petri net description of the design flow and in part added to resolve some specific decision problems.
Yoda [18] indicates artificial intelligence as best suited to control the part of conceptual design that
involves ill-defined knowledge, while imperative programming languages arc more appropriatc for
the well-defined part of conceptual design. The rule-based expert system in Yoda provides two
forms of assistance: advice about the available alternatives, and prediction of the performance of an
alternative. In the domain of digital filtering, Yoda offers a powerful design environment complete

with an extensive set of accurate prediction models.

38
2.5 Issues in data management

Traditionally, the problem of cfficicnt data management has been studied in its own, with
cmphasis on the data alone. The same problem becomes more interesting in the context of design
management, in which both data and transformations on the data can be managed together. In
particular, the notions of consistency maintenance and version should be reconsidered.

Batory and Kim [5] arc mainly concerned about the problem of minimizing storage re-
dundancy among versions. They propose a method based on version-derivation hierarchies that
minimizes redundancy while maintaining uniform access to any version. While this problem of
rcdundancy minimization is orthogonal to our current focus on design management, relevant is the
problem of change notification, also considered in the same paper. Change notification for Batory
and Kim is what could also be called consistency management, that is the problem of defining and
automatically maintaining a notion of consistency between design data. In particular, Batory and
Kim look at how changes in a particular design object should be propagated to other objects that
reference it.

Two techniques arc proposed, onc based on timestamps, and another that uses auxiliary di-
rcctories to storc a log of all changes. With the first technique, cach design object is given two times-
tamps: a change-notification timestamp (CN) that indicates the last time the version was changed,
and a change-approval timestamp (CA) that indicates the last time a designer has approved the lat-
st changes. The consistency criterion requires that C4 > CN, for each version ™ as well as for
cach version rcferenced by V.

Change notification can be active or passive. In passive change notification, the designer
is notificd of a change in a version the first time that version is referenced, while in active change
notification the system notifies all interested designers about a change right after the change hap-
pens.

Batory and Kim talk about the possibility that a small change in an object 4 might have
no effect on an object V' that references 4. In such a case, the notification mechanism should stop at
V, because the objects that reference V" need not be notified. Such a selective notification stratcgy
requires less work than a blind notify all strategy. The objection to this approach is that the notion of
“small change” has no formal definition, that could be used reliably in an automated CAD systcm.
Batory and Kim can afford to be informal, because their definition of consistency is based on C' A4,
that is it requires the intervention of a designer who makes the decisions and assume responsibility

for them.

39

alu.mag.1

alumag.2 alumag.3 alu.mag.s

alumag.4 *

Figure 2.9: A version derivation tree in the Version Server. Nodes represent versions of the layout
of an ALU, arcs represent the relation of derivation of a version from another. Version 4 is marked
as being the current version, even if it is not the most recent one. What is missing is an indication

of how, and why, cach derivation has occurred.

In the Version Server described by Katz et al. [31] the design objects are arranged in
a space described by three axes: composition, derivation and equivalence. The objects are also
grouped into workspaces. A workspace operates as a metaphor of an electronic file cabinet, in
which objects are checked-in and checked-out according to some rules. In a typical design environ-
ment there are three types of workspace, which are distinguished by their check-in and check-out
policies. Public archives have a liberal check-out policy but a restrictive check-in policy, private
workspaces have a liberal check-in procedure and a restrictive check-out one. Group workspaces
lie somewhere in between archives and private workspaces and allow cooperation between design-
ers. Workspaces offer some protection of the integrity of the design data, because the important
data are kept in the public archives, where the restrictive check-in procedure prevents accidental
corruption of the data. However, within each private workspace, the designer is dangerously free
to corrupt the design data.

The relationship among the versions of an object is represented by a derivation tree, such
as the one shown in Figure 2.9. The nodes in the tree represent the various versions, while the
arcs represent a generic relation of derivation of a version from another. Each derivation tree has
a currency indicator which points to the version *“of interest,” which is not necessarily the newest.
The derivation tree contains no mention of how a new vcrsion was derived from another one, nor
why.

There are many data managers and they each have differcnt capabilities. For example,
Frank Halasz in his work on the next generation of hypermedia systems [26], insists on the need for

arich versioning scheme, like the one adopted in PIE [25]; not only each entity has its own version

40

history, represented as a lincar graph, but also wholc scts of entitics can have a version history,
which is uscd to keep track of coordinate changes to the objects in the set. For efficiency rcasons,
Halasz rccommends that a data management system allows a representation of both the versions
and the “deltas™ between versions, rather than just the versions,

Since not all data managers have the same capabilities, it is important to try to decouple
thc ADM from the capabilitics of the data manager. In electronic design, despite an intense cffort by
CAD dcevclopers (o integrate all data management into a single database, the integration is far from
complete. For example, in the Octtools there are at least two databases: OCT for the management
of all layout, netlists, and schematics, while UNIX is used for the management of ASCII files and
cxccutables. It is restrictive, to assume that all the data are homogeneous and managed by the same
database, but this is commonly done. For cxample the NELSIS system [50] manages only data
stored in its data manager (the sophisticated OTO-D), as does Playout [52], while Monitor [30)
deals only with UNIX files.

2.6 Commercial systems

The demand for automatic design management has recently become strong and a number
of players havc appeared in the arcna to compete for a share of the electronic design market. There
is probably no market for stand-alone design frameworks, because the value of a framework without
tools is minimal. The most important part of a CAD system remains the tool set and users ¢xpect
the framework, and its services, to come with the tool set.

The Electronic Design Management System developed by EDA (8, 24] is probably the
most famous ADM available. EDMS appears to mect all the requirements of a powerful ADM: it
is programmable, cxpandable, customizable, and it offers a complete collection of services, includ-
ing protection using workspaces, consistency management, history tracking, and maintenance of
profiles for each user authorized to work in a workspace. But all this is offered in the absence of a
clear model of the design activity.

One goal in EDMS was to remedy some of the shortcomings of standard operating sys-
tems when applied to electronic design. In particular, the protection and versioning schemes of
conventional file systems werc perceived as inadequate, because they offer only simple version
chains instead of alternative version paths. Another goal was to provide a framework for the in-
cremental evolution of CAD systems, by allowing the integration of tools produced by different

vendors.

41

EDMS consists of three major parts: the Workspace server, the Application Run Time
System and the Desktop Shell. The workspace server implements most of the capabilities described
by Katz ct al. (31}, including team dcsign support, versioning with derivation trees, and the notion
of current version. Programmability of the framework is possible with an interpreted version of C,
called E-language, that is used for both tool encapsulation and to allow the user to specify design
policics that can be enforced by the Workspace Server. Some tasks are triggered by automatic
check-in/check-out procedures; others are invoked explicitly by the designer.

The system requires a complex and time consuming tools encapsulation [24]. The capsule
for each tool must describe all required and optional inputs and outputs, including their types, de-
scription of the tool itself, pre-conditions and post-conditions. As reported in [24] the encapsulation
of the program HSPICE took three days to plan and seven days to write.

No particular assistance is offered to the inexperienced designer, other than through a
sophisticatcd menu-driven and graphical uscr interface. The interface represents the tools with a
slot for cach of their required and optional inputs and outputs. The user fills the slots with the
appropriate data and then asks the system to run the tool.

Another example of design framework with management capabilities is the Integrator
by Interact {43]. The system consists of a collection of sophisticated procedures for tool and data
management wrapped in a powerful graphical user interface. The system emphasizes distributed
processing and cooperation among designers, and provides a mechanism for active change notifica-
tion. Design management is based on a static encapsulation of each tool’s inputs, outputs, and other
characteristics, entered through the graphical interface. Strong typing of the data allows automatic
generation of tool sequences.

2.7 Conclusion of the survey

The systems presented in this survey are unsatisfactory as design management tools for
one or more of the following reasons.

¢ Implementation difficulties, particularly in rule-based expert systems like Yoda [18], which
face the challenging problem of knowledge acquisition.

¢ Intrusiveness.

¢ Poor quality of the final designs, due to a rigid interface to the tools, which prevents the
designers from having full access to the power of the tools.

42
¢ Incomplete sct of services.

Most of the literature on automation of design management assumes that the design pro-
cess can be planned, and that it makes sense to try to write a program to capture the complexity
of the design activity a-priori. The preconditions, postconditions in Knapp’s description of the
operators, the Petri net in Di Janni’s Monitor, the scripts in Ulysses, the characterization of the
CAD-Tool-Objects in Cadweld, the rules in NELSIS, are all different ways of programming the
design activity. Such programs have been found to be extremely difficult to develop beyond the
stage of a prototype.

In Section 1.1, it is observed that design is a goal-directed activity that is not apt to be
confined within the boundarics of a predefined plan. The difficulties encountered by the developers
of the systcms rcviewed in this chapter are probably related to their approach of focusing upon an
a-priori description, rather than on the history of the interaction between the designers and the CAD
system,

Chapter 3

The Design Trace

In the previous chapters we have presented the design management problem, highlighted
some technical issues, and we have surveyed previous work to identify, by contrast, the innovative
contributions of this work. In this chapter we describe a design management system based on the
notion of design traces. Most idcas presented in this chapter have also been implemented in a
prototype called “VOV.” The namc VOV will also be used as a short-hand to refer to the proposed
trace based management system.

This chapter begins describing the design trace. In Section 3.4 the server/client architec-
turc of the system is shown. Sections 3.8 and 3.8.1 introduce the notion of sets and of how they
are used to represent hierarchy in the trace. Section 3.9 is dedicated to the services provided by the
system. The notion of measurement and its uses are presented in Section 3.10. A most important
service is assistance to novice designers, as provided by the VOV assistant, a program that extracts
information from a library of example traces, all described in Section 3.11. The notion of itera-
tion in design. is presented in Section 3.13. The principles that have been most effective in the
development of VOV are summarized in the final Section 3.14. ’

The next Chapter 4 contains a description of some implementation details of the system.

3.1 Design management based on design traces

The goal of this and previous research is to propose an ADM that adds value to current
CAD systems by making them easier to use and more productive. However, this research differs
from the previous, because it follows a different conceptual itinerary to achieve the goal. Our basic

idea is to begin by building a system that docs not try to lead the designers through a predefined

43

44

plan, but a system that follows the designers, by monitoring and recording their activity. The record
of the design activity is rcprescnted as a bipartite graph, called the trace, which is used as the
historical rccord of the design, as a way to capture data dependencies, and as a device to direct the
automatic cxccution of tools. The trace captures cach ool invocation and registers all inputs and
outputs of cach tool. This tracing mechanism is meant to satisfy the needs of the expert designers; it
providcs services such as consistcncy maintenance and coordination of concurrent activities, while
maintaining unrestricted access to the tools.

Once the tracing mechanism is in place, the capabilities of the system can be extended
to include services such as guidance and assistance for novice designers, and support for design
mcthodologies. These extensions are based on the analysis and reuse of the design traces.

- The trace is not just a “model” of the design activity, it is also a “machine.” A model is
an abstract representation of some features of a system, mostly used to do theoretical studies. The
tracc is not only an abstract representation; it is also used to monitor, represent and automate the
design activity. Like all machines, the trace is uscd to modify reality.

3.1.1 Non-intrusive tracing

The trace should be captured in a manner that is as non-intrusive as possible, requiring
no effort from the users. One solution, the first considered but then soon discarded, is to provide a
shell in which the designers operate. The shell would feel like a regular UNIX shell, ¢.g. csh, butit
would also know about the CAD tools and about their effects on the design data. The DMS would
maintain the trace using the information generated by the analysis of the command lines intercepted
by the shell.

Such a shell would be too difficult to realize. First of all, it would require an immense
amount of knowledge, which would have to be maintained up-to-date with a rapidly changing tool
set. But, more fundamentally, no shell can predict the behavior of a tool from an analysis of its

command line, no matter how sophisticated the analysis. For example, the command line

misII -f script.msu file.blif

does mention a file called script .msu, but it does not say that the file could be either in the

current directory or in

~octtools/lib/misII/1lib

45

nor docs the command line show that the file

~octtools/lib/misII/lib/script

is also uscd as an input — it is referenccd by a command contained in the file script .msu.

This digression is to prove that the rules to determine inputs and outputs of a tool can be
arbitrarily complex and are not derivable from an analysis of the command line. The only agent that
has complete knowledge of what a tool docs is the tool itself, at runtime. This leads to the principal
assumption in VOV: the tools themselves, at runtime, generate the information used by the system
to maintain the design trace.

The system has no direct way to know whether the information provided by the tools is
rcliable. The system has no choice but to trust the tools, even if this this might sound dangerous.
In practice, this has not been a problem. In section 3.4.1 we show two techniques that allow tools

to produce complete and correct information.

3.1.2 The trace

The trace is represcnted as a bipartite directed acyclic graph, sometimes called BAD
graph, similar to a Petri net, but simpler. From Petri nets we borrow some key terminology: the
nodes in the trace are either places or transitions. Each place represents a generic piece of design
data, for example a UNIX file or an OCT facet. Each transition represents an atomic transaction that
can be initiated from a UNIX shell, such as the execution of a placement tool or a logic simulator.
Arcs express input/output relationships between places and transitions. An arc from a place to a
transition indicates that the place is an input for the transition; an arc from a transition to a place
indicates that the place is an output.

A place represents data of different types: ASCII files, executables, OCT facets, and oth-
ers. In the graphical representation of the trace, different icons are used for each type of place, as
shown in Figure.3.1. All transitions are instead represented graphically by the same icon, shown
in Figure 3.2. The direction of each arc is not represented explicitly, but in our representations arcs
will always be directed downward, towards the foot of the page.

The main attributes of a transition are its working directory and its command line. The
input/output lists of each transition are computed at runtime, and nothing can guarantee that, for

46

M L

Figure 3.1: Places of different type are represented by different icons. Left to right, in the top row
we have: ASCII files, OCT facets, and executables. In the second row: booleans, command line

options, ¢xit status, and measurcments.

Figure 3.2: All transitions in the trace are represented by this icon.

47

a given command line and a given working directory, the lists will remain the same cach time the
transition is executed. This prompts the following taxonomy of transitions, consisting of three

classes:

Data-invariant: these are transitions that, when executed in the same working dircctory, always

produce the same sct of inputs and outputs; for example, the transition
cp filel file2

which copies filel into £ile2, always declares that £ile2 is an output and that £ilel

is an input.

Data-sensitive: these are transitions that look at the value of some of the input places to determine
other inputs and outputs. The classical cxample is a netlisting transition, such as
bdnet netlist file
in which inputs and outputs depend on the value of the file net1list file.

Pathological: these are transitions that generate different input/output lists every time they run; it
is casy to construct a pathological transition, but only rarely would such transition be useful.
There are CAD tools that have a pathological behavior because, due to excessive zeal, they
create a new output rather than overwriting data that already exist. For example, consider a
tool that on its first run produces a file, say £1. If the tool is invoked a second time, with an
identical command line, the tool sees that £1 already exists, and, instead of overwriting it,
the tool produces the same file with a different name, say £2. Upon a third invocation, the
tool ouputs £3 and so on. For the purposes of design management, such a tool is pathological

and it has the annoying characteristic of cluttering the working directory.

Even a data-sensitive or a pathological transition may invariably declare some places as
inputs and outputs. We call these the essential inputs and essential outputs for data-sensitive and
pathological transitions. VOV handles all classes of transitions.

Both transitions and places are nodes in the trace. For each node we can talk about
its inputs and outputs. The notion of input and output of a transition descends dircctly from the
definition of trace. In the case of a place, the input, if it exists, is the transition that generates the
place, and the outputs are the transitions that use the place as their input. A node with no inputs is

called a “primary input.” Although it is conceivable to have a transition with no inputs nor outputs,

48

for practical purposes related to the scheduling of transitions, cach transition must have at least one
input and one output.

Each place can have at most one input, that is it can be the output of at most one tran-
sition. This is relerred to as the single assignment property of the trace, a term derived from the
interpretation of the trace as a definitional language, as described in Section 3.2.

For a node n, its input set is denoted by I(n) and its output set by O(n). The outputs of
a node are said to “depend” on the node. The relation of dependency is transitive and the transitive
closure of the nodes that depend on a particular node » is denoted by D(n). If m depends on
n then m € D(n) and there exists a directed path between n and m, denoted by P(n,m) =
{no,ny,....n,} where ng = n, np, = mandVi € {1....,p}, ni—1 € I(n;). The path need not be
unique.

An attribute of each node is its stazus, which can take one of the following values: VALID,
NOT VALID, DEAD, TRACING, RETRACING, MISSING. For the time being, we only need to
be concerned about the two most common values, VALID and NOT VALID, while the other values
are described in Section 4.1. A VALID node is a node that is up-to-date; it is either a primary input
or the output of a successful transition, which is itself VALID. If a node = is modified, all of its
dependent nodes D(=) are no longer up-to-date, and they are marked as NOT VALID. A transition
can be fired if all its inputs are VALID; if it completes successfully, all its outputs and the transition
itself become VALID. According to these rules, the trace can also be interpreted as a data-flow
graph.

We call retracing the firing of a transition that is already in the trace. It is different from
tracing, which corresponds to the creation of a new transition in the trace. Automatic retracing
is an important service provided by VOV, as described in Section 3.9.3.

3.1.3 Anexample trace

Figure 3.3 shows a trace left by the execution of three Octrools that transform a textual
description of a combinational logic circuit into a standard-cell layout. Starting from a description
of the behavior of the circuit, in the file xx .bds in the top row, the tool vov_bdsyn has been in-
voked to obtain an expanded set of logic equations (file xx .b11i£), which have been optimized by
vov_misII, which also has mapped the optimized logic into a library of standard cells. The opti-
mizer has produced the OCT netlist xx: logic:contents. Finally vov_wolfe has been used

to place and route the circuit producing the OCT facet xx :wolfe. All tools have other accessory

*20e[d oy jo ad£y ayy uo Surpuadop suoar 1uaIyjIp £q Afeorydess patuasaidar i
Aoy “Apreqruns parean are saoed oy e YSnoyiry a9e1) S1y1 ur pajudsasdar a1e SUONIBSURI) SN,

‘wonoq ay uo s;ndino ‘doy uo are sindur :wonoq 01 doy wWoIy pear aq pINoYs SaovL], €€ AUNFL]

oomIx 0:SNIVLS LIX3

6v

50

outputs, including a file to store stdout and stderr.

3.2 The trace as a definitional language

The idea of keeping a trace of the design activity emerged originally as a solution to the
problem of keeping a detailed design history. But a critical look at the trace reveals that the BAD
graph can also be interpreted, morc formally, as a definitional language [1]: every transition is
an implicit definition of its outputs. Every place in the trace is defined as being either a primary
input or the output of a transition. A definitional language requires the definition of each entity
to be unique. In the trace this corresponds to the fact that each place is the output of at most one
transition. This property of the trace is also called the single assignment property. 1t is important,
because it limits the dependencies among data to flow dependencies between the computation and
the use of data [22]. Other types of dependencies, such as output dependencies between two suc-
cessive computations of the same variable, and antidependencies, from the use of some data to its
rccomputation, are not represented in the trace.

There is one exception to the rule that a place is the output of at most one transition,
and that happens temporarily during retracing, as described in detail in section 3.9.3. Some tools
operate “in place” in the sense that they overwrite one or more of their inputs. These tools stress
the limit of the trace model. In order to maintain the single assignment property, VOV requires a
distinction between information and container. A place represents the information, not its container,
and different places can have the same container. See section 3.3 for more details.

The trace has also the characteristics of a data-flow [22], namely asynchrony of operations
and functionality. Asynchrony means that the condition to fire a transition depends only on the
status of the input of the transitions and not on the status of other transitions or on a global clock.
Functionality means that all transitions behave like functions, with no side effects.

Like all data-flow graphs, the trace captures both dependencies and scheduling informa-
tion. Every transition in the graph is a declaration of dependency: all the outputs depend on all
the inputs. The main difference with ordinary data-flow graphs derives from the fact that all de-
pendencies are computed at runtime and nothing can guarantee that they will remain the same for
every execution, despite the fact that normally they do.

The interpretation of the trace as a declarative language implies that the management of
the design trace, and design itself, is a process of refinement of a set of definitions. Each time

a designer executes a transition, he is effectively saying: I want the outputs of this transition to

S1

depend on the inputs, and consistency is obtained by successfully completing this transition. If
a place was already dcfined as the output of another transition, the system detects a conflict and
requires the designer to confirm the new declaration. More about conflict detection can be found in

scction 3.9.4.

3.2.1 Backtracking

The interpretation of the trace as a definitional language has an impact on the notion of
backtracking in the design process. Backtracking is often mentioned in the literature with expres-
sions such as “exploration of new alternatives™ followed by “backtracking to an old alternative.”

Cadweld [17] associates backtracking with its concept of design iteration, that is the
depth-first exploration of the design space. Backtracking is supported by explicit storage of context
information at several checkpoints, and by keeping backup copies of all modified files. No indica-
tion is given on the cost of keeping such redundant storage, but it is probably expensive. Nor is it
clear if backtracking can be reversed, and if so under which conditions. A similar scheme has been
proposed by the Task Manager [15].

Bretshneider ct.al. [6] envision a knowledgeable DMS which is capable of reacting to
errors discovered in the design process (€.g. a chip is too slow). The system uses its knowledge
base to suggest ways to correct the design flow, or to backtrack to the point where the decision
lecading to the error was made so that the designers can revise the decision. No proof of success is
provided.

In VOV, the exploration of new design alternatives corresponds to an expansion of the
design trace: new transitions are added and new places are created. VOV detects conflicts if, during
the new exploration, data corresponding to the old alternative is about to be corrupted. But in general
the new exploration does not (or should not) destroy the old one. Under these conditions, a designer
can “go back” to an old alternative by simply switching his attention to the old data and to the old
parts of the trace, which have always been available. Nothing prevents a designer from pursuing
simultaneously many altemnatives.

Since many explorations are going to fail, the design trace will grow many branches
representing these failed experiments. . Although the system has no particular need to prune those
branches, designers often do. VOV offers them the choice to kill or forget parts of the trace that are
deemed uscless. Killing some nodes means that their status becomes DEAD. This has the advantage

that the killed nodes remain in the trace, as documentation of the failed exploration, but the scrver

52

ignores those nodes for most operations. Forgetting implics the deletion of nodes from the trace, as
if the corresponding transitions and places had ncver existed in the design.

3.3 Tools that run in place

Special attention must be given to the tools that run in place, those tools that modify
some of their inputs. These tools stress the tracc model and force a distinction between information
and its container.

Assume for a moment that a place in the trace represents a container of information, for
cxample a UNIX file. A tool that modifies such place would have to declare it as both an input and an
output, thus creating a cycle in the trace. But cycles are not allowed, because they violate the single
assignment property, they create cyclic dependencics and they confuse the scheduling of transitions
during retracing.

In VOV a place does not represent a container of information, but the information itself.
A complication arises because the name used to identify a place is the name of the container, so
that when different pieccs of information share the same container, they are represented by distinct
places with the same name.

Consider a transition ¢, that uscs as input the place p stored in container ¢(p). If ¢, pro-
duces some information that is stored back into ¢(p) we say that ¢; runs in place. The output of
t, is not p, which is already an input, but p’, with ¢(p’) = ¢(p). p and p’ make a chain of places.
If p/ is used by another transition ¢, that also runs in place, the output of ¢ is p”, ¢(p") = ¢(p’),
and the chain grows to include p”. In the example illustrated by the trace in Figure 3.4, the facet
counter:logic:contents is the container of three places: the primary input, the output of
the tool padplace, and the output of the tool wolfe. (Both padplace and wolfe runin place
unless otherwise specified.) The same is true for the other facet counter:logic:intexrface.

This distinction between information and container maintains the single assignment prop-
erty of the trace and avoids cycles. Nevertheless, the management of tools that run in place remains
complicated, because the correspondence between files and places is no longer one-to-one. The
main difficulty arises because users and tools normally refer to a piece of data by the name of its
container. A designer asks information about ¢(p), rather than about p, and if ¢(p) is the container
for a chain of places it is ambiguous which place the designer means. VOV resolves the ambiguity
by keeping a pointer to the current place in the chain. If the current place is not the one meant by

the user, the user must be more specific and select the desired place in the chain by referring to it

53

.=
mtertlegictinterface Latd.wmlfe. 7313004

Figure 3.4: Trace left by a sequence of two tools that run in place.

as the output or the input of a particular transition.

Tools that run in place impose also some special scheduling constraints. Consider a place
p that is the only input to two transitions, a regular transition ¢ and a transition ¢, that runs in
place, and call p/ the output of ¢,. Since ¢(p’) = ¢(p) it is not possible to fire both ¢, and ¢ in
parallel, because there may be a read-write race between the two transitions, in the sense that it is
undetermined whether ¢ would actually use as input p or p/, or worse yet, an incomplete or corrupted
version of p', as it would happen if ¢ tries to read p just as ¢, is overwriting it. A partial remedy can
be provided by the database if it can prevent concurrent read-write situations, but this would still
not solve the ambiguity between p and p’. VOV’s solution is to schedule the in-place transitions
first, on the assumption that #,, is a non-destructive transition, so that ¢ can operate indifferently on
poron p'. If that is not the desired behavior, the designer can always modify the trace, cither by

making 7, not run in place, or by making ¢, operate on a copy of p.

3.4 The architecture

54

Structure of the System

® Onec design, one trace, one server.

® Many tools, many designers.

tools
-
design trace
Server:
o]
coordinates| €—————| sers
o ?_ access
to trace — |
slaves

|

user interface
(using VEM/RPC)

Figure 3.5: The structure of VOV. The server is the only process allowed to change the design
trace. Clients can be either tools that generate the information to build the trace, users that query
the server about the trace, or slaves that give the server access to CPU cycles on various machines
in the local network. The graphical user interface uses VEM and RPC and it can be either a client

or it can operate directly on the design trace.

As illustrated in Figure 3.5, VOV consists of several UNIX processes: a server and many
clients. The server manages the design trace for a particular project, and is designed to run contin-
uously for the duration of the project. The clients are divided into three classes:

tools are clients that provide the information to build the trace;
users are clients who allow the designers to query or modify the trace;

slaves are clients that give the server access to some resources in the network, such as CPU cycles

on a machine, or access to a printer.

The slaves are the agents that execute the transitions on behalf of the server. Each slave
is characterized by a list of resources available to the slave (e.g. large memory, printers, software
licences) and by an integer number P, which expresses the computing power of the slave. P is
defined as
K _1_
T+ te
where ¢ is the CPU time required to execute a test routine, ! is the load on the host on which the

p

slave is running, K’ a normalization constant for all slaves and ¢ > 1 is a correction coefficient

35

that can be specified for cach slave and that is normally 1. If the load on the host is greater than
a user-specified threshold, the slave refuscs to accept jobs. Since ! changes over time, the slave
rccomputes P every two minutes and transmits it to the server.

When the server determines that a transition must be retraced, it dispatches the job to the
one of the slaves taking into account both the rcsources offercd by each slave and their relative
power. It is a good idca to have many slaves, connected to the server, say 10 to 20, because the
more slaves are available, the more work can be done in parallel.

The bidirectional interprocess communication between clients and server is implemented
with UNIX sockets. Typical UNIX implementations limit the total number of clients simultaneously
connected to the server to about 60. The scrver services its clients sequentially in a round-robin
fashion. While waiting for requests from clients, the server does not consume any CPU cycles. If
no request arrives within a time-out interval, the server performs routine tasks such as monitoring
of the design data, storage of the trace, and others. The time-out period ranges from a minimum of
one second in the periods of activity, to a maximum of about two hours when no designer is active.

The unit of design managed by VOV is called project. The definition of the scope of a
project is left to the user: it could be the implementation of an ALU, the compilation of a program,
or the design of an entire chip. VOV is designed to handle large projects, and there is little advantage
in breaking a large project into smaller ones. Each project has its own design trace.

At the beginning of the project the trace is empty. The designers use the tools normally,
as if VOV did not exist, while the tools leave the trace of their execution. An advanced use of VOV

also exploits the capabilities of the assistant to build the design trace, as described in Section 3.11.

3.4.1 Communication between the tools and the server

Whenever a tool is invoked, it should establish a connection with the server and say: I
am starting now, these are my inputs, these are my outputs, I am done now. These messages are
needed by the server to build the design trace.

The communication between the tools and the server is the main technical problem in
VOV. Two mechanisms are available: recompilation or encapsulation.

Recompilation is the preferred option. The source code of the tool should be modified to
include the appropriate procedure calls from the “VOV library,” consisting of the procedures listed
in Figure 3.6, and available for both C and C++ programs.

VOVbegin () starts the connection with the VOV server and declares that a new transi-

56

void VOVbegin(int argc, char** argv);
void VOVinput(int type, char* name);
void VOVoutput{(int type, char* name);
void VOVend(int status);

Figure 3.6: The proccdures in the VOV C and C++ library.

tion has begun. This routine should be called as soon as possible; in general it is called after the tool

has established that it is going to do something, that is after it has parsed the command line options.

The arguments Lo VOVbegin () describe the command line used to invoke the transition. Each
input and output of the transition is declared using VOVinput () or VOVoutput (). The type
argument is uscd to distinguish between OCT facets, UNIX files, cxecutables, or the other types of a
place. The name is the unique identifier of the place (see also Section 4.1.3). VOVend () is used
instead of exit () tolet VOV know that the transition has terminated. The argument passed to the
VOVend () is the cxit status of the process. If the transition ends without calling VOVend (), the
scrver assumes that the transition has failed. If the server does not respond during VOVbegin (),
the library tums itself off and all successive calls return immediately without effect, so that the tools

can be used whether VOV is operative or not.

Sometimes it is not possible to recompile a tool. In these cases the tools is left unchanged
while a capsule is provided to do all the talking on behalf of the tool. Figure 3.7 shows the capsule
for the UNIX utility dif£, which is a data-invariant transition. Each capsule is a shell-script and
consists of two parts. The first part contains tool-specific knowledge to interpret the command line
and derive the list of inputs and outputs for the transition. The second part is the invocation of the
program vov._capsule which establishes the connection with the server, declares all inputs and

outputs and invokes the tool. Figure 3.8 shows a more complex example of a capsule.

Recompilation is preferred because it offers the possibility of perfect accuracy in captur-
ing all inputs and all outputs of a transition, with minimum modification of the sources and with
minimum runtime overhead. Encapsulation is somewhat more complicated because the capsule
must emulate the behavior of the tool to compute its inputs and outputs, which is paid with a few
seconds of runtime overhead.

Capsules for data-invariant transitions can be prepared casily, while capsules for data-
sensitive transitions can be quite difficult to write, because they often require, the parsing of a file.

Pathological transitions may be impossible to encapsulate. Although accuracy of the capsules is a

57

#!/bin/csh -f
Part 1: Compute inputs and outputs.
set PROG = vov_diff
set FILEl S1
set FILE2 = $2
set OUT = $1.S52.diff
Part 2: call vov_capsule.
vov_capsule -c "$PROG Sargv" \
-i SFILEl -i $FILE2 -R $OUT \
diff SFILEl SFILE2

Figure 3.7: Example of a capsule: vov_dif£f. The UNIX utility di £ £ does not have to be modified.
The program vov._capsule connects to the server, cxchanges information with it, and then calls
diff. The naming convention used for the capsules is that for each tool xyz the corresponding

capsule is called vov_xyz.

desirable features, it is also possible to operate with capsules that are not completely accurate, in

the scnse that they do no dcclare all the actual inputs and outputs of the transition.

3.4.2 Affinity of transitions

A complete list of the attributcs of places and transitions is presented in Section 4.1.2, but
it is important to explain now the affinity attribute, which expresscs the fact that some transitions
rcquire special resources to be executed. The resource list is an attribute of a slave, and is used
together with the affinity to properly match a transition with a slave.

As previously mentioned, it is possible to connect to the server several slaves, each run-
ning on a different machine in the network. Two slaves are equivalent if any transition performed
on one slave would give the same results if executed on the other slave. Ideally, all slaves would
be equivalent and the dispatching mechanism could be based only on the greedy strategy that the
most powerful slave gets the transition with longest expected duration.

In practice, different machines offer different resources and slaves can lose equivalence
for several reasons: machine architecture, hardware and software rcsources. Some transitions,
cannot be executed interchangeably on machines with diffcrent architecture. The obvious example
is the compilation of a C program, because the C compiler on a SUN produccs a different output
than the C compiler on a VAX. Other transitions that are unusually time-consuming or that require

a large amount of memory should be executed preferably on the large machines in the nctwork. The

58

#!/bin/csh -f

set BIN = wolfe

set PROG = vov_S$BIN

if (S#argv == 0) then
$BIN # Let wolfe print the the usage message.
exit -1 #

endif

set IN = Sargv[$#argv] # Get the input facet.

set OUT = $IN # By default wolfe runs in place.

set ARGS = (Sargv)

set ARGS([S$#argv] = "" §# Clear last element in ARGS.

set OPTIONS = (S$ARGS)

set INLIST = ()

set OUTLIST = ()

while ($#OPTIONS) # Parse the command line options.
switch (SOPTIONS([1])
case -o0:

set QUT = SOPTIONS([2]
set OQUTLIST = ($OUTLIST -o $OUT)
shift OPTIONS
breaksw
case =-t:
set INLIST = (SINLIST -i SOPTIONSI[2])
shift OPTIONS

default:
endsw
shift OPTIONS
end
if ($#OUTLIST == 0) then
set INLIST = ($INLIST -a SIN) # Wolfe runs in place.
else
set INLIST = ($INLIST -i $IN) # Not in place.
endif

vov_capsule -c "$PROG $argv" \
-x $BIN -x S$PROG -x TimberWolfSC-4 \
SINLIST $OQUTLIST \
~-A "" $BIN Sargv

Figure 3.8: The capsule for the tool wolfe. Most Octtools have been encapsulated with a similar

script.

59

licensing policies of some commercial programs might impose further constraints on the execution
of transitions that use such programs. For example, the logic simulator for verilog can run only
on the machines that have been licensed.

Onc solution to manage non-equivalent slaves could be to dismiss the problem by using
the largest subset of equivalent slaves. This is unsatisfactory, cither because it might be impossible
to find a sct of equivalent slaves that completely cover the set of resources needed to complete a
design, or because such a subset could be too small and not allow an adequate exploitation of the
parallelism expressed in the trace. Remember that the more slaves, the more transitions can be
cxccuted in parallel.

VOV deals with the problem of non-cquivalent slaves by considering the affinity of each
transition, as a way to express the resource demand for that transition. Each slave, in turn, offers a
set of resources, and a transition can be executed on a slave only if there is a match between the
affinity and the slave resource list. When dispatching a transition to one of the slaves, VOV scans
the slaves in decreasing order of power, and chooscs the first idle slave whose resource list matches
the affinity list of the transition.

Affinity and resource lists are rcpresented by a string of words separated by spaces. For
example, if a transition can only run on a Cray, its affinity would be "cray", while the affinity of
a transition that can only run on the machines called “calvin” and “hobbes,” would be described by
two words, "calvin hobbes™". For a transition that can run on any machine, the affinity is an
empty string. In a similar fashion, each slave has associated a list of resources, which defaults to a
list containing the machine name and the machine type. Thus, the resource list of a slave running on
the VAX “calvin” would be "calvin vax". Both the affinity list of a transition and the resource
list of a slave can be controlled by the user.

A match between an affinity list and a resource list exists if either string is empty or if the

two lists have one word in common.

3.5 Interactive tools

CAD systems are moving more and more towards automatic synthesis, but this does not
mean that one can dismiss and ignore interactive tools. Some tools such as layout editors, some
simulators, some data browsers, and some synthesis systems require user input. Other tools, for
example simulations with graphical animations, require no input but they nevertheless require user

supervision. From a DMS’s point of view, batch tools are preferable to interactive tools, for the

60

simple reason that they can be retraced automatically at any time, while intcractive tools cannot,
because they require the special resource “designer.”

From VOV’s point of view, many interactive transitions are not worth tracing to begin
with. These transitions are all the cditing of primary inputs, which cannot be retraced, and the
viewing of data, which need not be retraced. The other interactive transitions are given the affinity
"interactive", so that they can be retraced only when the designers connects to the server a
special slave that provides the resource "interactive".

An important interactive tool is called the vov_inspector and it allows a designer to
inspect a piece of data and assume resposibility for its conformance to some standards of quality.
For example, a designer might use the inspector to state that a piece of layout “looks good,” or the
output of a simulation appears to be correct.

The whole design activity managed by VOV can be seen as a single interactive transition
involving many tools invoked from a UNIX shell by many designers, over a long period of time. This
suggests the possibility of scaling down VOV and using it to keep a trace of the activity within other
shells, for example misII, blis or slip. The main hurdle is that most of the transformations
available from these specialized shells run in-place, through destructive modifications of the state
maintained in virtual memory. The trace would be a long chain of in-place transitions, without any
parallelism and without possibility of a partial retracing, the only option being that of repeating the
whole sequence of commands.

3.6 The firing rule

The complete firing rule in VOV is as follows: a transition can be forcefully fired by
a designer at anytime, but during automatic retracing a transition is fired only if all the following

conditions are true:

o A designer has directly or indirectly requested its firing; this condition gives some control to
the designers.

o Allinputs are VALID.
o All outputs are either NOT VALID or MISSING.

¢ There is an idle slave with matching affinity.

61

Just as important is the success criterion: a transition completes successfully if the following four

conditions are true:
o The transition tcrminates normally, i.e. not because it has caught a signal.
e The exit status is one of the expected legal ones.
e All the inputs are VALID and their timestamp precedes the starting of the transition.
o All the outputs have a timestamp that has been modified during the duration of the transition.

If any of the conditions is not satisfied, the transition has failed. By rephrasing the success criterion

we obtain a description of the four failure modes considered by VOV:

Aborted failure: occurs when a transition is aborted, for example because of a signal not caught,

e.g. withactrl-Corakill -9 command or a segmentation fault, or an arithmetic error.

Wrong exit status failure: applies to those transitions that rcturn an unexpected status. For ex-
ample, a logic simulator like musa normally returns zero, while other exit values mean that

something in the simulation has gone wrong.

Invalid input failure: applies to the transitions whose inputs, at the time of termination, are not
all VALID. The invalidation could have happened at any time antecedent the termination of
the transition, even during execution. Transitions fired by VOV can incur in this failure only
because the inputs become NOT VALID after the transition has been dispatched.

Missing output failure: occurs when one or more outputs declared by the transition are not found
or have a timestamp that precedes the firing of the transition, this being an indication that the
transition did not touch those places.

3.7 Trace versus Petri net

Like a Petri net, the trace is a bipartite directed graph, and the nodes are called places and
transitions. But a Petri net allows cycles, while a trace is acyclic, more like a data-flow graph. The
most significant difference is in the firing rule: in a Petri net the firing of a transition consumes the
tokens in the input places, while in the trace the input places are not affected.

In a Petri net the execution of the transitions is nondeterministic. If several transitions

are ready to fire the choice of which one fires first is either random or determined by external rules

62

that are not modeled by the net. Furthermore, firing one transition may disable other transitions that
could have fircd instcad. The tracc is deterministic because all the enabled transitions are always
cxecuted. Although the order of exccution is not fully deterministic, because it depends on the
availabilily of slaves, the final result is.

A cyclic Petri net has more modeling power than a trace. For example, the notion of ex-

clusive usc of aresource can be captured by a marked Petri net with cycles, but not by the trace. This
notion appears in design management when there are transitions that require a particular resource,
such as some special hardware, which can only be used by one agent at a time.
' The exclusive access (o a resource can be provided by an appropriate scheduling mecha-
nism. A Petri nct controls the scheduling with a place that represents the resource and by allowing
at most one token in that place. The place is an input to all the transitions that compete for that
resource. Since tokens arc consumed when a transition is fired, whenever one of the competing
transitions fires, all the others become disabled. When the transition completes a new token is put
in the place to indicate that the resource is again available.

The trace alone is not sufficicnt to represent this type of scheduling, although VOV can
control competing transitions using the affinity mechanism. The condition to fire a transition re-
quires the cxistence of a slave that matches the affinity of the transition. For example, suppose that
scveral transitions require a plotter, and suppose that it is not appropriate to fire more than one of
those transitions at the same time. The desired behavior can be obtained by setting the affinity of

the transitions to "plottexr™ and by providing only one slave with the resource "plotter™.

3.8 Sets of nodes

There are many reasons to group nodes into a single sct. A set can be used to identify
all the alternative implementations of an ALU, or to group together all the steps required to route a
macro-cell chip. Sets can also be used to identify the various alternatives explored in the evolution
of the design, or to group versions that are part of a coordinated change to the design.

Each set is identified by its name. For its internal operation, VOV maintains a few sets

that are characterized by a name with a leading and a trailing sequence of three semicolons:

;3sNODES;;; is the set of all nodes in the trace. This is the “universe” set in each trace.
33sPLACES:;;; is the set of all places;

;33 TRANSITIONS;;; is the set of all transitions;

63

it I TP TP, R0 it

A AN

\\\\\\

SELECTION_RULE

: SELECTION FLAGS
| O TRansmon =l WEIRD FILE

VALID FACET
| ® PLACE NOT VALID () OPTION

EXECUTING [} EXEC
¢ M) NO_INPUTS RETRACING [EXIT

o DEAD [BOOLEAN
{ W NO_OUTPUTS [} missivg [l MEASURE

? ReG Ex [* |
§ SET NAME iisolated, i

| Ok I ancel l Help I

\\\

Figure 3.9: This dialog allows thc user to define a selection rule for a set. The rule selects only
places that have no inputs and no outputs, with any name (the regular expression *“.*” matches
cvery string). MISSING nodes, boolean places or measures are not selected. The selected nodes

constitute a set named “isolated.”

;3;PLACES TO CHECK;;; is the set of all places whose timestamp is checked at every server
timeout;

333sTRANSITIONS TO FIRE;;; contains all the transitions that are scheduled to be fired;

Other sets collect the nodes that have been created by the same designer, thus establishing
a weak form of ownership over those nodes.

A designer can create a set by specifying the selection rule (Figure 3.9), which can be a
rather complicated expression that considers the connectivity of the trace, the types of nodes and

places, and the matching of the name of places to a regular expression.

The operations implemented on sets are complementation within another set, and union
and intersection of two sets. Other operations are £111, cover and collapse. Givenaset S
and a set T, £i11(S, T') returns another set F' containing S, 7" and all paths between a node in S
and a node in T. The cover operation applies an operator to all the nodes in the set, visiting the

input nodes first. The collapse operation is described in the next section.

3.8.1 Hierarchy in the trace

The tracc supports the operation of collapse of a set of nodes into a single node. With
this operation it is possible to model the design activity hicrarchically, as shown in Figure 3.10. The
inverse operation is the expansion of a node.

In a simple collapse of a set, the cntire sct is reduce to a single node, but not all collapses
are simple, nor all sets arc collapsible. A set S is collapsible only if it is locally convex, and it is
simply collapsible if, in addition, its boundaries are homogeneous. A set S is locally convex if for
any two nodcs «, b € S with b depending on ¢, b € D(a), all the directed paths bewteen « and b are
contained in S: VP(«a,b) C S. For example, a sct with two unconnected nodes is locally convex,
and so is any trace as a whole. The disjoint union of locally convex subsets might not be locally
convex. Given any set 4, the set § = £i11(4, A) is locally convex, so the £111 operation can be
uscd to derive a collapsible sct from any sct.

) The second property concerns the type of the nodes in the boundary of the set. A node
n € §ison the boundary B(S) of S if at least one of its inputs and outputs does not belong in S

n€SneB(S)e Imeln)UO(n),m¢gsS

The boundary is said homogeneous if all nodes in it are of the same type, that is they are all places
or all transitions. If all the nodes in the boundary of a locally convex set are places, the set can be
collapsed into a place; if all boundary nodes are transitions, the set can be collapsed into a transition.

If the boundaries are not homogeneous, the set can be collapsed into either a place or a
transition, while the boundary nodes of the opposite type must be squeezed out of the collapsed
node to maintain the bipartiteness of the trace. This is illustrated by an example in Figure 3.11.

Both types of collapse, to a place and to a transition, make sense from an abstract point of
view; however, the collapse to a place is not used, because lumping a trace into a single place dis-
rupts the relationship between places and database objects, and because the collapsed place might
become the output of more than one transition, in violation of the single assignment property. In-
stead, the transition resulting from a collapse of a set has a natural interpretation as the set of opera-
tions that produce the outputs starting from the inputs, while the places collapsed into the transition
represent temporary and possibly non interesting data.

Collapse is essentially an abstraction operator, for it replaces a single node where before

there was a larger number, while retaining the same “interface.” The utility of this abstraction

operation is clear especially from the user’s point of view, because it reduces the complexity of the

65

Collapse

Expand

Figure 3.10: The bipartite graph allows the abstraction of subsets of the graph into single nodes. In

this example, three transitions and their intermediate nodes, are collapsed into one transition.

Figure 3.11: A non simple collapse due to non homogeneous boundaries of the set to be collapsed.

66

vov_mosaico -o routed chip:placed # Route chip:placed

is equivalent to

vov_atlas chip:placed chip:placed.cd # Channel definition
vov_cds chip:placed.cd chip:placed.gr # Global routing
vov_cprep chip:placed.gr chip:placed.h # Detailed routing
vov_octflatten chip:placed.h chip:placed.flat # Flattening
vov_mizer chip:placed.flat chip:placed.mizer # Via minimization
vov_sparcs chip:placed.mizer chip:routed # Compaction

Figure 3.12: Sometimes, a single command line is equivalent to a whole set of transitions. In this
casc, the Mosaico script executes all the steps necessary to route a macro-cell chip. (The command
lines have been simplified.)

trace, allowing the user to understand better the flow of the design. The user interface should make
cxtensive use of this operation. On the other hand, there is no operative advantage in having the
system deal with a hierarchical representation of the trace. By lumping a part of a trace into a single

transition one might lose parallelism.

A collapsible set S is equivalent to a single transition, call it T. All transitions should have
at least a command line and a working directory; but what are these in the case of 7? In general,
for an arbitrary S, the corresponding 7' is purely an abstraction, something that cannot be executed.
But let’s consider the reverse reasoning. Suppose that there is in fact a single command, say C, that
initiates a sequence of several transitions, {t1,%2,...,¢,}. Let’s consider the set S consisting of all
those transitions and their intermediate places. S is a collapsible set, and its collapsed transition
T can be associated with a command line, which is precisely C, and the working directory of T is

also the working directory in which C' was issued.

A concrete example can be found in Mosaico, the subsystem for placement and routing
of macro-cells in the Octtools. The commandline C = vov_mosaico -o routed chip:placed
starts a shell script that executes the Mosaico sequence, as shown in Figure 3.12. The execution
of C leaves a trace consisting of six transitions, each using as input the output of the previous one.
If these transitions and their five intermediate places are collapsed, the resulting transition T" has
chip:placed as its input and chip: routed as its output, and the command line associated
with T is precisely C.

From a user’s point of view it is more convenient to think of Mosaico as a single tran-

67

sition, while from VOV’s point of view it is best to consider the atomic components of Mosaico,
with the detailed description of which tool precisely produced which data. This detailed bookkeep-
ing allows the system to selectively retrace only the components that need it, rather than the entire
Mosaico sct

In the particular case of Mosaico there is no substantial difference between retracing
the top level script or its components, because, no matter what the input chip looks like, Mosaico
always expands to the same sct of transitions. More intcresting are the data-dependent scripts, i.e.
scripts that may cxpand into a different sct of transitions depending on the data. Examples of data-
dependent scripts are some optimization scripts that iterate a series of steps until some criterion has
been satisfied. If the input data of a data-dependent script change, retracing the components of the
script may be the wrong thing to do, while the script itself should be retraced instead.

In conclusion, the collapse operation has two functions: one is to provide an abstraction
mechanism to hide details from the trace, which is mostly beneficial in the user interface; the other
is to create a correspondence between a data-dependent script and a set of transitions, to allow the
retracing of the script itself rather that its components. Collapse is normally done “on the fly,”
becausc VOV stores the trace in its most dctailed form, that is at the level of the atomic transitions,
both for documentation and detailed bookkeeping purposes.

3.9 Services

In this section, we analyze the services that can be provided by a trace based system. All

services use the design trace and many rely on the server/client architecture of the system.

3.9.1 Service: Design documentation

The design trace, which is automatically and non-intrusively recorded, describes the de-
tailed history of the design. It is, of course, a special notion of history, the one represented by the
trace, because it can be rewritten and edited, and some parts can be forgotten, For example, if file
£1 was once declared as the output of transition ¢, and later redeclared as the output of transition t;,
the trace would only have a record of the most recent declaration, the older one being forever lost.
Even without being a pedantic historical record, the trace can answer important questions about the
current status of the design: How was this place obtained? What data depends on this place? Did
anybody run the compactor on this chip? How long did it take to obtain this place?

dialog

EVENT QUEUE FOR TRACE T7seg

68

Inr.ie;<| [i |
FILTERS

TRANSITIONS [sTaRT

[hPLACES END

[RETRACE [FORGET

[h sLaves [CHANGE

[sETS ERROR

| Toggle all =

EVENT 103, Tue Aug 21 185:47:03 1990

./Tseq:pla:contents does not exist,

Event . /Tseqg:pla:interface does not exist.

=1 ! Presvious | Iext | Wiew/Edit I Unreported | Cancel I Help l =

Figure 3.13: The dialog to browse the event queue allows the designers browse only the events they

are interested in.

The trace is a factual record of what happened in the design. A complementary anno-
tation mechanism allows the designers to attach a note containing some text to any object in the
trace, for example to describe why some transition has been executed, or the meaning of a place, or

why a set of nodes is important.

Any creation, modification, deletion, initiation, termination of a place, transition or set
is an event. All events are permanently recorded in chronological order in an ASCII file called
the journal. Recent events are also stored in an event queue for easy inspection by the designers
(Figure 3.13). The journal is normally used only to analyze old events, a rare occurrence according

to experience.

The designers can ask many questions about the status of the design. The server maintains
data on the size of the trace, a list of the last few transitions initiated by each designer, a list of all
the transaction currently executing, and the status of all the slaves connected to the server. Figures

3.14 and 3.15 show some typical responses [rom the server.

69

VOV_SH: DEVELOPMENT VERSION: 2.05: FSM@eros
TRACE: PAGE FSM.page.0
PLACES: 35 TRANSITIONS: 8 SETS: 0
USER paul IDLE: 10.4 hours
vov_nova fsm.nova
vov_cp fsm.nova.esp fsm.esp
vov_mis_esp2blif fsm.blif
vov_octpla fsm
USER <vov_server> IDLE: 20.5 hours

SLAVE 1: eros: 160: IDLE
SLAVE 2 fjord: 144: IDLE
SLAVE 3: orca: 146: IDLE
SLAVE 4 papaya: 148: IDLE
SLAVE 5 peking: 151: IDLE

Figure 3.14: The server is queried about the current status of the design. User Paul has been idle
for more than 10 hours. There arc 5 slaves connected to the server. All of them are idle, and the

most powerful, with a relative power of 160, is the one running on eros.

$ vov_sh -h ccdp:padpMG

/net/canova/users/casotto/yu/ccdp:padpMG:contents
VALID Sat Nov 3 12:33:28 1990(canova)

VALID vov_padplace -g ccdp:symbolic
VALID vov_puppy -0 f£10:puppy £10:symbolic
VALID vov_makeSoft ccdp:symbolic

VALID vov_makeSoft mmdpcntl:symbolic
‘VALID vov_makeSoft pcreload:symbolic

Figure 3.15: The history of the object called ccdp : padpMG, as reported by the server. The place
is VALID, and it is the immediate output of the first transition in the list. The other transitions are

those in the path from the mentioned place backwards to the primary inputs of the trace.

70

3.9.2 Service: Data monitoring

When the server times-out for lack of client requests, it performs some light-weight rou-
tine tasks. Onc of these tasks consists of checking the time-stamp of some places in the trace.
Young placces are checked every time, while places that are more than three days old are checked
only about once an hour, the rationale being that places with a recent timestamp are more likely to
change than places that have not been touched in a long time.

This continuous monitoring is computationally cheap, and it is actually not essential for
the correct behavior of the system, because time-stamp checking must be performed again in order
to process correctly many client requests. One reason to perform this monitoring is to get a detailed
chronology of events, another is that some tools might fail to declare some of their outputs, and this
paranoid checking is the best hope to detect those faulty tools.

If a change in a VALID place is detected, for example because the place is a primary
input and a designer has just finished editing it, all the dependent nodes become out-of-date and are
therefore marked as NOT VALID. A less likely event is the change of a NOT VALID place, which
happens only when VOV is not notified of a design activity due to malfunction of the tools (or of
VOV itself). In this case the place becomes VALID while all its dependents become NOT VALID.

3.9.3 Service: retracing

Whenever a transition becomes NOT VALID, either because one of its inputs has changed
or becauée the transition itself has been modified, the most common action io re-establish consis-
lency is to run the transition again. The trace contains all the information necessary to repeat any
transition in the trace, namely the working directory and the command line. As mentioned before,
the repetition of a transition in the trace is called retracing.

Retracing is always initiated by a user’s request and it can be global or local. A global
retracing schedules for retracing all the invalid transitions in the trace. Local retracing comes in
two flavors: retracing with a zarget place or retracing with a source place. The first activates all
transitions that are necessary to update the specified place. The second form activates all transitions
that depend upon the specified place. Global retracing is most often used during small, single
designer projects. Sets of places can also be used as targets or sources for local retracing.

Among all the transitions scheduled to be retraced, the scrver dynamically builds a list of
those transitions that are immediately ready to be fired, i.e. the transitions whose inputs are VALID

and whose outputs are not. The server dispatches each ready transition to one of the slaves, starting

71

from the transition with the longest expected duration, which is the time taken by the transition the
last time it was cxccuted. Each transition is dispatched to the idle slave with the maximum relative
power, among those slaves whose resource list matches the affinity of the transition. If no match is
found, an error cvent is gencrated, because there is no slave with the resources required to execute
the transition, and the transition is removed from the retracing set. Dispatching is repeated until
all slaves are busy or until all the ready transitions have been dispatched. Upon termination of a
retracing transition VOV repeats the entire dispatching algorithm, both because a slave has become
available for another transition and because new transitions may have become ready to fire.

This dispatching mechanism is uscful to exploit the power of those machines that would
otherwise be idle, because if a slave is running on an unloaded machine, its relative power is large
compared to slaves running on similar loaded machines.

The retracing mechanism allows VOV to emulate the UNIX utility make, with the differ-
cnce that no Makefile has to be prepared, and that retracing can use multiple slaves to exploit
the parallelism in the trace.

Retracing detail

Retracing is complicated by the fact that the input/output dependencies of a transition
are recomputed at runtime, and in some cases the dependencies of the retracing transition may be
different from the dependencies already recorded by the trace. This happens, for example, with
data-sensitive or pathological transitions.

Let’s consider the compilation of a “C” file. Suppose that the file contains the line

#include <foo.h>

When the compiler vov_cc is run, it indicates to the server that the file foo.h is used as an
input. Suppose now that the #include statement is deleted. Since the file has been modified, the
compilation should be repeated. But the compilation no longer uses foo.h as an input, and the
trace has to be modified to take this into account. This type of events is normal but relatively rare.
Since it requires a change in the topology of the design trace, it is considered important enough to
notify the designers by posting an event on the event queue. ,

VOV detects these changes in the traces due to retracing by comparing the inputs and
outputs of the old and of the new transitions. In detail, this is what happens:

72

1. The server dispatches the transition T to a slave: the status of T is changed to RETRACING.

2. The slave uses the description of T (working directory and command line) to initiate a new
transition T°.

3. The new transition T” connects to the server, just like any other transition initiated by a de-
signer, but this time the server recognizes that T’ is a retracing transition because it identical
to T; the status of T” is sct to TRACING, while T remains RETRACING. Some of the at-
tributes of T which should be preserved during retracing and all the annotations are copied
from T to T".

4. T’ declares its inputs and its outputs; some outputs of T" are also outputs of T, which causes
those output places to have two incoming arcs, in temporary violation of the rule that a place

can have at most one input.

5. If T" aborts, it is dcleted from the trace and the retracing of T has failed: T and its outputs
become NOT VALID.

6. If T' terminates normally, the server compares the input/output lists of T and T’; if they
differ, the designers are notified. The criteria to determine whether a transition has failed are
applicd to T". If T’ succeeded, T’ and its outputs become VALID, otherwise they become
NOT VALID.

7. The slave communicates that the retracing of T is now done and the server deletes T; old
outputs of T that are not outputs of T, become NOT VALID and isolated.

Retracing deadlocks

Some sequences of events can lead to situations in which a transition cannot be retraced.
Suppose that, because of a mistake or a bug, a transition declares as input a place that does not
exist; the transition fails for lack of input and becomes NOT VALID. The condition that enables
the retracing of the transition is that all of its inputs are VALID. But a place that does not exist
cannot possibly be VALID, and the transition is therefore blocked into its NOT VALID state. This
deadlock situation requires the intervention of a designer, who has two options to proceed: the
offending place can be removed from the input list of the transition, thus changing the condition
upon which the transition becomes ready to fire, or the correct transition can be manually executed.

73

Another pathological situation can be caused by transitions that do not describe their
input/output behavior accurately. Suppose that a transition modifies one of its transitive inputs, but
docs not declare the place as its output: an example is a tool that runs in place without informing
the server. All dependents of undeclared output, and the offending transition in particular, become
invalid and have to be repeated, only to cause the same events to repeat, and so on in an infinite
loop. Since retracing must be explicitly requested by the designers, it can be argued that a loop that
includes human intervention is not really an infinite loop. In any case, the information produced by
the system, the journal in particular, should be enough to track down the reason for the abnormal
behavior.

3.9.4 Service: Conflict detection

The scrver can detect four types of conflicts:

Input conflict: Aninput conflict arises whenever a transition uses an input that is not VALID. The
designer who has invoked that transition is notified of the problem and given a chance to
avoid it, for example by aborting the transition. However, it often makes sense to continue
the transition anyway, for the purpose of establishing a path in the trace, and let VOV repeat
the transition whenever its inputs become VALID. If the transition had been invoked by VOV,
the transition is always aborted.

Output conflict: An output conflict occurs when a transition declares as output a place that is
already the output of another transition. But a place can be the output of at most one transition,
and the designer is asked if he really wants to forget the old transition and replace it with the
current one. Data-sensitive and pathological transitions can cause this conflict even in the

case of transitions invoked by VOV, in which case the transition fails.

A special case of this type of output conflict applies to primary inputs. VOV notifies the user
if a place which was a primary input is about to become the output of a transition, or if a tool

is run in place on a primary input, because in both cases there is a risk of loss of data.

Lock conflict: Some operations, such as the editing of places, sets or transitions, require the ex-
clusive access to some objects in the trace. This is provided by software locks managed by
the server. An attempt to lock an already locked object causes a lock conflict. A lock can
always be broken, but the user breaking it assumes responsibility for the action, which is also
recorded in the journal.

74

Cycle: The trace cannot contain cycles, and the server must check cach dependency declaration to
make surc that it does not introduce one. Experience shows that this kind of conflict is rare.

Conflicts are detccted in real time by the server. Conflict detection should be performed
cfficiently, because it adds an overhead to most intcractions between tools and the server. In the
current implementation, such overhead has been measured to be on the order of a few hundreths of

a sccond, which is acceptable.

3.9.5 Management of refinements and alternatives

In the litcrature the word version is overloaded to mcan both refinement and alternative.
These two concepts should be distinguished, because they have different representations in the
design trace.

A refinement of a place is a modification that invalidates the current status of the place.
Correcting a typo in an ASCII file is a refincment, because no designer is interested keeping a copy of
the file with the mistake. In a refinement, the previous “version” of the object is no longer of interest,
and it is cffectively lost, unless the designer uses some independent revision control mechanism,
such as the UNIX RCS. The refined place remains VALID, but all the dependent places become NOT
VALID, to indicate that they are no longer up-to-date with the recently refined place. A refinement
is represented by a process of invalidation of nodes already in the trace, as illustrated in Figures 3.16
and 3.17. Figure 3.16 shows a fragment of a trace in which all the nodes are VALID. The trace refers
to the design of a counter starting from the behavioral description counter . bds. Imagine that the
designer realizes that the count er . bds has an error, because instead of describing a counter with
an active-low reset signal, it describes an active-high reset. The designer has no interest in keeping
around the faulty description. Using a text editor, he refines counter.bds. The server notices
the change and invalidates all nodes depending on counter.bds, as in Figure 3.17, where the
different color of the nodes denotes that those nodes arc NOT VALID. At this point, the designer
may request a local retrace from counter . bds to recover consistency.

A new alternative is represented by adding new nodes to the trace. An altemnative for a
design object is created whenever one wants to try something new without destroying the current
status of an object. Alternatives are therefore distinguished by their histbry.

The trace does not capture the notion of “equivalence” between two alternatives, because
such notion is context dependent and extraneous to the design management problem. For example,

suppose that a designer has a standard-cell implementation of a controller and suppose that he wants

"AI'TVA LON 2wo023q dAey Sjudpuadap sii [Te pue ‘pauyal
u23q sey Mol dol oy Ul SPQ* I3UNOD Y Y], JUIWAUYAI JoYe BN JUdWAUYSY /1€ andig

SL

76

to explore the possibility of a PLA implementation. The design methodology to build a PLA is quite
differcnt from the methodology required by a standard-cell block. The standard-cell implementation
and the PLA might be equivalent in their logic behavior, but they are probably quite different from
both the layout and the performance points of view.

Figure 3.18 shows a step by step growth of an alternative. In the top left we sec a trace
fragment that describes the synthesis of a FSM starting from the textual description contained in
the file £sm.bds. Suppose that the designer decides to try a different state encoding. He might,
for example, copy the primary input £sm.bds into £sml.bds, and edit the new file to represent
the new cncoding (top-right). Regardless of the state encoding, the design methodology for the
new FSM is probably going to be quite similar to the previous one. With the same techniques used
by the automatic assistant (described later in Section 3.11), the designer can ask VOV to automat-
ically extend the trace from £sml.bds following a flow similar to the one used for £sm.bds.
Depending on the case, the extension can stop at the first step (bottom-left) or continue all the way
(bottom-right).

3.9.6 Archiving

Onc of the requirements for an ADM is to help archive a design. Assuming that all the
tools leave a complete trace of all their inputs and outputs, the trace can become the primary source
of information to determine which data should be saved in the archive. By distinguishing between
deterministic and non-deterministic tools, it is also possible to save storage space by not archiving

the outputs of all deterministic tools, given that they can be regenerated automatically.

3.10 Use of measurements

Measurements on the design data are needed to provide important services such as verifi-
cation of design specification, validation of a piece of design data, and design estimation. A method
to measure the area of a circuit is needed to help the designer choose the smallest layout. A method
to decide whether a circuit has been successfully simulated (a “Boolean” mcasure) is needed to
inform the designers that more simulations should be performed. A method to count the instances
in a standard-cell netlist is the basis to build a predictor that estimates the area of a standard-cell
implementation given the number of instances in the initial netlist (assuming that such an estimate

is meaningful).

1

s A N

fam.niit

.o._,;{?~: gt e
b,

toms toilies tntartace
e e

Nt

fameymeas crcontants

\
=

Figure 3.18: Alternative: The exploration of new alternatives corresponds to the addition of new

nodes to the trace. Different alternatives can be distinguished by their history.

78

The measurement itself is just another type of place, more specifically a place which is
the output of a measuring tool. Each measurement consists of a value and a unit of measure. The
mcasurcments can be kept up-to-datc by the VOV with the normal built-in retracing mechanism.
The diffcrence between a measurement and other places is a bidirectional link that associates each
measurement with the place which has been measured. These links are established at runtime by
the measuring tool itself.

The area of a chip can be computed by the tool vov_meter, which, upon execution,
declarcs the chip as input, its area as output and establishes the link between the chip and its area.
In this way, it is possible to query about the arca of the chip and know whether the reported number
is up-to-datc or not.

Figure 3.19 shows a trace containing mcasurcments. Here the tool vov_meter is used
Lo count instances and to measure chip area and total net length.

The knowledge required to perform the measurement is completely contained in the mea-
suring tool. The DMS is not required to know anything about area or speed or any other measure-
ment; only the measuring tools do.

Groups of measurement can be handled as regular sets of nodes, but new operators are
dcfined on these sets: a reduction operator is defined to find the smallest, largest, sum, product
of the measurements in the set. Besides the name, common to all sets, each measurement set is
characterized by an objective which describes whether the goal is to simply monitor the set, or to
minimize or maximize the figure of merit, or otherwise make it belong to a “good” set.

A technique that we plan to explore is to accumulate statistics on design parameters and on
the corresponding performance indices. For example, considering a trace relative to the execution
of Mosaico, the ADM can relate the total number of cells in a chip to its total area after placement
and routing. This information can be converted into a lookup table and interpolation techniques

can be used to obtain predictions for different values of the design parameters.

3.11 The assistant

VOV has been designed principally with concern for the needs of experienced designers;
for their benefit, the system is non-intrusive and non-restrictive. The expert designer has complete
freedom to choose the tools to be used in any situation, while VOV intervenes only in casc of
conflict, as an adviser that warns the designer about potential loss of data or potential waste of CPU

cycles.

79

counter:logicicontents

" -,

g e o
b g
counter:pdgic: inte rlapgdd " =N
r‘gaq - _c,n‘i it "::..
£

vou _meter -I cdygrer:logic

] < o
s ¥
p 'y ‘.¢J_

INSTANCES . "counter: logicicontents; . instances

counter:wolfe:interface

iwolfe
.

plfe:contents;”.lambda

A BORL R

AREA."counter:wolfe:contents;".lambda*2
Figure 3.19: A trace complete with measurements. The tool vov_meter counts the number of
standard cells in the input netlist to the tool wolfe, and then measures arca and total net length of

the placed and routed layout.

80

Not all designers are experts. A much larger segment of users of CAD systems are rel-
atively inexpericnced, or altogether novices, and they need assistance and guidance. For them, a
new resource is available: the collection of traces of previous designs.

A trace contains two types of information that can be useful to a novice designer: flow
information and data information. The information about sequencing and flowing of tools, the
representation of the dependencies between inputs and outputs of tools, together with examples of
usc of command line options, are all valuable in teaching novices the role of each tool in the CAD
system. The data information available in the places is also valuable, because it represents concrete
cxamples of what should be expected as input and output of each tool and also because it provides
a set of cxamples that can be copied and modified by the novice designer.

The information contained in a trace refers to a particular design, and the degree in which
such information can be transferred to another design depends on the similarity between the two
designs. The transfer process is performed either by the designers themselves or by a program
called vov_.assist.

A number of traccs that represent routine tasks has been archived in a library, and are
casily accessible via vov_assist (Figure 3.20). For example, one trace shows the normal way to
synthesize a standard-cell layout using bdsyn, misII, and wolfe, another describes the use of
the tools for routing of a macro-cell layout and another describes the synthesis of a FSM. Each trace
in the library has becn fully annotated with comments on the significance of places and transitions.

Any trace can be added “as is” to the library, but it is preferable if the traces in the library
are edited to make them more readable. Some obvious dependencies need not appear in the example
trace, such as those between a transitions and the executables required to run them. Although these
dependencies are useful for design management, they are obvious to the designers and tend to clutter
the appearance of the trace. In any case, all the dependencies will be recovered as the transitions
are executed.

The simplest way to extract information from a trace is to let the designers do it them-
selves. Humans have a peculiar ability to learn by example; they find it easier to modify a piece
of data rather than to create it from scratch. The effectiveness of examples has been shown in [12],
where it is reported on the successful use of traces to teach students in a VLSI dcsign class the
proper sequencing of the Octtools.

A novice designer can study an example trace either graphically or textually, to understand
its meaning. He can modify the data and the command lines to fit his own goals, and then he can

execute the tools directly.

81

3 f ssoD
3 W) fsm % lab1
2(h boss Iabe
% (3 counter (] 1ab5
mosaico

adam

T?%Sf:a.ndzu:cl description of a FSM using
“i[bdsyn and bdnet. No layout gensration

CLICKME | Show trace

Assist Cancel I Help
Figure 3.20: The menu to select an example trace. The trace called fsm has been selected, and the

INFO field shows a short description of the trace.

The program vov.assist automates this process of modification of command lines.
The assistant considers a trace as a particular execution of an unwritten program, it tries to deduce
the program from the trace and then tries to guess the effect of running the program with different
inputs. From an abstract point of view this is a difficult task, because there is the problem of
recognizing conditional and iterative structures in the program, and because inputs and outputs
of many transitions cannot be known until the transitions are executed. The assistant makes two

simplifying assumptions:

1. A trace can be transformed into a program by simply performing substitution of variables

in the command lines of the transactions and in the names of the places.

2. The transitions represented in the trace are not pathological and the trace captures the non

data-sensitive dependencies of each transition.

For most traces one or two variable substitution rules are sufficient. The current imple-
mentation of the assistant allows up to five (Figure 3.21). Heuristics are used to suggest automati-
cally one or two variables that may be substituted.

The basic operation performed by the assistant is the copy of a transition from the ex-
ample trace to the current design trace. After applying variable substitutions to the command line
and to the current working directory of the example transition, the assistant emulates the interac-
tion of the transition with the server, without executing the transition. The assistant connects with

the server, declares that the transition has started, declares as inputs and outputs the same inputs

82

VOV ASSISTANT H

Als: Dacfacm zechnolaqy mappin:
derin1zarion and nappieq ace Jice:red Ly rthe L33V

a,yw bdsyn -z -9 tsn bds §
i Ued Mav 3 10 57 3 1950 casoeny
R4 Seoanslate the behaviu. ol the 7SN into luyac equaticns ‘
i3 REIEEE PEUIRIRIEET I} I TP) the vame ol be e R
El b1t agnale. vhich vanld arhacee o et the g £ 3
s e -2 tldg nsps DONT CAFE s o>) It mighs ncs be i
Fl necIsacy b
SURPT (Hwev misll € sccipe asu U act o fim lojis €am blif !
;fjt Ved Apr .1 L1 S1 0T 1399 cazoeted H
13; vgtiniza the logic 2quatiors i “hs ~ Slaf- $ile ’
2
2

speiolazd by <l € flay
u'l_,u’n-ll.f-u h In-'.y * i
Ued Hay 2 11 00 36 19€0 Faeares

3ET HAME , . NOJES...

-

VARIABLE SUBSTITUTIONS

nofm » ' HEW fom !
B T e e (T s
ST s et oot o e e
no. -V -

ol o T new

SLICRME Toggle notes 8 Carcel

Figure 3.21: A trace has been chosen, and the designer must now specify the variable substitution
rulcs.

and outputs of the example transition, although the names are modified by the variable substitution
routine. If an input place of the transition is also a primary input of the example trace, the assistant
attempts to physically copy the place into the current working directory, unless the place already
cxists. Then the transition is declared completed, and its status is made NOT VALID. The entire

cxample trace can be copied in this way, one transition at a time.

The program operates in both interactive and batch mode. It is possible to restrict the
assistant to operate on a subset of the example trace, and the current design trace itself can be used

as example.

After the assistant has completed its job, the designer can modify the primary inputs and
request a retracing. With retracing, all dependencies are recomputed, and the trace will appear just

as if the designer had directly invoked all the transitions in it.

The assistant was designed originally for the benefit of novice users, but it has become a
useful tool for the experts as well. For example, anyone who has ever designed with the Octtools
has probably needed a standard-cell counter. Given that this is a routine activity, a trace called
counter has been included into thec VOV library. This trace represcnts the design of a 5-bit
binary counter implemented with standard-cells, including simulation and layout evaluation. The
behavioral description of the counter is contained in an ASCII file called counter5.bds. The
description is parameterized, as allowed by the BDS languages, so that it is easy to describe another

counter with a different number of bits.

83

#'/bin/csh -£

set BLOCK_LIST = (bl b2 b3 b4)
set CHIP = mychip
foreach i (SBLOCK_LIST)
vov_assist -p wolfe -N Si # Describe and implement blocks.
end
vov_assist -p simul -N SCHIP # Simulate and verify.

vov_assist -p mosaico -N SCHIP # Place and route.

Figurc 3.22: A shcll script can be uscd to specify a complex methodology as a combination of

scveral example traces processed by the VOV assistant.

A designer, expert or novice, who needs an cight bit standard-cell counter can invoke the

assistant in batch mode, by typing for example:

vov_assist -p counter -N 8bitCounter

vov.assist copies the counter trace into the current trace, and it copies the primary inputs of
the example trace in the working directory. The variable substitution mechanism replaces all occur-
rences of the string counter5 in the trace with the string 8BitCounter. The string counter$s
is deduced automatically by the heuristics coded in the assistant. The behavioral description of the
counter is now in the working directory, in a file called 8bitCounter.bds. The designer can
now edit the file, change the 5 into an 8, ask for a retracing, and the 8 bit counter is done.

Sometimes only the flow is of interest, while the primary inputs of the trace have no
relation with those in the example trace. Suppose one wants to build a standard-cell decoder, using
a design flow similar to the one required for the counter. Suppose also that the file decoder .bds
has already been prepared in the current working directory. The command

vov_assist -p counter -N decoder

uses the assistant to transfer the flow in the cxample trace called counter into the current design
trace. The file decoder . bds is left untouched by the assistant, and the designer can immediately
ask for a retracing.

The batch interface to the assistant allows the description of complex methodologies in
a hierarchical fashion as a combination of smatler example traces, as shown in Figure 3.22, which

shows a shell script that produces the complete trace for the design of a standard cell chip.

84
3.12 Support of design methodology

The assistant can also be used in situations where a well dcfined design methodology
should be adopted by the designers. A sct of traces, complete with annotations, sets and measure-
ments, can capture the design methodology, including altemative paths. The traces can then be
merged with the trace of the current design to guide the designers along the correct design method-
ology.

The current version of VOV docs not allow strict enforcement of a methodology, on the
assumption that designers work better if they have freedom. The tracces created by the assistant only
help guide the designers, but they can be overridden, if the designers decide to do so, by simply
cxccuting other transitions.

In some cases cnforcement of a mcthodology can be desirable, although enforcement
is usually paid with a limitation of the designers’ frcedom. For example, a design division in a
company may have determined that it is more cffective to postpone all layout activity until ail
the componcnts of the chip have been described, documented, and simulated. This constraint can
be represented in the trace by a transition whose output is a set of places required by the layout
tools, and such that the transition succeeds only when a certain condition is satisfied, for example
when high-level simulation of the chip has been completed. Such transition could correspond to an
interactive tool that succeeds only when an authorized designer, for example the project manager,
says that it should succeed and takes responsibility for this decision. Automatic tools to perform
such a function are also conceivable. The bottom line is that the description of a methodology
requires the inclusion in the design flow of special tools that contribute the knowledge specific to
the methodology.

The actual enforcement of a methodology is achieved by restricting the power to modify
the topology of the trace to some special clients, namely the assistant and the tools invoked by VOV
during retracing, thus preventing the designers from changing the design flow by executing other
transitions. Although this enforcement technique may not be bullet proof, it is overshadowed by
a more challenging enforcement problem: to make the designers use VOV throughout the design.
But this problem is beyond the scope of this research, because it belongs in the area of discipline
enforcement within a design group.

Some methodology traces can be created by simply going through an example design. The
resulting traces can then be installed in the library, where they become available to all designers.
Other methodologies can be described as combination of example traces as already mentioned in

85

LLoops can leave many traces

. Oon Cft
R - +
(e < 2 oy |
NN N ——— out
OIOINY, >
f1 12 3 C'ra)
- forcach i (1 2 3)
. ‘ grep Si f > out
forcach i (12 3) G4 end
ep f ($i
end foreach i (1 2 3) ;
j= i+l !
cp 8i [Sj :

end |

Figurc 3.23: The same control structure can originate different traces depending on the operations

performed in the body of the loop. Thcsq cxamples usc simple UNIX shell scripts.

the previous section and shown in Figure 3.22.

3.13 Iteration in design

In principle, all iterations can be reduced to the following elements [1]: a loop initial-
ization, a loop body, a stopping criterion, a next-value function. Nevertheless, the execution of
cach loop can leave its own peculiar trace, depending upon the actions performed in the loop body.
Figure 3.23 shows three loops, all having the same control structure. In the first loop, each itera-
tion is independent of all the others and the corresponding trace consists of a collection of paralicl
branches that can be executed in parallel or in any order. In the second loop each iteration uscs
results from the previous one, thus establishing a precise ordering among the iterations. In the third
loop, each iteration invalidates the previous one, so that only the last iteration is useful.

In some sense, the design activity as a whole is a loop, whose stopping criterion is the
satisfaction of the design goals, and the body consists of whatever the designers decide to do. Al-
though this might sound trivial, the main form of iteration in design is cxpressed by the following
tautology: while the design is not finished, continue the design. These iterations take the form of

successive refinements of the design data and of the set of dependencies among them. This basic

86

design iteration is supported by VOV's tracing and retracing mechanism. In the rest of the section,
other types of iteration arc considered, such as optimization loops, and data-dcpendent loops.

Systems like ULYSSES [11] and Cadweld | 17] provide timited support for ilcrative de-
sign, by means of the backtracking mechanism (see Section 3.2.1). The Sicmens system (6] supports
a specilic form ol iteration which can be called “goal oricnted refinement,” in which a sequence of
operations is itcratively applied until some goal has been achieved, for example until the timing of
the chip is correct, or until a satisfactory fault coverage has been rcached. The designer is directly
involved in the loop because he must decide when to terminate it, while the ADM supports this
decision making process by consulting its rule-based expertise. Another form of iteration is also
supported, which is based on the hicrarchical structurc of a design, in the sense that it allows the
specification of conditions that should be satisfied by all the subcomponents of a module. The Task
Manager [15] considers itcrative processcs such as tight cdit/compile loops, although the loop is
completely controlled by the designer. The itcrative nature of the process must be declared explic-
itly by the designer at the beginning of the loop; and it must also be terminated explicitly. Such
declarations arc necessary to suspend temporarily the automatic backup mechanism for the design
daia involved in the loop.

For VOV, the least-cffort approach was chosen. Rather than supplying its own control
mcchanisms, VOV tries to promote the use of cxisting mechanisms, in particular the UNIX shell
scripts.

One technique is to hide the iteration from the design manager. This can be done by
writing a shell script that contains all the elements of a loop, the initialization, the body, the next
value function, and by considering such script as an atomic transition. In this way, the iterative
nature of the task performed by the script is completely invisible to VOV. These scripts can be
written on demand and effortlessly incorporated in the design flow as new tools. This is possible
because a trace based system is open to the introduction of new tools, due to the great flexibility
derived from the absence of an a-priori description of the tools that can be used in a design.

The hiding technique is general, cffcctive, and free, because it uses existing and familiar
software. However, in many ways, it defcats the purpose of this research, becausce it subtracts a
part of the design activity from the control of the DMS. This may be totally acceptable when the
scripts are self-contained and call fast and rcliable tools, otherwise it may be better to try to use the
services of the DMS, to avoid conflicts and wastcful repetition of cxpensive transitions.

The sccond technique uses the mechanism of collapsable scts. Once again, a script is

used to represent the control logic of the loop, with the difference that the script is not executed as

87

an atomic transition, but as a set of many transitions, cach leaving its trace. This corresponds to
unfolding the iteration, although nothing can be said about the structurc of the trace upon completion
of the script, as reminded by Figure 3.23. All the transitions invoked by the script are collected into
asct, call it S. The set S, or more precisely £111(S. S), is collapsable, and the collapsed transition
corresponds to the invocation of the script. This technique offers all management scrvices during
the exccution of the loop, it allows local retracing of parts of the loop, and it also allows the retracing
of the entire script.

This second technique is insensitive to the type of iteration described in the script. It can
be a data-dependent loop, an optimization loop, a search loop, or even not a loop at all. Through the
command interface to VOV (section 4.3.2), the scripts can also request services, such as retracing,
or query the server for information, for example about some measurements or about the status of a
place.

A third technique to support iteration is offered: the designer can define a set of nodes
and then perform an operation for each node in the set. This is a more restricted technique, because
only a limited sct of operations are allowed. These include many operations on nodes (edit, forget)
and on node attributes (status, name, affinity, etc.) most of which are performed directly by the

SCrver.

3.14 Principles that guided the development of YOV,

The development of VOV has been characterized by the application of some ideas that
worked and by the exploration of others that did not. In hindsight, it is important to become aware of
those principles which have been most successful: simplicity, non-intrusiveness, attention to users,

locality of information, distribution of resources, emphasis on implementation and experimentation.

3.14.1 Simplicity

Despite the complexity of the design management problem, a conscious effort has been
made to keep things as simple as possible. Conceptual support has been provided by Occam’s
razor (“Entia non sunt multiplicanda praeter necessitatem’), the well respected principle, in phi-
losophy as well as in engineering, that gives preference to the simpler of two otherwise equivalent
descriptions of a phenomenon.

The one sentence summary of this research could be that we propose the reduction of the

design management problem to the management of the design trace, the unifying clement used to
represent, document, and automate the design flow, and to assist the designers.

In comparison, other sysiems provide much of the same functionality using twoorm »
separate subsystems. For example the MMS (3] uses LISP functions to automate the design 1
while the history of the design is documented in a scparate ASCII file. A similar scparation between
history and flow automation can be found in Ulysses [11}, and in the Task Manager [15].

The design trace is similar to a Petri net, but it is simpler because it has no cycles and no
tokens. Other rescarchers [30, 6] have proposed the use of extended Petri nets, possibly attracted
by their theoretically intriguing property of being cquivalent to Turing machines [2], and therefore
conceptually capable of modcling any algorithm. But such property of the cxtended nets is not
cxploited in [30] or in 6], just as many other properties of Petri nets have not found application in a
DMS. VOV cxplores the hypothesis that a simple BAD graph is sufficient for design management.

The interface between VOV and the tools is also simple. The trace-based system does not
nced 1o know anything about the tools; it only needs to know something about the tool invocations:
the command line, the working dircctory, thq uscr name, the host name, and the list of inputs and
outputs — information that is can be casily generated at runtime. By comparison, almost all other
proposed systems require detailed descriptions of the tools and of their behavior.

The trace-based system does not require information about the significance of a place or
about the meaning of running a tool. Places and transitions are treated as black boxes. All the
knowledge specific to a design style is confined within the tools, thus eliminating a great deal of
complexity from the DSM, and making it applicable in domains other than electronic design, that
is wherever there is a set of automatic tools to be managed.

The quest for simplicity is also responsible for a number of concepts that are absent from
VOV. Notable is the absence of any form of strong typing of cither data or tools (see Section 2.3).
Data are recoghized only by database and by name within the database, not by value, meaning or
type. There is no distinction between required and optional inputs of a tool, as in decol [34] orin
the Task Manager [15], because inputs and outputs are declared at runtime and are all equally
important.

Simplicity is key to the success of any system, because a simple system is easy to un-
derstand, use, and implement. A successful implementation, that is a detailed, robust, and friendly
implementation, is the strongest promoter of any system among its users. It is essential for an ADM
to have users, not only to validate the system, but also bccause the experience gained with use leads

to a better understanding of the design management problem.

89

3.14.2 Non-intrusiveness

An carly goal of this rescarch was to develop a non-intrusive design manager that doces
not changc the way designers use the tools. Tools should be easily incorporated in the system, and
the designers should have unrestricted access (o all the capabilities of a tool.

Since the trace is managed automatically by the tools, a designer can be unaware of the
existence of VOV and yct benelit from its basic scrvices, such as tracking of the design activity and
conflict detection.

The intcgration of a tool into the systcm, whether through recompilation or through en-
capsulation, is simplificd because the only objcctive is to provide communication with the server,
whilc maintaining the look-and-feel of the tool. The objectives of encapsulation vary among the
previously proposed DMS. For example, [24, 34, 15] require capsules to give every tool a com-
mon look-and-fecl, by renaming tools and options according to a consistent scheme. EDMS [24]
rcquires the encapsulation program to describe the type of the tool and of all its inputs and outputs,
to perform pre and post-processing and to check the success of the tool. Such capsules are compli-
cated and rcquire cffort to be written. For example the encapsulation of Verilog required 7 days.
By comparison, the VOV capsule for Verilog has been written in about three hours.

3.14.3 Distributed resources, localization of information

The resources offered by modern design environments are distributed across many ma-
chines in the network; CPU cycles are available on several workstations and large mainframes, and
data can be distributed among many file systems.

VOV exploits distributed resources by allowing slaves and designers to use any machine
in the local network, as long as both the machine and the VOV server have visibility of the design
data. The coordination of slaves is completely decentralized; slaves can be added and eliminated at
any time, and the power and the resource list of each slave are determined by the slave itself. The
design trace models concurrency and allows parallel retracing to be used whenever possible. The
dispatching mechanism balances the load on the slaves to exploit the power of idle machines.

In contrast to the scattered distribution of resources is the need to maintain a localized
distribution of information. All information related to a specific task should be organized so that
it appears localized and easily accessible. A parallel can be found in the software domain: as
a program that uses global variables is more difficult to maintain than one that uses only local
variables, so a DMS based on a central database is going to be harder to manage than a DMS which

90

cmphasizes distribution and localization.

In VOV, the information about inputs and outputs of cach transition is gencrated locally
by the tool itsclf, or by its capsule. Locality has also a tcmporal meaning in the sensc that the
information is generated while the tool is exceuting. [f the behavior of a tool changgs, the tool
developer must update, at most, the capsule of that ool only, while the rest of the system is not
affected.

Other DMS systems use centralized configuration files to describe the capabilities of the
CAD system. Ulysscs [10] uses the blackboard as the central global database, the NELSIS system
[50] uscs a centralized rule base to analyzc the cvolution of the design. In both cases, the addition
or modification of a tool requircs a complex change of the global information, to predict all the
possible implications of that change on the system.

Cadweld [17] is closc to achiceve locality of the tool description, by means of its CAD Tool
Objects (CTO), but some aspects in the CTO description require global information. For example,
the “priority” or the “robustness” field, both uscd by CAD tasks to choose one of the CTO’s that
voluntcer for some operation, make scnse only in a comparison between two CTO’s. Therefore,
a developer of a new CTO needs to know the values of those fields for all potentially competing
CTO’s in order to position accurately the new CTO in the global spectrum.

3.14.4 Focus on users

Understanding the users is a key element for the success of a software project. Paul
Heckel, in his study on friendly software design [29], ranks “know your audience” near the top
of the list of suggestions to the software developer, sccond only to the rather obvious “know your
subject.” Similarly, Rubinstein and Hersh's [44] first advice is: “Know thy user, for he is not
thyself.”

The audience of a DMS consists of a range of potential users, each with diffcrent nceds
and expectations: expert and novices designers, project managers, system administrators and tool
integrators, corporations.

A novice designer asks for a fully automated system that minimizes the lcarning effort.
A novice designer wants to be led through the design and is probably willing to compromise on
design quality. Their designs are likely to be routine rather than aggressive. An expert designer
knows more about his design and his tools than hc expects a computer to know; he does not want

to be told what to do, but demands a docile and non-restrictive DMS. A project manager wants 10

91

have control over the design activity, and wants 1o know what the designers have done. Somctimes,
he also wants to enforce specific design methodologics that arc deemed safc and robust. A DMS
is valuable to a corporation when it reduces its vulncrability to the turn-over of designers, who
may take away with them precious information and expericnee (45]. A DMS should therefore help
improvc the documentation of cach design.

In VOV, the initial focus has been on the more challenging needs of the expert users. The
attention has sincc been extended to novices with the development of the assistant. This approach
has been cffective; after investing more than a ycar (Jan 89 to Mar 90) developing the non-intrusive
tracing and retracing mechanism, it was possible to develop the prototype of the assistant on top of
the tracing mechanism in less than a month (June 1990).

Attention to the uscrs requircs cmphasis on the uscr interface, the software layer that gives
the uscrs access to the scrvices provided by the DMS. All the three types of interface mentioned by
Rubinstein [44] have becn implementced: command-based, menu-driven and graphical. The details
arc reported in Scction 4.3.2. Of the DMS reported in the literaturc only EDA’s system EDMS (24]

offers all three types of interfacc.

3.14.5 Emphasis on team design

Team design is the norm in the clectronic industry. Some authors [51] state that the correct
approach to coordination of team design is to try to give each designer “the illusion that he/she is
working on a single designer system.” This is an arguable statement. Even a single designer can
perform many tasks simultaneously, either on the same machine or on different machines in the
network. The conflicts that can be generated by two interfering tasks are the same whether the two
tasks have been initiated by the same designer or by two different designers. So the fundamental
problem is not coordination of team design, but rather coordination of concurrent activities.

VOV emphasizes that it is possible and advantageous to work in parallel. Conflict detec-
tion protects the integrity of the data and avoids wasteful duplication of efforts. The design trace
promotes cooperation among designers, because the activity of each designer is visible to all de-
signers. The notion of ownership of parts of a design, a trademark of the workspace based systems
(e.g. [1S5, 3)), is relaxed and it is conccivable that one designer might pick up an activity where

another designer has left off.

VOV is a native multi-tasking system, not a single-user system extended to handle many
users.

92

3.14.6 No restriction to data visibility

An important aspect of design concems the visibility of the data. A human being prefers
to work with just a fcw objccts at a time; the visibility of other objects may be distracting and
confusing. This is why pcople prefer to work with hicrarchical rather than flat file systems, and to
program with local rather than global variablcs.

A DMS should help focus the designer’s atiention on the objects of interest. In some
systems [31, 3], the data is fragmented using the notion of workspace: onc workspace per designer,
and public workspaccs for shared data. Each designer secs only the data in his workspace and none
ol the data in anybody clsc’s workspace. This arrangement accomplishes the additional purposc
ol protecting the data in the public workspaces. However, we belicve that this fragmentation is an
obstacle to truc coopcration among designers.

In VOV, protection is already provided by the conflict detection services, so that there is
no reason to link visibility with protcction. To encourage cooperation, data visibility is not restricted
within a projcct, and all designers can, if they choose, inspect any piece of data represented in the
trace. Data can be organized according to design tasks using UNIX directories and symbolic links.

A rclated issue is the visibility of the trace itself. The design trace is normally flat and
large, and a designer rarcly needs to look at the entire trace at once. The burden of filtering out
uninteresting details should be placed upon the user interface. Instcad of presenting the entire trace,
the graphical interface should respond dynamically to the requests of each designer by showing only
the details of a subset of the trace, while the rest of the trace should be shown as an abstraction.

This smart graphical user interface has not been implemented yet for two reasons: the
objcctive complexity of its implementation, and the fact that the graphical interface is not critical for
the operation of the system, which can perform all of its functions without the designer ever seeing
the trace. A dumb graphical interface that presents the entire trace in full detail is nevertheless
available. Feedback from users of the system has already indicated that designers are interested in

looking at the trace, and that the dumb interface is not satisfactory.

3.14.7 Ignore design hierarchy

Hierarchy is normally introduced in a design for three reasons: to break down a large
problem into smaller ones, to allow reuse of components, and to hide details. However, hierarchy
does not unconditionally have all these advantages, and there are situations in which a flat structure

is preferable to a hierarchical one. Management of the design flow may be one of these situations.

93

The human inability to cope with a large number of entitics at the same time forces de-
signers 1o apply Ceasar’s “dividc et impera, divide-and-conquer™ rule ~ to break the design of a
large system into the design of smaller subsystems. This rule is often applicd recursively with the
result that many designs gain a multi-level hicrarchical structure,

Hicrarchy is not a static property of a design. As the design cvolves, hicrarchical levels
can be flattcned or added, to suit particular nceds of designers or tools. For example, the hicrarchical
structure uscd to describe the behavior of a system may be inappropriate from the layout point of
vicw. ,

The hiding of details is made possiblc not by the hicrarchy itself, but by the capability
of producing abstractions of the subproblcms and of their solutions. Hiding details makes some
. lools more cfficicnt, but only if the tools arc capable of using information from the abstraction. For
cxample, a placement tool operates at only one level of the hierarchy and it only needs information
about the sizc and shape of the cells (the abstraction), rather than about the internal structure of cach
cell. For the same circuit other tools may nced to retricve the detailed structure of each component
in the hicrarchy, in which case hierarchy may be more of hindrance than of help. For example, the
logic simulator musa must flatten the hicrarchy of a circuit on the fly in order to function.

Reusability of components depends upon the regularity of a design. Regular designs,
such as RAM’s and ROM’s, used hicrarchy cffectively, because few components can be reused
many thousand times.

The importance of hierarchy and its relevance in the domain of data representation are no
longer issues open (o debate, because most modern CAD systems support hierarchical representa-
tions of design objects. But what is the role of hierarchy in design management?

In VOV, the design hierarchy is inconsequential. It is the tool’s responsibility to under-
stand the hierarchical structure of a design and to communicate to the system what use is made
of the hierarchical information. A tool that uses abstractions, for example a placement tool, will
declare as input only the abstractions at one level of the hierarchy, while a tool that traverses the
hierarchy, for example a logic simulator, will declare as input all the components of the circuit,
down to the lowest level. For VOV, the diffcrence between the two tools is in the number of inputs
and in their outputs.

Some previous work on design management believe that it is necessary to provide special
support for hierarchical design. For example, Bretschneider et.al. [6] use specially annotated arcs
in a Petri net to represent conditions that must be satisfied by all the components of a description

of a circuit. Kozminski [34] embeds the circuit hierarchy in the UNIX hierarchy of directorics and

94

rclics on this structure to provide management scrvices.

Only few rescarchers (c.g. Chiueh ct. al. [15]) have considered hicrarchy in the design
flow, although it is clcar that some form of hicrarchy cxists. For cxample, in the Qcttools, the
task of routing a macro ccll chip is performed by running the tool Mosaico, which in turn calls a
sequence of thirteen other tools (sce Figure 3.24). From the users’ point of view, it is advantageous
to associatc the task of routing a chip to a single tool, that isMosaico. From a DMS point of view,
there is a loss of detail (for cxample, loss of potential parallelism) in considering mosaico as an
atomic transition. The approach in VOV is to operate with a flat description of the design trace, for
maximum control, while the user-intcrface is capable of presenting a hicrarchical vicw of the trace.

The advantage of using hicrarchy in the design flow arises from the abstraction power of
hicrarchy, that is from the possibility of hiding details. Little advantage can be obtained by reusing
a flow scgment, as a subroutine can be rcused in a program. Suppose that the “same” flow is used
Lo process two independent design objects, A and B, and to be more concrete, assume that A and
B arc two chips to be routed by Mosaico. We could think of Mosaico as a subroutine with one
parameter, and then apply the subroutine first to A and then to B, but this wou'ld not always be good
design management. Some of the steps inMosaico can take minutes or even hours, and one should
avoid repeating those steps unless necessary. To do that, the DMS must maintain information about
the progress of A and B through the steps in the subroutine; for each operation in the subroutine,
the DMS nceds to know when it was executed, if it was successful, and which data was used. But
by keeping all this data around, the DMS effectively replicates the Mosaico subroutine once for
A and once for B.

There is a tradeoff between efficiency and hierarchy: efficient design management de-
mands a flat trace, while hierarchy is useful especially at the interface with the users. VOV offers
support for hierarchy in the trace through the notion of collapsable sets, as described in Section
3.8.1.

Chapter 5

Experimental Results

The ultimatc goal of an ADM is to increase the productivity of CAD systems, reducing
the design time or the design cost, or improving the quality of the delivered product. The value of an
ADM should bc measured in absolute terms by the difference in productivity level with and without
it, or in relative terms by comparing its productivity with some other ADM. Both tests are difficult
to perform, because of a lack of formal definition of productivity, and because the comparisons are
hindered by the impossibility to keep *“all clse” equal while switching the ADM.

However, it is possible to accumulate some statistics on the design process, such as the
total time spent by the tools and the total number of tool invocations, separating successes from
failures. Thesc statistics are related to the design time, and they can provide insight about the
designers’ style and the performance and reliability of the tool set.

In this chapter we present these statistics for a number of designs in which VOV has been

used, including some projects developed by students of a VLSI design class.

5.1 Statistics on the design

VOV keeps a record of count and duration of all transitions, distinguishing the transitions
invoked by the designers from those invoked by VOV itself as part of the retracing mechanism.
Duration is measure in seconds of elapsed time, not in CPU time. Successful and failing transitions
are counted separately, and for the failing transitions all 4 failure modes described in section 3.6 arc
considered: wrong exit status, invalid input, missing output, and interruption.

The following statistics are maintained automatically for each design trace:

115

116

TOTAL TRANSITION TIME (TTT) and COUNT (TTO):

TOTAL SUCCESSFUL TRANSITION TIME (TSTT) and COUNT (TSTC):
TOTAL FAILED TRANSITION TIME (TFTT) and COUNT (TFTC):
USER-INITIATED TRANSITION TIME (UTT) and COUNT (UTC):
AUTOMATICALLY-INITIATED TRANSITION TIME (ATT) and COUNT (ATC):
USER FAILED TRANSITION TIME (UFTT) and COUNT (UFTC):

USER SUCCESSFUL TRANSITION TIME (USTT) and COUNT (USTC):
Ale()MATlCALLY FAILED TRANSITION TIME (AFTT) and COUNT (AFTC):

AUTOMATICALLY SUCCESSFUL TRANSITION TIME (ASTT) and COUNT (ASTC):

Some obvious relations between the quantitics mentioned above are:
TTT =TSTIT+TFIT

TTC =TSTC+TFTC
TIT =UTT + AIT
ITC =UTC + ATC
UTT =UFIT +USTT
UTC =UFTC +USTC
The conflicts detected during the design process are also counted:

CYCLES CONFLICT (CC): Number of transitions that attempt to define a cyclic dependency

among design data.
INVALID-INPUT CONFLICT (IIC): Numbcr of input conflicts.
OUTPUT-REDECLARING CONFLICT (ORC): Number of output conflicts.

LOCK CONFLICT (LC): Number of locking conflicts.

117

Another empirical measure of the quality of a design methodology is the ratio between
the total duration of the valid transitions (VTT) and the total transition time¢ TTT:
o= 11T
ITT
A valuc of 1.0 for @ is an indicator of the “perfcct” design methodology: cach transition
has becn cxccuted exactly once, and all transitions have been successful and uscful. The more the
transitions are rctraced, the lower 2 gets, because TTT increases and VTT docs not. The value
of @ fluctuates during the design process, as transitions arc first invalidated (Q drops) and then
retraced (@ rises). This measurc makes most sensc after the design has been completed. A slightly
more stable mcasure is the perceived quality Q, which takes into account the transitions that are
currently NOT VALID, and therefore do not contribute to VTT, but which are presumably going to
be exccuted sooncer or later. Let NTT be the expected cumulative duration of those transitions; then

we deline
_VIT+ NIT

Q= TTT + NTT

5.2 BRIC

BRIC is an integrated circuit for music generation conceived by Prof. John Wawrzynek
of UCB. The design of this chip, which started in Spring 90 in an advanced VLSI design class, was
the first real design managed by VOV. A collection of about 30 machines (SUN-4 and DECstation
3100) running the operating system SPRITE [42] was available for this design. A large set of
tools were employed, including the Octtools, some commercial tools such as Verilog, and some
new tools especially created for this chip. This was a challenge to VOV’s flexibility to encapsulate
many diverse tools. The most troublesome tool to encapsulate was Verilog, mostly because its
licence policy allowed it to run on only a few machines in the network, and because it required the
use of a command line password that dependend on both the machine name and the month. The
encapsulation script not only to described the input/output behavior of the tool, but also computed
automatically the correct password.

The testing strategy involved a comparison of the logic simulation output with a behav-
ioral model written in C. The trace therefore includes the compilation of the C file, the execution
of the model with several input stimuli, the Verilog simulation with the same stimuli and the com-
parison of the outputs using the UNIX utility di £ £, encapsulated by the script vov_diff.

118

Figurc 5.1: The trace for the BRIC project consists of more than 1200 places and 339 transitions.

Large traces such as this tend to be relatively wide and shallow.

A tcam of cight students, including the writer, cooperated on the design. These students
were experts, in the scnse Lhat they had already designed a chip using the Octtools. The reaction of
the designers was our main concemn: what did they think of VOV, did they like it? There was no
negative response, but a general sense of acceptance. One clearly positive, even enthusiastic, re-
sponsc camc (rom the student in charge of the pipelined multiplier array, who praised the automatic
parailel retracing mechanism,

Although we were all working on the same trace, VOV registered no conflict due to
concurrent activities of two designers. This was mostly due to a clear distribution of the design
tasks and because of the spontancous organization of the data into an ordered directory structure.
In a couple of cases a designer continued a task from where another designer had stopped; the trace
was the media to communicate uncquivocally to the second designer what the first designer had
done.

The BRIC trace is shown in Figure 5.1. The trace contains 1239 places and 339 transi-
tions and 22 scts. 2141 tool invocations have been recorded, for a total of more than 105 hours of
cxecution time. When this snapshot of the trace was taken, the perceived quality was Q, = 0.173,

meaning that on average all transitions have been repeated more than 5 times.

5.3 Floorplanning an FPU

The FPU project consists of the floorplanning of a floating point unit obtained from an
industrial source. This is a single designer project, and its real objective is to test the floorplanning
capabilities of the Octtools. The FPU trace is shown in Figure 5.2. The long tail in the tracc
corresponds to the tools in the Mosaico sequence, while most of the nodes in the top eight rows
are part of the floorplanning activity.

The chip consists of 16 blocks, cach with a fixed aspect ratio and a large number of
floating pins, for a total of more than 3000 floating pins in the chip. The program puppy, used for

this floorplanning, runs in-place because it changes the location of the pins in the master copy of

119

a o°a - 69 600degEn 4 ©R.GQEPOQ. 08 _opa @a a
. oanudﬁiﬁmqaqo&afﬁﬁagi«éudqgnas,dmam, -.faeect o
tmqawdhapemw,g,, L
nlumoéc"-'*o"occi’éoaﬁe‘aﬁidpp;g j@gf‘%‘ﬁit«aueu
o aE”
T i
gid
_ o
Y]
a’-’%'
pou
Gan
-
ae
o a

Figure 5.2: The trace for the {looorplan of an industrial FPU.

cach block in the floorplan; the masters are both inputs and outputs for puppy. After floorplanning,
cach block is processcd by a module generator that tries to satisfy the constraints generated by the
floorplanncr. Upon successful gencration of the modulcs, a new netlist is assembled and the chip is
routed by Mosaico.

The trace consists of 16 branches, one for each block in the chip. These branches con-
verge one first time into the puppy transition, then they procede independently through the module
generators and they finally converge again into the transition that assembles the floorplanned netlist.
The double convergence of these 16 flows prevents any sensible partition of the trace into smaller
units, so that the whole floorplanning task and its trace should to be dealt with as it is, flat and large.
Other systems proposed in the literature do not seem to be able to deal with complex activities such
as this.

5.4 Compilation of VOV

Another project that is used to test VOV is the compilation of VOV itself. VOV consists
of six executables and 4 libraries, generated from about 27000 lines of C++ code, split into 131 files.
The compilation trace includes 448 places and 122 transitions. To date, a total of 5289 transitions
have been traced, for more than 171 hours of compilation and linking. The trace quality @ is 0.019,

120

a small number which means that the files have been compiled about 50 times since last March,

when the accounting began. Parallel retracing is the main reason to use VOV for compilation.

5.5 VOV in a VLSI design course

CS250is a graduate course on VLSI design regularly taught at UC Berkeley. The Octrools
have been used in the class since the Spring of 1988 as a way 1o expose the students to current
CAD technology and to cnable them (o complete a VLSI project of the complexity of a four-bit
microproccssor. Traditionally the course is divided into two halves: the first half of the semester
consists of a scrics of five laboratory cxcrciscs that show the capabilities of the Octtools, while in
the second half the students, in groups of three or four, use the tools for the final class project.

VOV was introduced in CS250 in the Fall semester 1990, when the class was taught by
Prof. John Wawrzynck and 25 graduatc students were enrolled.

We felt that our moral responsibility was to give priority to the teaching of VLSI design
rather than to using the students as guinca-pigs in our experiment on VOV. That is why we only
rccommendcd the use of VOV throughout the scmester, but never enforced it. The results can be
comparcd with previous offerings of the same class.

5.5.1 The laboratory exercises

The automatic assistant was the last piece of VOV to be developed, but it is the first one
seen by a novice designer. Three of the five laboratory exercises (1, 2 and 5) were based on an
cxample trace that was prepared by the teaching assistant (TA). Each trace was proposed to the
students as an example of what they were supposed to leam in the exercise. The other two labs (3
and 4) had no éxample trace because they consisted mostly of hand layout using VEM.

The design environment consisted of a cluster of 24 color VAXstation 3100, each with
8Mbytes of memory, all connected to the same disk server. Students who had access to other more
powcrful workstations were allowed to use them.

The VOV tutorial, included in Appendix A, and a short twenty minute presentation on the
philosophy of the design manager, was all that was given to the students to understand VOV. The
tutorial leads the students through the design of a seven segment display driver, including automatic
synthesis, layout, and simulation.

The first lab was simpler than the tutorial, because it covered only synthesis and simu-

-0 73eglriver:licgic 73eglriver.nlif

Hﬂ:ic

o
5

N

(€1 1Y

Pats
m

[0}

w

Figure 5.3: The script corresponding Lo the example trace used in the first assignment. This trace
rclers o the synthesis of a seven segment display driver: the students had to synthesize a 4-bit ALU.

Two variables substitutions were required: 75egCriver => bitsliceand 73eq -> alu.

lation ol a logic nctwork, without layout. The script of the trace prepared by the TA is shown in
Figure 5.3. This example trace dealt with the synthesis ol a scven scgment display driver, while the
students were requested to build a 4-bit ALU using a similar flow.

As in previous ycars, the first homework turned out 10 be casy. Many students used VOV
successlully. Others ran into trivial technical difficultics, that were caused by problems with their
UNIX account. A few of them quickly gave up the ADM preferring (o usc the tools without it. Of
thosc who used VOV, a few did not understand the distinction between the example trace and their
own design trace. This was because they did not have a chance to see their own trace, since the
tutorial did not tcach them how to access the graphical interface. Others successfully navigated
through the menu-driven interface and discovered [unctions not described in the tutorial.

Many students did not understand the slave mechanism and did not know how to monitor
the activity of the slaves. A common operation that students wished to perform was the elimination
of transitions from the trace, but they werc unable 10 do it because they had not been taught how.

The students had to overcome a difficulty with the VOV assistant, which in that period
allowed only one variable substitution, whilc the example trace would have required two (Figure
5.3). Some students executed the assistant twice; others built the trace by cxecuting the transitions
manually.

The trace was particularly usctul to cnable the TA to help the students in difficulty, becausc
it recorded precisely what the students had done and made the diagnosis of the problem much casicr
than in the past.

For completeness we report the technical problems encountered with VOV in the first
homework. Due 10 a project name conflict one student could not start her server on the machine
she had chosen, and had to ask for assistance to understand what was happening. Some scrvers

cntered an infinite loop caused by a bug that was discovered and fixed only later in the semester.

122
Thosc scrvers had to be killed and restaried by hand. A few times. duc to incomplete setup of
the students™ UNIX accounts, no slaves were connected to the server and any retracing command
would hang. waiting forever for a slave to become available. Some students were not familiar with
the notion ol a server/client architecture and did not know how and when to kill the various VOV
processes. The capsules vov_bdnet and vov_musa were found to be incorrect.

The data collected during the lirst laboratory are shown in Table 5.1. The large variance
is an indication that the students have different ways to approach the tools. For cxample, student
aa’s data shows only four transitions, suggesting that he must have turncd VOV on and off, becausc
much of his work did not get traced. At the other extreme, student ak used VOV throughout the
process for a total of 89 tool invocations, but he did not take advantage of the automatic retracing
mechanism. because only 9% of his tool exccutions were done automatically. Student wb had 76%
ol his tools cxccute as part of automatic retracing. Thesce results prompted the need for a quick
lecture on the retracing mechanism, which was better exploited in the second homework, as shown
in Table 5.2.

The sccond laboratory dcalt with various optimization techniques usingmisII and with
the layout tools wo 1 fe for standard-cclls and octpla for PLA's. The example trace for this lab
is shown in Figurc 5.4. As far as VOV is concemcd, this lab was in large part a replay of the
first, cxcept for some improvements in the understanding of the system and some more users giving
up VOV, apparently because of problems caused by the limited disk space made available to the
students.

The third and fourth homeworks dealt with symbolic layout of an elaborate 4-bit datapath.
Thesc labs werc not based on example traces, and there was no particular need to use VOV. Some
students with access to powerful machines elected to use it anyway, asserting that it helped them
maintain the consistency of their hierarchical layout.

In the fifth exercisc the students assemblcd a complcte chip using the datapath prepared
in lab 4, the seven segment display driver uscd in lab 1 and an automatically synthesized controller.
The chip, complete with bonding pads, multiplies two 4-bit numbers and displays the product on
a pair of seven segment displays. The cxercise required the usc of several CPU intensive tools to
place and routc the chip, including puppy and Mosaico. The complete trace of the design of a
similar chip was prepared by the TA was offered to the students as example.

The environment in which most studcnts were forced to work was too restrictive; a disk
quota of 2.25Mbyte per student forced the students to a difficult bookkeeping to maintain enough
disk space so that the tools could run. The final chip alone required more than 1 Mbyte. VOV was

| Results from Lab |]

Student id | aa 1l al ak | aq as | bc | cm wb
Total Trans Time 98 | 717 | 1030 | 2793 | 347 | 594 | 664 | 305 | 1346
Total Trans Count 41 45 38 89| 23| 27| 32| 20 32
User Tt 79 1499 | 963 | 2546 | 227 | 58O | 269 | 195 | 319
User Tc 3| 16 35 751 13| 25 81 14 10
Uscr Success Tt 76 | 140 | 827 | 1100} 167 | 277 | 266 | 193 197
Uscer Success Tc 2 9 28 33 81 12 71 13 5
User Failed Tt 31359 136 | 1446 | 60| 303 3 20 122
Uscr Failed Tc 1 7 7 42 51 13 1 | 5
User Failed Wrong Status Tt 3| 41 1361 8151 361} 103 3 61
User Failed Wrong Status Tc 1 3 7 38 4 6 1 2
User Failed Generic Tt 314 593 2
User Failed Generic Te 3 3 1
User Failed Delective Output Tt 200 8
Uscr Failed Defective Output Te 7 1
Uscr Failed Invalid Input Tt 4 381 24 53
Uscer Fuiled Invalid Input Te 1 1 1 2
Auto Tt 19 | 218 67 | 247 1120 | 14 | 395 | 110 | 1027
Auto Tc 1y 29 3 141 10 2| 24 6 22
Auto Success Tt 19 | 199 67| 199 | 112 81371 | 110| 772
Auto Success Tc 1| 25 3 10 8 1| 20 6 15
Auto Failed Tt 19 48 8 6| 24 255
Auto Failed Tc 4 4 2 1 4 7
Auto Failed Wrong Status Tt 17 43 5 6| 20 255
Auto Failed Wrong Status Tc 3 5 1 1 2 7
Auto Failed Generic Tt
Auto Failed Generic Tc
Auto Failed Defective Output Tt 2 2
Auto Failed Defective Output Tc 1 1
Auto Failed Invalid Input Tt 5 3 2
Auto Failed Invalid Input Tc 1 1 1
Conflict Redeclaring Output 2 9 33 72 11} 25 5 3
Confiict Invalid Input
Conflict Cycle
Contlict Lock

Table 5.1: The statistics collected by VOV for the first laboratory cxercise show a large variance in
the way students have used the tools.

124

| Results from Lab 2]
Student id he aa aj | au cm |

Total Trans Time 1625 | 7266 | 6013 | 501 | 16998 | 11633
Total Trans Count 16 35 491 11 164 182
Uscr Tt 441 | 4969 | 4584 | 421 | 4720 | 3409
User Tc 9 15 28 6 74 46
User Success Tt 379 [4252 | 2812 | 409 | 3103 | 2814
User Success Te 7 13 20 5 47 42
User Failed Tt 62 717 [1772 12| 1617 595
User Failed Tc 2 2 8 1 27 4
User Failed Wrong Status Tt 62| 717 351 12 213
User Failed Wrong Status Tc 2 2 2 1 2
Uscr Failed Generic Tt 545
Uscr Failed Generic Tc 2
User Failed Defective Output Tt 15 247 50
Uscr Failed Defective Output Tc 1 11 2
User Failed Invalid Input Tt 1722 1157

| Uscr Failed Invalid Input Te 5 14
Auto Tt 1184 | 2297 | 1429 | 80 [12278 | 8224
Auto Tc 7 20 21 5 90 136
Aulo Success Tt 1184 | 2297 | 1158 | 41| 11233 [7456
Auto Success Tc 7 2 15 2 71 130
Auto Failed Tt 2711 39| 1045 768
Auto Failed Tc 6 3 19 6
Auto Failed Wrong Status Tt 267 741 40
Auto Failed Wrong Status Tc 5 12 1
Auto Failed Generic Tt 6
Auto Failed Generic Tc 1
Auto Failed Defective Output Tt 41 21 64
Auto Failed Defective Output Tc 1 2 2
Auto Failed Invalid Input Tt 18 234 728
Auto Failed Invalid Input Tc 1 4 5]
Conflict Redeclaring Output 14 21 3 46 15
Conflict Invalid Input
Conflict Cycle
Conflict Lock 1 3

Table 5.2: The results of the second laboratory exercise confirm the large variance in thc way
students use the tools, as obscrved in the first exercise. A better use of the retracing mechanism is

apparent.

125

Figure 5.4: The cxample trace for lab 2.

onc of the carly victims of this cleanup ctfort, because cven the 300kbyte or so used for the trace
and the journal were precious. VOV could, in principle, use the trace to determine which data are
essential and which could be deleted to reclaim disk space, but in practice such service was not
available at the time because its importance had been underestimated. The students with access 1o

private workstations did not have space limitations, and run VOV without problems.

Lab 5 urned out to be relatively casy, mostly because the tools involved were quite robusi.
By the cnd of the seventh week, most students produced a complete working chip, which could
have becn sent out for fabrication. We also observed that the students were using the tools in a
more sophisticated mode than ever before; they were exploring esoteric options and stretching their
. capabilities.

In comparison, the fifth assignment in the previous offering of the class (Fall 89) involved
the assembly of a multiplier by connecting a 4-bit alu and a PLA, with the storage elements provided
off-chip, resulting in a much simpler and smaller chip.

Each lab was an opportunity to debug VOV and to tune its performance. For cxample. lab
5 exposed an infinite loop bug related to the management of tools that run in place and cxcited only
by a particular sequence of tool failures. The excessive overhead that frustrated many students who
used VOV on the smaller machines was traced back to a liming interaction between some clicnts

and the paging mechanism in UNIX, which delayed the job-dispatching routine in the server by up

126

1o several minutes.

5.5.2 The final project

For the linal project the students could choose between hardware, software or architecture.
Of the 25 students, 4 chose a software project, 8 chosc the architecture project, and the other 13 split
into 4 groups. cach designing a VLSI chip. Thus, there were only four VLSI projects that could
take advantage ol VOV: two did.

The two groups that did not usc VOV uscd the LAGER CAD system | 14], because they
were alrcady lamiliar with it. Onc group designed a “low power color space translator,” a digital
chip with about 6000 transistors, the other group produced a 5000 transistor chip for bus arbitration
in a particular multiprocessor architecture. The groups’ own estimates of design time range between
260 and 280 hours per person.

Another three person group designed a “medium access control chip” (MAC chip) for
intcrprocess communication. They produced two complete versions of the chip, one using wolfe,
the other containing some optimized hand layout. Each version had about 31,000 transistors, of
which about 18,000 belonged in a RAM. They said that VOV was helpful in managing and pro-
cessing the more than 30 BDS behavioral descriptions of the circuit components, but they also
preferred to run some tools directly to avoid the capsule overhcad. They used two servers because
they had access to two clusters of machines. They estimated their design effort to be at Icast 400
hours per person. The statistics from their two traces are shown under MAC in Table 5.3.

The last design group was formed by four students and developed a 9-band “spectrum
analyzer [or audio signal” with video output. The challenge for this chip was the use of experimental
software for layout ot analog circuits such as switched capacitor filtcrs. Most of those tools were
not encapsulated. In order to fit within the tiny-chip MOSIS frame, the group separated the analog
part form the digital part and produced two scparate chips that communicate on a 6 bit bus. The
4150 transistor count for both chips is rclatively small, because of the few transistors in the analog
part.

This group also used VOV, not for the entirc design, but rather for the final assembly
of the two chips, the most automated part ol the design. An interesting episode happened with
the compactor sparcs, which on one chip consistently crashed on the third iteration. In order to
overcome the problem, the students discovered that they could reliably obtain three iterations by

running sparcs twice, the first time for two iterations, the sccond time for just onc. This was an

127

example of inventive design methodology that could not have been planned a-priori, simply because
nobody knew that sgar <3 could behave so strangely. The trace based system allowed the students
to achieve their goal as soon as they discovered how to do it

The students estimated their design effort 10 have required about 250 hours per person.

The statistics captured by VOV are shown under SAAS in Tablc 5.3.

5.5.3 Comment

All four chips designed in this class were more complex than in the past, and the two
chips managed at least in part by VOV were more complex than the other two.

Although this incrcase in student productivity obscrved in the labs and in the final projccts
was precisely the effect we hoped tor when we introduced VOV in the class, we are not in the posi-
tion to singlc out VOV as the one clement responsible for it. We must instcad mention other factors
that could have played major roles. namely the improved computing environment, the fact that the
labs were designed o avoid ail tools known to be unrcliable, and the extraordinarily competent
support offcred by the TA.

Students who did not usc VOV sulfered the usual problems seen in previous semesters:
they forgot to run tools (mostly vulcan), they unnccessarily reran tools, and their concurrent
activities conflicted. The main justification 10 not using VOV was the overhead in running the
1ools.

The students who used VOV expressed satisfaction for the system. Occasionally they
prelerred to explore some design methodology without VOV, that is by calling the tools directly,
in order (o avoid the capsule overhead. Then, when they were sure to understand the tool llow,
they invoked the encapsulated tools to store the flow in the trace. This is not the behavior that was
cxpected while developing VOV, but it is certainly allowed, and it shows the importance of having
capsules that maintain the behavior of the tools.

The main lesson from this cxpericnce is that it is nccessary to reduce the overhead due
to the cncapsulation process. There does not seem to be much space to improve the speed of the
intcrpreted shell scripts currently used to encapsulate the tools. On the other hand, the compilation

option, described in Section 3.4.1, has yet 1o be fully explored, and it promiscs the reduced overhead.

[Results from the final projects

Projcct name | MACI | MAC2 | SAAS

Total Trans Time 34h | 10h48m | 4h02m
Total Trans Count 592 129 152
User Tt 19h | 10h25m | 1h58m
User Tc 194 85 56
User Success Tt 5h36m | 4hl1Om | 51m23s
User Success Tc 182 79 43
User Failed Tt 13h | 6h1Sm | 1hO7m
User Failed Tc 12 6 13
User Failed Wrong Status Tt 2h30m | 3m49s | 6ml5s
Uscr Failed Wrong Status Tc 2 1 6
User Failed Generic Tt 21m30s | 6h10m 0
Uscr Failed Generic Te 4 2 0
Uscr Failed Defective Output Tt 37s S51s | S5mQ3s
Uscr Failed Defective Output Tc 1 3 4
User Failed Invalid Input Tt - 10h20m 0| 57Tm47s
User Failed Invalid Input Tc 5 0 3
Auto Tt I5h15m | 23m28s | 2h04m
Auto Tc 398 44 96
Auto Success Tt 1Th30m | 21m33s | 1h26m
Auto Success Te 372 40 63
Auto Failed Tt 3hd45m | 1mS55s | 38mO08s
Auto Failed Tc 26 4 33
Auto Failed Wrong Status Tt 2h30m Im55s | 10mlls
Auto Failed Wrong Status Tc 12 4 12
Auto Failed Generic Tt 2mQ02s 0] 2m38s
Auto Failed Generic Tc 2 0 3
Auto Failed Defective Output Tt | 1hO3m 0| 4m54s
Auto Failed Defective Output Tc 5 0 8
Auto Failed Invalid Input Tt 8m4Ss 0 | 20m25s
|_Auto Failed Invalid Input Tc 7 0 10

[Conflict Redeclaring Output 28 3 13|

Contlict Invalid Input 2 0 0
Conflict Cycle 1 0 0
Conflict Lock 0 0 0

Table 5.3: Statistics for the final projects that used VOV.

128

Chapter 6

Conclusion

The use ol design traces for management of the design activity is the main proposal pre-
sented in this disscrtation. The trace, a bipartite dirccted and acyclic graph, is built and managed
dynamically using inlformation provided by the tools at runtime; the trace capturcs both the history
of the design and the data dependencics. Inthe process of managing the trace the system protects the
intcgrity ol the design data, by detecting situations in which a tool is about to destroy or overwrile
important data. The mechanism of retracing, the automatic repetition of the transactions reprc-
sented in the trace, can be used to maintain the consistency of the design data. The server/client
architecture of the system allows for a coordinated cooperation of concurrent activities, by one or
by many designers.

The trace is first of all a response to the nceds of cxpert designers. The trace answers
the difficult questions about design. It is concemed about the details of the design activity. Other
systems arc concerned about the *“high level” and stumble over the detail. Our tracc based system
allows an unrestricted access to the tools. Its lundamental feature is that it is non-intrusive. This is
best demonstrated by the fact that the designers’ activity is unaffected by the system being tuned
on or off. The designers sce the same tools and work in the same familiar environment (e.g. the
UNIX shell). Of course, if the management system is turncd off, no services are available, neither
tracing, nor automatic rctracing, nor coordination of concurrent activitics. But even without thesc
automatic scrvices, design can continue.

For the large audience of novice designers, the traces constitute a precious set of well
documented cxamples of how tools can be sequenced to achieve a particular goal. An automatic
assistant helps the designers extract information from an example trace and apply it to the current

design problem. A library of traces can be asscmbled to describe many of the routine activities pos-

129

130

sible within a CAD system. Example traces show the tools used in context, giving a more concrete
mcaning to the ool capabilitics, which were previously available through the sterile medium of
abstract manual pages. Through examples a novice designer can casily leam 1o usc very complex

[catures of some tools. For cxample, while a command line such as

padpiace -a -u _cFamily -D chip.pads -o chip:with pads chip:symbolic

scems overwhelmingly complex il presented by itself. itis much more clear if presented in the con-
text in whichiit is likely to be used. The command line means that the ool padplace should take
the chipinthe OCT facct chip: symbolic, and producc anoutput facet called chip: with_pads
(option -o), in which all the formal terminals have been given an implementation using the pads in
a particular pad family (option =u _cFamily). The pads should be positioned as described in the
file chip.pads and laid down within the perimeter specificd inchip: symbolic:inter face
(option -a).

Other rescarchers [15, 34, 3, 17] dircct their energies towards a particular form of rool
encapsulation which separates the tool invocation from the intention of the designer. This resolves
in cither a redundant renaming of tools and their options or in an elimination of some options which
do not it in the mental scheme ol whoever is doing the encapsulation, thus cffectively amputating
the capabilitics of the tool.

As opposed to virtually all other proposed design management system, our trace based
system requires no a-priori description of the tools and of their capabilities. The only requirement,
that a tool be able to inform the server about its inputs and outputs, is casily achieved either by
linking the tool against a special library or by providing a capsule, normally a shell script that
cmulates the tool’s input/output behavior. In either cases the modifications are localized within the
tool, and can be done independently of all the other 1ools in the CAD system. In this way, new tools
can be added to the design flow by the designers themselves.

A prototype of our DMS has been implemented and tested by a number of designers, both
expert and novices. The feedback from users has been cssential to identify many relevant issues
in design management, such as the key role of the uscr interface, the need to be concerned about
keceping the DMS small and responsive. Many traccs have been generated, and many statistics
have been collected on the number and duration of tool invocations. The statistic discriminate
between automatic and manual invocations, and between successful and failing termination. The
large variancc in the statistics is the first hard evidence that each designer has a very personal style,

some favoring a lot of manual interaction with the tools, others relying more on the automatic

131

retracing mechanism.

Our cxperiment in design management continues., strengthened by the direet experience
and by the users’ Teedback. Rescarch is under way to complement the system with a new tool
10 do statistical analysis ol the performance ol the ools in a CAD system, linding corrclations
between some measurcments pertormed on the input data ol a trace and some other measures on
the corresponding outputs of the trace. [t is hoped that these correlations can be used to provide
statistical cstimators of the performance of the toolsct.

Automation of design management is a part of the CAD framcwork problem, so that the

following aphorism applics [28]:

(...) there will never be a “right answer™ to the CAD framework problem, only good
answers and better answers.

VOV has heen proposed as a good answer; [hope it will help find, sometime soon, a better one.

Appendix A

Tutorial

The objective of this tutorial is to help you become tamiliar with VOV, a design man-
agement system developed at UC Berkeley and integrated with the Octtools. In a simple excrcisc,
you will use some ol the Octtools to layout a combinational logic circuit starting from a behavioral
description of the circuit. No knowledge of the Octtools is required. You will describe the be-
havior ol a scven scgment display driver (SSDD) using the language BDS, convert the description
into logic cquations using vov_bdsyn, optimize the logic cquations with vovmisII, simulate
the description with vov_musa, implement the layout with vov.padplace and vov_wolfe; all
this under VOV'’s supcervision, and with VOV'’s assistance.

The expected duration of the exercise is about an hour, but you can suspend it at any time
and continuc later.

A.l1 Introduction

VOV is a design management system that provides many services: coordination of tcam
design. history tracking, design data monitoring, data dcpendency analysis and others.

VOV non-intrusively monitors the activity of individuals as well as teams of designers,
and maintains a record of each transaction invoked by the designers. All the design activity is
captured in the design trace. The design trace is a bipartite dirccted graph, in which nodes are
called either “places” or “transitions.” Placcs represent design data, while transitions represent tool
invocations, also referred to as “CAD transactions.” Each transaction is characterized by a set of
input places and a set of output places.

The trace can also be interprcted as a data-dependency graph. All the outputs of a tran-
sition are dependent upon the inputs of that transition. If any of the inputs changes, the transition
must be repeated, that is, it must be “retraced.”

A uscful featurc of VOV is its ability to automatically retrace (re-exccute) a design se-
quence by using a previously generated design trace. This provides something like an automatic
make facility, with the differencc that you do not have to write any makefile. Instead, you
simply have 10 execute a transaction once: after that, VOV knows when the transaction should be
rcpeated and can repeat it automatically.

132

A.2 TUTORIAL: Design of a seven segment display driver

A seven segment display driver is a circuit with one 4-bit input called data<3: 6> and
Roulputs 2, =, =, 4, =, £, 3, do. The top segment is called “*a”, then, it you move clockwise, vou
lind segments “b™ ¢ d™ (the bottom) “¢™ and "™, The middle horizontal segment is ~g”, The
decimal pointis usually called “dp™. The input is interpreted as an hexadecimal digit, while cach of
the outputs controls the corresponding segment of a seven segment display unit, so that the segment
is litif it is nceded to represent the input number. The outputs arc active high.

A.2.1 Start mini-VOV

Bcecause you will only nced a few ol the functions of VOV to complete this excreise, you
can usc the "mini” version of VOV.

Make sure you have both ~ccttools/bin and ~octtools/bin/vov in your path.
If they arc not. please cdit your ~/ . cshrc filc and modily your path variable.

Dccide a name to describe the activity you will perform to complete this excrcise. The
namec is important, becausc it identifics your work [rom that of other people who might be working
on the same machine. The project name can be any alphanumeric string with no spaces. Examples
arc: cpu badge microprocessor goophy =yz99. Itisa good idea to use a namc which
includes your initials, or your login name. Supposc that you choose the name ACtut.

Move in whatever dircetory you plan to do your work. For example itcouldbe ~/vovtutorial.
There you should type:

mkdir ~/vovtutorial
cd ~/vovtutorial
vov_mini ACtut

The vovomini command starts what is called the *“vov scrver,” a program that runs in the
background and monitors the activity of the tools you invoke. To get information from the server
use the program vov_sh. For example,

vov_sn -1

asks the server o provide information about the status of the design. Like almost all the tools in the
Ocuools, vov_sh with no options has the cffect of producing a usage message, with all the options
understood by the tool. Try this, even if at this point the number of options of vov_sh might appear
overwhelming.

Using vov.sh -I willalsoshow you if the server is up and running. If nothing happens
within a minute, or in the unlikely event that vov_mini fails, you should choose another name
for your activity and try again.

Evcery time atool is executed. whether it is invoked by you or by VOV, the tool connects to
your server and declares all of its inputs and outputs. The server checks that all inputs arc up to datc
and that the outputs can be overwritten. Il that is the case, the tool proceeds with its task, otherwise
a conflict has been detected and the uscr is queried to decide on how to resolve the conlflict.

For this excrcise, it is best it you work only from the shell that vov.mini gives you. If
you want to open another window (even il running on another machine) and use that window as

134

O S O SR L
VOV ASSISTANT: CHOOSE EXAMPLE TRACE

% W) wolfe (f 550D
4R fsm (1301
SQ bhoss [J 1ab2
L8 counter () 1abs

e .

#[h mosaico

B

W00 from a high level description of a
Jjlcombinational logic circuit to Layout
Hlusing standard cells. Trace named after
ijthe standard cell layout tool "wolfe".

CLICK ME [Show trace | Assist [Cancel | Help |

R S A R R

Figurc A.1: The lirst pop-up dialog from the assistant. The trace called fsm has been selected, and
the INFO ficld shows a short description of the tracc. The designer can take a look at the trace
(Show trace) or decide 1o usc this trace as example (Assist).

well, you can do it, provided that you set the two cnvironment variables VOV_HOST NAME and
VOV_PROJECT_NAME to the appropriate valucs. This can be done casily with an alias created by
vov_mini called the same as the project name.

If the scrver is running, let’s begin our design. If you knew the Octtools, you could
start using them as if VOV did not cxist. Thus you would probably write a BDS file with the
description of the SSDD and then you would invoke the various tools vov_bdsyn, vov_musa,
vev_misII, vov_wolfe inthe right order, with the proper command lines.

But, let’s assume that you do not know much about the Octtools. You need help, and you
wonder if anybody else has ever done anything similar to what you have to do.

A.2.2 Enter the assistant

The steps that transform a behavioral description of a circuit into layout have been per-
formed many hundreds of times by many expert designers. Each time, the tools have left a trace of
their execution. Some traces have been saved and installed in a library. The program vov_assist
can be used to extract information from such cxisting traccs.

For this exercise, it is best to use vov_assist inits intcractive mode:
vov_assist -i

You will get a pop-up dialog, with a list of all the example traces currently present in the
VOV library (Figure A.1). The assistant is designed to be sclf explanatory. Make sure to click the
buttons labeled CLICK ME and “Help” (or Ctrl-h) whenever you do not know what to do. For this
exercise, here is the hint: choose the trace labeled wolfe.

Use of dialogs

The operation ol the dialogs in VOV is mostly done with the lelt button ot the mousc 1o
select items in lists and to click on control buttons. The scroll-bar widget uses all three buttons,
in a rather intuitive way: the lelt button moves the bar to the lelt. the right to the right, the middle
allows vou 10 drag the bar continuously.

The left button is also used 1o select text: you just have to click on it from two o five
times. Two clicks sclect a word, three select a line, tour a paragraph, five the entire text. One click
simply moves the cursor. The sclected text can be deposited into another window using the middle
button.

I1 there are scveral edit ficlds in a dialog, you can use Tab and Mcta-Tab to move from
ong (o the other. Some control buttons have “accelerators,™ that is you can type a key rather than
pointing and clicking. In VOV, the Help button is accelerated by both Curl-h and by the Help key.
Cuncel and Dismiss arc accelerated by Meta-Del.

A.2.3 The graphical interface

Itis interesting to see what the trace looks like. You cando this by clicking Show trace.
This starts the cditor VEM on the trace, and an associated process, called an “RPC application,”
that lcts you browsc the trace. At this point you arc probably not familiar with either VEM or RPC.
This is not a big problem if you arc a bit adventurous and usc this hint: Clicking the middle button
on a VEM window pops up thc VEM menu, while clicking the middle button with the “Shift” key
pops up the RPC menu. The most uselul commands have a “key binding” for quick invocation.
The command you need is view, which is bound to the lower case v. To quit VEM use Ctri-d in
the console window.

The trace (scc Figurc A.2) is a bipartite directed graph with “places™ which represent
data, and “transitions” which represent tools. Each transition has some inputs and outputs. Move
thc mousc over the trace and view some of the nodes. Notice that at the top there is a place which is
a behavioral description of a counter, while at the bottom there is a place which represent the layout
ol the counter. It is the purpose of this exercise that you learn what cach of the intcrmediate steps
docs.

A.2.4 Getting assistance from the assistant

Now go back tothe vov_assist dialogand click Assist. You will get another dialog.
with more help (Figure A.3). Plcase spend some time to understand this dialog.

This dialog contains a script, consisting of all the command lines that have been used to
gencerate this example trace. This is an altemative way to represent the trace. The trace has been
(ully annotated to help you understand it. To sce some of the notes, click on the Toggle nc%=3
button. Plcasc notice that the first transition to be executed was vov_bdsyn counter.ids.
Why did the designer run this tool? What other tools where used? Why was vov_wolfe uscd?

You will soon notice that the cxample trace refers to a counter. In fact, all the files
mentioned in the trace are called counter.someSuffix and all the OCT facets are called
counter:someViewName. The assistant uses some heuristics to detcrmine the “topic™ of an

Figure A.2: This example ol a trace should be read from top to bottom, inputs are on top, outputs
on the bottom. Three transactions are represented in this trace. Although all the places are treated
similarly, they arc represented graphically by different icons depending on the type of the place:
circles represent UNIX data liles, octagons are used for oct facets, X's denote executables, O's
command linc options and S’s exit status ol transactions.

g _Sdiyn lountss T2 H
3 F.rvw mi:II -F 2ocipt min =T ocT =9 lounter Logil sounta(blif !
R Toadplace D connnec pads -2 wountec prdp countes lagic
Yrnw_raife -f -¢ T -0 countec 1alfe conarer padp
Feeas_mu2d - TOwATEC WY COUARTAL Ligie

waw_thigstare touanec wilfe

fl# Toral estimatad ‘ugation PEVER) i

,3 VOV ASSISTANT

5 cReT

S s e daacades slhnnds

ZET MAME - HNDES..
VARIABLE SUBSTITUTIONS

ot govnees T EWEORNT

f O R TIEW .

5 o RO P SO S SRR PO HEW “ e st . .

“ LD . MEWN .

' oL ;,._...A...,,...‘...,...4. et e oo s g MEW R)

% CLICKE ME Fielp ,-;
N R R TSR SN LS TR B NG T A R B N s S A S M S AL

Figure A.3: The sccond dialog from the assistant,

example trace. For this trace, the topic is described by the string counter, which appears in the
dialog next to the OLDROOT label.

You want to design a SSDD. not another counter. Thus, it is better to rename the files in-
volved in the trace. Instcad of counter . something, you might want to call your liles 7seg . something.
Write 7sag. or the new name of your choice, in the NEWROOT box and click on Proceed.

You will get yet another menu, titled VOV ASSISTANT: COPYING A TRANSITION.
This is the first transition that you have to perform to go from a BDS descriptionto layout: vov_bdsyn
7seq.bds The annotations below the transition cxplain why you want to run this tool. Plcasc read
the annotations. Since you probably trust your assistant, you should simply read the information in
the dialog, and click Copy. This means that the transition in the example trace is copied into your
own trace, with the appropriate modifications to the command line. vov_bdsyn is not actually
run at this point, but now VOV knows that you want to cxecute this transition, sooner or latcr.

Now another dialog has popped up. This says COPYING A PRIMARY INPUT. In order
to run vov_bdsyn you need a file called 7seg.bds which does not yet exists. You could very
well write it from scratch, but here the assistant gives you an opportunity to get a good start. It
offers you the possibility to copy the description of the counter into the file 7seg.bds. Allcast,
you get a syntactically correct file that should be relatively casy to modify later with a text cditor
like vi or emacs. Again, click on Copy.

Keep going: you will get about ten dialogs, in cach of which you will have to click the
Copy button. Eventually, you get a dialog that informs you that the transfer of information has
been completed. Dismiss the last dialogs in vov_assist and go back to your shell.

For future reference

You could have obtained the same result you have just obtained by simply saying:

138

73v_assist -p woife =N 7seq

This batch usc of the assistant will be usclul i you want to usc the cxample trace 10 process another
cell. You will still use the dialogs il you want to copy only a part ol an example trace.

A.2.5 Your turn to act intelligent

The assistant has done the best it could to help you, but it is not smart cnough to do the
design for you. You still have to make an cffort 1o read some manuals and to understand the steps
involved in your design. You won't have to read any manual to complete this tutorial, but you arc
cncouraged to Lake a look at them soon, so that you can become a “power-uscr’” of the Octtools.

At this point, the assistant has transterred into your design trace a modified version of a
design flow which was used by some cxpert 1o build a counter. The SSDD can be built with a very
similar flow. Also, the assistant has given you a good start on all the primary inputs that you nced
to design the SSDD. But now it is up to you to modify those files so that they contain meaningful
information. Supposc that you have chosen the root name “7scg” for your files. In your working
directory you will find the following liles: 7seg.bds 7seg.musa 7seg. pads. By now, you
should know the purposc of cach lile, and you should modify them appropriately.

You should describe the behavior of the SSDD in the 7seg. bds file. Then, you must
also specity the position of the terminals in the layout, say inputs at the bottom, outputs on top,
in the lile 7seg. pads. Finally, you must provide a complete simulation script to be used with
vov_musa, by modilying 7seg.musa. Figures A4, A.5 and A.6 offer a very clear suggestion
on how 1o do this. It would be nice il you could do this exercise without copying the figures!.

A.2.6 The trace as a dependency graph

From the trace, we know that the final layout is going to be an OCT facet called 7seg: wolfe.
Even if it does not even exist yet, the server already knows how to obtain it. Try

vov_sh -h 7seg:wolfe

to get a short history of this piece of data. The use of the term “history” might sound strange at
this point: how can the design have a history if we have done nothing, if no tool has ever been
run? In fact, the term history is not being used properly. Instcad we should say “dependency.”
7seg:wolfe depends upon all the transitions shown by vov_sh -h 7seg:wolfe (Figure
A7).

Try also

vov_sh -h 7seg.blif
vov_sh -h 7seg.bds

to see the history of other places.

The trace can be interpreted as a dependency graph. By default, with the -h option of
vov_sh, you get a report on the visited transitions, four levels backwards, that is looking at the
nodes “‘above™ the one you query about. Using the —H option, you can also ask a report on all the

'If you are lazy, the filesare in octtools/lib/vov/DATA/SSDD .

139

"' Sescriptisn <f 32ven segment display driver.
MODEL "7:3eg" '! Declare the name of this description.
a,c,c,d,e,£,9,dp ‘! Comma separated list of outputs.
= '! The '=' is the separator between cutputs and inputs,
dacta<l3: 0>
: '! Terminator of I/O list.
CONSTANT
Xzero = 1111110#2, Xone = 0110000#2,
KLwo = 1101101#%2, Xthree = 1111001%2,
Xfour = 011i0011%#2, Xfive = 1011011#2,
¥siz = 0011111%2, Xseven = 1110000#2,
Xeight = 111111i1#2, Xnine = 1111011#2,
KA = 111011142, XB = 001111142,
XC = 1001110#2, XD = 011110142,
XE = 1001111#2, «E = 1000111#%2;

STATE out<6:0>; ‘! Intermediate signal.

ROUTINE main_routine; '! Only one routine in this description.
dp = 0; !! Decimal point is always off.
SELECTONE data FROM

(0] : out = Xzero; [1] : out = Xone;
{2] : out = Xtwo; {3] : out = ZXthree;
{4] : out = Xfour; {51 : out = Xfive;
(6] : out = Xsix; (7] : out = Xseven;
(8] : out = Xeight; [9] : out = Xnine;
(10] : out = Xa; [11] : out = XB;
{12] : out = XC; [13] : out = XD:
[14] : out = XE; (15] : out = XF;
ENDSELECTONE;
a = out<6>; b = out<5>; c = out<4>; d = out<3>;
e = out<2>; f = out<1l>; g = out<0>;
ENDROUTINE;
ENDMODEL;

Figure A.4: File 7seg.bds.

140

TERMTYPE 3IGNAL
DIRECTION INPUT
TERPM _EDGE SCTTOM
TEZRM PEILATIVE 203ITICN 9.1
TERM_FELATIVE POSITICN 3TEP 0.2
FORMAL TERMINAL data<3> B
TORMAL TERMINAL data<i>

)

{

(¢

PMAL TERMINAL data<l>
RMAL TERMINAL dara<(>

DIRECTION CUTPUT

TERM_EZDGE 7TCP

TEZRM_RELATIVE POSITICN 9.1

TERM_RELATIVE_POSITICN_STEP 0.1
1AL _TERMINAL
RMAL_ TERMINAL
RMAL_TERMINAL
RMAL_ TERMINAL
RMAL TERMINAL
RMAL TERMINAL
RMAL_TERMINAL
JRMAL_TERMINAL

1)
k)

{

C

Ill 'l] ')I u’ '|]
i)
e

QO OO OO0

m
QO MDD OO0

mom

Figurc A.5: The lile 7scg.pads specilics the desired position of the terminals of the SSDD.

places visited, or on all the nodes visiled (i.c., both transitions and places), with the graph traversed
cither backward or forward, going as many levels deep as you want. Try for example:

vov_sh -H -t2 -h 7seg:wo’ = # transitions, 2 levels back
vov_sh -H -p2 -h 7seg:wolfe # places, 2 levels back

vov_sh -H =-n20 -h 7seg:wolfe # nodes, 20 levels back

vov_sh -H -tpn400 -h 7seg:wolfe # everything, many many levels back
vov_sh -H +t3 -h 7seg.bds # transitions, 3 levels forward

A.2.7 Validity of nodes

Each node in the trace, whether it is a place or a transition, has a status. Normally the
status is cither VALID or NOT VALID, but there are other possibilitics described in the second
part. A VALID status means that the node is “good.” If the nodc is a transition, the transition has
successlully completed. If the node is a place, it is up to date and consistent with all the other places
it depends upon. If a transition is NOT VALID, it has not been run successfully yet, or it should
be run again, probably because one of its inputs has been modified since the last time the transition
was cxecuted. If a place is NOT VALID, it is the output of a transition which is also NOT VALID.

The status of the nodes is managed by VOV. It is possible for the user to change the status
of a node, but it is best that you do not do it in this excrcise.

141

' Make 3come vectors for convenience.,

V' Macro with cne parameter.
macro test
set #c = #c + 1
set IN #c !'! Set the input.
ev !'! Evaluate circuic.
. show IN OUT !'! Show signals.
Send
macro test4
test
test
test
test
$end
'! Now try all possible inputs.
set #c = 1111 'l So we start simulation from 0
test4
test4
test4d
testd

quit !! This quit is a clean way to complete a script.

Figure A.6: File 7seg.musa.

$ vov_sh -h 7seg:wolfe

.../vovtutorial/andrea/7seg:wolfe:contents
NOT VALID Fri Aug 24 14:56:56 1990 (fornax)

NOT VALID vov_wolfe -f -r 2 -o 7seg:wolfe 7seg:padp
NOT VALID vov_padplace -D 7seg.pads -o 7seg:padp 7seg:logic

Figure A.7: The history of 7seg:wolfe.

142

A.2.8 Automatic retracing

When all of your tiles are ready, you can ask VOV to run all the tools lor you, that is to
retrace your design. It is always a good idea to begin slowly. In this case, try retracing once step
at a time. The lirst transition to be exccuted should be vov.bdsyn 7seg.kds which outputs
“seqg.ollI. [lyou just want to regenerate 7seg.blif you'll say:

vov_sh -r 7seq.bliif

The server determines what needs to be done o bring 7seg.plif up to date (in our casc, it will
simply run vov_bdsyn).

VOV estimates the time it should take to do the retracing by adding up the estimated
duration of cach transition which is scheduled to be retraced, with the assumption that cach transition
is going o require as much time as when it was exceuted last. This estimation is somctimes wrong,
but it tends to become accurate as the design data becomes more stable.

There might be some syntax crrors in your BDS file. Read carcfully the output you get
rom VOV. Il there are crrors, try (o fix them, and do the retracing again.

Il you are more contident in the correctness of your data, you could say, for cxample:

vov_sh -r 7seg:wolfe # All the way down to 7seg:wolfe
vov_sh -k 7seg.bds # Anything that depends on 7seg.bds
vov_sh -k 7seg.pads # Anything that depends on 7seg.pads
vov_sh -R # Retrace all (won’t work, but try anyway)
vov_sh -AR # Retrace all (this works)

Pleasc note that some of these retracings will fail, as cxplained later in section A.2.11.

It is OK to ask for a global retrace (option -R) as long as you work alone. If you are
part of a tcam, rctracing cverything would also retrace parts of the trace which “belong” to your
tcammates. Although this is not dangerous, it might result in a waste of CPU cycles.

Il there are mistakes in your files, you will probably have to iterate this process a few
times: modify files, retrace, modify, retrace.

A.2.9 Review what has happened

Use vov_sh -nto get adialog that allows you to cxamine the most recent cvents related
to the cvolution of your design trace . This is cspecially uselul to find out what, if anything, went
wrong.

All the important cvents in the trace are recorded in a queue until a designer has inspected
them. The inspection of the event queue gives you quick access to data and transitions, by a simple
click of the Edit button. Please spend some time to experiment with this dialog (Figure A.8),
because it is very uscful. Try the Previous and the Next button, and sce how they interact with
the “FILTER” flags. Also notice how the horizontal scroll-bar on the top of the dialog gives you
finc control on the event displayed on the lower window.

You can also interact with VOV using vov_sh -1, which brings up the dialog shown in
Figure A.9. You arc encouraged to cxperiment with this dialog, because you will find it useful.

i~ !
] 313loq [e
i EVENT QUEUE FOR TRACE 7seg
3!
4 inex || i |
3 | FILTERS
A
1 W) TRANSITIONS (§ 5TART
3)| [PLaces END
ﬂ 1 (1 RETRACE [FORGET
11| sLaves [CHANGE
2| Gl seTs ERROR
Toggle all
“FEVENT 103, Tue aug 21 13:47:03 199)
“HTRANSITION HAS AN ERROR
g vov_octpla 73seq
3 FAILED REASONS FOR THE FAILURE
9 /73eg:pla contents does not =xist
/Tseq pla 1nterface does not exist
- Previous I Mext I iewl/Edit I Unreported | Cancel I Help l -
] 1

Figure A.8: The dialog to browse the cvent queue.

VOV _SH: src90@peking
MAIN COMMANDS INFORMATION

¥ BROWSING EVENTS TRACE

l Browse —“ Recent I All I [sLave
4 RETRACING VARIOUS

|Check IMonitor“ Nice placement | @ SERVER
SETS TRACE USER

| Create | Edit |[Clean]To disk | View | [Get Info

| Dismiss | Help I

A S AN E AN SESRANANANITESES AR ARAMOL BTN A

Figure A.9: Use vov_.sh -i to get this control panel.

144

= J13i39 } -
TRACE EDIT DIALOG
Suad Jaec/ecas/acoslicasannaitestvoy

G rov_wolfa <f -c 2 -5 Tiag mlfe Treq padp

Timmanaline

124931 2ol 313t

affinity

INF) Emin ortatuy) wov_s2gvec dacay ducatien In2es
STATUS YALID

ARARARS LARMALL 1,

[See nates | Add notes | Change status | tn [o | arace | Edit [C‘ancel | Help |H

Figurc A.10: The dialog to cdit a transition.

]
- dialog . :
NAVIGATION DIALOG

{T] VALID vov_chipstats 7seq wolfe <4433>
(2 INPUTS
[(P) vALID 7segwolfe-contents <132>
(W) <--- Wisconnected --->
3 | Go I Qut | Disconnect I Cancel I Help —I

Figurc A.11: This dialog shows the inputs of a nodc and allows the user to navigate the trace or to
disconnect nodcs.

A.2.10 Possible problems

It is not possible to list all the problems that can arise during your exercisc. There can be
syntax errors in some of the files, which can be resolved by studying the output of the tool which
has detected the crror.

Sometimes VOV will not retrace a transition because one or more of its inputs in not
valid. This can happen for several reasons:

e VOV has just realized that an input has become invalid. Just ask for another retracc.

¢ The invalid input is bogus, it is never going to become valid. This is a situation of deadlock
from which VOV cannot get out without your help. You can either repeat the transition
by hand (type it again from your shell), or you can decide to remove the input {rom the
dependency list. From the event-queue dialog locate the event describing the tailed retracing
of the transition and click on Edit. You get a dialog describing the transition (Figurc A.10).
Click on In to look at the inputs of the transition(Figure A.11). Select the offending bogus
input (one at a time) and click on Disconnect. This removes the place from the input list
for the transition thus effectively changing the criterion for the re-execution of the transition.

145

A.2.11 Substitution a transition

The example trace is not going 1o work with the data described in this tutorial. The rcason
is rather obscure for a novice: you should run +vov_bds/n with the -o option, which will omit the
trailing <> tor 1-bit variables — what is cxpected by the files 7seg. pads and 7seqg.musa.
Thus. instcad ol the vov_bdsyn 7seg.ods, as suggested 1o you by the assistant, you should usc

vov_bdsyn -o 7seqg.bds

How do you gct rid of the old transition and add the new one instcad? Just run the tran-
sition by hand. Since you arc effectively suggesting a new way 1o producc the file 7seg.blif,
VOV will ask you to confirm what you are doing. This is a casc of “output conflict™ detected by
VOV: a place that is alrcady the output of a transition is being declared as the output of another
transition. i.c. the placc is being “defined” again. Since the definition of a place must be unique,
cither the new transition is a mistake, or the old onc must be removed (forgotten): you must decide.

For such a small change in a command line, you could have also cdited the transition
dircctly, using the cvent queuc 1o find an cvent that mentions the transition and clicking on Edic.

A.2.12 Check the results

When the retracing has completed successtully, somewhere you have obtained the layout
ol the SSDD, in an OCT facct called 7seg: wolfe. Youcanuse VEM to take a look at it. The cas-
icst way is to scan the event queuc until you find the event describing the change of 7seg:wolfe.
click on Edit, double-click on the VEM command displayed in the edit dialog, and then deposit
the command in the VEM console by clicking the middle button of the mouse (¢asier done than
said.)

In a similar way you should find the cvent relative to a change in the outputof vov_chipsz ats
and take a look at the file. How large is the layout? How many nets are there? How many cclls
(instances)?

A.2.13 Try something new

Until now, you have followed a prepared trace, and it is finally time to start breaking new
ground. Suppose that, by reading the Octtools manuals, you find out that vov_musa offcrs a nice
graphical way to simulate scven segment displays, and you become convinced that this graphics
would be the best way to test the correctness of the SSDD.

What is nceded is a way to connect together your SSDD with a model of a seven segment
display. You need a new circuit with onc instance of a driver and onc instance of a scven scgment
display. The terminals of the SSDD should be appropriately connected to the terminals ol the
display by means of nets. The new circuit should also have some formal terminals 10 talk 10 the
outside world. Allthis can be done with the BDNET language, which is very useful to writc nctlists.

In the manuals you discover the syntax for BDNET and write the file shown in Figure
A.12, which actually uses two displays, a red one and a yellow one, just for the fun of it.

Type:

vov_bdnet 7seg.bdnet

146

MCDEL Tseg:svmboliic:
TEZCHMOLCGY scmos: !! Required property.
VIEWTYPE SYMBCLIC; !! Required property.

' Terminals of this circult.
INPUT data<7:0>; SUPPLY Vdd:; GROUND Gnd;

INSTANCE 7seg:wolfe NAME = HIDEC
daca<3:0> : data<7:4>;

a : hiA; b hiB;

C hiC; d : hiD;

e : hiE; £ : hiF;

g : hiG; do : UNCONNECTED;
wolfe_Vdd : vdd; wolfe Gnd : Gnd;

INSTANCE 7seg:wolfe NMAME = LODEC
data<3:0> : data<3:0>;

a : loA; b : loB;

ot 1oC; d : loD;

e : 1loE; f : loF;

g loG; dp : UNCONNECTED;

wolfe vdd : Vdd; wolfe_Gnd : Gnd:

INSTANCE "~octtools/lib/musa/redseg":physical ([50,0] NAME = HISEG:;
COMMCN : Gnd;

A : hia; B : hiB;

C hiC; D : hiD;

E : hiE; F : hiF;

G hiG; DP : Gnd;

INSTANCE "~octtools/lib/musa/yellowseg":physical [200,0] NAME = LOSEG;
COMMCN : Gnd:

A : loA; B.: loB;

C : loC; D : loD;

E : 1loE; F : loF;

G loG; DP : Gnd :

ENDMODEL;

Figure A.12: The file 7scg.bdnet describes a netlist of two decoders cach connected (o a display.

147

mv DATA data<7:0>
maczro test

set #z = §c + 1
3=

-4

ZATA 4C

D D 1
Ohow w0
aooa ot »

[SLANE % B §
]

o

Send

macro testli6
tescd
restd
test4d
testé

Send

macro testo6d
testlo
testlé
testleo
testle6

Send

set #c = 11111111

test64

test64

testo64d

tested

sleep 2000 !'! Rest for a while.

quit

Figurc A.13: The simulation script to test the circuit with two seven segment displays.

The tool vov_bdnet connects o the scrver and registers itself, with its inputs and out-
puts. From now on, VOV knows that you want to run vov_bdnet on the file 7seg.bdnet. If
you change the file, you can ask for a retracc using, for example,

vov_sh -k 7seg.bdnet

When your netlist is correct, you can run vov_musa on the new circuit. Of course you
nced a completely different script to simulate this circuit, so you write the file shown in Figure A.13
which you call double7seg.musa.

Then you run the simulator:

vov_musa -1 double7seg.musa 7seg:symbolic

This transition is interactive. It does not make sense to run it if there is nobody watching
the graphical output to decide if it is correct or not. If, for any reason, you ask VOV 1o retrace the

148

transition, VOV will obedicntly do it. but you will loosc all the graphical display. If you want more
control on retracing of interactive transitions, please read the sccond part of this tutorial.

A.2.14 Suspension or end of the exercise

[I'you want to ¢nd or suspend the tutorial, it is better that you kill the server. This is op-
tional, more than anything it is a courtesy to your collcagues that might want to use the machine. For
a rcal design, it will be better to keep the server running continuously, until the project is completed.

vov_sh -AK ## Kill the server gently.

The server saves the trace onc last time in the dircctory ~/minivov (with the name
<grcijectname>.page.0:symbolic) and cxits. You can obtain a hardcopy of your trace
using the program vov_hardcopy:
vov_hardcopy <projectname> [printername]

You can usc vov.mini again 10 restart the server,

A.3 TUTORIAL: Second part

The program vov_mini, used in the wtorial, is a convenicnt way to get VOV started. It
is called “mini” only becausc it is so casy 1o start, but in reality it gives you the full capabilities of
VOV, the only limitation being that only one slave is connected to your server.

A.3.1 What does vov_mini really do
The sieps involved in vov_mini are:
e Create, if it does not exist already, the dircctory ~/minivov.

e Preparc a “slaves” file, containing only one cntry for a slave to be run on the local machine.
The filc is called <pro jectname>.vov.slaves.

e Start the program vov_server with the options =B -S. The option -B makes the server
run in baich mode, which means that the scrver automatically recovers in case of crrors (c.g.
crrors in'the communication protocol). The -S option makes the server start the slaves de-
scribed in the “slaves” file.

o Create a new alias in the file ~/ . vovpro jects. The namc of the alias is the prpojectname.
The alias can be used to set the two environment variables used by the VOV clients to locate
the server in the among the machines in the network. The two environment variables arc:
VOV_HOST_NAME and VOV_PROJECT_NAME.

If you want to work with your scrver from another window (possibly in another machine),
you simply have to invoke this alias and then all clients will connect to the server.
You can have more control on VOV if you perform cach of these steps by hand. For
example, you can decide the working directory of the server, or you can have a dozen slaves 10
work for you.

149

Slave list for project: BRIC
Lines beginning with '#’ are ccmments.
fach Line MU3T contain:
03T _NAME: name of the hest where you want the slave to run.
4 CCEFT: An integer number used to balance the relative
power of the slaves.
COEFF = 1 means: Use actual power of the slave
CCEFF = 4 means: Divide actual power of slave by 4.
4 MAX LCAD: Maximum load allowed on the host in order to dispatch a
4 B job to rthe slave. If the load on the host is greater
than MAX_LOAD, no job will be dispatched to the slave.
4 cpticnally, you can add a list of resources provided by each slave
within a pair of parentheses. Example: hostname 1 4 (vax verilog)
IMPORTANT: leave blanks before and after the paretheses.
HOST_NAME CQEFF MAX _LOAD (AFF INITY)

aahz 2 0.9

chumly 2 0.9

eros 1 8 (bigvax vax)

sequent 1 0.8

Figurc A.14: Example of a “slaves™ file.

A.3.2 Add many slaves to your server

A slave is a special client, which simply waits to be assigned something to do. When the
server has something to be retraced, it chooses the best possible slave for that job. It is convenient
to have one slave running on all the machines on which you have accounts (of course, all the slaves
must be able to get to the design data, possibly through NFS).

The best way to connect several slaves is to prepare a “slaves” file, such as the one shown
in Figure A.14, which should be called <projectname>.vov.slaves and should reside in
the current working directory of the server (~/minivov if you use vov_mini).

All slaves are ranked by “power,” a number which takes into account the speed of the
CPU and the load on the machine. The coefficicnt COEFF is a politeness coefficient: it should be
a positive integer. It is used as a divisor in computing the power of a slave. Thus, a slave with a
COEFF=2 has half the power of an identical slave with COEFF=1. If you start a slave ona machine
normally used by somebody clse, it is a good practice to have VOV use that slave only if all other
slaves running on your machines are already busy. This behavior can be controlled by COEFF. In
most cases, however, it is always a good idea to leave COEFF=1. The number in the MAX_LOAD
field specifies that the slave should not accept jobs if the load on the machine is greater that the
number. The AFFINITY is an optional ficld. Be careful if you use it: you need to put spaccs
between the parenthesis and anything elsc. See section A.3.9 for more details.

When the filc is rcady, you should type:

vov_start_slaves <hostname> <projectname>

to get all the slaves started. <hostname> is the name of the host in which the server is running.
You can also have the server start the slaves automatically by using the “-S” optionin vov_server.

150

The status ol the slaves can be checked with vov_sh -m, or with the “Monitor” button in vs+v_sh

You should not have more than onc slave running on cach machine, or you will only
overload that machine. The server can have at most 61 clients connected at the same time. [t is
better not to connect more than about 20 slaves, or you will run out of connection points.

Slaves can be Killed at any time with an ordinary ctrl-c orwithkill -9,

You can also start slaves on the fly. Just log onto a machine, set the correct cnvironment
variables and say:

vov_slave

When you no longer need this slave, justkill it with ctrl-c.

Each slave makes available a sct ol resources, identified by a sct of words. By delault, a
slave provides Lwo resources, the name of the host on which the slave is running and the machine
type. For cxample a slave running on the VAX called “fornax” offers the resources *“vax fomax”,
You can override the set of resources offered by the slave with the - A option. A special slave which
uscs the -A option is

vov_interactive

which olfers the resource “interactive”, which makes the slave cligible to accept transitions whose
affinity is “intcractive™.

A.3.3 Start the server

You must dccide which host you want the server to run on. A good host is one that has
NFS access to all files used for the project. You can run scveral servers on the same host, as long
as they arc given different project names. Typically, there is onc server per project.

To restart the server use:

cd <server_working directory>
vov_server -S -B <projectname} >& outfile &

If you are starting a new project, you have to use the =C option as well. Do not use this
option when you RESTART the server, or you will lose the trace.

The server has been designed to run continuously for the whole duration of the project.
You should not kill the server if you log out.

A.3.4 Clients

How do clients find which scrver to connect to? They use two environment variables:
VOV_HOST.NAME and VOV_PROJECT_NAME. Thesc variables are set with the set env command:

setenv VOV_HOST_NAME <hostname>
setenv VOV_PROJECT_ NAME <projectname>

It is convcnient to create an alias to sct thosc environment variables. All this is done for
you by vov_setup, which updates or crcates the file ~/ . vovprojects. For example, il you
have a project called BRIC with the server running on eros, you would say:

151

vov_setup eros 3RIC
and you would then have a new alias
alias BRIT ’setenv YOV_HOST NAME ercs; setenv VOV_PROJSECT_NAME BRI’

In this way, you just have to type BRIC to sct the variables.

Another environment variable used by the clients is VOV_TRACE_ONLY which, if sct o
TRUE, tells the client that we are only interested in the trace left by the execution, and not in the
cxccution itself. This is uscful when you want to build a large trace involving many time consuming
transactions. Sctting VOV_TRACE_GNLY, you have a quick way to producc a large trace and than
you can let VOV do the retracing for you.

A.3.5 The event queue and the journal

The server keeps a record of everything that happens in the trace. All cvents are recorder
ina journal filc which resides in the working dircctory of the server. The journal iscalled journal .<prciscan
The journal is of little practical utiility, and it is mostly uscd to do detective work to find out why
somcthing strange and uncxpected happened.

A.3.6 The event queue

To take a look at the latest cvents, you can also use vov.sh =-n, where “~n" should
rcmind you ol the word “notify.” You should alrcady be familiar with the dialog that allows you to
browsc the cvent queue. It offers you the quickest way to the objects in the trace. For example, if
you want to change the command linc of a transition, without retyping everything, you can find an
cvent that mentions the transition, click the “Edit™ button, and do the changes you want to do in the
transition cditing dialog that has popped up.

A.3.7 The trace

The trace is stored in an OCT symbolic facet, called BRIC.page.0:symbolic. It
might be interesting to look at the trace with vem. The most current version of the facet is always
in the memory of the server, which saves the trace occasionally (about once every hour). If you
want to see the latest version of the trace you can force the scrver to save the trace onto disk with
vov_sh -w. Also you can use vov_rpc to browse through the trace.

vov.sh is the main tool to get information from the server. In particular:

vov_sh -I : Get information on what is going on.

vov_sh -h place : Gives you the history of a place (file or facet)
vov_sh -w : Force the server to write the trace to disk.
vov_sh -t place : Toggle the status of the place.

vov_sh -AR : Retrace everything that has to be retraced.

vov_sh -r place : Retrace what is needed to make ‘‘place’’ consistent.
vov_sh -k place : Kick ‘‘place’’, i.e. retrace all its dependents.
vov_sh -n : Be notified about the latest events.

vov_sh -i ¢ Start the interactive interface for vov_sh.

You will most frequently use the interactive interface of vov_sh.

A.3.8 Annotations

Adding annotations (o the trace is like adding comments o a program. Everyonc agrecs
that it is important, but no one really does it becausce it is a hassle. In case you arc a well disciplined
designer and want to carcfully document what you arc doing, for your own benelit of for the benelit
ol your tcammates, VOV gives you the possibility to add annotations o any clement in the design
trace. An annolation is a picce ol text attached 1o the object. Use annotations 1o explain why you
did somcthing, or the meaning of a place. Whenever you are editing or viewing an object, plcase
notice in the lower Ieft corner ot the dialog the buttons labeled “Sce notes™ and “Add notes”, The
“Sce noles™ button appears only if the object already has annotations attached to it. the other button
is always there. [If you click cither button you get a dialog to browse, add or forget the annotations
lor the object.

A.3.9 Affinity of transition, interactive transitions

In VOV it is possible to conncect to the server several slaves, cach running on a different
machine in the LAN. The slaves provide VOV with CPU cycles to perform the neccssary retracing.
Two slaves arc equivalent il any transition performed on onc slave would give the same results if
executed on the other slave.

It would be idcal if all slaves were cquivalent: the dispatching of transitions could be
bascd only on the greedy strategy that the best slave gets the transition with longest expected du-
ration. In practice, different machincs offer different resources and slaves can lose equivalence for
several rcasons:

architecture: the output of a compilation depends on the architecture of the machine;

hardware resources: some transaction could be very time consuming, or require a large amount
of memory. so that it should only be exccuted on the large machines in the network, rather
than on the smaller workstations;

software resources: some commercial software such as “‘verilog” can run only on the machines
which have been licensed.

Onc unsatifactory solution s to limit VOV to the largest subset of equivalent slaves. This
might not work because in general, a subset of cquivalent slave does not completely cover the sct
of resources needed to complete a design, or the subsct could be too small for the design.

VOV deals with the problem of non-cquivalent slaves by considering the affinity of each
transition. If a transition, for licensing rcasons, can only run on the machines called “pinocchio”
and *“geppetto,” its affinity is “pinocchio geppetto”. If a transition can only run on vax’es, its affinity
would be “vax™. For the special case of a transition that can run on any machine, the affinity would
bc an empty string. By default, the affinity list of a transition contains only the machine type.

In a similar fashion, each slave has an associated list of resources, which defaults to a list
containing the machine name and the machine type. Thus, the resource list of a slave running on
the VAX *pinocchio” would be “pinocchio vax™.

Both the affinity list of a transition and the resorce list of a slave can be overridden by the
user.

153

A match between an atfinity list and a resource list exists if cither string is cmpty or il
the two lists have onc word in common. When dispatching a transition o onc of the slaves, VOV
scans the slaves in decreasing order of power, and chooscs the first idle slave whose resource list
matches the affinity list of the transition.

A.3.10 Graphical interface using vem/RPC

A simple RPC application is availablc 1o browsc the trace. Move 0 your project directory
betore you type: vov_rpc BRIC This starts vem and an RPC application called vovRpc.
The color coding uscd has the following mcaning:

pink (MET2) : valid trace

blue (MET1) : invalid trace

red (POLY) : active tracing (a transaction is currently executing)
orange (NWEL) : active retracing.

The places in the trace usc different icons to case the understanding of the graph. Here is
the key to interpret the icons:

circle : Data file (often an ASCII file)
cctagon : CCT facet

X : Executable

S : Exist status

0 : Command line option

A.3.11 Status of the trace
Each nodc in the trace has a “status,” which can be one of the following:

VALID: The node is “good.” If the node is a transition, the transition has successfully completed.
[f the node is a place, it is up to date and consistent with all the other places it depends upon.

NOT VALID: If the node is a transition, it has not been run successfully yet, or it should be run
again, probably because one of its inputs has been modified since the last time the transition
was executed. If the node is a place, it is the output of a transition which is also NOT VALID.

TRACING: If the node is a transition, it is currently being executed for the first time. All the
outputs of such transition are also in the same status.

RETRACING: If the node is a transition, it is currently being retraced. All the outputs of such
transition are also in the same status.

DEAD: The dead parts of the tracc arc ignored by the server. A node can become DEAD only if
a designer decides so. Dead nodes are kept for documentation purposes, or to prevent the
server from retracing them.,

MISSING: This status is used for places which suddenly disappear.

WEIRD: You might occasionally see this as a possible status, but in reality it is not used, and it
will soon disappear.

154

A.3.12 Protection

Currently VOV is an open system, which ignores protections. All the data generated by
VOV is not protected. Although this is only a temporary situation., it should not be a problem.

A.3.13 Sets

You can create scts ol nodes. You can do this from the vov_sh -1 menu. When you
create a sct you must specily a name for the sct, and a selection rule. The sclection rule is compli-
cated: you can select nodes by type (PLACE or TRANSITION), by status (VALID or NOT VALID
or DEAD or any of the others), by type of place (UNIX FILE, OCT FACET, EXECUTABLE, ctc.)
or by regular expression matching. You can also select nodes with no inputs, with no outputs, or
isolated nodes, those with no inputs and no outputs.

The regular expression matching routines usc the “emacs™ syntax. The dot . stands for
any character, the star * stands for an arbitrary repetition of the previous expression. Thus the
regular cxpression . * matches cvery string (any character repeated any number of times). [f you
want to make a set of all the files whose name begin with . std. you should specify the regular
cxpression . *\ . std\..* in which \ . matches the dot. For a morec complete description of the
syntax, ask cmacs.

Why should you want to make scts? A number of reasons, the most important being
documentation and because you can use scts Lo delete (forget) nodes from the trace.

A.3.14 Forgetting nodes

VOV makes it purposcly hard to climinate nodes from the trace. The simplest way to tell
VOV 1o ignore parts of the trace is to change the status of the uninteresting nodes to DEAD. Do this
with the *Change status” button you can sce in many dialogs. But if you are positively sure that
you want VOV 1o forget about something, here is what you do. First you must start vov_sh -i
to get the menu that allows to create and edit sets. Then you create a sct containing the nodes you
want to forget. Then you edit the set and ask for a list of its elements. Then you select the nodes in
the sct that you want to forget and hit the “Forget™ button.

Somctimes, before you forget a place, you might want to delete it from disk and throw it
in the trash. Thus you can select some nodes and hit “Trash”. Actually VOV does not remove the
fliles form disk, it just puts them in another directory called VOV_GARBAGE _CAN in the working
directory of the server.

A.3.15 Moving stuff around the file system

Would you like to change the path name of a place in the trace? Use the “Mvlib” button
in the vov_sh -Ai dialog. Alternatively you can use the -O/-N pair of options in vov_sh.
Example. Suppose you have built a pla in a dircctory /users/joe/mypla and have dccided to
move all the data in another directory, for example by doing:

cd /users/joe
mv mypla reallygoodpla

Appendix B

Quick Tool Overview

The tools listcd below in alphabetical order arc mentioned in the examples.

bdnet is uscd to crcatc OCT netlists starting from a textual description.

bdsyn is a translator of logic cquations, from the compact BDS format into the cxpanded BLIF
format that is suitable input for logic optimizers such as misII.

chipstats mcasurcs arca and nct-length of a chip.

mislII is a manipulator of logic cquations. It is mostly used to perform logic optimization and
occasionally to do format translation, for cxample between BLIF and OcCT.

mosaico is a collection of tools for routing of macro-cell chips. The main tools in Mosaico are:
at las. for channel definition, the global router cds, the dctailed router pair consisting of
cprep and spider, the via minimizer mizer, the hierarchy flattener octflatten, the
symbolic compactor and spaccr sparcs.

musa is the multi-level logic simulator of the Octtools.

padplace is a multi-purpose tool used to handlc the formal terminals of OCT facets, with specialized
routincs for pads.

sparcs is the compactor and spacer for symbolic layout.

vulcan creates abstractions of layout, by computing simplificd protection frames for each layer in
the layout.

wolfe places and routes standard-cell circuits.

156

Now VOV is surcly conlused. It knew about some files in the old directory and now it is unable to
find them. So you now just tcll VOV what happened:

vov_sh =0 /users/joe/mypla -N /users/3joe/reallygoodpla

A.3.16 Handy utilities

vov_cleanup : gcta report on what liles are usclul and what can be removed.
vov_setup : creatc a new alias Lo set the VOV environment variables.
vov_start_slaves : start slaves described in the slaves file.

vov _kill slaves : kill slaves described in the slaves lile.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(24

(25]

(26]

[27]

(28]

(29]
(30]

158
C.B.Shung, ct.al. AnIntcgrated CAD System for Algorithm-Specitic IC Design. /EEE Trany-
actions on Computer Aided Design, 1990. Accepted for publication.

TziCher Chiuch. Randy Katz, and Valeric King. A history model for managing the VLSI
design process. InICCAD. 1990).

1985.

Jamcs Danicll and Stephen W. Director. An object oriented approach to CAD tool control. In
26th Dexign Automation Conference. pages 197-202, June 1989,

Allen M. Dewey and Stephen W, Director. Yoda: A framework for the conceptual design
VLSI design systems. In Proc. of ICCAD. November 1989,

Susan A. Ellis. A symbolic layout language and a database for an integrated visi design
system. Technical report, Electronics Research Lab, University of California, 1981.

D. D. Gajski and R. H. Kuhn. New VLSI (ools. /EEE Computer Magazine, 16, December
1983.

Danicl D. Gajski and Donald E. Thomas. [ntroduction to Silicon Compilation, chapter 1.
Addison-Weslcy Publishing Company, 1988.

D.D. Gajsky, D. A. Padua, D. J. Kuck, and R. H. Kuhn. A sccond opinion on data flow
machines and languages. Computer, 15(2), Fcb 1982.

G. Genrich. Predicate/Transition Nets, volume 254 of Lecture Notes in Computer Science,
pages 207-247. Springer Publishing Company, 1987.

Kyle Goldman and Ted Stout. A design automationenvironment. VLS/ Systems Design, pages
469, June 1988.

I. Goldstein and D. Bobrow. A laycred approach to software design. In [nteractive Pro-
gramming Environments. McGraw-Hill, New York, 1987. D. Barstow and H. Shrobe and E.
Sandwell.

Frank G. Halasz. Reflections on Notecards: seven issues for the next generation hypermedia
systems. Communications of the ACM, 31(7), July 1988.

D. Harrison, P. Moore, Rick L. Spickelmier, and A. R. Newton. Data management and graph-
ics editing in the Berkeley Design Environment. In Proc. ICCAD, pages 24-27, 1986.

D. S. Harrison, A. R. Newton, R. L. Spickclmier, and T. J. Bamnes. Electronic CAD Frame-
works. Proceedings of the [EEE, pages 393-417, Fcb 1990,

Paul Heckel. The Elements of Friendly Sofiware Design. Warner Books, 1984.

Alberto Di Janni. A Monitor for complex CAD systems. In Proc. 23rd Design Automation
Conference, pages 145-151, 1986.

Bibliography

(1] William B. Ackcrman. Data flow languages. Computer, 15(2), Feb 1982,

(2] T. A. Agerwala. A complete model for representing the coordination of asynchronous pro-
cesses. Technical report, Hopkins Computer Rescarch Report No. 32, July 1974,

(3] Wayne Allen, Ken Fiduk, and Doug Rosenthal. Distributed methodology management for
design in-the-large. In /CCAD, 1990.

[4] Frangois Bancilhon, Won Kim, and Henry F. Korth. A model of CAD transactions. In Pro-
ceedings of VLDB 85, Stockholm, 1985.

(5] D.S. Batory and Won Kim. Support for versions of VLSI CAD objects. Technical report,
MCC, Austin TX, 1985.

(6] Felix Bretschneider and Helmut Lagger. Knowledge based design flow management. In Proc
of Conference on Al, Simulation and planning in High Autonomous Systems, Tucson, Arizona,
26/27 March 1990.

[7] Felix Bretshneider, Christa Kopf, Helmut Lagger, Arding Hsu, and Elizabeth Wei. Knowledge
based design flow management. In /CCAD, 1990.

(8] Jean Brouwers and Moshe Gray. Integrating the electronic design process. VLSI Systems
Design, June 1988.

[9] Misha R. Buric and Thomas G. Matheson. Silicon compilation environments. In Proc. of
Custom Integrated Circuits Conference, pages 208-212, 1985.

(10] Michael L. Bushnell. ULYSSES - An Expert-System Based VLSI Design Environment. PhD
thesis, CMU, research report CMUCAD-87-15, May 1987.

{(11] Michael L. Bushnell and S. W. Director. VLSI CAD tool integration using the Ulysses envi-
ronment. In 23rd Design Automation Conference, pages 55-61, 1986.

[12] Andrea Casotto, Chuck Kring, and Randy Katz. Using the Oct-tools in a VLSI design coursc.
In 1989 VLSI Education Conference & Exposition, pages 105—-117, July 1989.

[13] Andrea Casotto, A. Richard Newton, and Alberto Sangiovanni-Vincentelli. Design manage-
ment based on design traces. In 27:h Design Automation Conference, Orlando, FLA, June
1990.

157

160)

[48] Bjame Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

[49] P.vander Hamer and MLA. Trellers. A data flow architecture tor CAD frameworks. In Proc,
of ICCAD. pages 482485, 1990,

[50] P. van der Woll, P. Bingley, and P. Dewilde. On the architecture of a CAD framework: the
NELSIS approach. In Proc. EDAC 90, 1990).

[51] [Widya. T.G.R van der Leuken, and P van der Woll. Concurrency control in a VLSI design
databasc. In 25th Design Automation Conference, 1988.

[52] Gerhard Zimmerman, PLAYOUT - a hierarchical design system. In /FIP, 1989,
[53] Michacl D. Zisman. Usc ol production systems for modeling asynchronous concurrent pro-

cesses. Academic Press Inc.. in PATTERN-DIRECTED INFERENCE SYSTEMS, 1978.
University ol Pennsylvania.

159
[31] Randy H. Katz. Rajiv Bhatcja, Ellis E-Li Chang, David Gedyc. and Vony Trijanto. Design
version management. /EEE Design & Test, pages 12-21, Fcb 1987.

[32] Ken H. Keller. An clectronic circuit cad framework. Technical report, M84/54, Electronics
Rescarch Lab, University of Califomia, July 1984,

(33] David W. Knapp. A Plunning Model of the Design Process. PhD thesis, USC, tech. rep.
CRI-87-06, Dcc 1986.

[34) Krzystof Kozminski. Design control in MCNC'’s open architecture silicon implementation
system OASIS. Technical report, MCNC, Technical Report TR89-54, Dec 1989.

[35] Alison Lee. Usc of history for user support. Technical Report CSRI-212, University of
Toronto, Computcr Systems Research Institute, May 1988,

[36] Steven S. Leung, P. David Fisher, and Michacl A. Shanblatt. A conceptual framework for
ASIC design. Proceedings of the IEEE, pages 741-755, July 1988.

[37] Willems W. G. H. M. A VLSI Design Manager based on State Management. Technical report,
Master thesis, Delft University of Technology, September 1987.

[38] Robin L. Steele (NCR Microclectronics). An cxpert system application in semicustom VLSI
design. In ACM/IEEE Design Automation Conference, pages 679-686, 1987.

[39] Toshiaki Miyazaki, Tamio Hoshino, and Makoto Endo. A CAD process scheduling technique.
In /ICCAD, 1990.

(40] Tadao Murata. Petri ncts: Properties, analysis and applications. Proceedings of the [EEE,
77(4):541-580, April 1989.

(41} A.R. Newton, D. O. Pederson, A. L. Sangiovanni-Vincentelli, and C. H. Sequin. Design aids
for VLSI: the Berkeley perspective. /EEE Trans. Circuitand Systems, CAS-28:666—680, July
1981.

[42] John K. Ousterout, Andrew R. Cherenson, Frederick Douglis. Michael N. Nelson, and
Brent B. Welch, The Sprite network operating system. COMPUTER, pages 23-36, February
1988.

(43} Interact advertisement, June 1990.
(44] Richard Rubinstein and Harry Hersh. The Human Factor. Digital Press, 1984.

(45] Carlo H. Sequin. Managing VLSI complexity: an outlook. Proceedings of the IEEE, T1(1),
Jan 1983.

[46] Emst Siepmann. A data management intcrface as part of the framework of an integrated
VLSI-design system. In /ICCAD, 1989.

{47] G.W. Sloof, P. Bingley, P. Dewilde, T.G.R. van Lcuken, and P. van der Wolf. Design data
management in a distributed hardware environment. In Proc. EDAC 90, 1990.

95

Figure 3.24: The Mosaico trace shows the sequence of tools required to route a macro-cell chip.

Chapter 4

Implementation

The development of a DMS is more an enginecring problem than a scientific one. The
solutiondcrives from a balancce of options and tradeofTs that cannot be abstractly validated on paper.
The only experiment that can validate a DMS is to sce how the system reacts to the complexity of
the real world, a world in which rcal designers arc dctermined to achieve a particular goal. This is
an expensive experiment, because it requires the investment of a lot of energy into the development
of the DMS. It is in lact nccessary that the DMS is robust and reliable, powerful and lightweight,
fricndly and predictable, or the experiment will be corrupted by the designers’ understandable un-

willingness to cope with a sluggish and unreliable system.

The implementation of VOV has been a key clement of this project, and is tightly con-
nected to the conceptual development of the system. For example, the importance of the notion of
affinity of transitions became clear when a prototype of VOV that did not have such notion was
impossible to use because it could not dispatch some transitions to certain slaves. Once the notion
of affinity was implemented, its implications on the firing rule became clearer, and its usefulness
was extended to include the management of transitions competing for the same resource and of

interactive transitions.

In the following sections, we overview some implementation issues encountered in the
development of VOV. Section 4.1 develops somc topics about thc implementation of the objects in
the trace and about the representation of the trace. Section 4.2 presents some some special topics
such as safety and idcntification of traces. Some key features of the software implementation are
highlighted in Section 4.3. The final scction rcports the raw performance of the current implemen-

tation of the system.

96

97

4.1 The design trace

4.1.1 Attributes of nodes

The most important attribute of a node is its status, which can take one of the following
valucs: VALID, NOT VALID, DEAD, TRACING, RETRACING, MISSING.

VALID nodcs arc up-lo-datc and do not nced retracing; they are cither a primary input or
the output of a successful transition. If a primary input changes, all of its dependent nodes become
NOT VALID. NOT VALID nodcs nced to be retraced. DEAD nodes are ignored by the server; they
arc ncither checked nor retraced. DEAD nodes are often used by novice designers who try some
tools and then tell VOV to ignore what they have done. A DEAD node is useful for documentation
purposes.

A currently cxccuting transition and its outputs are in the TRACING status. The RE-
TRACING status is reserved for transitions that are being retraced and for their outputs. A place
can also be MISSING, wheniitis no longer on the disk. This is the normal status for temporary files
that arc crcated by some transition and then deleted by the designer.

Users can control the status of a node, and a number of rules determine the effect of a
changc in status of a nodc upon its dependent nodes. If a user invalidates a node, all of the dependent
nodcs also become NOT VALID (unless they are DEAD, in which case they stay DEAD). If a user
forces a nodc to become VALID, its dependent nodes are not affected. Expert users can alter this
dcfault behavior and decide the status of entire subtraces. User cannot set the status of a node to
cither TRACING or RETRACING, because those values are reserved by the system.

4.1.2 Attributes of places and transitions

A place represents a piece of design data. In particular, VOV considers the following
types of data: UNIX ASCII files, UNIX binaries, OCT facets, command line options, cxit status of
transitions, boolean conditions, measurements.

The type of a place determines the database that is managing the place and therefore it
also detcrmines the methods to operatc on the place. For example, ASCII files are managed by UNIX
and are manipulated with UNIX routines such as write, read, stat, unlink, while OCT
facets are manipulated with the analogous procedures provided by OCT. Comﬁxand line options,
boolean places, exit status, and measures, are managed by VOV, which provides the methods to
create, edit and delete such places.

98

Places have two other attributes: the name, which is a unique string used for identification
of the place inits database, and the timestamp, which is the date in which the place was last modificd.
Timestamps for UNIX filcs are obtained directly from UNIX, but VOV must overcome two problems,
causcd by clock skews between dillerent machines, and by the NFS caching mechanism. A file can
be on a file sysicm physically mounted on a different host from the one where the server is running.
If the clocks on the two hosts are skewed the timestamp of the file must be adjusted to a refercnce
clock, which is the onc of the server.

[files arc accessed through the Network File System protocol (NFS), one must consider
that the protocol is not complctcly transparent, because some information is cashed on the server
side and caches arc sometimes refreshed with a 30 to 40 sccond delay. It is therefore possible for
a lilc 1o change and for the scrver to be unaware of the change until the caches are refreshed. This
can cause a lot of confusion.

Consider a transition with a duration of just a couple of seconds. Suppose that the transi-
Lion cxccutces on a host different from the scrver’s, and that the transition declares as output the file
File. If, upon termination of the transition,.the VOV server cannot see any change in the times-
tamp of File, becausce it is secing the cached copy, it must conclude that the transition has failed,
becausce it has not produced one of the outputs it had promised; File is marked as NOT VALID.
30 10 40 seconds later the server suddenly secs a change in Fi le, and it becomes confused on what
the status of File should be, so it sets it to VALID hoping for the best. To this date, no solution
has been found to this NFS caching problem. The only clean solution is to eliminate NFS from the
loop and have the server running on the same host where the data are stored (the clients can still
be running on any host), but this defeats the stride for a really distributed system. It is hoped that
some of other protocols developed for distributed file systems, such as the one implemented in the
SPRITE [42] operating system, will soon become available on most UNIX platforms.

The attributes of a transition are the command line, the working directory, the user name
who initiated the transition, the host name of the machine used for the transition, the start date,
and the finish date. The process id is useful for job-control, because it permits VOV to stop the
transition if it has been determined that its outcome is no longer of intcrest. The exit status of each
process is also recorded and matched against a list of legal exit status to help determine whether
the transition was successful. Finally, the affinity of the transition indicates if the transition requires
special resources.

Some attributes of transitions are preserved during retracing, namely the original user

name, the affinity, and the list of legal exit status.

99

4.1.3 Canonical names for ﬁles‘

Except for chains of places (Scction 3.3), cach place in the trace must have a unique
name. In the casc of UNIX liles, this name should be meaningful for all processes involved in VOV,
regardless of the host on which the process is exceuting. If all files are managed by onc file server,
then it is normally possible to usc as name of the place the full path of the file. In the case in which
the data is distributed across several file scrvers, the full path may point to different files if computed
on different machines. The rule to generate a name mcaningful for all machines depends of course
on the particular way in which the filc systcms are mounted among the machines. For example,
in the Berkeley CAD group, a file system aaa physically mounted on the machine host 1 can be
accesscd by another machine through the path /net/host1/aaa, using NFS. On host1 itself,
the path /net /host1 exists and points to the root directory. The rule is therefore to add the prefix
/net/<hostname> to a full path to obtain a file name that is valid network wide.

The mechanism of hard links and symbolic links allows UNIX to refer to the same file with
two diffcrent names. While hard links arc not considered, VOV repeatedly expands symbolic links
and rcmoves all occurrences of . and “..” in a path until a full path without symbolic links and
dots is obtained. This path, possibly with a network prefix is thec canonical name for the file, and

it is the name used to identify the place that represents the file.

4.1.4 The representation of the trace

An carly implementation of VOV used an intemal C++ data structure to represent the
trace, while another representation in OCT was used to provide persistency and the graphical user
interface. That implementation failed because of difficulties in maintaining the consistency of the
two representations. Using OCT also for the internal representation turned out to be a good choice
because the code was greatly simplified.

The graphical representation of the trace is important for the designer, because it is a
powerful way to communicate information about the flow of data. In order to exploit this potential,
care has been taken to improve the readability of the graphical rendering of the trace, resulting in
images such as those in Figurc 4.1.

Each node in the trace is represented in OCT by an instance of some icon depending on
the type of the node, as shown in Figures 3.1 and 3.2. The input/output relationship between nodes
is represented by attachments among the instances: each node contains its outputs and is contained

by its inputs. These attachments, however, have no graphical representation. Thus, for the benefit

100

decoder:padp:interface

Yobedebidid e tboib b b S 3 6 b
i< s IR HE et tr] IV T3 A A
aERLTT RSN ELE 1*’?’... tHE LINnIEn
3T) o it 4 183 BT o i
B
I riHis ; 7
= T REY .o & i3
B 'a 43 35 T 524
) '3t N7 + 3 a1 7
W sund 1 .
+
< 1 1 T
SEegigt 1933 8 SR ET ET 1T 4TSS 24}
51 %3 . - 1731 1 o
g2 3, 341 1. % 1355
B b 134m
43 S92 T 1 LIt
T P ; ipis s o
4os
| f i IR v 3 13. i
Ti$3 e
TEER: - mh ¢
FREaEa 155303 1 BT it
SE3T 5223 s e B33 $48] 2522330 13 11 1!
T8 Ee 2 o 1o T RLTT ChImit bt

vov Iyl £ -0

decoder:wolfd® nterface

decoder:wolfe

Figure 4.1: A small trace to highlight the features of the graphical representation.

101

Figurc 4.2: The grid uscd to place the nodes in the trace. The vertical coordinate of a node is
determined by its level, the horizontal direction is chosen so that the total length of the arcs is

minimized.

of the users, cach dcpendency between two nodes is also represented by a straight colored path
stretching from onc node to the other. The color of the arc is the same as the color of its input node.

A color coding schemc has proved to be particularly effective to communicate informa-
tion on the status of a design. For cxample, the designer can immediately see which nodes are
VALID and which are not, because VALID nodes are pink, NOT VALID nodes are blue, DEAD
nodes are dark green, TRACING nodes are red and RETRACING nodes are orange, MISSING
nodes are brown.

The nodes are placed at the vertices of a grid that is derived from a semi-infinite rectangu-
lar grid by offsctting all the nodes on odd rows by onc half of the row spacing, as shown in Figure
4.2. The origin of the grid is in the top left comer. The vertical coordinate of a node is determined
by its level, with level zero corresponding to the top row. The level of a node represents its distance
from the furthest primary input. More formally, the level /() of node n is assigned in two steps.
Step 1 assigns a level 1 to each primary input and to all other nodes it assigns the maximum level

of their inputs increased by 1:

ln) = 1 ifI(n)=0
max,,,el(,,,l(m) +1 ifI{n)#0

Step 2 is purely cosmetic, in the sense that it tries to bring the primary inputs closer to the transitions
that uses them first:

VolI(n)=0=1(n)= min I(m)-1
m€eN(n)

During the evolution of the trace, a node may become disconnected, in which case its level is zero.

102

After levels have been assigned, the relative position of the nodes on cach level has to be
decided. Once again, the goal is to optimize the readability of the trace; this is achicved heuristi-
cally by minimizing the total length of the arcs. VOV uscs a force-directed mcthod for dynamical
placement of cach new node in the trace. If the location determined by the force directed algorithm
is alrcady taken, the node is placed in the closcst empty location at that level. Although this dy-
namical placement is suboptimal, it is fast and it can be done on the fly. Upon a user’s request, or
automatically in periods of inactivity, VOV repeats the onc dimensional force-dirccted placement
on onc row at a imce following it with onc pass of pairwise interchanges of ncighboring nodes to
get out of obvious local minima.

The complete placement of a large trace with 1000 nodes and 15 rows takes about a
minutc on a DECstation 3100. This is a long time, but the data structures used for the trace are
not optimized for this placement problem. Five to ten iterations of the algorithm generally yicld a
reasonably readable trace, that is one where the major flows of the design are easily recognized.

To facilitate the visual inspection of the trace, and to easc the identification of cach node,
a short black label is placed next to cach node. The label of a place is obtained by taking the last
fcw componcnts of the place’s name, while the label of a transition consists of the first few words

in the transition’s command line.

4.2 Special topics

4.2.1 Project identification

All VOV clicnts must establish a connection with the scrver, which can be running on
any host in the network, while that host could be running several servers. Thus, the problem is to
assure that the clients connect to the correct server.

Other systems have a similar problem. For example, NELSIS [47] also has a server/client
architecture, and itidentifies the scrver by means of a project identifier of the form hostname:access-
path, where the component to the left of the colon is the name of the host running the server and
the access path is the root directory that contains the entire project.

VOV does not require the design to be contained in the same directory. Instcad of the
access path, each trace is identified by its project name, an arbitrary alphanumeric string, and by
the host in which the server is running. The project namc is hashed into an 8-bit integer, which is

then added a constant to obtain a port number used to initiate the TCP connection with the server.

103

Each host can support up to 256 projccts, provided that their names do not hash to the same integer.
The clients get the project name and the host name by means of two environment vari-
ables, /OV_HCST_NAME and VOV_PRCJECT_NAME. Ifcither onc is missing, the connection can-

not be established and the client continues to run as if VOV did not exist.

4.2.2 Robustness and safety

So much important information is stored in the trace that no precaution to protect the
trace can be excessive. VOV keeps two copics ol the trace, of which at Icast onc should always
be uncorrupted and no more that 30 minutes out-of-date, cven in the case of system crash or filling

of the disk. In casc both copics of the trace become corrupted, VOV has another partial recovery
' mechanism, basced on a compact ASCII dump that can be generated from the trace. This file is in
the form ol a shell script, and it can be cxecuted directly to rebuild the entire trace, cxcept only for
annotations and scts.

The scrver should be robust o possible misbehavior of its clients. The current imple-
mentation ol the server can survive any crash of its clients, even during handshaking. It is also
not possible for a clicnt to block the server, that is the server will never be in the status of waiting
indcfinitcly [or a message from a clicnt.

VOV does not explicitly address the problem of security against malicious intruders.
Anyone who knows the project name and the name of the host on which the server is running
can connect to the server and force the slaves to do virtually anything, However, all server and
slave processes are user processes, without root privileges. Although files of the designers are at
risk, the sccurity of the whole computing system is not affected. The data stored in the journal
gencerally allows to track down the intruder. Other ADM’s (e.g. {50, 3]) rely on root processes and

are therefore increasing the vulnerability of the computer system.

4.3 Software architecture

The main concem in the implementation of VOV was 1o produce an prototype to test the
concepts of a trace-based DMS. Speed and cfficiency have also been a concern, because the non-
intrusiveness of the system depends in large part on them. However, functionality has had priority
over performance, especially because it was not clear, until the system was used, which routines
were critical and needed to be optimized.

104

VOV is written in C++ (48] and it exceeds 27,000 lines of code. It consists of the follow-

ing scven programs:

vov_server: is thc VOV scrver.

vov_capsule: is uscd in the encapsulation scripts.

vov_sh: is uscd as the command based interface of VOV,

vov_assist: is the VOV assistant.

vov_slave: is thc VOV slave.

vov_rpe: is the RPCcxtension to the Octtools editor VEM, and provides the graphical user interface.
vov_meter: is thc prototypical mecasurcment tool.

These programs opcrate on the trace through the routines in a library called trace. a.
A smallcr library called 1ibvov . a is available for the programs like vov_meter that only run
as clicnt proccsscs.

Traces are represented by the VovTrace class that contains the methods to create, mod-
ify and destroy nodes in the trace, as well as methods to alter the connectivity between nodes, to
manipulate scts of nodes and so on (Figure 4.3). All routines operate either on a local representa-
tion of the tracc or on a representation managed remotcly by the server. The structure of a typical
routine is illustrated in Figure 4.4. Each tracc can be either local, client or server. The member
functions isLocal(), isClient(), isServer () distinguish the various types. In ref-
crence to Figure 4.4, if a client wants to creatc a new node in the trace it will use the method
VovTrace::create-(), which makes the client send a request to the server and then wait for
an answer. When the server gets the request and decides to satisfy it, it exccutes the same method
VovTrace::create (), butthistime the flow of control is such that the node is actually created.
If the trace is local, all the communication protocols are bypassed.

This structure of the routines greatly rcduces the amount of code to be maintained, and
localizes within the same function the dctails of the communication protocol between the client and
the server.

The information between clients and server is transferred in packets of arbitrary length.
These packets arc sent through UNIX sockets and delivered using the TCP/IP protocol. Packets are
processed only when they have been completely delivered. Each packet has a free format, consisting

class VovTrace

105

{

String projectName; // This is the name of the project.
String hostName:; // Host on which the server is running.
int type; // Server, client, local.
YovEventQueue workQ; // Queue for all trace events.

tJovPage* pageArray; // Array of pages.

//

int isClient ()

int isServer(int)
int isLocal():
public:

VovStatus
//

VovStatus
VovStatus
VovStatus
VovStatus
VovStatus
VovStatus
VovStatus
VovStatus
VovStatus
VovStatus

VovStatus
VovStatus
VovStatus

VovStatus
VovStatus
VovStatus

VovStatus
VovStatus
VovStatus
VovStatus

VovStatus
int

VovStatus
VovStatus
VovStatus
VovStatus

void
void

Figure 4.3:

open(String& project,String& host,String& mode, int type):

create (VovSuperObject&) ;

find (VovSuperObject&) ;

modify (VovSuperObject&) ;

edit (VovSuperObject&,int viewonly=0);

lock (VovObject&,String&, int force,int& Id,String& msg):
unlock (VovObject&, int lockId):;

forget (VovSuperObject&) ;

changeStatus(VovNode&, VovNodeStatus, int flag):;
history(VovNodeé&, int flag,int dir,int lev,String&);
measure (VovPlace& place, VovPlace& measure);

initiate (VovTransitiong);
terminate (VovTransitioné&,VovStatus,int, String&);
dispatchTransition(Client&,VovTransition&);

setOperation(VovNodeSeté&, VovNode&, VovSetOperation) ;
fill (VovNodeSet&, VovNodeSet &, VovSelectRule&, VovNodeSet &) ;
subselect (VovNodeSet &, VovSelectRulesg) ;

declareInput (VovTransitioné&,VovPlace&, int);
declareQutput (VovTransition&,VovPlace&, int, int,String&) ;
declareIOs (VovTransitioné&,VovPlaceListé&) :

disconnect (VovNode&, VovNode&) ;

addAnnotation (VovSuperObjecté&, VovAnnotation&) ;
getAnnotations (VovSuperObject&, VovAnnotation*&, int) ;

checkPlace (VovPlace&, int* exist,Date* timeStamp);
evolve (VovRetraceg, int mode,Stringé) ;

evolve (VovRetrace&, VovNode&, int dir, int mode,Strings) ;
stopRetracing(VovTransition&, String&) ;

doPlacement () ;
journalLog(const String&);

The VovTrace class contains all the methods to operate on the trace.

106

JosStatus VowvTrace::create(VovNodes node)
{
1f (isClient ()) {
// Send data to the server.

} else {
if (isServer()) {
// Receive data from client.
}
/7 .
node.create () ; // Actually create the node.
// .
if (isServer()) {

// Send return info to client.
}
}
if (isClient ()) {
// Receive return data from server.

}
return VOV_OK;

Figurc 4.4: Skclcton of a routine that can be cxccuted cither locally by the calling process, or

rcmotely by the server.

of any scquence of numbers and strings, with the only restriction that all packets sent by a client to
the server must begin with a number that corresponds to the routine that should be executed by the

SCrver.

4.3.1 The hierarchy of classes

A limitation of OCT is that it is not cxtensible, because it does not allow the definition of
new data types; Nevertheless, OCT provides a rich set of primitive objects that, in conjunction with
some features of C++, allow the emulation of new types of data used to represent nodes, places and
transitions (see Figure 4.5).

The class VovOb ject is a simple C++ wrapper for the octObject. A class derived
from VovOb ject is VovProp thatis spccializcd for the handling of OCT properties. VovProp's
are used cxtensively in the definition of other classes.

The class VovNode is derived from VovOb ject and its members are of type VovProp.
The classes VovPlace and VovTransit ion are derived from VovNode and are themselves
composed of VovProp’s. The retrieval of an object from OCT is performed by the member func-

107

class VovObject : struct octObject {
//

.,,
~.

0
—
[\
(€]
w

VovProp : public VovObject |
//

,
..

class VovNode : public VovObject {
VovProp type:’
VovProp level;
VovProp status;
//

class VovPlace : public VovNode {
VovProp placeType:;
VovProp name;
VovProp timestamp;
//

class VovTransition : public VovNode ({
VovProp cwd;
VovProp commandLine;
VovProp affinity;
!/

Figure 4.5: A hicrarchy of classes has been defined to describes nodes, places and transitions.

tion get (), which retrieves each VovProp by name. The retrieval of a place, which must be
performed many times during trace operations, requires about 0.5 milliseconds on a DECstation
3100. In order to speedup the operation of the server, futurc implementations should exploit the
fact that for each particular task not all the fields in a objects are needed, and is should replace the

indiscriminate retrieval of all VovProps with a selective retricval of only the necessary ficlds on
demand.

Virtual functions are used rarely and all objects are explicitly given a type. Virtual
functions use information that is managed by C++ and not accessible by the programmer; this

information would be lost when objects are transferred between clients and server through sockets.

108

4.3.2 User interface

The designers have access to the trace through three interfaces differing in weight and
in power: a command interface, a menu-driven interface, and a graphical interface. The primary
objective of these interfaces is to minimizc the number of user actions such as key-strokes, mouse
pointing and clicking, required to perform the most common tasks, and to minimize the mixing of

keyboard and mousc actions within a single task.

The most used interface is a lightweight command based interface that requires only a
simple alphanumeric tcrminal. Command based intcrfaces are uscful because they can be pro-
grammed and extended. This interface allows control and monitoring of retracing, editing of the
trace, querying about the history of places in the trace. The program vov_sh and its many options
(Figure 4.6) arc the key clements of this interface.

The sceond interface is based upon pop-up dialogs and requires a terminal supporting X
windows. This intcrface is easicr to usc and more powerful, but it cannot be programmed because it
requires pointing and clicking. The control pancl for this interface is shown in Figure 4.7. The usecr
can edit and create scts, control retracing and the activity of the slaves, browse the trace and inspect
the event queue. All dialogs have an *Hclp™ button that activates a subordinate dialog containing a
textual description of the dialog and its functions.

Since the trace is itself stored as an OCT facet, it was easy to develop a graphical user
interface capitalizing on the OCT editor VEM and its Remote Procedure Call (RPC) mechanism.
VEM is a multi-window graphical editor, that can be used to browse the trace and to follow the
flow of the tools. The RPC mechanism allows VEM to be extended with some commands specific
to VOV, such as the command view that can be issued whenever the mouse pointer is over a node
to pop-up a dialog describing the attributes of the node. Other RPC commands allow the editing of
the status of the nodes and of the connectivity of the trace. Nodes can be selected and connected to

other nodes, or deleted from the tracc.

The performance of OCT does not affect the performance of VOV, which is dominated
by the interaction with the file system. The only unsatisfactory performance has been obscrved in
the RPC interface, which slows down some data base intensive operations, such as the placement

of the trace, by a factor of 10 or more.

usage: vov_sh [-=E on_error] (-ADEF] [-H params] [-LK] [-N string] (-0 string]
[-RSVd] [-p project] (-t name] [-u name] [-w] ([-f place]
[-e place] [-r place] [-k place] [-h name] [-nniI]

-=E: cause fatal errors to core dump (on_error = "core") or exit
(on_error = "exit")

-A: Advanced user flag

-D: Dump trace in ASCII format (used for emergency save)

-E: Show all events during retracing

-F: Set speed of retracing to FAST (default SLOW)

-H: History ; :ameters. Examples: -T30, +N2, -TP1000.

-L: Local trace (expert users only).

-K: Kill server

-N: New string for mvlib function

-0: 0l1d string for mvlib function

-R: Retrace all

-S: Stop all retracing

-V: Print version number

-d: Debug communication with server

-p: Specify a different project name than VOV_PROJECT_ NAME.

-t: Toggle status of place

-u: Is the place used in the design?

-w: Write trace onto disk (also force check of all places)

-f: Forget place (Use with caution!!)

-e: Edit place

-r: Retrace TO specified place (retrace the place)

-k: Retrace FROM specified place (kick the place)

-h: Print history of place

-m: Monitor slaves

-n: Notification: get all unreported events

-i: Interactive

-I: Get info about design

Figure 4.6: The usage message generated by the vov_sh shows the options that give access to many
of VOV’s services.

110

MAIN COMMANDS INFORMATION &
| BROWSING EVENTS TRACE .
I Browse ” Recent I All
¥ RETRACING VARIOUS

| Ch sLAavE
| () SERVER

| Check | Monitor || Nice placement
SETS TRACE USER
| [Create [Edit |[Clean [Todisk[View] [Gattnto

l‘

He j :
Figurc 4.7: The control panel for the menu driven interface to VOV puts the most common opera-

tions only a fcw mousc clicks away.
4.4 Performance

4.4.1 Server latency

The server can become a performance bottleneck of the system, because all accesses to
the design trace must go through it. For a client, the server latency is the time required between
the submission of a request for scrvice and the arrival of the response from the server. The latency
should be minimized.

The most common server/client intcraction is the declaration of inputs and outputs of
a transition, which may become critical when many transitions are executing concurrently. For
cxample, in the recompilation of VOV, there can be up to about twenty files being compiled in
parallel, with each compilation declaring thirty or more inputs.

For cach declaration the server must perform:

¢ asearch by name in the set of all places to determine whether the place is already in the trace;
o some checks for input, output and lock conflict (see Section 3.9.4);

¢ acycle detection check (also in Scction 3.9.4).

The search by name uses hash tables and requires a constant time, and the detection of conflicts is
also fast. The critical step is cycle detection.
Given atracc 7 = (T. P. E) and the declaration of a new arc (t.p).t € T.p € P, we

want to know if the new trace 7/ = (T.P.E'). E' = E u {(t, p)} contains cyclcs. A worst casc

1

| Cycle detection work |

Trace name | Nodes | Max nodes visited
octiest 369 17
vovmips 616 30

Table 4.1: Experimental observation of the maximum work required by the cycle detection routine.

analysis shows that all the arcs in the trace may have (o be traversed, so that the amount of work
nceessary for cycle detection is O(|E|), with |E| < |[P|?/2. But this is pessimistic, because only
the arcs rcachable from t or p need to be visited. In practice traces tend to be wide and shallow, so
that the number of nodes rcachable from any node is a small fraction of all the nodes, as shown in
Table 4.1. In most cascs the cycle detection can be resolved immediately because p has no inputs
or no outputs, and cannot therefore belong to a cycle.

We have mcasured the throughput of the server for common operations such as input
and output declarations. Thosc mcasurcments on a DECstation 3100 show that each declaration
requires between 0.01 and 0.10 scconds (elapsed time), which means that the server can process
between 10 and 100 declarations per sccond. The most complex transitions observed to date (c.g.
compilations or floorplanning) dcclare close to 40 inputs and outputs, in which case the overhead
duc to the server’s operation is less than 4 seconds, usually a negligible fraction of the transition
duration. Most transitions declare between 3 and 6 inputs and outputs.

The actual overhead seen by each tool depends on the latency due to the TCP/IP protocol
and the number of clients concurrently competing for services. In order to limit the number of
round trips between a client to the server and back, an cntire array of input and output places can
be declared at once.

4.4.2 Capsule overhead
In the current implementation, a capsule is a shell script consisting of two parts:

1. The first part computes the inputs and outputs of the transition, using information extracted
from the command line arguments, and possibly even parsing some of the input data. The
same operations will be performed by the tool itself.

2. The second part is a call to the program vov_capsule, which takes care of all communi-

cation with the server and then forks a new process to execute the actual tool with the same

[Capsule overhead in seconds |

Elapsed time

Tool Capsulc Overhead
Tool min max | min max | min max
bdsyn 1 4 9 16 5 17
misll 14 20| 23 32 3 18
bdnet 3 81 17 19 9 16
padplace 1 3 5 16 2 15
wolfc 87 109 | 103 105 0 18

Table 4.2: Capsule overhcad for some brief transitions.

arguments uscd 1o call the capsule. The overhead introduced by vov_capsule is related to

the server latency.

Tablc 4.2 shows the results of an experiment to measure the capsule overhead for some
transitions of short duration. Each tool has becn run three times in rapid succession, followed by
three runs of the encapsulated tool, always mecasuring the elapsed time. A DECstation 3100 run-
ning only the server and the transition was uscd for these measurements. The operating system is
responsible for variations of scveral scconds in the elapsed time of repeated experiments. Other
measurements have determined that the largest contribution to the overhead is due to the interpre-
tation of the encapsulation script. The capsulc overhead is in the range of 2 to 20 seconds for most
of the Octrools. Users of VOV considered this overhead to be too large. The reduction of this
overhead is an important objective in the further refinements of the system, in a continuing effort
to make the system as non-intrusive as possible. The best solution, of course, will be recompilation
of the tools with the VOV library.

4.4.3 Trace size

Table 4.3 shows the size of the disk representation of the trace for a few designs. The
important column is the third, showing the number of kbytes per node. Each node rcquires between
610 bytes and 910 bytcs of memory on disk. The larger number is from the trace of the compilation
of VOV, which contains many transitions with long command lines (more than 80 characters),
and several transitions with extremely long commands (more than 400 characters). The in-core
requirements for each node are difficult to measure, but they are estimated (o be 3 10 4 times those

for the persistent disk representation.

113

| Disk usage for the trace]
Nodes (places+transitions) | Size (kbytes) [kbytes/node | Comments
0 (0+0) 2 - | Empty tracc (overhead)
32+1) 4 0.73 | Smallest possible trace
23 (18+5) 16 0.61 | 4 slides
35(27+8) 26 0.69 | Onc cell design
201 (157+44) 122 0.60 | 40 slidcs
254 (208+46) 160 0.62 | Compilation
576 (453+123) 532 0.92 | VOV compilation
674 (484+190) 616 091 | VOV compilation
1294 (1012+282) 792 (.61 | DSP chip

. Table 4.3: Memory usage for disk rcpresentation of trace. The overhead due to the requirements
of the empty trace is subtracted [rom the trace size beforc computing the memory requirements per

node.

4.4.4 Small designs

Designers do not ask for any assistance while performing simple activities such as running
three tools in scquence, because they belicve that they can easily handle it. This became clear only
after talking to some students in a VLSI class who preferred not to use VOV while doing their
homeworks, for the simple reason that thc homework itself was straightforward.

Small designs are those in which the overhead introduced by the capsules and by the
scrver/client communication is most promincnt. Most designers form their first opinion about a
DMS using simple tests, which makes the performance of the system on small designs critical for
the acceptance of the system.

The transition between a small hand-managed design and a more complex one requiring
automatic assistance is a good test of the non-intrusivencss of a DMS. In VOV this transition re-
quires only the activation of the tracing mcchanism: all tools remain exactly the same, the designers

do not have to switch to new tools or to new names for the same tools.

4.4.5 Large designs

To date, the largest designs managed by VOV have traces consisting of less than 2000
nodes, and for these designs there is no appreciable degradation in the performance of the server.

However, we can expect designs many times more complcx, with 10 or 20 thousand nodes in the

114

trace. This raises the questions of whether VOV will scale gracelully, and if not of what can be
done to handle targe designs.

It is definitely possible to improve the elficiency of the current implementation, for cx-
amplc by strcamlining the communication protocol and optimizing the retricval of nodes from the
databasc. But there are other possibilitics: partitioning the trace into pages, and having multiple
SCIVCTS.

[n the current implementation the entirc trace is held in one OCT facet, called page. 0,
which is always loaded in the virtual memory of the scrver. Since only a few nodces in the trace
show activity at any one time, it would be advantageous to limit the memory size of the server by
keeping in page . 0 only the active nodes, whilce all other nodes are pushed onto other pages that
arc normally stored on the disk. The main difficulty in this approach lics in the need to move rapidly
an inaclive nodc into page . 0 as soon as it becomes active, which can happen suddenly, without
wamning.

Multiple servers can also coopcerate for the same design. For example, it is possible to
adopt the recommendation by Katz ct al. in [15] that the design process consists of several design
activities, cach with its own history, and have onc scrver for cach activity. The rule for cooperation
is that the sct of design transitions must be partitioned among the servers to avoid duplication.

Communication among scrvers is achicved through the data. For example, consider a
place that is a primary input for one server S2 and the output of a transition for another server S1.
When the transition is executed, the place changes its timestamp. The server S2 detects the change
in the place, and it can therefore invalidate and then retrace all the nodes that depend upon the place
in its own trace. No server has a complete representation of the dependencics among design data,

and data consistency is only guaranteed when each scrver believes that its own data are consistent.

	Copyright notice1991
	ERL-91-22

