Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

HTEXT: AN INTUITIVE, FILE-TRANSPARENT
HYPERTEXT SYSTEM

by

Narciso B. Jaramillo, Michael Schiff, and Lawrence A. Rowe

Memorandum No. UCB/ERL M91/21

26 February 1991

HTEXT: AN INTUITIVE, FILE-TRANSPARENT
HYPERTEXT SYSTEM

by

Narciso B. Jaramillo, Michael Schiff, and Lawrence A. Rowe

Memorandum No. UCB/ERL M91/21

26 February 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Htext: An Intuitive, File-Transparent
Hypertext System

Narciso B. Jaramillo, Michael Schiff, and Lawrence A. Rowe*
Computer Science Division — EECS
University of California
Berkeley, CA 94720

February 26, 1991

Abstract

Htext is a simple, intuitive hypertext system for Unix that runs under X
Windows and is written in C++ using the InterViews toolkit. This paper de-
scribes the system’s user interface, which incorporates several novel link dis-
play, browsing, and window management features. It also discusses how Htext
achieves file-transparency, the ability to link together pre-existing text files
without modifying the files themselves.

Keywords: hypertext, user interfaces, X Windows

1 Introduction

This paper describes the design and implementation of a simple, intuitive hypertext
system, Htext, for Unix! and X Windows. The system is designed to take advantage of
existing on-line text. It is intended primarily as a tool for linking documents together,
rather than as a system for facilitating collaborative work. We call it file-transparent
because it makes no modifications to existing text files in order to link them into
hyperdocuments. File-transparency allows users to

e Work with files containing source code, text formatter input, and so forth with-
out disturbing their contents.

*This material is based upon work supported under National Science Foundation Graduate Fel-
lowships awarded to the first two authors.
1Unix is a trademark of Bell Laboratories.

B fqi.txt

Menu bar ———os— WMB Help = Lock button
b TFE FIRGT FRERIE QVEETE

Contagning

THE LEGENDE OF THE KNIGHT OF THE RED CROSSE, [
R

OF HOLINESS,

Link regions
\ T the man, whoss Ruse whilons did waske,
As time her taught, in lowly Shephesrds weeds,

™~ now enforst a far wnfitter taske,
Document display %ﬁﬁ to chaunge nine Oaten _r;eds

'm—:ﬁw m slept in silence long,

Ha, all too means, the sacred

To blazon broad emongst her 1 throng:

Fierce warres and fni!.hfull loues shall moralize my song,

18

Helpe then, 0 holy Virgin chiefe of nine,
Thy wesker Nouice to performe thy ulll
Lay forth out of thine euerlasting

The antigue rolles, which there !E hlddm still, 2

Discussion of stanzas 1-4
] Explanation of “trumpets steme”
C] Relation of lines 1-5 to Virgil's Aenekl

@

1 Outgolng link Indicator

<

A=A~ A-A-A-4~4 4

1
v

Incoming link Indicator —

A4~ 4

LI

Link name list

Message line ————— Ciick_to begin link_selection, or type the letler of a link to select

Figure 1: An Htext window

o Work with files which they do not own but can still read (for instance, files in
public text databases). We wanted the users to be able to link these files to
other documents.

e Use existing document files at their normal locations within the Unix directory
hierarchy. We wanted to allow users to open existing documents with a normal
filebrowser dialog box.

Htext fits into the mainstream of existing hypertext systems [1]. However, our goals
in designing Htext diverged from those of systems such as NoteCards [3], NLS/Augment
2], and Intermedia [5]. In particular, one of our highest priorities in designing Htext
was the ability to work with existing files without modifying them to include link
information. We were also interested in providing the capability to work easily with
long, internally-structured documents as well as with short ones. Since we assumed
that such long documents would not necessarily have been created to work with a
hypertext system, and thus would not always be easily separable into hypertextual
chunks, we wanted to provide very general, possibly overlapping, links between arbi-
trary regions of the documents.

A typical Htext window is shown in Figure 1. In the upper part of the window,
the document display contains the document associated with the window. Within the
document display, several link indicators (displayed as triangles) show where links
enter and leave the text. The document display also contains grey outlines, which

8%

indicate important regions of text that the mouse is currently over; links pertinent
to those regions are displayed in the lower half of the window, forming the link de-
scription list. Below the link description list is a message line containing information
about the user’s current action, or brief directions about how to proceed.

Section 2 of this paper describes the hypertext model we adopted in designing
Htext. Section 3 describes the document browsing and editing interface. Section 4
contains some notes on Htext’s implementation. Section 5 discusses Htext’s current
status and possible future extensions.

2 Htext’s model

The hypertext model underlying Htext is straightforward and intuitive. From the
user’s point of view, there are only three entities: documents, regions within docu-
ments, and links between documents. A region is a contiguous string of characters
that may span several lines of text; in the document display, active regions (i.e., re-
gions that contain the mouse cursor) are outlined by light grey lines (see Figure 1).
Each link has a source region in a document and a destination region in the same or in
a different document. Each link is directed in that its descriptions at its source and at
its destination are different from each other. However, users can follow links forward
(from the source to the destination) as well as backward (from the destination to the
source). The directionality thus provides orientation cues for users without limiting
the ways that they can browse through connected documents.

In systems such as NoteCards and NLS/Augment, links connect a single point in the
text of one document to the entire text of another document. In contrast, Htext uses
regions as the sources and destinations of links, and allows these regions to overlap.
Regions are more informative than single points in that they show users precisely
what pieces of text are linked. Links in Htext can exist between words, sentences,
paragraphs, or even larger pieces of text. For example, a sentence in one paper might
refer to two paragraphs in another paper; the user could link the sentence to the
paragraphs. Furthermore, for heavily annotated texts with many link sources, link
regions help to distinguish one link from another. Despite the complications involved
in displaying overlapping link regions, we feel that this feature is essential.

Systems such as Textnet, IBIS, and SYNVIEW [1] that are intended for use in a
collaborative environment benefit from typed links (e.g. AGREE, DISAGREE, SUP-
PORT, REFUTE) that support particular structurings of a hyperdocument. How-
ever, a limited set of types also limits the generality of the system. Htext is de-
signed primarily for linking together heterogeneous, existing documents to form vari-
ous structures, not for assisting in collaborative work of any particular type. Thus, it
allows users to name links arbitrarily without forcing them to choose from a restricted
set of link types. Named links can communicate a variety of relationships between
linked texts, providing important information for users who are browsing documents.

3 The browsing and editing interface

This section describes the interface Htext provides for browsing and editing documents
and links. Section 3.1 describes the way the system displays link regions and allows
the user to follow links between them. Section 3.2 describes Htext’s facilities for
managing document windows and avoiding screen clutter. Section 3.3 describes two
orientational mechanisms, bookmarks and history, that the system provides. Section
3.4 describes how the user creates new links and changes existing ones. Finally, section
3.5 describes the text editor that is built into Htext.

3.1 Link display and browsing

As mentioned earlier, we consider overlapping link regions to be essential for Htext.
Unfortunately, it is difficult to display multiple link regions in a single area simulta-
neously and cleanly. We also believe that almost any significant markings within the
text itself are disruptive, especially in long, coherent documents. Our solution to this
problem is to display link indicators outside the text, and to display link region boxes
within the text only when the user explicitly requests them.

Link indicators appear as rightward-pointing triangles in the margins of the text
(see Figure 1). Links o a document (i.e. those with destination regions in the
document) are indicated by rightward-pointing triangles in the left margin; links
Jrom the document are indicated by rightward-pointing triangles in the right margin.
Each link indicator is aligned with the vertical center of its associated link source and
destination regions. These indicators give users a rough idea of where the links are
in document without distracting them while they are reading the text.

When the user moves the mouse over a link region or regions in the document, or
over a link indicator attached to a set of link regions, those link regions are outlined
by gray boxes. No special provision is made for overlapping regions—all of the boxes
for all of the regions containing the point in the text specified by the mouse cursor
are displayed. Simultaneously, the names of all of the relevant links are displayed in
the link name list below the text.

Browsing in Htext is tightly integrated with this method of link display (see Figure
2). While a particular set of link regions is boxed in the text and their associated
links are shown in the link name list, the user may follow a link by one of several
methods.

Initially, all of the link names are displayed unhighlighted with letters next to them
in brackets. Typing the letter associated with a link highlights the name of that link
in the link name list. Alternatively, clicking the mouse highlights the first link in the
link name list. After either of these actions, the link name list is “locked”: link names
will remain displayed even if the cursor is moved out of the link region. Different links
may be selected by clicking on a link name with the mouse or by pressing the letter

(a) When the mouse cursor is not over
aregion of text with links to or from
it, only link indicators are shown.

(b) When the cursor is over the text, all
link regions containing the cursor are
outlined in gray boxes. The names of

all of the links associated with those
regions are displayed in the link name list.

{A) An Interesting anscdote about a lazy dog
[5) [From ~jqiicrisciem] Sentence repsated 3 kmes
{C} {From OVERVIEW] A ypical meaningless paragragh

Cacx o snk o W10 Latter of 8 Bnk 0 selact

the 3
St

g a‘m’m"&%"k

the distracred

[A] An interesting anecdots about & lazy dog

(B cons g 2rducrman) Seateners papesatod 3 e,

[C} [From OVERVIEW] A typioat meeningiess pasagraph r

pmalart ot o
is highli the li ion
associated with lhaxylink is bomxi

Oheose link with o mouse. Ok bution te cancel

Figure 2: Browsing in Htext

associated with a link on the keyboard. Only one link may be highlighted at any given
time; while a link name is highlighted, only the box around that link’s associated link
region is displayed. This helps the user to select the most interesting or appropriate
link. After the chosen link has been highlighted, clicking the mouse anywhere in the
text will follow it. The system creates a window for the destination document if one
does not already exist, raises the window, and blinks a box around the destination
link region.

We have found this browsing method to be simple and flexible. For a region with
only one link, double-clicking over the link region follows that link. For a reasonable
number of overlapping links (no more than the maximum number that can be listed
simultaneously in the link name list) the user can follow a link with one keypress
and one click of the mouse. If the user wants to use the mouse only, three mouse
clicks are required. For the majority of cases, browsing is very easy. If the number
of overlapping links for any given point in the document is very large, the user must
scroll through the list of links and choose one. Unfortunately, this extra work is
probably unavoidable.

3.2 Window management

An important goal in our interface design was to avoid screen clutter. Like most
X Windows applications, Htext takes advantage of the ability to stack and iconify
- windows already inherent in X. If a user follows a link to a document which is displayed
in an existing window, that window is raised. If a user links to a document which is
in an iconified window, that window is deiconified.

A less trivial way to help users avoid screen clutter involves managing the creation
of windows and the replacement of documents within existing windows. Window
management should be flexible, since users may want to keep different numbers of
windows on the screen depending on their tasks. If the user is searching through
many hierarchically-linked texts for some specific piece of information, she may want
to operate in only one window, with destination documents replacing their source doc-
uments in that window. If she is reading a paper and occasionally checking references
or annotations, she may want at least two windows—one of which always contains
the central paper while the other contains side notes. For this purpose, opening many
windows would clutter the screen with little benefit. Still other times, she may want
to have many windows open at once.

Htext allows the user to control window creation and document replacement. The
user may lock a window by clicking on the lock button in the upper right-hand corner
of the window (see Figure 1), indicating that she does not want the contents of that
window replaced. The system maintains a count of the number of unlocked windows
currently open. If this number exceeds a user-specified maximum, a new document
brought into the system will replace a document in an already existing window (the
one which contains the “oldest” document currently displayed). If it exceeds a second

6

Choose Window Management Defaults:

O 1 unlocked window, 8 total windows
@® 4 unlocked windows, 16 total windows
© 16 unlocked windows, 32 total windows

O [I unlocked windows, E total windows

Figure 3: The Set Window Defaults dialog box.

maximum, and all available windows are locked, windows that have been locked will
have their documents replaced by new ones. Htext provides the dialog box shown
in Figure3 with several defaults and an option for setting the maximum number of
locked and unlocked windows to arbitrary user-determined values.

Thus, for instance, if a user wants to use only one window, with all link destination
documents replacing source documents in that window, she may set the maximum
number of unlocked windows to one and leave the window unlocked. This might be
useful for casual browsing through a large hypertext document. If at some point
the user wants to keep the contents of the window while following a link to another
window, she could lock the window, then follow a link, which would create another
(unlocked) window. At this point, the user could follow multiple branches from the
locked window. At each branch followed, the contents of the second window would
be replaced. This type of browsing might be very useful for examining source code
distributed over several files, with documentation for all of the source code in a single
file, for example.

For other applications, the user might choose to have four windows open simul-
taneously, without locking any of them. She could then read or browse through a
hyperdocument, switching from window to window while keeping a visual trail of
the documents she had examined most recently. For still other applications, she
could choose to have a very large number of unlocked windows open simultaneously,
iconifying windows herself to avoid screen clutter.

In addition to preventing window clutter, window replacement prevents the user
from having to continually place windows on the screen. With this management
scheme, each window need only be placed once. Users of the system have found these
features helpful.

Choose hookmark to follow:

8 turning point in FQ L.i
possible reference to Virgil
oreshadowing of IV.Ji

£3

Cancel

Figure 4: The Use Bookmarks dialog box

3.3 Bookmarks and history

One of the major problems associated with using hypermedia systems is disorienta-
tion: Users can easily become lost in complex networks of information. Htext provides
two simple navigation and orientation aids: bookmarks and a history mechanism. The
bookmarks we use are similar in spirit to a feature of the Symbolics Document Ex-
aminer [7). The interface for creating bookmarks in Htext is similar to the interface
for creating links. Users specify a region of text or an existing link region as a book-
mark and give it a name; they may subsequently visit one of these bookmarks by
selecting the Use Bookmark menu option. The history mechanism, while simple, is
also useful. Use History brings up a list of all the documents visited in the current
session for the user to choose from. Neither bookmarks nor history are saved between
sessions. Figures 4 and 5 illustrate these features.

3.4 Link creation and editing

For convenience, Htext allows users to specify links between multiple source and
destination regions all at once. The need for this feature arises often. For example, if
one section of a paper is referenced many times in another paper, the user may want
to link all of those references to that section. Without the ability to create multiple
links at once, the user would have to waste time reselecting the destination region for
each new link.

Htext’s link creation interface allows users to select any number of regions of text
(or existing link regions) in any order and make them into source and destination
regions. Figure 6 shows an overview of this process. The user highlights the desired

Choose document to retum to:

LIfq1 -notes.txt
Lifql.txt
L/demo-toplevel
Liclasslist.txt
LIhwmanager-info.txt
LIhwmanager.c

Figure 5: The Use History dialog box

text or selects a link from an existing region,? then chooses one of the menu commands
Add Link Source or Add Link Destination. To create the actual links between
each pair of source and destination regions, the user selects the Create Links menu
option. Users can delete and rename links by selecting a link using the browser (i.e.
by moving the mouse over the source or destination region and selecting the link with
the keyboard or mouse) and then selecting the appropriate option from the Links
menu.

3.5 The text editor

The system has a built-in text editor with emacs-style key bindings and limited mouse
support. The editor supports most basic editing functions. Thus, the user can edit
existing documents and create new ones on the fly, creating links to and from them
at will. The system automatically updates the locations of link regions as the user
changes the text.

The user must edit documents within Htext itself rather than within her favorite
text editor in order for link region information to remain consistent with the text
because we store link information in files separate from the original documents (see
Section 4.3). A solution to this limitation is to make Htext’s built-in editor con-
figurable. A more complicated solution would be to create a facility for Htext to
communicate with external editors such as GNU emacs through an IPC mechanism.

Most of the functionality of the text editor comes from the TextEditor object

2This design was chosen because our interface has no way to select a link region directly. Since
link regions may overlap, it seemed just as easy to use a link from a region to select that region for
this purpose.

m:ﬂ?&.munm-mﬂ
The quick brown fox jumps over the Lazy do

(a) The source and
destination of a link
are specified either as

highlighted regions of
text, or as pre-existing
link sources or destinations.

boafo
it Ir;k used trougt
mumm-mmh‘ Yeta]

Name link from ~/doct.bt b ~jeqidoc2.tet :

G CanaD

black fox waks sround the disyacted mouse.

The quick brown fox jmps over the
28 S

Move the meuss ever a link Indicator or e taxt to ses Ink botes

hmrum over me].n;k],

red fox jumps over the slecping cat qud
black fox waks -wmm-'uum-u-

{M Sumiar sentsnces. Plagiarism?

el

Choosa link wil keybowrd or mouse. Click right bumon 1e cance.

Movs the mouse over & link Indicator or the teat to 89 link boxss £hoose link with keybowd or mouse. Chick right button o cancel

(b) Once at least one link source
and destination have been spec-
ified, links can be created between
all pairs of sources and destinations.

(c) The new links become active
immediately.

Figure 6: The link creation process

10

that is built into the InterViews toolkit. We have not attempted to customize the
editor and its associated text display routines, and as a result have encountered some
performance problems. Because we store link information in separate link files rather
than in the document file itself, the system must update the link file after every
block of editing operations. In the future, we may modify the text editor so that
when a file is edited, link information is stored invisibly within the text, and updated
automatically with every keypress.

4 Implementation

Htext is implemented in the C++ programming language, and runs under X Windows
[6] using the InterViews toolkit [4). We chose InterViews because its object-oriented
design provided many high-level interface features (e.g. menus, buttons, and the text
editor) that we were able to use “off the shelf” without having to write widget code.
While there are some inefficiencies in InterViews, the toolkit’s power made coding the
interface relatively straightforward. Htext’s source code is currently approximately
5400 lines long,.

In this section, we discuss some aspects of the implementation of Htext. Section 4.1
briefly describes how we implemented mouse-sensitive link regions in Htext. Section
4.2 describes the general structure of the program. Section 4.3 describes the way in
which we achieved file-transparency.

4.1 Mouse-sensitive link regions

Because X Windows and InterViews do not support “intersecting” windows (i.e., over-
lapping windows that all receive messages about events occurring in the overlap re-
gion), Htext creates a separate window in the X server for each region of text that is
contained in a particular combination of link regions. For example, in Figure 7, three
windows are created—one for the portion of link region 1 that does not overlap link
region 2, one for the overlapping region, and one for the portion of link region 2 that
does not overlap link region 1.3 Each window is transparent, and receives events when
the mouse cursor is moved into or out of it or when the mouse button is depressed
in it. When such an event occurs, the X server sends messages to Htext informing
it of the event and of the pertinent link region window. We have encountered no
performance problems with this scheme, even when there are many link regions (and
thus many windows).

3Actually, since X Windows and InterViews only support rectangular windows, regions are further
subdivided into up to three windows—one containing the partial line at the beginning of the region

(if any), one containing the partial line at the end of the region (if any), and one containing the lines
in between.

11

ion 1 End of Link Region 1

art of Link R
%

4
/%

72E
Start of Link Region 2 End of Link Region 2

777 Area only in Link Region 1

N Area only in Link Region

4.2 Object classes and abstractions

Because InterViews is written in C++4, an object-oriented programming language,
our interface elements are necessarily C++ objects. Most of our non-interface data
structures also fit into the object-oriented scheme quite well. Using objects and
methods rather than global structures and functions helps keep our code organized,
which facilitates our debugging and updating the system.

To insure consistency between the various types of documents that Htext may
handle in the future and reduce redundancy in the code for these document types,
the system uses instances of the same object, HyperWindow, to provide interfaces for
each Htext window on the screen, regardless of the type of document contained in the
window. By itself, this HyperWindow contains a menu bar at the top of the window,
and a string browser and message line near the bottom of the window. It also contains
space for an object of type HyperDocument. The HyperWindow handles menu choices
and displays link names in the link name list.

Code that is common to all types of documents is part of the class HyperDocument.
The functions that handle individual types of documents are implemented as sub-
classes of HyperDocument. Currently, only one such subclass exists—HyperText-
Document. We discuss how other document types may be derived from the Hyper-
Document class in section 5.2.1.

While HyperWindows handle everything that happens local to a window, a su-
pervisor object, HyperManager, is responsible for functions that are not specific to
particular windows, or that involve more than one window. These functions include:
(1) opening documents, (2) following links, (3) managing link creation, renaming,
and deletion, and (4) keeping track of bookmarks and history. At a lower level,
HyperManager is also responsible for reading events from the system’s event queue
and dispatching the events to their target InterViews interactors.

Several other objects assist the HyperManager in its tasks. The HyperWindow-
Manager class has methods to find the window into which a given document has
been loaded and to check the number of locked and unlocked windows during the
opening of a new document. The LinkFileDB class has methods to retrieve and
update information in link files. Similarly, the DocumentDB class has methods to
process information in the document database files, which keep track of the pairings
between documents and their link files. These classes handle reading and writing
to disk, sometimes calling document type-specific routines to preserve compatibility
with future updates to the system.

4.3 Link ixiformation files

As mentioned in the introduction, file-transparency is an important feature of Htext.
Htext achieves this transparency by storing link information in link information files

13

(hereafter referred to as linkfiles) that are separate from the original documents.
Furthermore, it keeps track of the pairings between linkfiles and associated documents
in a document database file. This way, when the user opens a document, all links
to and from the document are loaded automatically, even though the linkfile may be
stored at an entirely different location in the directory structure.

Within each individual linkfile, Htext stores link region objects separately from
link objects. Rather than storing the start and end points of a link’s source and
destination regions in the link object, the system stores the indices of the link region
objects (see Figure 8). This is primarily useful when the user edits a document. For
example, if the user inserts text into the dotted link region shown in the DestFile
window in Figure 8, the boundaries of that link region and all regions after it must be
changed in the DestFileLinkDB, but none of the information in the SourceFileLinkDB
needs to be changed, since the link from the SourceFile points only to the index
of the destination region. Furthermore, if the system is expanded in the future to
include other types of documents, the link file format for text-only documents need
not change, since the links from a given file only include pointers to regions in the
linked document. For example, a paragraph in a text-only document could easily be
linked to a rectangular region in a bitmap in another file.

5 Discussion

Section 5.1 discusses the current status of Htext’s implementation; Section 5.2 men-
tions possible extensions to the system.

5.1 Htext’s current status

We have used the system to build several sample hyperdocuments in different domains.
The system’s interface design is flexible and powerful enough to support their creation
while providing a facile browsing mechanism. Htext’s window management scheme
has proven extremely useful in allowing us to focus our attention on key documents
while rapidly traversing links between many others.

At this stage we have not performed any human factors experiments. However,
several people have used the system and commented favorably about its window
management and link browsing interfaces.

5.2 Possible extensions
Though we feel it is important to keep Htext simple and conceptually clean, there are

a number of ways the current system could be extended without detracting from its
clarity of design.

14

SourceFlle

ecsesenssasssesssensany Source region SourceFlleLinkDB
I— startiend -
-— Link Regions
Source
. region
index Links
_______.__ "Source i...”
Link number
ation DocumentDB
file index
4 SourceFile SourceFileLinkDB
l \ Destination
region index
Destination
Destination link database
il
DestFlle DestFileLinkDB
Link Regions
O |

A> [From SourceFile] Bour

Destination
region start/end

(30151

Links

18 13 4 22 "[From So..."

Figure 8: Link storage

15

5.2.1 Other types of documents

As mentioned in section 4.2, the system contains provisions for incorporating code
to handle non-plaintext documents by deriving subclasses from class HyperDocument.
This class contains a set of virtual methods that its subclasses should implement
in order to hook into the rest of Htext. Each document subclass is responsible for
formatting and drawing its contents and managing events within its display area
(link region entrance, exit, and mouse-button events in particular). For instance,
HyperTextDocument, the only subclass we have implemented, creates link region
windows and calls text editor functions. A graphical document handler might al-
low arbitrarily-shaped link regions and include a painting or object-drawing module;
a sound-sample handler might display a two-dimensional waveform and have a link
region be some segment of that waveform. The system currently has no provision for
allowing subclasses to attach menus to HyperWindows (if, for example, the program-
mer would like the document-handler’s editor to be menu-driven), but this feature
would be relatively easy to implement.

5.2.2 Multiuser support

Although Htext does not currently provide explicit support for multiple users, the
link information storage system can easily be extended to accomodate them. More
specifically, multiple linkfiles could be stored for each document—for example, one
public linkfile and numerous private linkfiles—and a separate database could be kept
for each public or private set of linkfiles. While this method does not address problems
of concurrent file access, it would conveniently handle public and private links.

5.2.3 Webs

In a heavily-used hypertext system with a large number of links made by various
people for various purposes, activating all the links could severely confuse users. For
example, someone browsing through hierarchically-structured documentation might
be distracted by links made by other people to this documentation for their own use.
Some of these problems, but not all of them, could be solved with the public and
private linkfiles discussed in the last section. A more general solution is the use of
webs, as described in [1].

The basic concept of webs is that links with similar purposes (or made by the
same person or in the same general time period) can be grouped together. Users can
exclude certain webs from their views, so they only see the links in which they are
interested. We believe it is best to activate links from all webs by default, then give
the user the option of excluding links from certain webs (or, conversely, activating
only links from certain webs). Our back-end code and linkfile format have partial
support for webs, but at this stage we have not yet implemented all of the necessary

16

code and interface elements.

5.2.4 Contexts

Sometimes a link to a specific section of a document is not sufficient for specifying the
area of interest in the linked document. Surrounding the linked area of a document,
there may be a section of the document that is less valuable but still important,
or a section that places the linked area in an appropriate context. Also, there may
be sections of the linked document that are not relevant at all and that the user
should not have to see when following a link. For example, a link might point to two
sentences in one e-mail message in a file of assorted e-mail messages; the user would
probably not be interested in any messages but the relevant one, but would probably
be interested in the entire text of the relevant one.

We plan to add a new entity, the context region, to solve this problem. If the user
follows a link that has a context region associated with it, the system will limit the
visible region of the destination file to the context region, which may be larger than
the link’s actual destination region.

Acknowledgments

Jamie Zawinski stood still while we bounced ideas off of him in the early stages.
Morrisa Sherman provided us with the annotated version of The Faerie Queene that
we used in testing the system. James Joyce and Thomas Pynchon were major inspi-
rations for this project.

References

[1] J. Conklin, ‘Hypertext: An Introduction and Survey,’ IEEE Computer, Septem-
ber 1987.

(2] D. C. Engelbart and W. K. English, ‘A Research Center for Augmenting Human
Intellect,” AFIPS Conf. Proc., Vol. 33, Part 1, The Thompson Book Company,
Washington, D.C., 1968.

[3] F. G. Halasz, et al., ‘NoteCards in a Nutshell,” Proc. of the ACM CHI+GI 1987
Conf., Toronto, Canada, April 1987.

[4] M. A. Linton, et al., ‘Composing User Interfaces with InterViews,” IEEE Com-
puter, February 1989.

17

[5] N. Meyrowitz, ‘Intermedia: The Architecture and Construction of an Object-
Oriented Hypermedia System and Applications Framework,” Proc. OOPSLA 86,
Portland, OR, September 1986.

[6] R. W. Scheifler and J. Gettys, ‘The X Window System,” ACM Trans. on Graph-
ics, Vol. 5, No. 2, April 1986.

[7] J. H. Walker, ‘The Document Examiner,! SIGGRAPH Video Review, Edited
compilation from CHI ’85: Human Factors in Computing Systems, 1985.

18

	Copyright notice1991
	ERL-91-21

