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Abstract

In this paper, we develop a design theory of A/D conversion using a cellular
neural network (CNN) architecture [3, 2]. We consider the A/D conversion
issue as an optimization problem, and develop a systematic method to design
a CNN A/D converter. In spite of its parallel architecture, we observed an
intrinsic serial computing phenomenon during the analysis of the dynamics of
the CNN A/D converter. By studying the steady state behavior ofthe circuit,
we developed an algorithm to design an N-bit CNN A/D converter for any
required conversion error. We summarize our results into two theorems, thereby
providing the theoretical foundation for CNN A/D conversion.

This work was supported in part by the U.S. Office of Naval
Research under Grant no. N00014-89-J-1402, and the National Science
Foundation under Grant no. MIP 8912639.



1 Introduction

In the paper [3], we introduced an analogcomputing architecture called cellu
lar neural networks(ClW). In that paper, the nearest neighbor interconnection
features of cellular neural networks have been emphasized. However, as a gen
eral computing architecture, cellular neural networks can be also used to model
other neural networks, such as that due to Hopneld. Since the nonlinearity of
the sigmoid function in a cellular neural network is piecewise-linear, it is much
easier to analyze the dynamics of these networks.

An analog-to-digital (A/D) converter of Hopneld neural network has been
proposed in [5, 8]. Nevertheless, because of the lackof a rigorous analysis, the
Hopfield's A/D converter is very difficult to implement. Also, some implemen
tation difficulties for Hopfield's A/D converter have been pointed out recently
[7]. In this paper, we design an A/D converter circuit using a cellular neural
network architecture and analyze its dynamical behavior under some conditions.
In spite of the parallelcomputing architecture, the serialcomputing mechanism
has been observed during the analysis of the dynamics of our CNN A/D con
verter. Furthermore, weexplore this serialcomputing mechanismto developan
optimizationmethod so that we can design a CNN A/D converter for any given
conversion error.

The paper is organized as follows. In Section 2, we specify the CNN archi
tecture and giveits related theoretical results for designing the A/D converter.
In Section 3, we describe a digital representation system which is more suitable
for cellular neural networks. In Section 4, without loss of generality, we use a
4-bit CNN A/D converter as an example to illustrate our design procedure. In
Section 5, we analyze the dynamics of a relaxed CNN A/D converter by using
linear system theory and computer simulations, and demonstrate some com
puter simulation results. In Section 6, we study the steady states issues. In
Section 7, we provide an optimization method for designing an unrelatedCNN
A/D converter with any prescribed A/D conversion error. Finally, in Section 8,
we summarize the results presented in this paper.

2 The CNN Architecture for A/D Conversion

As discussed in [3], we can design and characterize a cellular neural network by
specifying its cell circuit and the corresponding cell circuit equations. In this
section, we will specify the circuit parameters presented in order to design a
CNN A/D converter.

An N-bit A/D converter can be considered simply as N cells, namely; an
N x 1 cellular neural network. For this one-dimensional cellular neural network,
let us use the simpler notation C(i) to denote the cell "i".

The cell circuit of the one-dimensional CNN is shown in Figure 1. There is
a small difference between the parameter values in this cell circuit and the one
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Figure 1: Cell circuit of CNN A/D converters



in Figure 3 of [3]; namely, the values of the cell capacitor C,- and the resistor Ri
in the CNN cell circuit of Figure 1 depend on the »th cell C(»), indexed by the
subscript t, but those in [3] do not.

The cell circuit equations are as follows,

Ci^p. ==±v«(t) +£ Aijv^t) +biVu (1)
vyi(t) = 0.5(| vxi(t) + ve | - | vxi(t) - ve |) (2)

for », j = 0,1,2,... and N - 1, where Aij = Aji is the interactive parameter,
b{ is the control parameter, vxi is the state voltage of cell C(i), and vyt- is the
output voltageof cell C(i) which corresponds to the output value of bit i of an
N-bit A/D converter. Comparing the aboveequations with (2a) and (2b) of [3],
we see that the circuit parameters defined in [3] now assume the values 1=0
and vui = vu which is the analog input voltage. Notice too that in the output
equation (2) we allow an arbitrary cutoff voltage t>c, instead of ve = 1.0, as in
(2b) of [3]. This modifications is useful for scaling the physical parameters in
the implementation of the circuit. Nevertheless, we alway use ve = 1 in our
theoretical development.

We can easily prove that the main results presented in [3] still hold for our
present CNN, by using the same methods presented in [3]. For convenience, let
us rewrite some of these results without proofs.

The Lyapunov function, E(t), for our CNN A/D converter is given by

(i) ;=0 t=0 ^
N-l

- E *«v(o»u. (3)
»=0

If the circuit parameters satisfy

An > -L, (4)
then each cell of our cellular neural network must settle to a stable equilibrium
point after the transient has decayed to zero. Moreover, the magnitude of all
stable equilibrium points is greater than 1. In other words, when a CNN settle
to its steady state, the following properties are true:

^f =o. «
\vxi(t)\> 1 (6)

Vyi(t) = ±1. (7)
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Table 1: A digital represen ation system

3 The Digital Representation System for CNN
A/D Conversion

From the previous section, we know that for a given analog value uu, the output
voltage vyi of each cell C,- of a CNN will have a binary value; namely, ±1
according to (7). This implies that we should use -1 and 1 as our bit values in
the digital representation. For an N-bit CNN A/D converter, a digital number
represented by the circuit steady outputs can be expressed as

Ntout

N-l

= £ 2'»:
•=0

yai (8)

where vyBi = ±1. As an example, for a 4-bit CNN A/D converter, Nout rep
resents 16 distinct numbers, which are all odd numbers, and are listed in Ta
ble 1. The ideal input-output analog-to-digital transfer function is shown in
Figure 2(a). Here, the adjective ideal means that the maximum A/D conversion
error is minimized. If we define

ddcai = maxmin | vu - Nout |, (9)

then we will have



N'out »y3(23) vy2(22) vyl(2*) fyo(2°)

0 0 0 0 0

1 0 0 0

2 0 0 1 0

3 0 0 1

4 0 1 0 0

5 0 1 0

6 0 1 1 0

7 0 1 1

8 0 0 0

9 0 0

10 0 1 0

11 0 1

12 1 0 0

13 1 0

14 1 1 0

15 1 1

Table 2: Conventional binary digital representation

Zidtal = 1 (10)

for the ideal input-output A/D conversion. We will discuss the A/D conver
sion error in more detail in the following sections. Observe that the lengths
of the horizontal steps in the staircase graph in Figure 2 are uniform for ideal
conversion to occur.

Ovserve that the digital representation of (8) can be transformed into any
other digital representation system. For instance, if we assume that

vu = 2< - 15 Wu 6 [-0.5,15.5] (11)

and

N^t = 0.5(AU, + 15), (12)

then we would obtain the conventional binary digital representation, whose bit
values are represented by 0 and 1, as shown in Table 2. The corresponding
input-output relationship between the analog value v'u and the digital number
Nj,ut is shown in Figure 2(b), which was used in [5, 8]. One advantage of our
digital representation (8) is that it can represent both positive and negative
values. For convenience, we use the representation system (8) in the following
discussion.



(a)

Figure 2: The A/D transfer functions, (a) for our CNN A/D converter; (b) for
Tank and Hopfield's A/D converter.
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An immediate requirement for our A/D converter from the digital repre
sentation (8) is that the output digital Nout should be a function of the input
analog voltage vu as indicated in Figure 2(a). Let us define the conversion error,
e, of an N-bit CNN A/D converter characterized by (1) and (2) as

e = vu- Nout, (13)

where ve = 1 is assumed as mentioned before.
It will be shown in the following sections that our CNN A/D converter

seeks to minimize the conversion error, e. For a good A/D converter, the A/D
conversion error e should be less than ANout = 2, where AN0Ut is the difference
between two adjacent steps in Figure 2(a). We will show that we can design a
CNN A/D converter for a maximum conversion error less than 2.

Another requirement of our digital representation (8) is the symmetry prop
erty of our CNN A/D converter. For instance, if a digital output value N^t
corresponds to an analog input value v'u, then it is reasonable to require that
the digital output value should be equal to —N'out for an analog input value of
—v'u. If we define a map from the input, vu, to the output, JV0Ut, as

G : N0ut = 0(vu), (14)

then, the symmetry property can be represented analytically as

-Nout = -0(vu) = G(-Vu). (15)

We claim that the symmetry property is true for a relaxed CNN A/D con
verter. Here, a relaxed CNN A/D converter is defined by adding zero initial
conditions to (1) and (2); namely,

MO) = 0, (16)

where 1 < i < N for an N-bit converter.

The proof of this symmetry property can be divided into two steps. First,
we will prove that if v*(/) is a solution of (1) and (2) for an input v*, then
—vx(t) will be a solution of (1) and (2) for the input —v*. Since the system (1)
and (2) satisfies the Lipschitzcondition, the uniqueness of its solution for any
given input vu follows from the fundamental existence and uniqueness theorem
for differential equations [4]. Therefore —u* is the only solution of (1) and (2)
for the input —vu. Then, by considering the obvious odd symmetry properties
of equations (2) and (8), the symmetry property follows immediately.

Now, let us prove the first step. By multiplying the equations in (1) and (2)
by —1, we obtain the following equivalent equations,

c,d[~*7(0] =^[-M<)1 +E M-**jM] +M-*«] (17)
^ i=o

-vyi(t) = 0.5(- | -vxi{t) -ve\ + \ -vxi{t) + vc |) (18)



-Vri(0) = 0. (19)

Let

< = - v«, vti(t) = -«*(*). vyi(t) = -vyi(t), (20)

then it follows that

Ci^p-= ltv*i(t) +E>'vi;(<) +•»< (21>
t,;t-(0 = 0.5 (| v'xi(t) + ve\-\ v'xi(t) - vc I) (22)

«M0) = 0. (23)

Comparing (1) and (2) with (21) and (22) and assuming zero initial conditions,
we can claim that if v*(<) is a solution of (1) and (2) for an input v*, then
—v*(*) is a solution of (1) and (2) for the input —vu.

By using this symmetry property, we need only present our results for posi
tive vu in the following disccusions.

4 How to Design a CNN A/D Converter

In the previous sections, we have described our CNN A/D converter architec
ture, and defined a digital representation system corresponding to it. In this
section, we will illustrate how to design the circuit parameters for our CNN
A/D converter. Similar to the method used in [8], we consider the analog-to-
digital conversion problem as a dynamic optimization issue; namely, given an
analog input vu, after the CNN A/D converter settles to its steady state, the
error between the converted digital number Nout and the analog input vu will
be minimized.

For simplicity, we will design a 4-bit CNN A/D converter and use it as a
vehicle to illustrate our design procedure. Let us assume the input value satisfies

vu€[-16,16], (24)

and

3

Nout =£2^, (25)
i=0

where vyst- = ±1 is the corresponding discrete number resulting from the A/D
conversion. Let us also define the A/D conversion error at time, i, as

3

e{t) = vu-^22ivyi(t). (26)
i=0



We can use the square of the A/D conversion error function

^) =(fu-t2%W)2 (27)
i=0

as a part of the cost function of the associated analog-to-digital conversion
optimization problem. In order to guarantee a binary-value output; namely,
Vyi(oo) = ±1, we need to introduce an additional cost function

i=0

where a» is an arbitrary positive weighting coefficient. It will be shown that
condition (4), which guarantees binary outputs of CNN, introduces a term like
(28) in the Lyapunovfunction of out CNN A/D converters automatically. Com
bining (27) and (28) together, we can define the following cost function for our
analog-to-digital conversion problem as

3 3

/(*) = k - E2'^(*))2 - E **?<(*)• <29)
i=0 1=0

In order to compare the cost function (29) with the Lyapunov function (3),
let us rewrite (29) in the followingform

3 3 3 3

m = vi-2vu£2S.(o+EE2'+i^w^w -E**?«(*). (3°)
i=0 »=0j=0 i=0

Comparing the second term of (30) with the third item of (3), we can deter
mine the circuit parameter 6,- as

6,- = 2'+1. (31)

To determine the circuit parameter Aj and ilj, let us partition the third
item of (30) into two parts as follows

3 3 3 3 3

EE2,+iv(<Ki(o = E22s«(o+E E 2'+s«w»wW. (32)
t=0;=0 t=0 «=0 • _ q

i 5* J

Comparing (30) (with N = 4) and (3), and making use of (32), we obtain

A0=-2i+^1, fori^j. (33)

From (30) and (3), we also have

J2A«+m=2"-ai- (34)



To satisfy condition (4) and Ri > 0, let us intuitively, for now, choose

Ri = 2~2i (35)

and

An = 22i+1. (36)

We will describe a method for an optimal design of An and Ri later.
Solving equation (34) for a<, we obtain

a, = 3 x 22*"1 > 0, (37)

which meets the requirement of the cost function (28). As mentioned before,
this shows that the stability condition (4) will guarantee that (28) is included
in the cost function.

Substituting all of the circuit parameters we have determined into the Lya
punov function (3) for a 4-bit CNN A/D converter, we obtain

£(«) = ^E^'&w+fE E *w+Si<o«ww
.=0 i=0 j = Q

i*j

+ 5E2Ii"»2i(<)-E2i+1V(<)"«
i=0 t=0

3
-.2

vu-E2S«(0
»=o

-|E22S2.(0-^. (38)
.•=o

3

The first two terms in the above function is exactly the cost function, /(<),
defined in (29). The last term of (38) is a constant for a given value of v„, which
has no other effects on the optimization problem except that of normalizing the
Lyapunov function to zero for a relaxed CNN A/D converter. We will analyze
first the dynamic behavior of a relaxed CNN A/D converter in the following
section, before considering the general CNN A/D converter having arbitrary
initial conditions.

5 Dynamics of a Relaxed CNN A/D Converter

In this section, we analyze the 4-bit CNN A/D converter circuit designed in the
previous section using linear system theory. We study the transient behavior of
the circuit, that is, the dynamics of the A/D converter from its zero initial state
to the steady state. We refer to a CNN A/D converter having zero initial states
as relaxed because its Lyapunov function is zero at the initial time t = 0. Based
on both theoretical analysis and computer simulation, we will present some
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qualitative and quantitative results for our CNN A/D converter, which are also
very informative for understanding other neural network A/D converters, such
as Hopfield's.

The main result in this section is that although neural network A/D con
verters, such as Hopfield's circuit and ours, are thought to be parallel processing
circuits, they actually perform serial computation internally without external
control signals.

5.1 Analysis of the dynamic behaviors of CNN A/D con
verters

The circuit parameters of the 4-bit CNN A/D converter designed in the preced
ing section are given by

Au=22i+1

An = -2'+>+1

6,- = 2*'+1

Ri = 2~2i

d = C= 1,

for i £ j;

(39)

(40)

(41)

(42)

(43)

where 0 < i < 3.

Substituting these parameters into (1) and (2), and using the assumptions
ve = 1, vx(0) = 0, and | v„ |< 16, we can write the system equation of the 4-bit
CNN A/D converter as follows:
State equation:

+

+

y _16 -32 -64 128 /

\/ 2
4

8

\l6/
Output equation:

vyi(t) = 0.5(| vxi(t)+ 1 | - | vxi(t) - 1 |)

11

(*) +

(44)

(45)



Initial condition:

vxi(0) = 0 (46)

Input dynamical range:

I v„ |< 16, (47)

where 0 < i < 3.

First, let us examine the dynamic behavior of the CNN A/D converter over
a short time interval [0, At) where At is sufficiently small. From equations
(46), the state voltage vxi equals zero at the initial time t = 0 for all four
cells. By considering the piecewise-linear output function in (45), we see that
the nonlinear differential equations (44) - (47) are in fact linear at the starting
time, since v*,- = vyi for \vxi\ < 1. Let us define

Ti = min {t : \ vxi(t) \ > 1, for i = 0,1,2, and 3 }. (48)

Observe that T\ > 0 exists in view of (6). Therefore, for t < Ti, equations (44)
- (47) can be rewritten as

/ 1 0 0 0 \

£"•« = -
0

0

4 0 0

0 16 0 Vr(0 +

\° 0 0 32 /

( 2 _4 _8 -16 \
( 2 ^

+
-4

-8

8 -16 -32

-16 32 -64
v*(t) + 8 Vu

^-16 -32 -64 128 / \ 16 /
/ 1 _4 _g -16 \ / 2 \

=

-4

-8

4 -16 -32

-16 16 -64
Vx(<) +

8 Vu
1,-16 -32 -64 64 / \ 16 )

= (3vr(<) + bvu. (49)

v,(0)= 0, and |vu|<16. (50)

This is a linea r diffeirential equation and can be solved analytically. The zero-
state response of (49)is given by

vt(t) = / eG<*-T>bv„dr
Jo

= / eG(,-T)«frbvu
Jo

= [cG(t-r)j^(_G-l)bt;o
G-^VyeG*-I

12

(51)



where G is a time invariant, symmetrical and nonsingular matrix; and G_1 is
the inverse matrix of G.

In order to analyze the dynamical behavior of the solution vx, let us study
G further. Since G is'a symmetric matrix, it can be decomposed into the form
[6]

G = QAQT, and G"1 = QA'lQTt (52)

where QT is the transpose matrix of Q, and QTQ = I; A is a diagonal matrix
with the eigenvalues of G as its components.

G can be decomposed numerically by using EISPACK, a popular numerical
analysis package for solving eigenvalue problems. The result of the decomposi
tion of G is

A =

Q =

/ -52.8 \
112

4.37

V 21.4 /

/ 0.286 0.0765 0.934 -0.201 \
0.493 0.167 -0.334 -0.786

0.634 0.522 -0.117 0.559

\ 0.522 -0.833 -0.0544 0.174 /

Now, the result in (52) allows us to recast (51) as follows [6]:

vx(t) =Q(eA* - i) A"1QTbvu.

(53)

(54)

(55)

Before we analyze (55) further, let us examine first an approximate solution
for very small t. Ift <|| A"1 ||, then

eAt wI+At.

Therefore,

vx « Q(A<)A_1QTbvu = bvut.

(56)

(57)

Note that the above approximation can also be obtained directly by assuming
Vj. = 0 in (49). From (57), we have the following observations:

(a) the sign of vx$ is the same as that of vu;

(b) the maximumabsolute valueof the components of vx is \vxz\, because the
maximum component of b is 63.

We claim that the above observations are true at time Ti, that is,

Va;3(Ti) = sgn(vu).

13
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To see this, substitute the parameters from (53) - (54) into (55), and obtain

/ vx0 \ / 0.400- 0.00570e112t - 0.0348c21-4* - 0.273e4-37* - 0.0867c-52-8* \
v*i _ °-200- 0.0124e112* - 0.136e21-4* + 0.0977e4-37* - 0.149c-52-8*
vX2 W" 0.100 - 0.0389c112' + 0.0967e21-4* + 0.0342e4-37* - 0.192c"52-8' M59)

{ vX3 ) \ -0.0922+0.0621c112*+ 0.0301e2L4t +0.0159e4-37'-0.0158e-52-8< /
Examining the above zero-state response, wesee that the state variables vxi

is dominated by the term e112t. Observe that vX3 has the largest weight, 0.0621,
for the dominant term. This implies that the value of vx$ will change faster
than the other state variables. Therefore, our claim (58) follows.

From the above discussion, we see that the most significant bit, namely bit-3,
is first determined, and its value depends on the sign of the analog input vu.

Now, let us continue to analyze the dynamics of the circuit. Suppose that

l*,sMI > i. v* > Ti> (6°)

then we will have

\vyZ\ = 1, V< > Tl (61)

Since wy3 is a constant value for t > Ti, the first three equations in (44) can be
rewritten as

(0= = -I 0 4 0 | ( vxl )(<) +

(0 +
\ -8 -16 32 / \ vy2 /

/ 2 \ / 16 \
+

w+

+ 4 sgn(vu)|vu-8|, (62)

where we have substituted Vy3 = sgn(vu). As before, let us define

T2 = min{< : t> Tu and \vxi(t)\ > 1, fori = 0, l,and2}. (63)

14



Over the time interval T\ < t < T2, equation (62) is once again a linear differ
ential equation and can be written as

5v.w =
1 -4 -8

-4 4 -16 |v;(t) +
-8 -16 16

= G'v'x(i) + b'<,

where

v'u =sgn(vu)[|vu|-8].

The solution of (63) is

v'r(<) =e°V.^) +[cG'* -1] G'-'bvi,

(64)

(65)

/or Ti < t<T2. (66)

Equation (66) has the same form as (51), except for the additional first term
which is due to the non-zero initial condition v'x(Ti).

Again let us decompose G' into

G' = Q'A'Q''.

The numerical solution of (67) is

5.18

(67)

A' = •12

27.8

0.831 -0.530 -0.169

Q' = I -0.530 -0.662 -0.530
-0.169 -0.530 0.831

(68)

(69)

It is clear that the solution (66) depends not only on the input v'u but also
on the non-zero initial condition v'x(Ti). Therefore, we can not directly apply
the previous results (58) for bit-3 to bit-2. Substituting (68) and (69) into (66),
we obtain

/ v*o

where

v*i

Vxl

\ )

(<) =

/ (0.667-0.0254e27-8*-0.29c518*-0.351c-12*)< \
-0.169cic27-8* + 0.831c2e518* - 0.53c3e"12*

(0.334 - 0.0799c27-8* + 0.185e518* - 0.439e-12,)<
-0.53cic27-8* - 0.53c2e518* - 0.662c3c"12*

(0.167 + 0.125c27-8* + 0.06c5-18* - 0.351e~12*X
+0.831cic27-8* - 0.169c2c518* - 0.53c3e-12*

,(70)

C! = -0.169vrO(T!) - 0.53v«i(Ti) + 0.831vc2(ri); (71)

15



c2 = 0.831v«oCTi) - O^Sv^^TO - 0.169v*2(Ti); (72)

c3 = -0.53v*o(Ti) - 0.662vri(ri) - 0.53ff,2(Ti). (73)

In order to uncover some useful results from the solution (70), let us assume
that

MTi)|<l, for i = 0, 1, and 2. (74)

In this case, the solution (70) can be approximated by

Vro \ / (0.667-0.0254c27-8*-0.29e518*-0.351e-12*)v(, \
vn ](*)«( (0.334-0.0799c27-8* +0.185c518*-0.439e-12*)v(, 1.(75)
v*2 / \ (0.167 + 0.125c27-8* + 0.06e518* - 0.351e~12*K /

The dominant term in (75) is c27-8*.. Applying the same reasoning as that
used for (59), we can say that the state voltage of bit-2, vx2, increases faster
than that of bit-1 or bit-0, and has the same sign as vu. Therefore, under the
assumption (74), we have

v*2(T2)=sgn(vu). (76)

It remains for us to analyze the last two bits. Suppose that for / > T2,
\vX2(t)\ > 1, and let

T3 = min{< : t > T2, and \vxi(t)\ > 1, fori = Oandl}. (77)

Then, we obtain a two-dimensional linear differential equation for T2 < t < T3,
that is,

~ ( 32 )V^3 ~( 186 )V^2
=(-W )(2)w+
+ ( 4 )K- 8sgn(v«) - te&iiK)],

where

Also,

s G"v"r(0 + b"<, (78)

= vu - 8sgn(vu) - 4sgn(v'u)
= sgn(vu) [|vu| - 8 - 4sgn(|wu| - 8)]

= sgn(vu)sgn(|vu|-8)(||vu|-8|-4). (79)

16



G// _ Q//A//Q/

where

.„ _ ( -1.77 \ „ _ ( -0.822 0.57 \
V 6'77 ) ' V -0-57 -0.822 ) '

The solution of (78) is

v»a(t) = eG%^(T2)+[eG"'-l]G"-1bvu',
/ (2 - 0.181c6-77* - 1.82e-L77»K \

+0.57c'1e6'™ - 0.822c2c- L77*
(1.01 + 0.261c6-77* - 1.27e-1-77*)< '

\ -0.822c'ie6-77* - 0.57c2c-L77* /

where,

c; = 0.57vrO(r2) - 0.822vrl(T2);

c, = -0.822vx0(T2) - 0.57t;ri(T2).

Again, if we suppose that

|v*,(T2)| < 1, for i = 0 and 1,

then, we have

" (*\ ( (2" 0.181c6-77* - 1.82c-L77*K \v x\t) « ^ (1 Q1 +Q261e6.77t _ ime-^W ) '

Therefore, under the assumption (85), we obtain

v*i(T3) = sgn«).

Finally, we consider the last bit, bit-0. Suppose that for t>T3,
It can easily be shown that, for / > T3,

dvx0(t)
dt

= vx0(i) + 2<"

where

v(," = vu - 8vy3 - 4vy2 - 2vyl
= sgn(vu)sgn(|vu|-8)sgn(| |v„|-8|-4)

(|||vu|-8|-4|-2).

The solution of (88) can be obtained, giving

va?o(0 = WT3)c* + (e*-lK/.

17

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

l*.i(0l > I-
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As before, if we assume that

|v*o(r3)| < 1, (91)

then we obtain

v,o(T4)=sgn«"), (92)

for some T4 > T3.
Our preceding analysis yields the following two important results. First, by

considering Table 1, we observe the following relationship between the output
voltages of the four bits and the output digital numbers.

vy3 = sga(Nout)l (03)

Vy2 = sgn(7Vout)sgn (\N0Ut\ - 8); (94)

vyl = sgn{Nout)sgn(\N0ut\ - 8)sgn(| (\N0ut\ - 8) | -4); (95)

vy0 = sgn(Nout) sgn(\Nout\ - 8)sgn (| (\Nout\ - 8) | -4)
sgn.(|(|(|iV0Ut|-8)|-4)|-2). (96)

On the other hand, we have shown that, under the assumptions in (74), (85),
and (91), the relationship between the output voltages vyl- of the four bits and
the input analog voltage vu has the same form as (93) - (96) if Nout is replaced
by vu as follows

vy3 = sgn(v„); (97)

vy2 = sgn(vu)sgn (|vu| - 8); (98)

vyi = sgn(vu)sgn(|vu|-8)sgn(|(K|-8)|-4); (99)

Vj,0 = sgn(vu)sgn(|vu|-8)sgn(|(|vu|-8) |-4)
sgn(| (| (K|-8) |-4) |-2). (100)

Here, we have ignored the values of vu such that vyi is zero, because uyi- = 0 is
an unstable value and can not be observed in a physical circuit as discussed in
[3]. We can immediatelysee that (97) - (98) represent the idealA/D conversion
shown in Figure 2(a), Therefore,-it follows that, under our above assumptions,
the CNN A/D converter can linearly transform an analog input into a digital
output via a dynamical transition. From the optimization view point, it follows
that under the assumptions we have made, the Lyapunov or energy function
E(t) will settle down to its global minimum point.

Observe that the A/D conversion is performed in a serial manner, that is,
the most significant bit comes out first, then the next most significant bit, and
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so forth. This observation is of fundamental theoretical importance even though
it is not a desirable property of A/D conversion, because our neural network
A/D converter was originally thought to have a parallel processing capabil
ity. Although we discussed only a neural model with piecewise-linear sigmoidal
characteristics here, we believe that the above observation holds for any neural
network A/D converter with a finite gain transition sigmoidal function.

Unfortunately, the assumptions (74), (85), and (91) which we made in the
above analysis are not always true. Violation of any of these assumptions will
cause conversion errors, and therefore drive the energy function E(t) to a stable
local minimum.

An analysis of the general case without assumptions is very difficult, if not
impossible. Instead, we will present a set of computer simulations in the follow
ing subsection and show that our above simplified analysis is consistent with
computer simulations. Furthermore, the results of our simplified analysis will
provide some guidelines on how to reduce the A/D conversion errors, which will
also be presented in the following subsection. Finally, a constructive algorithm
for designing an N-bit A/D converter having any prescribed conversion error
will be presented and proved in Section 7.

5.2 Computer simulations of the A/D converter

In this subsection, we present a set of computer simulation results to verify our
analysis of the previous subsection. Because of the symmetry property of our
CNN A/D converter circuit, as proved in Section 3, we will choose only positive
values for the analog input vu in these simulations.

Again, the circuit simulator we used is PWLSPICE [1]. The simulated CNN
A/D converter circuit is characterized by the system equation (44) - (47) except
that we have used the following more practical resistor and capacitor values:

Ri = 2~2iR = 2~2ikn for i = 0,1,2, and 3 (101)

C, = C = IpF for i = 0,1,2, and 3 (102)

where R stands for a constant resistance, and C stands for a constant capaci
tance. Let us define the time constant

trc = RC, (103)

which has no effect on the steady state response but will affect the transient
speed of the circuit.

The eight graphs in Figure 3 are simulation results of the zero-state response
vx(<) for analog inputs v„ correspondingto the eight positive numbers in Table 1.

Observe that the output digital number Nout is exactly the analog input
value vu coded according to the digital representation (8), or Table 1. In the
parlance of A/D conversion, this means that our A/D converter performs a
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Figure 3: Simulation results for the CNN A/D converter.
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Figure 3: Simulation results for the CNN A/D converter.(Cont.)
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linear transformation. Here, the term linear transformation means that if two
analog inputs satisfy vui < vu2 then the corresponding digital outputs satisfy
Nouti < Nouti' It also shows that the A/D conversion error e is less than 2.

Another observation from Figure 3 is that the transient behaviors of the
eight cases are exactly what we have predicted in the previous subsection, that
is, the state voltage vX3 of bit-3 has the fastest transition speed, and vxo has
the slowest speed. To be more specific, let us look at the case Vu = 5.0 in
Figure 3(c). The critical time values, which are defined in Section 5.1, are:

Ti = 0.012ns; (104)

T2 = 0.056ns; (105)

T3 = 0.38ns; (106)

T4 = 0.78ns. (107)

Observe from Figure 3(c) that

vx3(Ti) = 1 and vx3(t) > 1 for t > Ti; (108)

v*2Cr2) = -l and vx2(t) < -1 for t > T2; (109)

vxl(T3) = l and vxl(t) > 1 for t > T3; (110)

v*o(T4) = -l and vx0(t) < -1 for t > T4 (111)

These observations are consistent with our analysis in Section 5.1.
Table 3 lists 160simulation results. From Table 3 we can construct the A/D

transfer function of our A/D converter, as shownin Figure 4(a). The maximum
conversion error emax calculated from Table 3 is

emax = max |e| = 1.8. (112)

This occurs when vu = 7.2. For an ideal A/D converter, the maximum conver
sion error should be 1, which is half of ANout'

How can we improve the accuracy of the A/D conversion ? In Section 7, we
will discuss this issue in general. For now, let us restrict to the relaxed CNN
A/D converter.

From the analysis in the previous subsection, we know that if conditions
(74), (85), and (91) were satisfied, then the A/D conversion would attain the
minimum error. This suggests that we should optimize the circuit parameters
of our A/D converter in order to enhance the possibility of satisfying those
conditions.

In order to see which circuit parameters affect these conditions, let us define
the bit transient time constant Ti for the t'th bit as
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Vu Nout l«l Vu Nout M Vu Nout M yVU Nout M

0.1 0.9 4.1 3 1.1 8.1 9 0.9 12.1 13 0.9

0.2 0.8 4.2 3 1.2 8.2 9 0.8 12.2 13 0.8

0.3 0.7 4.3 3 1.3 8.3 9 0.7 12.3 13 0.7

0.4 0.6 4.4 3 1.4 8.4 9 0.6 12.4 13 0.6

0.5 0.5 4.5 5 0.5 8.5 9 0.5 12.5 13 0.5

0.6 0.4 4.6 5 0.4 8.6 9 0.4 12.6 13 0.4

0.7 0.3 4.7 5 0.3 8.7 9 0.3 12.7 13 0.3

0.8 0.2 4.8 5 0.2 8.8 9 0.2 12.8 13 0.2

0.9 0.1 4.9 5 0.1 8.9 9 0.1 12.9 13 0.1

1.0 0.0 5.0 5 0.0 9.0 9 0.0 13.0 13 0.0

1.1 0.1 5.1 5 0.1 9.1 9 0.1 13.1 13 0.1

1.2 0.2 5.2 5 0.2 9.2 9 0.2 13.2 13 0.2

1.3 0.3 4.3 5 0.3 9.3 9 0.3 13.3 13 0.3

1.4 0.4 5.4 5 0.4 9.4 9 0.4 13.4 13 0.4

1.5 0.5 5.5 5 0.5 9.5 9 0.5 13.5 13 0.5

1.6 0.6 5.6 5 0.6 9.6 9 0.6 13.6 13 0.6

1.7 0.7 5.7 5 0.7 9.7 9 0.7 13.7 13 0.7

1.8 0.8 5.8 5 0.8 9.8 9 0.8 13.8 13 0.8

1.9 0.9 5.9 7 1.1 9.9 9 0.9 13.9 15 1.1

2.0 1.0 6.0 7 1.0 10.0 9 1.0 14.0 15 1.0

2.1 1.1 6.1 7 0.9 10.1 9 1.1 14.1 15 0.9

2.2 3 0.8 6.2 7 0.8 10.2 0.8 14.2 15 0.8

2.3 3 0.7 6.3 7 0.7 10.3 0.7 14.3 15 0.7

2.4 3 0.6 6.4 7 0.6 10.4 0.6 14.4 15 0.6

2.5 3 0.5 6.5 7 0.5 10.5 0.5 14.5 15 0.5

2.6 3 0.4 6.6 7 0.4 10.6 0.4 14.6 15 0.4

2.7 3 0.3 6.7 7 0.3 10.7 0.3 14.7 15 0.3

2.8 3 0.2 6.8 7 0.2 10.8 0.2 14.8 15 0.2

2.9 3 0.1 6.9 7 0.1 10.9 0.1 14.9 15 0.1

3.0 3 0.0 7.0 7 0.0 11.0 0.0 15.0 15 0.0

3.1 3 0.1 7.1 7 0.1 11.1 0.1 15.1 15 0.1

3.2 3 0.2 7.2 9 1.8 11.2 0.2 15.2 15 0.2

3.3 3 0.3 7.3 9 1.7 11.3 0.3 15.3 15 0.3

3.4 3 0.4 7.4 9 1.6 11.4 0.4 15.4 15 0.4

3.5 3 0.5 7.5 9 1.5 11.5 0.5 15.5 15 0.5

3.6 3 0.6 '7.6 9 1.4 11.6 13 1.4 15.6 15 0.6

3.7 3 0.7 7.7 9 1.3 11.7 13 1.3 15.7 15 0.7

3.8 3 0.8 7.8 9 1.2 11.8 13 1.2 15.8 15 0.8

3.9 3 0.9 7.9 9 1.1 11.9 13 1.1 15.9 15 0.9

4.0 3 1.0 8.0 9 1.0 12.0 13 1.0 16.0 15 1.0

Table 3: Input/output mapping list of A/D converter
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n = Rid. (113)

For the parameters in (39) - (43), we have

t0 = RC=tRC', (114)

n=2-2RC=2-2TRC; (115)

r2 = 2~4RC = 2-4trC; (116)

t3 = 2-*RC= 2-8trc. (117)

From these time constants, it becomes clear why the four bits have different
transient speeds. The ratio of the time constants between two contiguous bits
is

rT = -5- = 22 = 4. (118)
Ti+l

Since the transient speed of the state variable Vxi is proportional to its time
constant, if the ratio rT is increased, then conditions (74), (85), and (91) will
hold for more input analog values. Let us verify this by changing the capacitor
values in (43). let

d = 23-'C for i - 0, 1, 2, 3. (119)
Note that after this change, the matrix G in (49) is no longer symmetric. Nev
ertheless, it can still be decomposed as

G = QAP, where G~l = P^A^Q"1, (120)
as long as its eigenvectors are linearly independent.

The ratio rr becomes

rT = 23 = 8, (121)

for this case.

The simplified theoretical analysis of this circuit is the same as in Section 5.1.
To save space, we only present here the computer simulation results; see Table4,
or Figure 4(b). From this table, the maximum A/D conversion error emax is:

emax = 1-3, (122)

which is much better than that in (112), and is very close to 1, the ideal conver
sion error. This significantly improved performance is manifested by the step
lengths in Figure 4(b), which are now of almost uniform length. However, the
transition or conversion speed of the latter circuit is slower than that of the
former, because of the larger values of the capacitors. Thus, we must trade
accuracy for speed.

In this section, we have analyzed the dynamics of a relaxed 4-bit CNN A/D
converter, and have shown that by increasing the ratio rr, we can reduce the
analog-to-digital conversion error. In the following two sections, we will study
the steady state behavior of the CNN A/D converter, and use a similar method
to improve the performance of the circuit.
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Vu Nwt 1*1 Vu Nout 1*1 Vu Nout M Vu Nout 1*1

0.1 0.9 4.1 3 1.1 8.1 9 0.9 12.1 13 0.9

0.2 0.8 4.2 5 0.8 8.2 9 0.8 12.2 13 0.8

0.3 0.7 4.3 3 0.7 8.3 9 0.7 12.3 13 0.7

0.4 0.6 4.4 5 0.6 8.4 9 0.6 12.4 13 0.6

0.5 0.5 4.5 5 0.5 8.5 9 0.5 12.5 13 0.5

0.6 0.4 4.6 5 0.4 8.6 9 0.4 12.6 13 0.4

0.7 0.3 4.7 5 0.3 8.7 9 0.3 12.7 13 0.3

0.8 0.2 4.8 5 0.2 8.8 9 0.2 12.8 13 0.2

0.9 0.1 4.9 5 0.1 8.9 9 0.1 12.9 13 0.1

1.0 0.0 5.0 5 0.0 9.0 9 0.0 13.0 13 0.0

1.1 0.1 5.1 5 0.1 9.1 9 0.1 13.1 13 0.1

1.2 0.2 5.2 5 0.2 9.2 9 0.2 13.2 13 0.2

1.3 0.3 4.3 5 0.3 9.3 9 0.3 13.3 13 0.3

1.4 0.4 5.4 5 0.4 9.4 9 0.4 13.4 13 0.4

1.5 0.5 5.5 5 0.5 9.5 9 0.5 13.5 13 0.5

1.6 0.6 5.6 5 0.6 9.6 9 0.6 13.6 13 0.6

1.7 0.7 5.7 5 0.7 9.7 9 0.7 13.7 13 0.7

1.8 0.8 5.8 5 0.8 9.8 9 0.8 13.8 13 0.8

1.9 0.9 5.9 5 0.9 9.9 9 0.9 13.9 13 0.9

2.0 1.0 6.0 7 1.0 10.0 9 1.0 14.0 15 1.0

2.1 3 0.9 6.1 7 0.9 10.1 11 0.9 14.1 15 0.9

2.2 3 0.8 6.2 7 0.8 10.2 11 0.8 14.2 15 0.8

2.3 3 0.7 6.3 7 0.7 10.3 11 0.7 14.3 15 0.7

2.4 3 0.6 6.4 7 0.6 10.4 11 0.6 14.4 15 0.6

2.5 3 0.5 6.5 7 0.5 10.5 11 0.5 14.5 15 0.5

2.6 3 0.4 6.6 7 0.4 10.6 11 0.4 14.6 15 0.4

2.7 3 0.3 6.7 7 0.3 10.7 11 0.3 14.7 15 0.3

2.8 3 0.2 6.8 7 0.2 10.8 11 0.2 14.8 15 0.2

2.9 3 0.1 6.9 7 0.1 10.9 11 0.1 14.9 15 0.1

3.0 3 0.0 7.0 7 0.0 11.0 11 0.0 15.0 15 0.0

3.1 3 0.1 7.1 7 0.1 11.1 11 0.1 15.1 15 0.1

3.2 3 0.2 7.2 7 0.2 11.2 11 0.2 15.2 15 0.2

3.3 3 0.3 7.3 7 0.3 11.3 11 0.3 15.3 15 0.3

3.4 3 0.4 7.4 7 0.4 11.4 11 0.4 15.4 15 0.4

3.5 3 0.5 7.5 7 0.5 11.5 11 0.5 15.5 15 0.5

3.6 3 0.6 7.6 7 0.6 11.6 11 0.6 15.6 15 0.6

3.7 3 0.7 7.7 9 1.3 11.7 11 0.7 15.7 15 0.7

3.8 3 0.8 7.8 9 1.2 11.8 11 0.8 15.8 15 0.8

3.9 3 0.9 7.9 9 1.1 11.9 13 1.1 15.9 15 0.9

4.0 3 1.0 8.0 9 1.0 12.0 13 1.0 16.0 15 1.0

Table 4: Input/output mapping list of A/D converter
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Figure 4: Input/output functions of the A/D converter
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Nout E(vu)

1

3

5

7

9

11

13

15

-2vu - 126.5

-6vu - 118.5

-10vu - 102.5

-14vu - 78.5

-18vu-46.5

-22vu - 6.5

-26vu + 41.5

-30vu + 97.5

Table 5: The steady state Lyapunov functions

6 Steady State Analysis of CNN A/D Convert
ers

In Section 5, we have analyzed the transient dynamic behavior of the 4-bit CNN
A/D converter under zero initial conditions, and have verified our results by
computer simulations. In this section, we focus on the the steady state behavior
of the CNN A/D converter under arbitrary initial conditions. Again without
loss of generality, we still take the 4-bit CNN A/D converter as an example.

For a given analog input value,vu, any output digital number, Nout, corre
sponds to a value of the Lyapunov function of the CNN A/D converter. The
correct analog-to-digital conversion is the digital number N*ut which has the
minimum Lyapunov value for the given vu. This JV*ut therefore corresponds to
the global minimum of the Lyapunov function. All the other Nout corresponds
to a local minimum of the Lyapunov function.

In Section 5.1, we have shown that if the assumptions in (74), (85), and
(91) were satisfied, then the Lyapunov function would settle down to its global
minimum. To prove this, let us examine first the Lyapunov function at steady
state, which has the form as

E = (vu-Nout)2-l±,22i-v2u
21

i=0

= -2vuNout + N2 -127.5. (123)

The steady-state Lyapunov function for all positive Nout are shown in Ta
ble 5. Based on this table we can determine the region of vu in which an JV*ut
coincides with the globalminimum of the Lyapunov function. Since the functions
in Table 5 are Unear functions of vu, we can determine the boundary points of
the regions from each adjacent pair of functions. The result is shown in Table 6.
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N^t vu

1

3

5

7

9

11

13

15

v„ 6(0,2.0)
vu 6(2.0,4.0)
v0 6(4.0,6.0)
vu 6(6.0,8.0)
vu 6 (8.0,10.0)
v„ 6 (10.0,12.0)
vu 6 (12.0,14.0)
v„ 6 (14.0,16.0)

Table 6: The range of v« for which N^t corresponds to the global minimum of
the Lyapunov function.

Comparing Table 6 and Figure 2(a), we know that an ideal A/D conversion,
which would be achieved under assumptions (74), (85), and (91), has all Nout
corresponding to the globalminimum of the Lyapunov function of the circuit.

From our simulation results in Figure 3, we have observed that some Nout
(e.g., Nout = 9) correspond not to the global but to a local minimum of the
Lyapunov function.

What are the necessary conditions for an Nout to be a localminimum of the
Lyapunov function for a given input analog value vu?

To answer this question, let us consider a particular case. For example,
suppose Nout = 3; namely, vayo = 1» vsyi = —1, vsy2 = —1 and vsy3 = 1,
corresponding to a steady state of the circuit described by (44) - (47). Since
the circuit is in the steady state, it follows from (5) that

Vxo(oo) \
Vri(oo)
vx2(oo)
Vi3(«>) J

-16 \
-32

-64

128 /

/ 2 \
4

8

Viey

(124)

Substituting the above vsyi and using (6), we obtain the following inequalities

2 + 4 + 8 - 16 + 2vu > 1,

-4 - 8 + 16 - 32 + 4vu < -4,

-8 + 16 - 32 - 64+ 8vu < -16,
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Nout vu6[-16,16]

1

3

5

7

9

11

13

15

vu 6 [-16,2.5]
vu 6 [1.5,6.0]
vu 6 [2.0,6.5]
v„ 6 [5.5,13.0]
vu 6 [3.0,10.5]
vu 6 [9.5,14.0]
Vu 6 [10.0,14.5]
Vu 6 [13.5,16.0]i.O Vu t [XO.U, lO.UJ

Table 7: The necessary condition region for Nout to be a local minimum of the
Lyapunov function

-16 + 32 + 64 + 128 + 16vu > 64. (128)

Solving these inequalities, we obtain the following necessary condition of vu
for Nout —3 to be a local minimum of the Lyapunov function:

1.5 < vu < 6.Ji "u 2z (129)

Following the same procedure, we can determine the necessary conditions
for all other positive N0ut, as shown in Table7. Figure 5 displays the Nout and
vu relationship of Table 7. Observe that for any given analog value vu, we can
have 2 or 3 digital representations, as illustrated by the values vua and vub in
Figure 5. This means that without the zero initial state condition (16), a CNN
A/D converter will settle down to a local minimum of the Lyapunov function
such that the A/D conversion error maybe as large as 6.0 (i.e. if we choose
Nout = 7 and vu = 13.0), which is 3 times larger than the digital representation
value of the least significant bit.

The above problem is called hysteresis in the neural network A/D converter
literatures [5, 8, 7]. In the implementations of neural network A/D convert
ers, some researchers have used digital and analog mixed control methods to
overcome this hysteresb problem. They attempt to use various techniques to
control the A/D converter such that the conversion is accomplished one bit after
another, starting from the most significant bit.

We have already pointed out in the previous section that a CNN A/D con
verter has a serial computing property. In the next section, we will exploit this
property to minimize the conversion error.

Before going into the next section, let us try to extract some more infor
mation from Figure 5. Observe that Figure 5 exhibits some regular patterns.
First, notice that the horizontal segments, which correspond to the region of vu
where an Nout exists, have some symmetry. If we fold the picture first along the
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Figure 6: The necessary condition region for Nout to be a local minimum of the
Lyapunov function (3-bit)

vertical line vu = 8, and then along the horizontal line Nout = 8, we would see
that all segments will overlap exactly. We can interpret this folded picture to
be the same as that of a 3-bit CNN A/D converter. Figure 6 shows the picture
corresponding to a 3-bit CNN A/D converter with the same circuit parameters,
which confirms the above interpretation. If we fold the picture in Figure 6 again
along vu = 4 and Nout = 4, we would have a picture which is the same as that
of a 2-bit CNN A/D converter with the same circuit parameters. This property
is consistent with our analysis result in the preceding section, namely; if the
most significant bitofan N-bit A/D converter is determined, then the COnverSion of the

remaining bits will function similarly as an (n-1) bit A/D Conver
Secondly, noticed that the segments in Figure 5 have different lengths. This

means that the maximum conversion errors are different for vu in different re
gions. The segments for Nout = 7 and N0ut = 9 are the longest, whereas those
for Nout = 1 and Nout = 15 are the shortest. Can we design a CNN A/D
converter such that the necessary condition regions for an Nout to be a local
minimum of the Lyapunov function are the same? The answer is yes. In the
next section, we willoptimize our CNN A/D converter to force the segments in
Figure 5 to have equal lengths.
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7 Optimization of CNN A/D Converters

Based on the analysis and simulations in the previous sections, we have obtained
a deep understanding of the dynamical and steady state behavior of the CNN
A/D converters. In this section, we will present a design method which can be
applied to a general CNN A/D converter without the relaxed condition (16).
In our design, we will provide an algorithm which guarantees our CNN A/D
converter will operate with any prescribed maximum conversion error emax,
where emax > £ideah

Similar to the procedure given in Section 3, we start our design by con
structing an appropriate cost function for the optimization problem for analog-
to-digital conversion.

Without lossof generality, we still continue to usea 4-bit CNN A/D converter
as an example. We will summarize this design method in the forms of theorems
for an N-bit CNN A/D converter at the end of this section.

Suppose that we just want to determine the most significant bit; namely,
bit-3 in the conversion. In this case, we would include

(v„-23vy3(0)2 (130)

as a part of the cost function.
For the same reason, if we only want to determine the first two most signif

icant bits, then we would include

(v„ - 23vy3(0 - 22Vj,2(0)2 (131)

into the cost function.

Following the same kind of reasoning, we define the cost function as follows

3 / 3 \ 3

/(*)=EA* (* - E 2<vv<(0 J - E «**(<)» (132)
jferrO \ i=* / i=0

where, A,- > 0 and a,- > 0.
Comparing (132) with (29), we see that in the cost function of (132) we

consider not only the 4-bit conversion, but also a 3-bit conversion for the first
three most significant digits, a 2-bit conversion for the first two most significant
digits, and a 1-bit conversion for the most significant digit. The parameter
At > 0 serves as the weighing coefficient, which will be determined in the design.
Clearly, (29) is a special case of (132) for Ao = 1, Ai = 0, A2 = 0 and A3 = 0.

If we choose Ao = 0, Ai = 0, A2 = 0 and A3 = 1, then we will have a
cost function like (130), from which we can design a 1-bit CNN A/D converter.
Furthermore, if we choose A,- such that

Ao < Ai < A2 < A3, (133)
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then the most significant bit will be emphasized for correct conversion, and then
followed, in decreasing emphasis, the next two most significant bits, and so on.

In order to compare the cost function (132) with the Lyapunov function (3),
let us rewrite (132) into the following form

3 / 3 3 3 \ 3

/w = EA* ^2v«E2^w+EE2i+,'vW%i(') -Ea«#)
jfc=0 \ i=* i=kj=k ) »=0

= < e a* - 2vu E A* E 2,v(*)+EA* E E2i+jv(<K(o
Jb=0 *=0 i=Jfe *=0 i=kj=k

3 3 » 3 3 min(i,j)

= vuEAt-vuE2,'+1v(oEA*+EE2,+J^(<K(o E A*
Jfe=0 i*=0 Jb=0 »=0 j=0 Jb=0

-!><&(<)• (134)
t=0

Comparing the corresponding terms in (134) and (3), we obtain:

6t =2f+1EA*' (135)
Jb=0

and

min(ij)

A*, = -*+*+* E A* (136)
fc=0

for t ^ j.
We have some freedom in choosing the circuit parameters An and Ri, as

long as they satisfy the condition (4). Let us choose

Ri = 2~2iR > 0 (137)

and

9 02i+l

Using the same procedure as before, wecan show that the results in Table 6
are still true for our latest 4-bit CNN A/D converter design withthe COSt f unct ion
givenby (132). In other words,forall A/D conversion results, if Nout correspond
to the <//o6a/minimum of the Lyapunov function (132), then the ideal conversion
shown in Figure 2(a) will be achieved.
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Now, let us derive the necessary conditions for an Nout to correspond to a
local minimum of the Lyapunov function.

At steady state, we have

/ 1 0 0 0 \ / var0(oo) \
j_ 0 4 0 0 vri(oo)
R 0 0 16 0 I vr2(oo)

\ 0 0 0 64 / \ ^3(00) /
/ 2/R -4A0 -8A0 -16A0 \

-4A0 S/R -16(A0 + Ai) -32(A0 + A!)
-8A0 -16(A0 + A!) 32/R -64£j=0Afc

\ -16A0 -32(A0 + A!) -64£*=0A* 12*/R J
( 2A0 \

4(A0 + A!)

8E*=oA*
\ 16£LoA* /

(139)

Since our goal is to minimize the A/D conversion error, let us rewrite (139)
in order to introduce the conversion error e as a variable by defining:

3

vu=^2ivtyi-e. (140)
t=0

Substituting (140) into (139), we obtain the following equations

^v*o(oo) =2f—+ A0j v,j,o +2A0£,

—vri(oo) =4Ait;3j,o +8I—+E ^ 1vayi +4E A*c>
\ fc=0 / Jb=0

16 2 l\ 2 \ 2—vl2(oo) =8E A*vay0+16A2v,yi+32 I- +E A* )v,y2+8 E A*e, (143)
Jb=l \ Jb=0 / Jb=0

(141)

(142)

64-« Vj.3(oo) = 16 E AfcVjyo + 32 E Ajfev4yi +64A3v5y2
*=i

+ 128

Jfe=2

2 \ 3

4+EA*) v^+16E A*e- (144)
fc=0 / Jk=0

In the following, we will.show how to determine the parameters A,- and R
for any prescribed maximum A/D conversion error emax > e,dea/ = 1.

Let us first consider (141). Since v,yo is a function of vro(oo), there is only
one variable in (141). For wayo = —1, we will have v^oo) < —1, and hence
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~>-2(i +Ao) +2A0e. (145)
Therefore, we obtain the following upper-bound for e :

•^ (146)
For v,yo = 1, weobtain the following lower-bound for e :

•*-TET- (147)
Therefore,

Let us consider next (142). Since there are two output variables in (142),
we have four choices for the different combinations of vayo and vayi. We have
found from the derivation of (146) and (147) that if u,yo and vayi have the
same value, then the conversion errors computed from (141) and (142) will be
bounded in the same direction. For example, if v8yo = v,yi = —1 then e will
have two upper-bounds derived from (141) and (142). In this case, we should
choose the minimum upper-bound as the upper-bound of e. Unfortunately, we
do not know which upper-bound is the minimum at this moment. Nevertheless,
we have developed an algorithm to deal with this problem. We will provide a
theorem later to justify the validity of our algorithm.

Algorithm 1
(1) Solve the equation involving the state variable vxq, (141) in this case, for

the upper-bound of | e | using v,yo = ±1;
(2) Solve the equation involving the state variable vXi (i > 0), (142) - (144)

in this case, for the upper-bound of | e | using vayi = ±1, and v9yj = —vayi for

Applying the above algorithm to (142), there are only two cases to consider;
namely, (vsy0 = 1, v,yi = -1) and (v,yo = -1, vsyi = 1). For the case of
v,yo = 1 and vsyi = —1, we found the following upper-bound :

l + 2iZ(A0 + A1)-flAi
£ - i2(Ao +AO

For the case of vayo = -1 and v,yi = 1, we found the following lower-bound :
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C* ~ fiCAo +A.) <150>
Therefore,

. ,^ 1 + fl(2A0 + Ai)
|g|* i^Ao +AO ^

For (143) and (144), we can obtain the following inequalities

, ^2 + iZ(4A0 + 3A1 + A2)
1£'" *(Ao +A1 +A2) <152>

and

, ,. 4 + iZ(8A0 + 7A1-f5A24-A3)
I* I* jqA. +At +A,**,) ' (153)

respectively, by using the same procedure as that for (141) and (142).
Now, let us examine these inequalities. Suppose that the following assump

tion

K A0 < Ai < A2 < A3 (154)

is true. Then, by estimating (148), (151), (152) and (153), we found that the
bound of | £ | is very close to 1, which is the ideal A/D conversion error etdeai-
This means that by choosing a sufficiently large value for the parameter A,- we
can design a CNN A/D converter arbitrarily close to the ideal case.

Now, let us determine A; and R for a given maximum A/D conversion error
emax. Let us set the right hand side of the inequalities (148), (151), (152) and
(153) to be equal to emax:

_ 1 + 2-RAq
£max ~ 2RX0 ; (155)

_l + fl(2A0 + A1),
€mas ~ R(\0 +\i) ' ( 56)

_2 + fl(4A0 + 3A1 + A2).
£max " tf(A0 +A1 +A2) » (157)

_4 + J?(8Ao + 7Ai + 5A2 + A3)
£max " tf(A0 +A1+A2 +A3) * (158)

Since we have only four equations involving five variables, one of them can be
arbitrarily valued. For convenience, we choose R as a variable to be determined
later. Then we can solve the equations iteratively as follows:

Ao= Mfrl-i)- (159)
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\ - l + fiAo(2~emaa.) . .
Al —m7 T\—' (16°)H\emax — I)

A2 =2+*A0(4 - emax) +RXi(Z - emax)
R{£max —1)

4 + R\o($ —emax) + RXi(7—emax) + R\2(5 —emax) /i««\
A3 = p7- 77 » (162)

We can also recast the above A,- as a function of R and emo.x as follows:

2R(emax —1)

A' =2*(elr-ir (164)

Aj =r(elT- ir (165)

A3- b^-iy • (166)
In order to verify the above derivations, let us work out an example. Suppose

we want to design a 4-bit CNN A/D converter having a maximum conversion
error of 1.5; namely,

emax = 1-5. (167)

Using (163) - (166) and choosing R = 1 for convenience, we obtain:

R = 1; (168)

A0 = 1; (169)

Ai = 3; (170)

A2 = 18; (171)

A3 = 180. (172)

Substituting these parameters into (141) - (144), we can determine the neces
sary condition shown in Figure 7 for Nout to be a /oca/minimumof the Lyapunov
function. It should not be surprising that all horizontal segments in Figure 7
have equal lengths. This is one of those rare situations where it is possible to
design a nonlinear dynamical system such that the basins of attraction of all
local minima are uniformly distributed!
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Figure 7: The necessary condition region for Nout to be a local minimum of the
Lyapunov function (optimized)
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Let us summarize the system equations describing the CNN A/D converter
which we have just designed.
State equation:

( v*o \ /I 0 0 0 \ / vr0 \
d

dt

v*i

v*2
w = -

0

0

4 0

0 16

0

0

v*i

vx2

\ v*3 / \o 0 0 64 / \ v*3 /

( 2 -4 -8 -16

-4 8 -64 -128
+

-8 -64 32 -1408

^-16 -128 -1408 128

1 2 \
16

+
176

Vu

^ 3232 J

Output equation:

Vyi(t) = 0.5 (| vxi(t) + 1 | - | vxi(t) - 11)

Input dynamical range:

I vu |< 16.

M +

(<) +

(173)

(174)

(175)

Observe that there are no longer any initial conditions stipulated in the
above system equations. Indeed, no matter what the initial condition is, this
CNN A/D converter is guaranteedsettle down to a steady state such that the
conversion error is less than or equal to emar = 1-5.

We have simulated this optimized CNN A/D converter using PWLSPICE. If
we increase the input analog value vu from 0 to 16, we would obtain the sampled
results shown in Table 8. If we decrease the input analog value vu from 16 to 0,
the corresponding results is shown in Table 9. Figure 8 depicts the results listed
in Table 8 and Table 9. From Figure 8 weobservea hysteresis phenomenon which
has been restricted into a region having a width of 2(emax —eideai) —1. From
the simulation results in Figure 8, we see that the maximum A/D conversion
error is 1.5 (corresponding to vu = 4.5 and vu = 1.5 , for example, in Table 8
and Table 9, respectively). This confirms the validity of Algorithm 1.

From physical point of view, the hysteresis phenomenon is due to the basins
of attraction of the local minima of CNN A/D converters. In order to transfer
from one local minimum point of the Lyapunov function to another local mini
mum point, the system needs extra energy, which is provided by vu in our case,
from the outside of the circuit. If the system state is not in its local minimum
point at the initial time, then it will be relatively easier to settle down to the
global minimum point.
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Vu Nout Vu Nout Vu Nwt Vu Nout

0.1 4.1 3 8.1 7 12.1 11

0.2 4.2 3 8.2 7 12.2 11

0.3 4.3 3 8.3 7 12.3 11

0.4 4.4 3 8.4 7 12.4 11

0.5 4.5 3 8.5 7 12.5 11

0.6 4.6 5 8.6 9 12.6 13

0.7 4.7 5 8.7 9 12.7 13

0.8 4.8 5 8.8 9 12.8 13

0.9 4.9 5 8.9 9 12.9 13

1.0 5.0 5 9.0 9 13.0 13

1.1 5.1 5 9.1 9 13.1 13

1.2 5.2 5 9.2 9 13.2 13

1.3 4.3 5 9.3 9 13.3 13

1.4 5.4 5 9.4 9 13.4 13

1.5 5.5 5 9.5 9 13.5 13

1.6 5.6 5 9.6 9 13.6 13

1.7 5.7 5 9.7 9 13.7 13

1.8 5.8 5 9.8 9 13.8 13

1.9 5.9 5 9.9 9 13.9 13

2.0 6.0 5 10.0 9 14.0 13

2.1 6.1 5 10.1 9 14.1 13

2.2 6.2 5 10.2 9 14.2 13

2.3 6.3 5 10.3 9 14.3 13

2.4 6.4 5 10.4 9 14.4 13

2.5 6.5 5 10.5 9 14.5 13

2.6 3 6.6 7 10.6 14.6 15

2.7 3 6.7 7 10.7 14.7 15

2.8 3 6.8 7 10.8 14.8 15

2.9 3 6.9 7 10.9 14.9 15

3.0 3 7.0 7 11.0 15.0 15

3.1 3 7.1 7 11.1 15.1 15

3.2 3 7.2 7 11.2 15.2 15

3.3 3 7.3 7 11.3 15.3 15

3.4 3 7.4 7 11.4 15.4 15

3.5 3 7.5 7 11.5 15.5 15

3.6 3 7.6 7 11.6 15.6 15

3.7 3 7.7 7 11.7 15.7 15

3.8 3 7.8 7 11.8 15.8 15

3.9 3 7.9 7 11.9 15.9 15

4.0 3 8.0 7 12.0 16.0 15

Table 8: Input/output mapping list of the optimized CNN A/D converter when
vu increases from 0 to 16 40
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Figure 8: Input/output functions of the optimized CNN A/D converter

Table 10 and Figure 9 show the simulation results of the optimized CNN
A/D converter under the relaxed condition. Here, the A/D conversion error is
less than 1.1 (corresponding to vu = 2.0 in Table 10. The improved conversion
accuracy is due of course to the relaxed condition.

Let us now formalize our main results into the form of theorems. In the

following, an N-bit CNN A/D converter means a circuit described by the system
equations (1) and (2), and the digital representation (9). Also, when wesay A/D
conversion errors, we mean the errors based on the digital representation (9).

Theorem 1

For any prescribed maximum A/D conversion error varepsilonmaxi where
1 < emax < 2, and any integer N, there exists an N-bit CNN A/D converter
with its conversion error absolutely bounded by emax.

Remark

Note that for CNN A/D converters, the ideal and hence minimum A/D
conversion error is 1, and that the linear A/D conversion requires the conversion
error to be less than 2. We use a constructive method to prove this theorem.

Proof:
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Vu Nout Vu Nout Vu Nout Vu Nout

0.1 4.1 5 8.1 9 12.1 13

0.2 4.2 5 8.2 9 12.2 13

0.3 4.3 5 8.3 9 12.3 13

0.4 4.4 5 8.4 9 12.4 13

0.5 4.5 5 8.5 9 12.5 13

0.6 4.6 5 8.6 9 12.6 13

0.7 4.7 5 8.7 9 12.7 13

0.8 4.8 5 8.8 9 12.8 13

0.9 4.9 5 8.9 9 12.9 13

1.0 5.0 5 9.0 9 13.0 13

1.1 5.1 5 9.1 9 13.1 13

1.2 5.2 5 9.2 9 13.2 13

1.3 4.3 5 9.3 9 13.3 13

1.4 5.4 5 9.4 9 13.4 13

1.5 5.5 5 9.5 9 13.5 13

1.6 5.6 5 9.6 9 13.6 13

1.7 5.7 5 9.7 9 13.7 13

1.8 5.8 5 9.8 9 13.8 13

1.9 5.9 5 9.9 9 13.9 13

2.0 6.0 7 10.0 9 14.0 15

2.1 3 6.1 7 10.1 14.1 15

2.2 3 6.2 7 10.2 14.2 15

2.3 3 6.3 7 10.3 14.3 15

2.4 3 6.4 7 10.4 14.4 15

2.5 3 6.5 7 10.5 14.5 15

2.6 3 6.6 7 10.6 14.6 15

2.7 3 6.7 7 10.7 14.7 15

2.8 3 6.8 7 10.8 14.8 15

2.9 3 6.9 7 10.9 14.9 15

3.0 3 7.0 7 11.0 15.0 15

3.1 3 7.1 7 11.1 15.1 15

3.2 3 7.2 7 11.2 15.2 15

3.3 3 7.3 7 11.3 15.3 15

3.4 3 7.4 7 11.4 15.4 15

3.5 3 7.5 7 11.5 15.5 15

3.6 3 7.6 7 11.6 15.6 15

3.7 3 7.7 7 11.7 15.7 15

3.8 3 7.8 7 11.8 15.8 15

3.9 3 7.9 7 11.9 15.9 15

4.0 3 8.0 9 12.0 13 16.0 15

Table 10: Input/output mapping list of the relaxed optimized CNN A/D con
verter 43
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Figure 9: Input/output functions of the relaxed optimized CNN A/D converter

Our proof is a direct generalization of the 4-bit CNN A/D converter
Let us choose the following circuit parameters for (1) and (2) :

example.

A« = 2»+1 (176)

min(i,j)

^i =-2t+J'+1 £ Xk for i?j
k=0

(177)

6i =2*+153A*
Jk=0

(178)

Ri = 2~2i (179)

di = C = 1 (180)

vc = l (181)

where 0 < t, j < N, and Afc > 0, which will be determined below.
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Substituting the above parameters into (1) and (2), we obtain the following
state equation :

, r.x N-1 min(t,i)

fsgeu - ^(<)+^vo- E 2*'+i+1 E A*%;(')
i = 0 *=°

i

+ 2<+ix;^«« (i»2)
Jb=0

where 0 < i < N. In the steady state, we have

N-1 min(i,j) »

22ivtxi = 22i+lvayi - J] 2'+J+1 J] AiV^+^+^AibVu (183)
j = 0 fc=0 *=0
»# J

where vaa.j = Vj.,(oo), v8yi = vyj(oo) = ±1, and 0 < t < N. Substituting

N-1

v„ = ^2>v,yi+c (184)
i=o

into (183) and rearranging terms, we obtain

t-i

2«v,ici = 2i+1v^+2,+1v,yiEA*+E2;"+lt;^ E Afc+2e^Afc,(185)
jb=o j=o Jfc=j'+i *=o

where 0 < i < iV. Equation (185) is of crucial importance. First, it tells us that
in the :th equation, only vsyj for j < i and A* for k < i are present. This means
that we can solve the equations iteratively. Secondly, it shows us that for any
N-bit CNN A/D converter, whose N is any integer, the equation corresponding
to the tth bit, t < N, has the same form. This allows us to use an inductive
method in the following proof.

For the case i = 0, we obtain

by following the same procedure as that for (148).
Defining

1+ 2A0 , Q_v
emax =—^—1 (I87)

and solving for Ao we obtain
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which satisfies the condition Ao > 0 because Smax > 1.
Suppose that we have determined A,- > 0 for j < i. We must show how to

calculate A,-; where i = j + 1 and t < N. Using Algorithm 1, we obtain the
general inequality :

a'+^s^-sr^+'su.**. (189)

Again, defining

„ - 2<+2<+1i:UoA.-ej;02^eUi^ (1M
emax - —i " • K1™)

£ 2^Jb=0 **

and solving(190) for A,-, we obtain

Xi =2'-1 +2' £&Xk - Ej;0*E&+1 ^ - emax El=o At 9
emax 1

Since

i-l i-l i-l i-1 i-1

E2' E ** = EE2"-^-E2-lA*
j=0 t=i+l n=OJb=n n=0

i-1 lb i-1

= EE2"-^-E2-,A*
Jfc=0n=0 n=0

= E(2*-1)A», (192)

, 2'-1+ Ei=oA* (2* - 2* + 1- emaa;)
A,- — (193)

Because A* > 0 for Jfc < i and 1 < emax < 2, we have

A« > 0, (194)

where t = j + 1. It follows from our induction hypothesis that A,- > 0 for all
i < N. This completes the proof. D

Theorem 2

Algorithm 1 guarantees that the minimum upper-bound of |e| can be chosen.
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Proof:
From (185), we have

|e|< *+̂ £*=° Xk "?^^^ S^+1 At. (195)
2ELoA*

Here we do not apply any assumption on v,yj- for .;' < t. The right hand side of
(192) is obviously larger than or equalsto emax, which is defined in Algorithm 1;
namely,

* +*+1 El=o A* - E£o 2'+1 Iv.yi 1EU+i A*
Sm«* = ' • (196)

2 E*=o A*

Since the above statement is true for all 0 < i < TV, the proof follows. D

Corollary 1
The preceding CNN A/D converter design is optimal in the sense that all

the necessary condition regions of vu, in which Nout is a localminimum of the
Lyapunov function of the circuit, have equal lengths.

Although our CNN A/D converter design is optimized to achieve the min
imum A/D conversion error, it is not optimized for implementation. As we
have noticed that there are some freedom in choosing the circuit parameter i2,
C,-, and ve. This kind of freedom allows us to transform the above CNN A/D
converter into an equivalent circuit so that it is not only optimal for minimizing
the conversion error, but also optimal for implementation. We will present the
implementation issues of CNN A/D converters in a future paper.

8 Concluding Remarks

In this paper, we have presented an analog-to-digital conversion architecture
using a cellular neural network. We have developed a systematic method to
design CNN A/D converters. We have provided an algorithm to optimize the
system performance. We have proved that we can design a CNN A/D converter
for any prescribed and feasible A/D conversion error and any number of bits.
We have verified our theoretical results using simple examples and computer
simulations.

One of the main contributions of this paper is the uncovering of the in
trinsic serial computing mechanism in this parallel computation architecture.
Theorem 1 is another significant contribution. It is so general and practical
that most of the important theoretical issues concerning CNN A/D conversion
is solved. Furthermore, the same method may be used to design other neural
network A/D converters, such as Hopfield's.
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9 Figure Captions

Figure 1 : Cell circuit of CNN A/D converters.

Figure 2 : The A/D transfer functions, (a) for our CNN A/D converter; (b)
for Tank and Hopfield's A/D converter.

Figure 3 : Simulation results for the CNN A/D converter.

Figure 3 : Simulation results for the CNN A/D converter.(Cont.)

Figure 4 : Input/output functions of the A/D converter.

Figure 5 : The necessary condition region for Nout to be a local minimum
of the Lyapunov function.

Figure 6 : The necessary condition region for Nout to be a local minimum
of the Lyapunov function (3-bit).

Figure 7 : The necessary condition region for Nout to be a local minimum
of the Lyapunov function (optimized).

Figure 8 : Input/output functions of the optimized CNN A/D converter.

Figure 9 : Input/output functions of the relaxed optimized CNN A/D con
verter.
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