Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE DESIGN OF A POLICY-FREE,
PARALLEL CORE FOR GRAPHICAL
USER INTERFACE TOOLKITS

by

Joseph A. Konstan and Lawrence A. Rowe

Memorandum No. UCB/ERL M91/111

12 December 1991

THE DESIGN OF A POLICY-FREE,
PARALLEL CORE FOR GRAPHICAL
USER INTERFACE TOOLKITS

by

Joseph A. Konstan and Lawrence A. Rowe

Memorandum No. UCB/ERL M91/111

12 December 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

THE DESIGN OF A POLICY-FREE,
PARALLEL CORE FOR GRAPHICAL
USER INTERFACE TOOLKITS

by

Joseph A. Konstan and Lawrence A. Rowe

Memorandum No. UCB/ERL M91/111

12 December 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

The Design of a Policy-Free, Parallel Core
for Graphical User Interface Toolkits'

Joseph A. Konstan and Lawrence A. Rowe
Computer Science Division
University of California
Berkeley, California 94720

konstan@cs.berkeley.edu and rowe@cs.berkeley.edu

Abstract

This paper presents a design for an event-processing core to
be used for constructing user interface toolkits. This core is
designed to support concurrent execution on shared-mem-
ory multiprocessors and provides support for traditional
event dispatching, geometry management, data propagation,
modal event processing, form behaviors, and interprocess
communication. The core is policy-free, allowing the toolkit
designer to set both the programmer interface and the toolkit
policies while benefiting from concurrent execution.

Keywords

User Interface Toolkits, Parallel Processing, Data Propaga-
tion, Geometry Management, Inter-Application Communi-
cation, Event Processing

Introduction
Building graphical user interface toolkits is hard.

This paper presents the design of a toolkit core that provides
support for many of the more difficult parts of toolkit con-
struction. This design is presently being implemented and
we will soon proceed to build a graphical user interface tool-
kit using it. The rest of this section discusses the difficulties
facing toolkit writers and the solutions we plan to offer
them.

Graphical user interfaces, by their nature, must be high-per-
formance. As the complexity of interfaces increases with
greater use of larger displays and color and the inclusion of
multimedia data, it is becoming even more essential to attain
high performance to provide a responsive interface. Shared
memory multiprocessors are now available for desktop
workstations and we expect them to become even more eco-
nomical in the coming years. Programming in parallel is dif-
ficult, however, and introduces potential race conditions and
deadlocks that render an application useless or harmful. Our
first goal, therefore, is to provide a core for toolkits that does
not require the toolkit-writer to write parallel code to reap

*This research was supported by the National Science Foundation
(grants DCR-85-07256 and MIP-90-14940). Joseph Konstan was
also supported by a National Defense Science and Engineering
Graduate Fellowship granted through DARPA.

the benetits of concurrency.

Within toolkits, one of the more complicated features to
implement is the layout and sizing of windows within a par-
ent. This problem, known as geometry management,
becomes more difficult to solve as new display types are
created (e.g., video that can only be displayed in certain
sized windows). Geometry management is primarily a
problem in communication among the windows being man-
aged and the agent allocating space among them. The
geometry management policies are neatly isolated within
the algorithms defined by this agent. Our second goal is to
provide complete support for implementing any policy of
geometry management by providing abstractions for com-
munication between windows and geometry management
agents.

Graphical applications tend to display multiple views upon
data. A major part of writing such applications is ensuring a
consistent display of data. In addition, many applications
use values that are computed from other data in the applica-
tion (such as graphics that are computed from a list of
objects). Both of these types of data management can be
more easily handled using a system of data propagation.
Our third goal, therefore, is to provide a data propagation
and constraint system that can be used both for building
toolkits and for building applications on top of toolkits.

Many toolkit applications have a sequential feel because the
toolkit is unable to process any additional events when a
dialog window is active. This leads to a particularly bad
interface when the dialog is prompting for information
which should be derived from the other windows (e.g., a
dialog in a mail program asking for the recipient often does
not allow the user to view the incoming mail to search for
the recipient’s address). While some of these cases are a
result of poor application design, many more are due to the
difficulty in implementing partial modes (states where only
certain operations are valid) in the underlying toolkit. Our
fourth goal, therefore, is to provide support for a model of
event processing that simplifies specifying and implement-
ing these partial modes.

Computer applications were at one time visually based on
the paper forms they were meant to replace. Even many of
the earliest full-screen applications supported form behav-
iors including focusing keyboard input and support for tab-
bing among fields. More recent mouse-based applications
have often sacrificed this form of interaction for the simpler

“type at the mouse” protocol. Many users express a prefer-
ence for form-like applications because they can use the
application without moving their hands from the keyboard.
Indeed, many popular applications have extended form
behaviors to support keyboard selection among menus and
buttons. Since this is the case, our fifth goal is to provide an
event processor that supports form behaviors.

Graphical programs share resources and often data. Even at
the simplest level, two different programs compete for
screen space and for colors (on color-mapped displays). Bet-
ter coordinated applications may recognize that they are dis-
playing the same data or that they are sharing window
system resources. At present, there is very little communica-
tion among applications. Our final goal, therefore, is to sup-
port communication between applications.

The next section presents a model of event processing that
the foundation on which these features are implemented. We
then discuss our design for using event processing to satisfy
each of these goals. Finally, we discuss related work and our
plans to implement this design.

Event Processing

The core of most graphical user interfaces is an event pro-
cessing loop. At its simplest, this loop reduces to:

event ev;

while (true) {ev = get-next-event();

dispatch(ev); }

In most toolkits, the dispatch involves looking up the win-
dow in which an event occurred and the type of event (e.g.,
button click or control-key press) and calling the appropriate
handler procedure. When windows are created, they register

handlers for the events they want to receive. In general,
events that are ignored by a window can be handled by a
parent window instead. Some toolkits provide additional
event types (such as timer events or program-generated
events) which are similarly dispatched to windows.

We propose to extend this model of event processing to
incorporate an extensible event type and a wider range of
event recipients. The remainder of this section describes
this event processing model in more detail.

It is convenient to break a user-interface system into three
parts: event generators, event consumers, and the event pro-
cessor. Event generators include window system servers,
software and hardware timers and signals, database alerters,
equipment monitors and alarms, and any other software or
hardware that can generate asynchronous requests. Event
consumers include windows (and toolkit widgets), data
variables (that respond to database requests), and process-
ing agents (e.g., redraw processor). Many entities in a tool-
kit are both generators and consumers (e.g., a window may
be an event generator when it signals a geometry manage-
ment request to change size and a consumer when process-
ing the requests of its child windows). The role of the event
processor is to collect events from the generators and dis-
patch them to the consumers.

Figure 1 illustrates the architecture of a user interface sys-
tem. Queues of events connect the event generators with the
processor and the processor with the consumers. In
between, event processing includes determining the recipi-
ents of each event (this architecture allows for broadcast
events as well as single and multiple recipient events),
event consolidation (distributing multiple events as a single

Event Consumers

Event
Queues

o Editor Window

ol Data Handler

.g¢ Redraw Processor

00O
o

Event
Processor

Events generated by consumers

Event Generators

Event
Queues

X Window Server

Equipment Monitor

Timers

e,
v,
o,
N oes,
e,
oo,
o,
o,

-Q
o]
o

00O

Rocesvessencasenesd

Figure 1. Event Processing Model

composite event), and synchronization and control. This
processing is table driven and new event types and dispatch
rules can be added at any time,

The illustration also shows a process architecture not com-
monly used for user interface applications. By defining a
separate redraw processor, a toolkit can assure that simple
redraw operations (where no data has changed, e.g., when a
window is exposed because an occluding window is moved)
can be processed by a single redraw handler rather than indi-
vidually by each window. This redraw handler, which must
have access to a copy of the desired image, can more effi-
ciently repaint screen regions that overlap several windows.
Similarly, a single data handler can assure that all data
change operations occur atomically. If several displayed
objects change in response to a change in data, this data han-
dler can assure that they are displayed with either all the old
values or all the new values. Current systems, such as Tk
[9], implement this type of transaction system by delaying in
hopes of receiving all data changes before redrawing the
display. The data handler approach allows explicit transac-
tion control events to be processed.

This general design does not address issues of event priority
or order of processing. These decisions are deliberately left
open to the toolkit writer. When defining event types, the
toolkit designer may specify any processing style desired
(including looking ahead for other related events). The rela-
tive priorities of different event types is also specified by the
designer.

This event processing model is a configurable, extensible
abstraction for communicating among parts of an applica-
tion. The next section describes how this architecture is
implemented on a parallel processor. The following sections
show how it is used to implement geometry management,
data propagation, partial modes, form behaviors, and inter-
application communication.

Deriving Parallelism from Event Processing

The event processing model shown in figure 1 consists of an
event processor that receives events from various event gen-
erators and dispatches them to various event consumers. This
model can be implemented to allow for the concurrent exe-
cution of the event generators, the event processor itself, and
the event consumers with synchronization being handled by
the event system.

At the simplest level it is easy to find concurrency in any
event-based system. Each event generator can (and probably
should) run in parallel since blocks in a single event genera-
tor should not prevent other events from being processed.
Sequentiality could be re-established at the event processor
by carefully reading the event queues in an appropriate
order (perhaps via timestamp). The asynchronous nature of
event generation assures, however, that any nondeterminacy
across different event queues could have occurred in a
sequential system as well.

While concurrent event generators are simple, they do not
yield a large performance gain. In typical user interface
applications, the packaging of events consumes only a tiny
fraction of the time spent processing the events and the hard
work involved in event generation is performed in separate
processes (e.g., the window, database, or equipment server).

We expect event packaging overhead to remain small and
therefore assert that for parallel implementations to yield
substantial performance benefits there must be parallelism
in the event consumers.

In many applications the potential parallelism is obvious.
An application with multiple windows (accessing different
data) can easily process events in different windows in par-
allel. Requests to repaint windows, as mentioned above,
can also be handled in parallel with other operations. The
limits of such parallelism are not nearly as obvious. A sim-
ple example where concurrent execution is wrong involves
dialog boxes. Most toolkit designers wish to impose modal-
ity with dialog boxes and therefore must prevent other win-
dows from receiving and processing some events while the
dialog is active. Whether the scope of the dialog is an entire
application or the window from which it was called (or
some other scope) is left, or course, to the toolkit designer.

This issue is addressed by allowing event consumers to be
executed in parallel while providing the toolkit designer
with ways to limit that concurrency. One way of limiting
concurrency is the synchronization event. This event is
intended to be dispatched to several consumers at once. It
may contain other events that indicate the actions to be
taken when processing (including wait for another synchro-
nization event). The dispatcher guarantees that no con-
sumer will receive the synchronization event until all are
ready to process it and that no consumer being synchro-
nized will receive another event until it has processed the
synchronization event, An example of using a synchroniza-
tion event might be changing a major mode in an applica-
tion. It is important that all parts of the application change
the mode at the same time to ensure that the user perceives
a single mode change and that user inputs are consistently
interpreted.

Another form of controlling concurrency involves changing
the event dispatch tables. The event processor is table
driven and therefore can be instructed to change its dis-
patching strategy by providing an alternate dispatch table.
A modal menu or dialog box might provide a dispatch table
that redirects all user inputs to itself. An application moni-
tor might provide a dispatch table that directs a copy of
each event to a log and another copy to the usual recipient.
Since the timing of swapping dispatch tables is critical, it
becomes essential for the event processor to act as an event
recipient as well. It can receive synchronization events
which it uses to control the timing of event dispatch table
changes.

The remaining concurrency control primitives involve
locks and interprocess communications. We plan to provide
both simple locks and higher level mailboxes (in the spirit
of SPUR Lisp [19)) to support other synchronization.

Geometry Management

Geometry management is the assignment of positions and
sizes to windows within an application. Most toolkits have
accepted the idea that windows should only make requests
for sizes and locations and that a higher-level window (or
its agent, a geometry manager) should be responsible for
the actual layout. This process is generally recursive with
the higher-level window requesting a new space allocation

for itself from above.
Geometry management can be divided into two parts: layout
algorithms and window requests. Window requests specify
the desired size and location for a window, acceptable size
ranges and ratios, and layout-specific requests such as being
placed to one side of another window or being arranged
before another window. For example, a text window might
request that its height be a multiple of its font height (for a
whole number of lines) while a video window might need to
be exactly 640 by 480 pixels because of hardware con-
straints.
Layout algorithms compute a layout given the present lay-
out of a window (if any), the size of the window, and the
requests from all subwindows. Many layout strategies have
been used in graphical toolkits including perpendicular
packing around a cavity (e.g., Tk), “rubber sheet” layout,
boxes and glue layout (e.g., Interviews [6]), matrix layout,
stack layout (e.g., for icon palates), and edge-displacement/
stretch constraints (e.g., Picasso [15] and Next [8]). Even
layouts that look identical may behave differently when
resized. For instance, figure 2 shows how two geometry
managers might resize subwindows when the main window
is enlarged. The rubber sheet geometry manager expands
each window equally (as if the windows were literally
stretched on a rubber sheet) while the cavity pack geometry
manager maximizes the amount of space allocated to the
main window.
The toolkit core provides a geometry management support
system that allows any layout algorithm to be supported.
Indeed, although the examples assume that parent windows
are responsible for managing their children, we intend to
support systems where children have control of their own
sizes and locations or where the geometry management hier-
archy is separate from the window tree.
There are three essential features in this geometry manage-
ment support system.

» Each window being managed must com-

pletely specify a request that is independent
of its present location or size
» Each layout algorithm is broken into at least

two components--one that makes a request

for size to the parent and one that lays out the

children given the window’s size allocation.

« The geometry management processing is per-

formed in a tree-walk fashion that guarantees

that each layout is performed the minimum

number of times.
The rest of this section describes these three features in
detail and describes the process of implementing specific
geometry management policies on top of this support sys-
tem,
The proposed system defines a behavior for manageable
objects. These manageable objects have the property that
they request space in a parent window. All manageable
objects request space in the same way so that they can be
managed by whichever layout algorithm the specific appli-
cation writer deems appropriate. This request includes spe-
cific requests for a location (which may be Ileft
unspecified), a desired size, functions to compute accept-
able sizes and locations, and algorithm-specific data. These
request items are sufficient to provide all the information a
layout algorithm needs to correctly position and size the
window.

Layout behavior is defined in an object called a geometry
manager. This geometry manager includes the algorithms
needed to perform layout operations--one that calculates a
size request and one that assigns sizes and positions to the
windows it manages--and the data structures that the algo-
Simple, event-based communication occurs between the
geometry manager and the manageable windows. The
geometry managers accept events such as “hello” from a
new child, “request changed” from a child, and “size
changed” from a parent while generating “request changed”

)

Original Layout

____/

0

J000

s

el

U000

J

\

000C

Rubber Sheet T Cavity Pack

Figure 2. Examples of Different Geometry Management Layout Algorithms

messages for its parent geometry manager. The children
generate “request changed,” “hello,” and “goodbye” mes-
sages while accepting “size changed” messages from the
parent geometry manager. The toolkit core provides transla-
tions between these events and specified functions and
actions so a window that changes its request automatically
generates the appropriate event. Similarly, “request
changed” events are translated into calls on the layout rou-
tines in the geometry manager.

The final feature of this geometry management support sys-
tem is a tree-walk evaluation system that guarantees a mini-
mum amount of layout computation. At geometry
management time--typically when the user should notice
any changes--if any geometry management events are pend-
ing then the geometry management process is performed in
two steps. First, working from the leaves of the window tree
towards the root, each geometry manager that has pending
events calculates the size it wishes to request from its parent.
Second, starting from the root down to the leaves, each
geometry manager that has either a new size or has new
events performs a layout of its children. Since this process
works down the tree, each geometry manager is assured of
receiving any response to its new request before performing
the layout. In addition, this evaluation order creates a great
deal of concurrency since siblings can be processed in paral-
lel in each phase.

A prototype geometry management system based on an ear-
lier version of these concepts was implemented in the Pic-
asso system. Our experiences with that systems showed that
geometry managers were quite easy to define (since only
two functions needed to be specified) but they were not easy
to refine or to optimize. This earlier system lacked the eval-
uation ordering, which accounts for much of the perfor-
mance problem, but there are still cases where incremental
performance tuning is desirable. As a result, we also will
provide event-processing hooks for the geometry managers
that permit the identification of low-computation cases (e.g.,
size change with no child changes, only one child changed,
etc.). These special-purpose algorithms can be used when-
ever the event queue for a geometry manager satisfies a par-
ticular predicate.

In practice, then, writing a geometry manager involves spec-
ifying two algorithms and observing the quality and speed
of the layout. The geometry manager can be optimized by
adding caches or special-purpose algorithms for common
cases. Throughout this process, the windows being managed
need not change at all, since their communication is via a
specified common protocol. The support system will pro-
vide processing that takes advantage of the parallelism
inherent in a window tree with localized dependencies.

Data Propagation

Data propagation is the process of assuring that changes in
data values are reflected in both the displays of those values
and other related values. For example, in an application that
displays shapes both graphically and textually (e.g., by
showing their location and size numerically), a user action
that changes the width of a shape (either numerically or
graphically) should cause the other display to change and
should change the underlying shape representation. While a

few user interface toolkits (including Garnet [3][7], Grow
[1], and Picasso[15]) have implemented data propagation
systems, these systems are hard to implement and are there-
fore missing from most toolkits.

The support for data propagation must be defined at three
levels. First, there is the definition of the propagation rules
themselves (including what data changes trigger propaga-
tion and what values should be updated). Second, there is
the mechanism for identifying that a data value has
changed. Third, there is an internal system for actually
propagating the data changes.

The definition of propagation rules is a problem that should
be left to the toolkit designer. Each toolkit will have a dif-
ferent concept of the proper role of propagation. Some will
choose to use it only for internal implementations of such
data consistencies as synchronizing a scroll bar with the
region it scrolls. Others will provide it only as an external
resource for user applications. Many, we hope, will use it in
both ways. In a the Picasso propagation system written in
Common Lisp [18], propagations are defined using syntax
similar to the Lisp set £ and let special forms. The prop-
agation system is by application programs and to imple-
ment the application framework (e.g., for parameter passing
and some inter-window communications) [5].

The identification of changed data values is a programming
language specific problem. We intend to provide appropri-
ate mechanisms for each language as we provide the toolkit
core. For Common Lisp, the language for our first proto-
type, we have chosen to define propagating values as slots
in Common Lisp Object System objects {4]. CLOS pro-
vides efficient ways detect the change of a slot and to take
actions based on that change. For other languages we might
find it necessary to use a data-value setting function similar
to that used in Garnet (which is written in Lisp but does not
use CLOS objects). For each language, it will be clear how
to change a data value so as to trigger propagation and how
to change a data value clandestinely (a feature occasionally
needed by toolkit implementers).

The internal propagation system itself will be event-based.
Indeed, data changes will generate events and a data propa-
gation processor will handle these events in a transactional
fashion. This evaluation mechanism will prevent loops
(which are not adequately prevented in Picasso) and can
lead to more efficient data updates. Since this handler is
provided in the base system, toolkit implementers need not
worry about synchronizing data propagation with other
parts of the toolkit--that will be taken care of by the base
system. In addition, while the actual data updates must be
executed as a critical section, the precomputation of data
changes can be done in parallel.

The toolkit implementer, therefore, can use data propaga-
tions directly merely by making calls on this part of the
toolkit core. The propagation system can be made available
to application writers by defining a syntax appropriate for
propagation rules. To simplify this task, we will provide a
simple syntax for each programming language. The propa-
gation system exploits concurrency by precomputing data
changes in parallel with other execution but maintains cor-
rectmess by locking out other activity when actually per-
forming the updates.

Handling Modality

The power of window-based applications is the flexibility
they offer users. Users are normally permitted to select oper-
ations and perform them in an order of their own choosing,
Certain operations are inherently modal (e.g., menu opera-
tions), however, and others require immediate attention
(e.g., dialogs and alerters) and therefore impose some
modality by locking out other operations. User interface
toolkits generally provide a separate event handler for han-
dling menus and dialogs that only accept certain events
(namely those that the menu or dialog can use) and reject
any others either silently or with a warning bell or flash. In
the extreme, other windows are not even allowed to repaint
their contents until the user has finished a modal action
(though fortunately many toolkits and applications explic-
itly allow repaint events to be processed). We believe that
this type of all-or-nothing event processing is inadequate for
many applications. This section describes a system to better
support modal interactions.

The essence of the modality problem is captured by the con-
firmation request dialog box. This dialog, which is asking a
user to confirm an operation before continuing, clearly must
prevent further conflicting operations from being performed
until the user replies. For instance, if the user is asked to
confirm an irreversible operation on an editor, it is clear that
the user should not be allowed to further edit until that oper-
ation is completed or aborted.

The conventional solution is to direct all events to the dialog
which can then ignore the events unrelated to its own opera-
tion. This solution solves the immediate problem but does
not allow the user to continue to work in other windows, to
see the entire contents of the window affected by the opera-
tion, or even to consult the help system to learn about the
operation being confirmed! Ignoring all unrelated events is
clearly a poor design. To help solve this we will support dia-
logs and other modal interactors that can specify changes in
the event dispatch tables, and accordingly be able to handle
or discard certain events while allowing others to be dis-
patched normaily.

These changes can be systematically implemented using
two levels of dispatch override. At the coarse level, events
of specified types can be delayed, handled, or discarded for
a top-level window and all of its descendents. At the fine
level, a specific event for any window can be delayed, han-
dled, or discarded. In practice, we expect the coarse granu-
larity to suffice for most applications (since most dialogs
and other modal interactors lock out entire windows) and
the fine granularity to be used when a modal interaction
merely is temporarily disabling a single control or widget.
Since the event types are specified as well, dialogs can per-
mit repainting (and perhaps even asynchronous data
updates) while restricting other operations.

The implementation of modality support is accomplished
using the event system. Dialogs, menus, and other modal
interactors can create alternate event-dispatch tables that
reside in the event processor. The dialog, for instance, then
sends an event to the dispatcher that activates the alternate
table(s) when it is called and one that deactivates them when
it retums. To combine this with window-system actions
(such as grabbing a mouse), the dialog can send a synchro-

nized event pair to the event processor and the window sys-
tem. The event processor is responsible for maintaining the
integrity of the dispatch tables and only allows modifica-
tions of the types listed above.

The toolkit writer, then, can provide any semantics for
which actions are disallowed by a particular dialog or
menu, or he can design a toolkit that leaves the decision to
the application writer. In either case, the toolkit no longer
requires custom event loops or other irregularities that con-
strain its function and complicate its design. In addition,
activities not affected by the modality can continue to exe-

cute in parallel.

Form Behaviors

Form behaviors, including tabbing among fields and direct-
ing keyboard input to the currently selected field, are valu-
able for designing high-quality user interfaces. At the same
time, these form behaviors are often difficult to implement
because toolkits pass through the event processing structure
of the window system rather than defining abstractions that
are appropriate for applications. Since form behaviors are
naturally supported in the event processor, we believe thata
toolkit core should provide them to the toolkit writer.

There are many ways of implementing form behaviors.
Widgets could be modified to recognize focus and tabbing
characters. Higher-level windows could intercept all events
and redispatch them to the appropriate child. We reject both
of these techniques because they impose too great a burden
on the toolkit writer. Instead, we believe that form behav-
iors should be implemented by providing event dispatching
semantics that allow an event to be offered to several win-
dows in succession until the appropriate recipient accepts it.
Specifically, we propose an event dispatching system
where a list of windows can request any specific event.
When the event comes in, the highest level (most removed
from the window to which the event is directed) window is
offered the event. It can process the event, discard it, or
allow it to be passed on. In processing an event, a window
can also redispatch it to another window for handling.

This dispatch system is similar to method combination in
CLOS (using the least-specific-first combination type). It is
particularly useful for implementing control-keys that per-
form actions far removed from the input window. This sys-
tem is similar to the event model in the Andrew Toolkit
[11), though we propose to follow the window tree for
event dispatching rather than create a different tree struc-
ture. The benefits Andrew derives from that separate struc-
ture (e.g., allowing a scroll bar to receive events for the
window it scrolls) can be achieved by having controls reg-
ister for events through the nearest common ancestor.
Because of the performance-critical nature of event dis-
patching, these operations must be efficient. Accordingly,
we will cache the list of handlers to be offered each event
(which will typically be just one handler) and plan to pro-
vide opportunities for handlers to declare their intent with
specific events.

In keeping with the nature of this toolkit core, no policy
decisions are implemented in this form support system.
Indeed, it might well be that this support is used solely for
key shortcuts and not for field focus or tabbing at all. We

are already examining other models of interaction that are
more easily implemented using event distribution lists (par-
ticularly hypermedia [2]). And, of course, since the support
is based on event dispatching any use will benefit from the
general concurrency and synchronization of the toolkit.

Inter-Application Communication

The best-used innovation provided by windowing systems is
the opportunity for a user to run multiple applications on the
same screen. This power should lead to a large number of
smaller specialized applications just as the Unix shell led to
specialized data filters. At present, the obstacle to this pro-
gression is a lack of communication among applications,

Current window systems and toolkits support very limited
inter-application communication. Most window systems
support a clipboard or cut buffer that can be shared between
applications (e.g., the Macintosh Toolbox [13] or the X
Window System [17]). Apple has further specified inter-
application communications with a publish and subscribe
mechanism in System 7 for the Macintosh [16]. The Tk
toolkit uses the Tcl [10] send mechanism to implement a
form of remote procedure call using the X window server to
pass messages. While this mechanism is powerful, it
requires defining an extensive interface to applications via
the Tcl language. We plan instead to extend the event sys-
tem to support inter-application events. These events could
be used for both communications and synchronization.

We divide inter-application communication into several cat-
egories. First, we distinguish between applications running
on the same machine in the same toolkit and those running
on different machines or in different toolkits. Second, we
distinguish between low-level communications (including
data propagation and synchronization) and higher-level
communications (the content of which is defined by the
toolkit or application writer).

Applications running on the same machine in the same tool-
kit can be run under a single event processor. The toolkit
core we have proposed easily allows the event processor to
handle messages from sockets (or other input channels) and
use these to spawn new event consumers and producers. For
this case, all communication is provided through the shared
€vent processor.

Applications which cannot share an event processor still
communicate using events, The event dispatcher can have
non-local entries in the dispatch table (which will be set up
by the applications that want to communicate). All commu-
nication is in the form of events passed from one dispatcher
to another (the form and medium of transport is immaterial).
Indeed, a protocol should be defined to pass events between
the event processors of different programming language
implementations of the toolkit core.

Many of these events will be routine. Data propagation
events, for instance, can be sent to share data updates
between applications. For practical purposes, these can be
sent in a synchronized or non-synchronized fashion. Syn-
chronization is performed using two-phase synchronization
events among the affected event processors (with the initia-
tor being in control). Higher-level events will be sent to
advertised handler names and can contain any meaningful
data that can be passed between machines (i.e., no memory

pointers).

'We recognize that no toolkit can, by merely providing sup-
port for inter-application communication, induce a major
change towards cooperating applications. The key problem
is that existing applications and new applications written in
other toolkits cannot take advantage of these features. To
help overcome this obstacle, we plan to include a transla-
tion option for non-local events. This will allow outgoing
events to be translated to formats used by other systems and
incoming events to be received from other systems to be
converted to our format. While this is still no panacea
(since few systems have any such communication ability)
we expect this translation feature to become more useful in
the future and to serve as a model for programming-lan-
guage independent events.

Status and Plans for Future Work

Many of the ideas presented in this paper are extensions of
ideas prototyped in the Picasso toolkit and application
framework. Specifically, Picasso has a rather extensive
implementation of data propagation and a high-function
though low-performance version of geometry management.
Part of the motivation behind this proposal is the difficulty
we faced developing Picasso and the desire to attain better
performance by incorporating parallelism in the core. We
also found that we were regularly extending our event pro-
cessor to handle new event types (most notably messages
from equipment monitors [14]) and special dispatching sit-
uvations (for dialogs and menus). :

Other researchers have faced these same issues. Data prop-
agation (in the form of a constraint network) is an integral
part of the Gamet toolkit. The Andrew toolkit implemented
tree-dispatched events to handle form-related behaviors.
The X Toolkit [12] specifies that geometry managers
should be defined for different layout strategies and the Tk
toolkit supports interprocess communication through send-
ing Tcl commands. Each of these implementations is some-
what successful, but each is implemented in its own way,
and none of these features can be easily made to work
together.

We are proposing, therefore, to start at a very low level. We
are building this toolkit core starting with abstractions for
event processing in a paralle! environment (which we also
plan to implement using threads on a uniprocessor). We
will then add the abstractions for data propagation and
geometry management and build a small toolkit on top of
this to tune the core. Finally, we will add in the more
advanced event-processing features for modal interaction,
form behaviors, and interprocess communication. Along
the way, we will continue to develop a toolkit on top of the
core, and expect it to serve not only for writing programs
but also as a model for other toolkit writers using this core.

Our initial implementation will be in Common Lisp both
because of out experience developing user interface sys-
tems in that environment and because of the support the
Common Lisp Object System provides. Once this initial
version is complete we will examine the results to deter-
mine whether a C++ version is appropriate.

Acknowledgments

We would like to thank many people without whose support
this work would not be possible. We especially thank the
entire Picasso development group and our initial users for
feedback on these ideas and insights into implementing
them. We'd specifically like to that Brian Smith who not
only designed much of Picasso but also has been an invalu-
able source of advice on future research directions in user
interface toolkits. Finally, we'd like to thank John Ouster-
hout, who designed the sX and Tk systems for his input and
added perspective.

References

{11 P.S.Barth, “An Object-Oriented Approach to Graph-
ical Interfaces”, ACM Transactions on Graphics, 5, 2,
April 1986.

[2] B.S. Becker and L. A. Rowe, “HIP: A Hypermedia
Extension of the PICASSO Application Framework”,
to appear in Proc. NIST Advanced Information Inter-
Jaces: Making Data Accessible 1991.

[31 D.Giuse, “KR: Constraint-Based Knowledge Repre-
sentation” in The Garnet Toolkit Reference Manuals:
Support for Highly-Interactive, Graphical User Inter-
faces in Lisp (B. Myers et. al., ed.). CMU Technical
Report CS-90-117, March 1990. -

[4]1 S.Keene, Object-Oriented Programming in Common
Lisp, Addison-Wesley, 1988.

[5] J.A.KonstanandL. A, Rowe, “Developing a GUIDE
Using Object-Oriented Programming”, Proc. OOP-
SLA ‘91, Phoenix, AZ, Oct. 1991.

[6] M. A.Linton, “Composing User Interfaces with Inter-
Views”, IEEE Computer, Feb. 1989.

[71 B. Myers, et. al., The Garnet Toolkit Reference Man-
uals: Support for Highly Interactive, Graphical User
Interfaces in Lisp, Technical Report CMU-CS-89-
196, Pittsburgh, PA, Nov. 1989,

[8] Next Corporation.

[91 J. K. Ousterhout, “An X11 Toolkit Based on the Tcl

Language”, USENIX Conference Proceedings, Win-

ter 1991,

J. K. Ousterhout, “Tcl: An Embeddable Command

Language”, USENIX Conference Proceedings, Win-

ter 1990.

[(11] A. Palay, et. al., The Andrew Toolkit--An Overview,

Information Technology Center, Carnegie-Mellon

University, Pittsburgh, PA.

R.Rao and S. Wallace, “The X Toolkit: The Standard

Toolkit for X Version 11", USENIX Conference Pro-

ceedings, Summer 1987.)

C. Rose, et. al., Inside Macintosh, Addison-Wesley,

Reading Mass., 1988.

L. A. Rowe, et. al., Berkeley IC-CIM Research (vid-

eotape), University of California, Berkeley, August

1991,

L. A.Rowe, J. A. Konstan, et. al. “This Picasso Ap-

plication Framework”, Proc. UIST ‘91, Hilton Head,

S.C., November 1991.

C. Rubin, The Macintosh Bible Guide to System 7,

Goldstein & Blair, Berkeley, CA, 1991.

[10)

[12]

(13]
(14]

[15]

(16]

[17] R.W. Scheifler and J. Gettys, “The X Window Sys-
tem”, ACM Trans. on Graphics, 5,2 (Apr. 1986).

[18] G. L. Steele, Common Lisp The Language, Second
Edition, Digital Press, 1990,

{19] B. Zom, et. al., “MultiProcessing Extensions in
SPUR Lisp”, IEEE Software, 6,4, July 1989.

