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Abstract

Motivated by applications in data compression, debugging, and physical simulation,
we consider the problem of adaptively choosing locations in a long computation at which
to save intermediate results. Such checkpoints allow faster recomputation of arbitrary
requested points within the computation. We abstract, the problem to a server problem
in which k servers move along a line in a single direction, modeling the fact that most
computations are not reversible. Since checkpoints may be arbitrarily copied, we allow
a server to jump to any location currently occupied by another server. We present
online algorithms and analyze their competitiveness. We give lower bounds on the
competitiveness of any online algorithm and show that our algorithms achieve these
bounds within relatively small factors.

1. Introduction

Suppose you are building software for accessing an encyclopedia. To save space, you store
the encyclopedia in compressed form using an adaptive data compressor [8, 15]. Your
software must handle requests from users wishing to read arbitrarily-located articles within
the encyclopedia. Here a problem arises: in order to decompress a specific article, you must
recreate the compression statistics as they were at the time that article was compressed.

There are several possible approaches to this problem. One could save all compression
statistics, but this defeats the purpose of compression. One could break the encyclope
dia into smaller files—or equivalency restart the compressor occasionally—but this, too,
compromises compression. A similar solution is to occasionally save—or checkpoint—the
compression statistics while compressing; then a request is handled by finding the closest
previous checkpoint and recomputing statistics from that point up to the requested article.
The space cost of acheckpoint is typically comparable to (perhaps twice) the cost of restart
ing the compressor. The most flexible solution allows the locations of the checkpoints to
move and adapt to the pattern of requests. In this paper we investigate adaptive solutions
to the problem of locating checkpoints.

Besides data compression our work applies to a number ofother contexts.
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I III debugging a Joilg program, one typically probes an irreversible computation at
various points in order to check intermediate values [10].

• In studying an irreversible physical system, one would like to interactively probe a
computer simulation.

• In testing a VLSI design, different members of a design team may work on different
parts of a critical path simultaneously. Thus a useful feature of a waveform simulator
such as Spice would be the capability to answer probes at arbitrary points along a
path. As above, the computation of a waveform is typically irreversible.

We model the problem as follows. (Here weuse the terminologyof the data compression
application.) We can afford fc "permanent" checkpoints; in addition, we set aside scratch
space for one temporary checkpoint. We think of the temporary checkpoint as residing in
fast memory so that it can be rapidly updated as we read through the encyclopedia; the
other k checkpoints may reside in slow memory.

We are presented with a sequence of n requests, each at a real number in the half-open
interval [0. ???). A permanent checkpoint may (1) move forward (towards larger numbers)
along positions in [0. m), incurring cost equal to the difference between starting and ending
positions: (2) fork, that is.immediately move at no cost, to a position currently occupied by
anothercheckpoint; or (3) restart, at no cost, at position 0. Any number of these moves may
be made in response to a request. After these moves, the request at r E [O.m) is serviced
by the temporary checkpoint, incurring fixed cost 1 plus the distance to the request from
the closest checkpoint at a position no greater than r. In the terminology ofManasse et al
[ill. each request is serviced by an excursion from the nearest permanent checkpoint. The
temporary checkpoint does not persist between requests.

We would like to minimize the total cost of a sequence of requests; that is. we are
interested in maximizing throughput rather than minimizing worst-case latency. In our
model, the only costs are computation; copying one block of memory to another, as in a
fork move, is free.

For simplicity, we carry out our analysis assuming that position mcoincides with position
0. that is. the encyclopedia is circular. This assumption eliminates move (3) and clarifies
our arguments. We then show how to transfer our results back to the linear case.

We analyze the competitiveness of our algorithms [3, 9,11. 14]. That is, we compare the
performance of an online algorithm against the performance of an optimal offline algorithm
that sees all requests in advance. An algorithm is called c-competitive if its cost on any
sequence of nrequests is at most 0(1) greater than ctimes the offline algorithm's cost. This
style of analysis refines traditional worst-case analysis. Competitive analysis is worst-case
in that no assumptions about the distribution or correlation of requests are made; however,
it measures performance relative to what is achievable by an omniscient algorithm, rather
than in absolute terms.

A discretized version of our problem is an example of a task system as defined by
Borodin et al [3]. Borodin et al, however, study a more general model in which the costs
of serving requests—rather than just request locations—may be chosen by an adversary, so
their bounds have no nontrivial implications for our problem. Other related work includes a
number of recent papers on server problems [2. 4, 5, 6, 7, 11. 13]. The paper that addresses
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(3/2)Am. The work done by the player is at most m. and the increase in $ can be at most
km. so the left-hand side is smaller than the right-hand side for A- > 2.

Now assume that there is an adversary server j such that d(xj.r) < (km)1^2/2. If
Wp < (km)1/2, then the player does not move in Holdback, and hence does not increase
$. By Lemma 9, A$ < 2(km)1/2WA. and the fact that WA > 1 implies the inequality
above. So we now assume that Wp > (km)1/2. Then by Lemma 8, in step (1) $ decreases
by at least the distance that the player server moves before sending a temporary server,
that is. at least Wp —(fern)1/2. By Lemma 9, the increase in § during step (2) is at most
2(Arm)1/2 WA. Thus WP + A* < (km)1!2 + 2(fcm)1/2 WA < 3(Am)1/2 WA. •

Holdback and other checkpoint algorithms for the circle can be extended to the line
by thinking of the line as a circle with k + 1 servers, one of which is fixed at 0. (This
restriction applies to both the player and the adversary.) Whenever Holdback tries to
move the server at 0, instead the closest server behind 0 should be moved to the same spot.
The analysis can be carried out in almost the same manner as above to prove that this
version of Holdback is 0((km)1/2)-competitive for the checkpoint problem on the line.

8. Lower Bounds for Unequal Numbers of Servers

So far we have only compared online algorithms against offline algorithms with the same
number of servers. Time was the resource used to measure competitiveness. It is natural to
explore the space resource as well by allowing the online algorithms more servers than the
offline algorithms. (Here we are following the lead of Manasse et al [ll].) The next theorem
also shows that our lower bounds are robust: strong (i.e., mc) lower bounds still hold even
when the player is allowed k servers and the adversary only 1. Below we implicitly assume
that k is much smaller than m, say &is o(mc) for any fixed e > 0.

Theorem 6. On-line algorithms with k servers can be no better than Q(m*k+l-i) com
petitive when compared to the 1-server optimal algorithm.

Proof: The proof depends on a hierarchy of epoch sizes [mai"|> ["m0f2l,..., [mafc], (given
largest to smallest) defined by the recurrence:

a,- = 2at+i + Qfc, ak = 2fc+1 _ x

or the closed form:
ok+i-i _ i

ai = 2*+1-l *
At the beginning of an epoch, the adversary is at an arbitrary location z\. (Thus the

adversary's strategy can be repeated for any number of epochs.) The adversary considers
all possible ways of extending the current request sequence Rt by fm*1] requests in the
arc [zi + toQi, zi + km°1]. If one of these (infinite number of) extensions causes the player
to vacate the arc (zi + kmQx, 21], then the adversary chooses this extension, followed by a
request at 21, and processes the sequence by leaving its server at Z\. This results in player
cost Q( m) whilethe adversary cost is only 0(m2ai), givingthe ratio claimedin the theorem.

On the other hand, if the player would maintain a server in (zi + kmQl,zi] for all
possible extensions, then the adversary divides the epoch into fl(m0l~°2) subepochs of
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duration |"ma2l each. The adversary starts the jth. subepoch with its server at location
zi -\- m01 + (j - D(A - l)m°2. In each subepoch, the adversary considers all extensions
of Rt by [m02] requests in an arc of length (A —. 2)m°2 starting mQ2 ahead of its server.
If the player fails to maintain a server behind the adversary's location, a final request at
that location forces the player's cost to fi(mai) while the adversary's cost is 0(ma2), thus
giving the ratio claimed in the theorem. If the player would maintain a server, then that
subepoch is further divided into subsubepochs of duration |mQ3l comprising requests in
subarcs of the subepoclrs arc. In the ?"th level of this recursion a subarc has the form
[z{ + maiiZi + (A —i +1 )ma*'], where the choices of Z{ are such that these subarcs are evenly
spaced within a subarc of level i —1. The recursion terminates with a case identical to the
single server proof of Section 3, since the player has A- 1 confined servers and hence only
one server free to process requests in the most deeply nested, zero-length subarc. •

9. The Offline Problem

In this section we give algorithms for the problem of computing offline an optimal sequence
of responses to a sequence of requests ri.r2,...,r„. For consistency our algorithms will
be for the directed circle, though they can be easily modified for the directed line seg
ment. Our algorithms are relatively slow, with a running time with an exponent of A.
Although standard A*-server problems have polynomial-time algorithms due to a reduction
to minimum-cost flow [5], the checkpointing problem is quite nonlinear due to forking and
excursions. We first consider the case A = 1.

Let C{(s) be the minimum cost of serving requests ri, r^ , rt- and leaving the server
at position s € [0,m). We have the recurrence

d(s) = miniC,--!^) + d(s,ri). CV-i(r.-) + d(r,-,a)},

where the first term corresponds to the option of leaving the server at s and serving the ith
request with the temporary server and the second term corresponds to the option of leaving
the server at r,- after the previous request and then moving to position s after serving the
7th request. Other possibilities, such as leaving a server at a position s' and then moving
from $' to r; to $, are dominated by these two options. A reasonable initial condition is
C0(s) = s.

Lemma 10. C,(s) is a continuous, piecewise-linearfunction with i+1 pieces and maximum
slope 1.

Proof: This statement is trivially true for Co(s), so assume that it holds inductively for
Ci-i(s). Then C,-_i(«) + d(s, rj has maximum slope 0, t pieces, and a discontinuity only at
5 = rt-. C,_i(r,) + d(ri,s) has slope identically 1 and is continuous with C,_i(<s) + d(s,ri)
at 5 = r,-. That is, C,-_i(s)+ d(s, rt) to the left of r,- and Cj_i(rt) + d(rt-, s) to the right of re
form a continuous function. Thus for exactly some nonempty interval to the right of rt-, the
minimumof CV_i(s) + d(s* r;) and C1_i(ri)+ d(r,-,s) will be achieved by C,-_i(r,-) + d(rt-, s).
So the lemma holds for C,-(s). •

Let p denote the number of distinct locations among r!,^,.. .,rn. Obviously p < n:
below we state our running times in terms of p rather than n as in many applications p «C n.
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We now show how to store the functions C;(s) implicitly in a complete binary tree T with
p + 1 leaves in which each node stores a linear function of s.

Lemma 11. The functions Ci(s) can be stored in a binary' tree data structure such that
the entire sequence of updates from Co(s) to Cn(s) takes time O(nlogp).

Proof: Each leaf of tree T corresponds to a minimal half-open interval [r,-, tj) between
request locations on [0,m). These intervals are sorted in left-to-right order across the tree.
Each internal node v in T corresponds to a half-open interval, segment(v), that is the union
of all segments corresponding to leaves in v's subtree. As in Bentley's segment tree [12], an
interval of [O.m) with endpoints at request locations corresponds to O(logm) basic nodes,
those nodes v such that segment(v) is contained in the interval but segment(parent(v)) is
not.

As usual, each node v of T stores its left and right endpoints, v.L and v.R, and its
midpoint v.M, that is, the right endpoint of its left child. Each node also stores a linear
function v.a • s + v.b. C,(s) is computed by summing the values of these functions on the
path from leaf s to the root. In addition, v stores v.LC. v.MC. and v.RC. the partial sums
up to v from, respectively, the leftmost, leaf, leftmost leaf in the right child subtree, and
rightmost leaf. Finally, r stores a boolean v.O that is true exactly when all linear functions
in v's subtree are identically 0. Initially all linear functions are identically 0. except at the
root of T which stores the function s.

Updating C,_i(s) to give C,(s) involves the following steps.

1. Compute C,_i(r,) by summing the values v.a • rf- -I- v.b for all v along the path from
leaf Ti to the root. Call this value C.

2. Add —s + r,- to the linear function at each basic node of [0,r,), and update v.LC,
v.MC, and v.RC for each v along the paths from these basic nodes to the root.

3. Add —s + m + rf- to the linear function at each basic node of [rt-, to), and update v.LC,
v.MC. and v.RC fields as above.

4. Compute the leaf interval containing the point z € [O.m) for which C + d{ri,z) =
Ci-i(s) + d(s,r{). Let z* be the right endpoint of this interval.

5. If z' € [rt-. m), then set all linear functions throughout the subtrees of the basic nodes
of [j*,-, z') to zero. Then set the linear functions at each basic node v of [ri,z') to be
such that the sum from v to the root is the function s —r,- + C. If z' 6 [0,n), then
follow the procedure above for the interval [r,-, m). In addition, zero all functions in
[O.r') and set the functions at each basic node v of [0,2') to be such that the sum
from the root to t> is s + m — r,- + C

Steps 4 and 5 above require further explanation. Step 4 can be accomplished by a binary
search for z. Let Cv(s) be the linear function that is the sum of the linear functions from
the root of T to v. Assume v is a node such that r, is not interior to segment(v). (One can
find all maximal nodes satisfying this condition in time O(logp).) Then z lies in segment(v)
if and only if Cv(v.L) + v.LC < C + d(n,v.L) and Cv(v.R) + v.RC > C + d(rt-,v.R). A
similar 0(1)-time test determines whether z lies to the left or right of midpoint v.M.
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We describe step 5 for the case z' 6 [rj.m). The other case is similar. First we search
for all nodes r with $egment(v) in [r,-, z') such that v.O is false. At these nodes, v.a and v.b
are set to zero, and v.O is set true. The settings of v.O along paths to the root must also
be updated. Then in a second phase, the linear functions at basic nodes v of [r,-, z') are set
to —Cv($)-rs- ri + C. Fields v.O must again be updated up to the root.

The time analysis for steps 1 to 4 follows from the usual logarithmic time bounds for
segment trees. The time spent in step 5 may be much larger than O(logp) for any given
step, but a bound of 0(nlogp) for all n steps 5 follows from the observation that the time
to zero fields in the segment tree is of the same order as the time to set those same fields.

Theorem 7. For A= 1. the offline problem can be solved in time 0(n logp). where p < n
is the number of distinct request locations.

Proof: We build the binary tree described above in time O(plogp). Then we process the
sequence of requests r1? r2,..., rn by updating the tree as in Lemma 11. While doing this, we
build a list zi, z^....,zn, giving the z (or z') values for each update. The optimal sequence
of server positions s\,$2,...,s„ occupied after requests ri,T2,...,r„ is then computed in
reverse order. The minimum value of C„(s) is necessarily achieved at sn = r„; this is the
optimal cost of handling requests ri,r2,...,r„. If sn lies in the wrapped-around interval
[r„_i. sn_i). then the last motion of the server is a movefrom rn_i to r„. and sn_i = r„_i. If
sn lies in [sn_i, rn-i)> then rn„i should be servedwith an excursion from s„, and sn_i = sn-
Similarly, if s„-i € [zn-2-. rn-2)* then rn_i is also served with an excursion. In this way we
recover the optimal sequence of server moves. •

We now give a theorem for the case of more than one server. We present a straight
forward algorithm, though we expect that a single factor of O(p) in the running time can
be replaced by O(logp) using a suitable multi-dimensional data structure. The follow
ing technical lemma hmits the number of cases we must consider in the general dynamic
programming algorithm.

Lemma 12. An optimal sequence ofmoves for requests ri,..., rn can be rearranged into
an optimal sequence that uses only moves of the following form: server i closest to the
request is moved 0 or more distance towards the request, the temporary server serves the
request from distance 0 orgreater, and 0 ormoreother serversare forked to occupy locations
traversed by i or the temporary server.

Proof: Assume we have an optimal sequence of moves in which server i and server j both
make smooth (that is, nonforking) motion in response to a request r/. Assume that server
i or the temporary leaving from a position occupied by server i is the server that actually
serves r/. Then, without increasing the cost of the sequence of moves, we may delay the
motion of j until the first request served by one of the following: j itself, a server forked to
a position occupied by j, or the temporary server launched from a position occupied by j.
m

Theorem 8. Forfixed A> 2, the offline problem can be solved in time 0(npk).

Proof: Let Ci(s\,S2,...,Sk) be the minimum cost of serving requests ri, T2, •..,r,- and
leaving servers at locations s\ < 62 < ... < $k> Let Ci(si,$2,...,si,*), with / < A,
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denote the minimum cost of serving requests ri, r2 r,- and leaving servers at locations
*i < ^2 < • ••<*/ and any other A —/ locations. Note Ci(s\,.. .,sk, *) = C,-($i. sk).
We have the recurrence

Ci(si .St) = rnin{ C,_i($i,.. .,Sj_i, r,-. sJ+1,... ,sk) +d(r,-, Sj),
min{Ct-_i($i,...,sh,$j,...,sk,*) +d(sh,r,)} },

where j is such that sj-i < r,- < Sj. The first part of the minimization above corresponds
to the option of leaving a server at r,- and then moving it without forks to Sj. The second
part corresponds to serving request r,- with a temporary server from location Sh while
forking processors to occupy positions .s/,+i Sj-i- By Lemma 12, other possibilities are
dominated by these two options. Let 5 denote an ordered sequence of k request locations
in [0, to). We also have the recurrence

C,($i,.. .,$i,*) = min{C,(5) | (*i,...,«() is a subsequence of 5},

and the initial condition

Ci(s1,...,si,*) = sl.

We store the values of C,-($i,. ..,«/.*) in a sequence of k arrays, Ai, A2,...,Ak. Array
Aj is a j-dimensional array storing all values of C,(si,..., Sj. *). Since Ais assumed fixed,
indexing into this sequence of arrays and updating an entry takes time O(l).

Array Ak is updated using the first recurrence given above. When Ci(si,...,Sk) is
changed, 2* (which is O(l)) entries in arrays .4i, -Ajt-i must also be updated. This
procedure implicitly implements the second recurrence. Altogether we obtain time 0(npk)
for computing Cn{s\, sk). As in the algorithm for A= 1, the optimal sequence of moves
can be reconstructed by maintaining a record of all minimizing choices. •

10. Conclusions

We have explored adaptive onhne schemes for locating checkpoints. To do so we introduced
a server problem that includes several nonstandard features: a fixed cost per request, one
way motion, excursions, and forking. Including the fixed cost enabled us to differentiate
algorithms that would otherwise have simply been declared noncompetitive. One-way mo
tion and excursions taken together raise the optimal competitiveness from k (the number
of servers [5,11]) to about to1/3, where to is in effect the size of the playing field. Forking
further raises this bound to about to1/2. A number of interesting open problems remain:

• Does there exist an 0(TO1/3)-competitive algorithm forlocating checkpoints in the case
A= 2? (This question raises the important issue of whether forking is of any use to
the player. For A= 2, we can prove a lower bound of ^(m1/2) on the competitiveness
of any onhne algorithm that does not fork.)

• Except, for A = 2, our upper and lower bounds match in their dependence on the
dominant factor to. There remain, however, constant gaps and gaps depending on A.
Can these be closed?
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• What happens to our bounds if we disallow excursions? That is, memory is now
assumed homogeneous.

• What is the effect of allowing forking on other server problems?

For some problems, most notably accessing a linear list, competitive analysis seems to
give ~the right answer"—that is, it leads to an algorithm that arguably dominates all others.
For the checkpointing problem, the situation is less clear. We believe that competitive
analysis has demonstrated the utility of an initially rapid, then increasingly slow, approach
to a repeated request location. We also think that it has invalidated some initially attractive
algorithms, such as one that always moves halfway towards a request. On the other hand,
due to its emphasis on worst-case sequences, competitive analysis may have led us to overly
conservative algorithms. In practice one would probably want to move a checkpoint closer
than the distance (km)1/2 prescribed by Holdback.

In fact the choice of a practical algorithm, whether Holdback, Two-Phase (which is
slightly more aggressive), or something else, should depend on how "adversariaF are the
expected request sequences. Li apphcations such as debugging or physical simulation, there
may be a small number of "hot spots?1 and users may often step backwards in time. In such
situations request sequences may indeed appear quite adversarial.

It would be interesting to investigate the checkpoint location problem using other styles
of analysis, such as probabilistic analysis assuming random (possibly correlated) requests.
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