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Abstract

Electron wave devices are becoming increasingly important as semiconductor

growth techniques become more precise. In this paper the effect of an applied electric

field on the transmission and bandwidth characteristics for a narrow band Fabry-Perot

electron wave interference filter is investigated. The analysis of the electron wave filter

is treated analogously to an electromagnetic wave filter, assuming ballistic electron

behavior. The procedure for designing a superlattice interference filter is reviewed, and

a numerical procedure is presented, demonstrating how to obtain the response of a

superlattice filter when an applied electric field is present. Results of numerical

calculations are presented, demonstrating filter passband response. Fundamental

differences between electron waves and electromagetic waves are demonstrated and the

differences between the filter reponses for each type of wave are explained.

I. Introduction

Recently, analogies between electromagnetic (EM) plane w^ves and quantum

mechanical electron waves propagating in layered structures have been utilized to

design electron wave devices such as low, high and bandpass filters and waveguides [1-

4]. Such work has been motivated by the ongoing progress in semiconductor growth

techniques, particularly in molecular-beam epitaxy (MBE) and metalorganic chemical

vapor deposition (MOCVD). Currently these techniques enable the growth of

multilayered semiconductor superlattice structures with precise monolayer composition

control. Of particular interest are the growth of multi-quantum well structures (i.e.

successively grown layers of narrow and wide band-gap materials). Such structures,

grown with good quality materials (minimal crystalline structure imperfections) have

great potential (1), for'developing ballistic electron transport devices such as high speed
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transistors and (2), for developing electron optics devices such as beamsplitters, lenses

and diffraction gratings, required to control freespace electron beams for electron

spectroscopy and electron diffraction analysis of crystals.

MBE grown superlattice structures typically range in thickness from several tens

to several hundreds of angstroms and are typically grown with alternating layers of an

alloy such as ALGa^j-As with different mole fractions x. Electron transport through

such thin structures may be considered ballistic (collisionless) since the mean free path

for scattering in these high quality crystals is typically on the order of 0.1 /im or more

[5]. Recently, ballistic or near-ballistic transport has been demonstrated across device

widths ranging from 300-5000 A [6]. The assumption of collisionless transport greatly

simplifies the analysis of electron motion through superlattices, since the solution of the

Schrodinger equation yields plane wave behavior.

Gaylord et al. have demonstrated that such electron waves exhibit many of the

properties of EM plane waves, such as reflection, refraction, interference and diffraction

[1]. Hence, the solution of electron transport through a multilayered quantum well

structure proceeds in a manner completely analogous to the transmission of light

through multi-layer thin film dielectrics. Gaylord et al. have utilized this analogy to

study the design of both electron-wave slab waveguides and superlattice interference

filters [2-4]. In particular, they have presented design procedures for a narrow passband

Fabry-Perot filter and have calculated cut-off frequencies and propagating modes for

electron wave guiding structures. For both devices, the analysis was simplified by

considering only normal incidence of a single electron, thereby ignoring the effects of a

realistic distribution of incident electron kinetic energies and angles. In addition, for

both devices it was assumed that no applied electric field was present.
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The potential importance of these new electron wave devices for a wide variety

of applications suggests that further studies need to be carried out that consider effects

such as incident electron distribution functions, applied electric fields and quantum

mechanical tunneling. The purpose of this paper is to investigate the effects on the

transmission and bandwidth characteristics for a narrow band Fabry-Perot electron

wave interference filter in the presence of an applied electric field. In section II, the

basic analogies between EM and electron plane wave propagation are reviewed. Next,

in section III the design of a superlattice interference filter is reviewed, and a numerical

procedure is presented, demonstrating how to obtain the response of a superlattice filter

when an applied electric field is present. In section IV, results of numerical calculations

are presented, demonstrating filter passband response. Finally, in section V, conclusions

axe drawn and suggestions are made for further studies.

II. Comparison of EM and Electron Plane Wave Properties

The transmission and reflection characteristics of optical EM plane waves at a

boundary between dielectrics is well known. For a transverse electric (TE) polarized

wave incident at angle 0,-, with wavenumber k = 2irn/\0 on a boundary (see Fig. 1), the

transmissivity and reflectivity are given by

, _ 271JCOS0,- /,\
0 "~ njcosflf + n^cosOt * '

where n is the index of refraction and \0 is the freespace wavelength. These results can

easily be extended to a system of M dielectric layers, such that for the ith layer,
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(3)

(4)

Finally, the overall reflectivity and transmissivity can be obtained by simple 2x2 matrix

multiplication, yielding

' 1'

5°.
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i=i °.«

1 r •

r • 1' 0,1 x

exp(A ,d,cos0,)

0 exp(-

0

-JK.Acosdi)

1 * ro,M+l \m+i
*o,M+l ro,M+l 1 1

where E is the electric field amplitude.

(5)

The analogous results for an electron plane wave incident at angle 0f, with

wavenumber k{ = [2raJ( W— V,)] /h incident on the (i+l)th potential barrier/well of a

superlattice structure (see Fig. 2) are given by

where

and [2],

..i1^.

t, =
2[(W-Vt)/n$]g"cQe0u

D

.«ll/2 .. ]!/2,

4.lJ/2 ♦ l1/2.£ = [(^-I^/m^cos*,, + [(W- V^l^'a***

(6)

(7)
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exp^^.^cos^i) 0

0 exp( —jkei diCosOi)

1

e.Af-fi

1 r

t,M+l
(8)

where V> is the electron wavefunction, raj is the electron effective mass for the ith layer,

Vi is the conduction band potential energy for the ith layer and W is the total electron

energy. Upon comparison of (3)-(5) and (6)-(8), analogous quantities for TE polarized

EM waves and electron waves are

for amplitude calculations

for phase calculations

A similar analysis can be performed for TM polarized EM waves.

IQ. Superlattice Interference Filter with Applied Electric Field

Before considering the addition of an applied field, a brief outline of the design

procedure for electron wave interference filters will be presented [2]. Consider the

specific case of a Fabry-Perot filter [8] with the form [HL]4HH[LH]4, to be designed here

using AlxGa!_rAs as the semiconductor superlattice material. For the EM case, H and

L refer to high and low refractive index, respectively, whereas for the electron wave
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case, H and L refer to the low and high mole fraction x, respectively. An illustration of

this device can be seen in Fig. 3.

The required high and low mole fractions are determined for a specified incident

pass kinetic energy W— V0, by simultaneously requiring the thickness of each layer to be

an integral multiple of the monolayer thickness and requiring the thicknesses to be odd

multiples of a quarter wavelength as measured in each region. Application of these

requirements results in the following solution for the compositions xif

x. = [-b + (62 - 4aCi)l/2]/2a, (9)

where

a= AC, b = AB- CW0,

ct = (h?/32m0){(2qi - l)2/p>rl] - BW0,

pif q{ = 0, 1, 2, ...,

rt- is the monolayer thickness, and A, B and C are material constants that describe the

variation of the conduction band edge (referenced to GaAs) and electron conduction

band effective mass with x{ as follows,

Vt = Ax{ (10)

ml = (B + Cxi)m0. (11)

Values for x{ are determined by looping through values of pt and qt until, for a

particular qif two or more solutions of x{ are found, corresponding to different values of

piy such that 0 < x{ < 0.45. This range of xt represents usable compositions of

ALGal_rAs for use as a direct band-gap material.
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As an illustration, consider the following numerical example. For the device

shown in Fig. 3, let the pass kinetic energy be 0.2 eV and let x0—xM+l=0.45. For

AlxGa^a-As grown along the [100] direction, the monolayer thickness is 2.83A,

independent of material composition. Furthermore, for Ala?Ga1_rAs, A—0.773 [2],

B=0.067, and C=0.083 [9]. For these values, 7<,=0.348 eV, PT=0.548 eV and the

solution of (9) yields the two roots, 24=0.204 and X2=0.397, for Pi=6 and Pi—1 and

q=l. The corresponding thicknesses of the two layers are given by dl=plrl=16.9 A and
o

d2=p2r2=l9.& A. It should be noted that other solutions may exist for larger values of

q, but for practical purposes, solutions for the smallest possible value of q axe desired,

since this leads to the smallest possible layer thicknesses. It is also of importance to

point out that for this example, the values obtained for xx and x^, in [2] are slightly in

error. Coincidentally or not, their resulting transmissivity plot yields the "expected"

result, i.e., centered on the design pass kinetic energy and symmetric about this kinetic

energy, analogous to the corresponding Fabry-Perot optical filter. Transmissivity

results presented in section IV indicate somewhat different results. The implications of

these discrepancies will be discussed further in section IV.

Consider now the analysis of a semiconductor superlattice structure in the

presence of an applied electric field. In principle, the exact solution of the Schrodinger

wave equation for a multi-quantum well structure with an applied electric field is quite

difficult to obtain. However, it will be demonstrated here that a simple extension of (8)

leads to a simple numerical solution of the Schrodinger equation.

An applied voltage across a superlattice structure such as that of Fig. 3 results in

tilting of the energy bands as shown in Fig. 4. In each layer, the magnitude of the

electric field is constant, hence the conduction band edge varies linearly with distance.

A simple approximation involves a staircase model for the band edge, as illustrated in
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Fig. 4 [10]. With this approximation, an equivalent problem can now be considered in

which each layer is treated consisting of many sub-layers. While each sub-layer will

retain the same effective mass, each will have a different kinetic energy, W— Vti,

corresponding to the jth sub-layer of the ith superlattice layer. Hence, (8) can be solved

for the equivalent problem with MxN layers, where M is the number of real internal

layers and N is the number of sub-layers into which each real layer is divided.

The details for obtaining the sub-layer V{j values is straightforward. For a given

applied voltage Vay the following set of equations, obtained from elementary

electrostatics considerations,

€tE{ = cMEM for i=l, 2, ...,Af—1 (12)

M

£ &A = v« (13)
i=l

can be solved to obtain an expression for Elf

-1

E,= Va
M

* + £ («-i4Ai)
i=2

(14)

from which all the electric fields in the other layers can be found through use of (12).

Finally, the sub-layer V{j values can be found from knowledge of the electric fields in

each layer as follows,

V{j= V0 +£Ekdk + (jdi/tyEt (15)
k=l

As a numerical illustration, consider the filter characteristics specified previously
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and now consider an applied voltage Va=0.1 volts. The static dielectric constant for

each layer, required in (12), is given by [9]

e, = 13.18 - 3.12it., (16)

and solution of (12)-(14) yields ^=30.4 kV/cm and £2=31.9 kV/cm. The actual

transmission charactistic for this filter will be presented in section IV. As a practical

point, it should be possible in the laboratory to apply a voltage entirely across the

internal layers of a semiconductor superlattice structure. If the end layers of the

structure are highly doped and then contacted to metal leads, the voltage Va should

drop only across the undoped or lightly doped internal layers.

IV. Numerical Results and Discussion

Transmission characteristics for the Fabry-Perot interference electron wave

filter design presented in the previous section have been computed for several pass

kinetic energies and values of applied voltage. The transmission response T for the

filter is obtained from the relation

T= 1 - R = 1 - \r. |2

where reT is the overall reflectivity of the filter, i.e., reT = ^t^+1/^y which can

directly be obtained from (8).

In Fig. 5 the transmission is plotted for filter designs of 0.1, 0.2 and 0.3 eV pass

kinetic energies and Va=0. The FWHM bandwidth is seen to vary with the designed

pass kinetic energy {KE0), and equals 1.3 meV for the 0.1 eV curve, 11 meV for the 0.2

eV curve and 5.3 meV for the 0.3 eV curve. Though not visible on the resolution of
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Fig. 5, the actual pass kinetic energy (where T=l), for each curve deviates slightly from

the designed value. The transmission peaks computed were shifted 0.53%, 0.44% and

0.38% below the designed values of 0.1, 0.2 and 0.3 eV, respectively. The relative

significance of these shifts in KE0 are related to the bandwidths resulting from each

design. For example, for the 0.1 eV curve, a shift of 0.53% in the pass kinetic energy

should be considered significant since it represents a shift nearly out of the passband.

In contrast, for the 0.2 eV curve, a shift of 0.44% in KE0 represents a shift only 8% as

great as the bandwidth. These results suggest that it may be necessary in some cases to

iterate the design procedure a few times to obtain a filter response that is within the

tolerance of the design specifications. This inherent limitation was not observed in [2].

In fact, in that work it was claimed that the actual pass kinetic energy coincides exactly

with the design value. Also, as Fig. 5 illustrates, the actual transmission is not exactly

symmetrical about the pass kinetic energy. This again is in contrast with [2], where it

is claimed that the response is identical to the corresponding symmetrical EM Fabry-

Perot filter response. The somewhat asymmetrical responses in Fig. 5 are physically

reasonable and are a direct result of the correspondence principle of quantum

mechanics. That is, as the incident kinetic energy is increased further and further

above the highest conduction band edge, the electron behaves more and more like a

classical particle, and in the high kinetic energy limit, it shouldn't even "see" the

quantum well structure. Thus, the increasingly classical behavior of the electron, as the

kinetic energy is increased above KE0, should lead to the observed nature of the

asymmetry in Fig. 5.

In Figs 6-8, the transmission for several values of both positive and negative

applied voltage is plotted for KE0= 0.1, 0.2 and 0.3 eV. With increasing Va > 0 (see

Fig. 4), the transmission peaks shift upward in kinetic energy, the bandwidth decreases
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and the peak transmission values decrease. In contrast, for Va < 0 and | Va\ increasing,

the transmission shifts downward in kinetic energy, the bandwidth increases and the

peak transmission values decrease, but only slightly. All of the above deviations from

the corresponding Va=0 curves will significantly alter the filter response and thus when

designing narrow passband electron filters, the influence of an applied electric field

which is of practical importance, must be taken into consideration. At present, a

systematic design procedure, incorporating the effect of an applied voltage does not

exist. However, an iterative design procedure, similar to that discussed in the previous

section can be implemented.

The qualitative behavior of the filter response to an applied electric field in Figs

6-8 is easily explained by quantum mechanical considerations. Note that for incident

electron kinetic energies less than the applied voltage, the transmission equals zero,

corresponding to the complete reflection of the electron wave. The broadening or

narrowing of the transmission curves and the decrease in peak value axe due to two

distinct effects. First, application of any applied voltage, resulting in a tilted

conduction band edge will result in some deviation from the original filter design for

Va=0. Second, the applied field, depending on the sign of Va, will either accelerate or

decelerate the electron as it traverses the filter, hence should aid electron transmission

for Va < 0 and hinder electron transmission for Vo > 0. This effect is mainly evident

upon comparison of the respective bandwidths for corresponding values of ±V0. For

Va <0, the bandwidth broadening is a result of the accelerating field, which tends to

partially cancel the filtering out of electrons with incident kinetic energies disparate

from the pass kinetic energy. In contrast, for Va > 0, the bandwidth narrowing is a

result of the decelerating field, which generally impedes electron transmission.
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V. Conclusions

The analysis of an electron wave Fabry-Perot interference filter in the presence

of an electric field has been presented. The close analogy between the optical

multilayer thin film dielectric structure and the semiconductor multi-quantum well

structure, demonstrated in previous work, has been used to obtain the transmissivity

and reflectivity of the semiconductor superlattice structure. Using these expressions, a

simple numerical procedure was implemented to obtain a solution to the Schrodinger

wave equation which includes the effect of an applied voltage. It was demonstrated

that physically reasonable applied voltages significantly alters the passband response.

In particular, an applied voltage Va>0 (Va<0) lowered the peak value of the

transmission, shifted the pass kinetic energy downward (upward) and decreased

(increased) the FWHM bandwidth.

The slight shift in pass kinetic energy and asymmetrical passband transmission

response obtained from this study indicates that further investigation needs to be

carried out to fully understand the complete relationship between optical plane waves

and electron plane waves. Furthermore, a systematic study needs to be carried out to

investigate generally the effect of applied fields for all electron wave devices, which as

has been demonstrated here, can be quite significant. A more complete model of

electron transport through quantum well structures should also include a distribution of

initial electron kinetic energies and momenta, as well as electron-electron interactions.



•14-

References

[1] T. K. Gaylord and K. F. Brennan, "Electron wave optics in semiconductors," J.
Appl Phys., vol. 65, pp. 814-820, 1989.

[2] T. K. Gaylord, E. N. Glytsis, and K. F. Brennan, "Semiconductor superlattice
interference filter design," J. Appl Phys., vol. 65, pp. 2535-2540, 1989.

[3] T. K. Gaylord, E. N. Glytsis, and K. F. Brennan, "Semiconductor quantum wells
as electron wave slab waveguides," J. Appl. Phys., vol. 66, pp. 1842-1848, 1989.

[4] T. K. Gaylord, E. N. Glytsis, and K. F. Brennan, "Semiconductor
electron-wave slab waveguides," J. Appl. Phys., vol. 66, pp. 1483-1485, 1989.

[5] R. A. Stewart, private communication.

[6] Srinivasan Krishnamurthy, M. A. Berding, A. Sher, and A.-B. Chen, "Ballistic
transport in semiconductor alloys," J. Appl. Phys., vol. 63, pp. 4540-4547, 1988.

[7] Ajoy K. Ghatak, K. Thyagarajan, and M. R. Shenoy, "Numerical Analysis of
Planar Optical Waveguides Using Matrix Approach," J. Lightwave Technol., vol.
LT-5, pp. 660-667, 1987.

[8] H. A. Macleod, Thin-Film Optical Filters. New York: Macmillan, 1986.

[9] Sadao Adachi, "GaAs, AlAs, and ALGa^^As: Material parameters for use in
research and device applications," J. Appl. Phys., vol. 58, pp. R1-R29, 1985.

[10] Ajoy K. Ghatak, K. Thyagarajan, and M. R. Shenoy, "A Novel Numerical
Technique for Solving the One-Dimensional Schroedinger Equation Using Matrix
Approach—Application to Quantum Well Structures," IEEE J. Quantum Electron.,
vol. 24, pp. 1524-1530, 1988.



-15-

n, n2

Hr/
(•1

Er >*kr

3-^
_J^)

eX^

**x

hS

Ht

Figure 1. TE plane wave incident at angle Of on a dielectric interface.
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order for transport to occur.
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