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1 Introduction

Cellular Neural Networks (CNN) represent a new paradigm for nonlinear analog signal processing

[1,2]. Its applications for various practical problems have been demonstrated [3] and the first fully-

tested working chip [4] with a 0.3 tera XPS (1012 analog operations per second) capacity reveals

its enormous computing power.

The specific CNN functionality is defined by the analog cloning template which is a geometric

and analog code of the weights of local interactions of each cell (uniform analog processing unit).

Nonlinear and delay-type CNNs were introduced recently [5]. The delay-type templates proved

to be essential in motion related CNN-applications [6]. The analog model of the triade synapse

arrangement (TSA) [7] can also be represented by a very simple CNN template [8]. Complex motion

related biological models [9,10] alsocontaindelays. In a more general view of neurobiologies models

[11] nonlinear and delay-type synapse models seem inevitable.

The introduction of delay in nonlinear CNN dynamics poses the complex question of stability.

Following the first proposition in [5], in this paper a set of stability results are presented with

additional properties of the dynamics.

The main results of this paper are as follows:

i) The existence and uniqueness ofsolutions as well as the conditions of isolated equilibria

are stated and proved.

ii) The range of dynamics is given in terms of cloning template values.

iii) If A and AT are positive templates and the central (self feedback) term of the sum of

the feedback and delayed-feedback templates (A + Ar) is greater than l/Rx, then the

stable outputs are ±1.

iv) Several stability conditions are presented. The positive cell-linking property [12] and

the equivalent sign transformations [13] proved to be important sufficient conditions

when applied to A, AT and A + AT.

v) Stability conditions have been found for nonlinear and delay-type templates as well.

The key mathematical results used are in [14, 15].
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Abstract

Delay-type cellular neural networks, introduced recently, proved to be important in differ

ent application areas including motion detection. In this paper several stability results and

additional properties of the delay-type CNN dynamics are proved. As a typical example, it is

proved that if the feedback and delayed feedback template A and AT are positive and the sum

(A + AT) is cell-linking then the CNN is stable. Moreover, if in addition the central element

(self-feedback) of this sum is greater than l/Rx then all of the stable outputs will be ±1. Results

covering nonlinear and delay-type templates are also given.
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In section 2, the general framework, the existence and uniqueness of solutions, and the deter

mination of the range of dynamics are presented. Section 3 contains the key stability results. In

section 4 two examples are presented to illustrate the relevance of the results. In section 5 the

results are extended to nonlinear templates.

2 General framework and basic properties

An M x N CNN is governed by the following set of differential equations [1]:

Cxdv^l = _1^^^ £ A(iJ;k,l)vykl(t)
0,1 Kx Ckt€Nr(ij)

+ £ B(i,j;k,l)vUkl(t) + I (1)
Cfc,GiVr(ij)

Nr(ij) = {Cm :max(|fc - i|, |/ - j\) < r] for some positive integer r (2)

where vXi , vUi and vyij denote the state voltage, input voltage and output voltage of a cell,

respectively. We assume that the input iscontinuous and has magnitude less than 1. We also assume

that the A-template is space-invariant; i.e., for all i,j, fc,/,mand n such that 1 < i,fc,i + m, k+ m <

M and 1 < j,/,j + n,/+ n < N, A(i,j;k,l)= A(i+ m,j + n\k + m,/ + n). vyiJ{t) = f(vXij(t)),

f(x)*i[\x + l\-\x-l\]}

Symmetric, non-symmetric positive cell-linking andother types of A-templates have been shown

to have stable dynamics [1, 12, 13].

AnMxiV delay-type CNN is described by the state equations [5]:

c*^dT =-^oW+E^iJ^O^W
+2>T(^j;ktl)vyu(t - t&m) +£B(«,j;*,/W0

k,l k,l

+E BT(i,r, k, l)vUkl(t - rt%tl) +1 (3)

and an M x N delay-type CNN with nonlinear templates is described by the state equations

^e use the symbol w since in the following proofs, we will assume /(as,-) to be a smooth (C1), strictly increasing
and odd approximation of the piecewise linear function, bounded between -1 and 1.



CJ^1 = -±vXij(t) +Y,Mid\kJ)(vykM,Vy>M))
x k,l

+£ AT(i, j; A:, 0*W " '&*./) +E *&H ** 0K„(0, *«.,(*))
fc,/ k,l

k,l

where r^.khT^.kl > 0for all i,j, A;,/ and generally rtj.khTt^.kl are space-invariant as well. Without

loss of generality, we will assume that Cx = 1, Rx = 1.

We relabel the state variables vXiJ into a vector x of size n = MN. Similarly, the input and

output variables vUi and vyij are relabeled into uand yusing the same labeling order. The invertible

ordering will be called <r, i.e. x0[yj) = vXij. Furthermore, r$.w is ordered into a matrix f^4 such
that T$ij)<r,kl) - Tfa.ktl. The same ordering is used on T$.kl, A, AT and Ato obtain fB, i, AT
and An/ respectively. Without loss of generality, we assume ffi = 0 if A^- = 0.

Define

-* (5)Tj = maxrtJ

fj is the maximum delay of all the interactions from cell j onto other cells.

Cf = nC([-ft-,0],R) (6)
t=i

where C(H,R) is the set ofcontinuous functions into Kdefined on the interval H and Cf can be

thought of as continuous functions defined into Rn where the interval of definition is different on

each component. We also define C} as thesubset ofCf mapping intoEJ = {x 6 En : x» > 0, 1 <

i < n}. Throughout this paper, we will use the oo-norm for functions in Cf.

The initial conditions for the delay-type CNN is given by:

vXiJ(t) = v0tJ(t) *€[-f,M,0] (7)

We will assume that votj(t) is a continuous function (v0(t) e Cf).

Consider first the delay-type CNN with linear template elements. The state equations (3)

assumes the form of a system of functional differential equations (FDE):



x = F(t,xt) = -x(t) + A(fl(x(t))) + ATf2(x(t-T))

+B(u(t))+BT(u(t-r)) + I (8)

where fi(x(t)) is defined as:

(Mx))i = f(ii) (9)

and ATf2(x(t - r)) is defined as:

A*h{x{t - r))i = E Ah ' /(**(* " **)) (10)
Jt=i

BTu(t —t) is defined as:

BTfi(«-r),- =E^-«*(<-^) (U)
Jb=l

and x* € Cf is defined as

5t(0),- = 5(* +*)i 0<E[-ft-,O] (12)

Proposition 2.1 Given the initial condition

x0(t) = #*). <f>{t) € Cf (13)

Men t/ie delay-type CNN has a unique continuous solution for t € [0,oo).

Proof: we need to show that (8) has a unique solution. First we show that F{t,xt) is globally

Lipschitzian, i.e.

\F(ti1>)-F{t,4>)\<L\1>-4>\ for all ^,<£ GCf and all * (14)

for some constant L. If we define Lc =(E.jE*,/ |AT(t\ j;M)l +E,\jEfc./ |A(i, j; *,/)|) +1, then
Z-c qualifies as our Lipschitz constant.

Since the input is continuous, F(t, tft) is continuous with respect to t for all V>- The conclusion

then follows from [16, page 308-309]. •



Proposition 2.2 If the initial condition are bounded by K, then all states vXt of a delay-type

cellular neural network are bounded for all time in absolute value by the sum:

vmax = K + \I\

(15)4-max "£(\AT(iJ;k,l)\ + \A(i,j;k,l)\+\BT(iJ;kJ)\+\B(i,j;kJ)l)
k,l

and the u-limit points of vXiJ(t) are bounded in absolute value by vmax —K.

Proof: it is sufficient to follow the proof of theorem 1 of [1] to see that also in this case it is

possible to recast the equations of the network in the same form of eq. (4a) of [1]:

%iW =-fx„ +/«(*) +»«(«) (16)

where /tJ- depends only on vykl(t) and vykl(t - tvJ;*,/) anc^ 9ij on tne mPuts and bias current, and

for both it is possible to compute an upper bound in the same way as in [1]. •

3 Stability results for linear and delay-type templates

To be able to use the results on cooperative systems, we will assume in the following that the input

is constant. This give us an autonomous system x = F(xt).

F(xt) is differentiable in the sense that

F(4>) = F(ij>) + dF(1>)(4> - *) + o(\\4> - ^||) (17)

such that for each tp,dF(if>) is a bounded linear operator from Cf to En. (dF(tf>) is called the

Frechet derivative.) L(ip) = dF(il>) has the following representation:

I,-W(fl =Ef 0i(0)dW(0,VO l<i<n (18)

Definition 3.1 (from [15]) A system ofFDE x = F(xt) is cooperative in Cf if for every i> € Cf

and for every <j> € C} with <&(0) = 0 , dF(ip)((f>) > 0.



A system of FDE x = F(xt) is cooperative and irreducible in Cf if

(i) it is cooperative;

(ii) for every ^ € Cf the matrix P(0) defined by

P(0) = col(dF(el),dF(e2),...,dF(en)) = (^(0,0)) (19)

is irreducible; and

(Hi) for every j for which fj > 0, there exists i such that for all if) € Cf and all small

e>0,

Hji-fj + 6,tf) > 0 (20)

We define the saturation region as the region in En such that all components have magnitude

greater than 1. We also define the following region in En:

region 1 = {x 6 En : f'(xi) « 1 for some i and if f'(xj) $6 1 then f'(xj) « 0} (21)

By choosing an / closely approximating the piecewise linear function, region 1 can be made

arbitrarily close to the complement of the saturation region. And the « sign in the above defi

nition can be made arbitrarily close to being =. We will assume that / is chosen such that the

approximations are close enough for our purposes.

Proposition 3.1 All equilibria of a CNN in the saturation region are isolated. If the corresponding

FDE is cooperative, then all equilibria in the saturation region are stable. If the center element of

A + AT is greater than 1, and the corresponding FDE is cooperative, then all equilibria in region 1

are unstable.

Proof: an equilibrium point e in the saturation region means that e,- £ (—1,1) for all i. Therefore

•0/i(e) « 0, so DF(e) « -22, where E is the identity matrix, is nonsingular. This implies that e

is isolated. At the equilibrium point e,

P(0)ij =f «"*WW =4(/'(ei)) +AijU'^i)) - In (22)



For e in the saturation region, /'(e,) ss 0, so P(0) « -E. So all the eigenvalues of P(0) have

negative real parts. If the FDE is also cooperative, then e is stable by corollary 3.2 in [15].

To show that e in region 1 is unstable, we use a technique similar to that used in [17]. By

reordering the states such that the states in the saturation region come first, F(0) is close to a

matrix of the following form:

( -l x x ... N

0 -1 x ...

: 0 *-. X

\ '' P' )

where P' is the submatrix corresponding to the cells not in the saturation region. The eigenvalues

of the matrix in (23) consist of -l's and the eigenvalues of P'. Because An + AJ{ > 1, the diagonal

elements of P' are positive and therefore P' has a positive trace which implies that P' has some

eigenvalues with positive real parts. Then P(0) has eigenvalues with positive real parts, and e is

unstable (again by corollary 3.2 in [15]). •

Proposition 3.2 A CNN with linear A-templates and delay-type A-templates such that

(i) A has only nonnegative elements in the off-center locations;

(ii) AT has only nonnegative elements;

(Hi) A + AT is a cell-linking template;

is cooperative and irreducible in Cf.

Proof: condition (i) implies that A is an off-diagonally nonnegative matrix. Condition (ii)

implies that AT is a nonnegative matrix. Condition (Hi) implies that A + AT is an irreducible

matrix.

Let L{i>,4>) = dF(i>)(<f>). Then

3 3

= E/° **•(©)<*%•(©) (24)
„• J-fa

P(0) (23)



therefore

7?ti(0) =Ar(//(^(-flJ)))u(0 +fij) + [Aij(f'(1>j(0))) - *y] «(©) (25)

Where w(<) is the unit step function. Given conditions (i) and (ii), the cooperative condition

is satisfied.

^(°) = »7ti(0) is irreducible ifand only ifA+ AT is irreducible. For each j for which fj > 0, let

i be such that r, = f0 > 0. Because f,j > 0, i^ ^ 0. Then for all sufficiently small positive e,

1ij(-Tj + €)>0 (26)

Proposition 3.3 // a CNN with linear A-templates and delay-type A-templates satisfies:

(i) A has only nonnegative elements in the off-center locations;

(ii) AT has only nonnegative elements;

(Hi) A + AT is a cell-linking template, and

(iv) all the equilibria are isolated,

then the union of the basins of attraction of all stable equilibrium points will be a dense open set in

Cf. This means that the limit cycles or strange attractors, if they exist, cannot be stable.

Proof: from proposition 3.2,conditions (i), (ii) and (Hi) imply cooperativeness and irreducibility

in Cf. Because of the piecewise-linear structure of the CNN, isolated equilibria implies that they

are finite.

\fw\ < i+EE (|4| +14,-|) Jw+EE (N +N) H+m (27)
\ i 3 J i j

Therefore F maps bounded subsets ofCf into bounded subsets of En. Since x(t) is continuous,

Cf is positively invariant. From proposition 2.2 u;(</>), the w-limit set through <f>, is bounded2 for

all 0 in Cf and the map <f> -* xt(<f>) maps bounded sets into bounded sets for all t > 0.

Note that the bound is independent of <f>.



By theorem 4.5 in [15], the union of the basins of attraction of all stable equilibrium points is

a dense open set in Cf. •

Remark 1: The sign transformations in [13] can be applied in proposition 3.3. However, the

same transformation type should be used to both A and AT.

4 Examples

Example 1

The feedback and delayed-feedback templates below are not necessarily stable by themselves, since

they are not cell-linking:

0 0 0 0 -1.9 0

0 2.1 0 0 0.75 0

1.3 0 0 0 0 1.2

However, combining them in a single template we obtain

A + AT =

0 -1.9 0

0 2.85 0

1.3 0 1.2

The resulting template A + AT is cell linking, and A and AT are both positive after applying

transformation 3 in [13]. It also satisfies the other conditions in proposition 3.3, so the CNN is

stable.

Example 2

The delay-type template given below detects all moving objects which have speed in the vicinity of

1 pixel per delay-time [6]. The delay used is uniform and the input is continuous. Three consecutive

10



input snapshots are shown in figure 1, 2 and 3. The object of the left hand side (object A) has

the specified speed. Two consecutive output snapshots, corresponding to the second and the third

input snapshot, are shown in figure 4 and 5. Object B on the right hand side (having a higher

speed) will disappear on the output.

0 0 0 0 0 0

0 1 0 0 6 0

0 0 0 0 0 0

0.68 0.68 0.68

0.68 0.68 0.68

0.68 0.68 0.68

B

0 0 0

0 0 0

0 0 0

/=-2

r > 10RXC3

AT BT

Although the input is not constant, we can still apply the stability criteria if the input is stepwise

constant or slowly varying compared to the time constant of the system. So noticing that A and

AT are positive and

A + AT =

0.68 0.68 0.68

0.68 1.68 0.68

0.68 0.68 0.68

is cell-linking, we can deduce that the CNN is stable. Furthermore, since the center element of

A + AT is greater than 1, the stable equilibria must lie in the saturation region.
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Figure 1: First input snapshot
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Figure 2: Second input snapshot
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Figure 3: Third input snapshot
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Figure 4: Output snapshot
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Figure 5: Output snapshot

5 Stability results for nonlinear and delay-type templates

After relabeling, the state equations in (4) assume the following form:

£ = F(t,xt) = -x(t) + Ani(fl(x(t))) + ATf2(x(t-T))

+Bni(u(t)) + BT(u(t-T)) + I

where ATf2(x(t - r)) is defined as:

A^f2(x(t - T))i = £(*)* •/(**(* - f&))
k=l

BTu(t —t) is defined as:

BTu(t - r)i =£(fiT),-fc •uk(t - fg)
k=l

We will assume that A and B are continuous,

Amax{i,j;k,l)= sup A(i,j;k,l)(x,y)< oo
(*.»)€[-l,l]»

14

(28)

(29)

(30)

(31)



Bmax(i,j\k,l)= sup B(i,j;kJ)(x,y)< oo (32)
(x,y)€[-l,l]2

Proposition 5.1 Given the initial condition:

x0(t) = <j)(t), 4>(t) € Cf (33)

then the nonlinear delay-type CNN has a unique continuous solution for t € [0,oo).

Proof: F(t,Xt) is globally Lipschitzian with Lipschitz constant

L* =(EEi^^Ji^oi+EE^^^^ol) +1 (34)
\ i,j k,l ij k,l )

Again the conclusion follows from [16]. •

Proposition 5.2 If the initial condition is bounded by K, then all states vXij of a nonlinear delay-

type cellular neural network are bounded for all time in absolute value by the sum:

Vmax = K + |/|

+rnax(E(|4T(M;M)|+|̂ (35)

and the u-limit points ofvXij(t) are bounded in absolute value by vmax —K.

Proof: the proof is essentially the same as in proposition 2.2 •

When the input is constant, we have the following stability results.

Proposition 5.3 // the corresponding FDE of a nonlinear and delay-type CNN is cooperative, then

all equilibria in the saturation region are stable. If in addition (DAni)u + (AT)n > 1 for all i and

for all x G [—1, l]n, then all equilibria in region 1 is unstable.

Proof: for e, an equilibrium point in region 1,

P(0),j = 1° e<%y(0) =tfrkU'(ej)) +(^^l)«(/i(e))(A«i)) " «tf
J-fj

The rest of the proof is similar to that of proposition 3.1.

15
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Proposition 5.4 A CNN with nonlinear A-templates and delay-type A-templates such that

(i) inf DAni(x) is an off-diagonally nonnegative matrix?
x€[-l,l]n

(ii) AT is a nonnegative matrix,

(Hi) DAni(x) + AT is an irreducible matrix for all x € [—1, l]n;

is cooperative and irreducible in Cf.

Proof: let L(ij),4>) = dF(xl))(<j>). Then

W*,*) = E(^T)«i/'(^(-^))-0i(-ni)
3

+E [*>(AmteViMo))] •/' M>;(o)) •̂ (0) - <«o)

= ST 4>j{e)d9THj&>1>) (37)

where

7/tj(o^) = (AT)ii(/'(^(-ni)Me + fvi)

+[(2?ii„/)o-(/i(^(0))/,(^i(0) - *tf] UW (38)

Given that -DAn/ is off-diagonally nonnegative, and AT is nonnegative, the cooperative condition

is satisfied. ifrj(0,^) is irreducible if and only if DAni(fi(i>(0)) + 4T is irreducible. For each j for

which fj > 0, let i be such that fj = ft<7 > 0. Since (AT),j ^ 0, then for all sufficiently small

positive e,

Vij(-Tj + €)>0 (39)

Proposition 5.5 // a CNN with nonlinear A-templates and delay-type A-templates satisfies:

(i) inf DAni(x) is an off-diagonally nonnegative matrix;
x€[-l,l]n

(ii) AT is a nonnegative matrix,

3The infimum is taken componentwise.
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(Hi) DAni(x) + AT is an irreducible matrix for all x € [—1, l]n;

(iv) the set of equilibria is finite,

then the union of the basins of attraction of all stable equilibrium points will be a dense open set in

Cf.

Proof: from proposition 5.4, conditions (i), (ii) and (Hi) imply cooperativeness and irreducibility

in Cf.

\FW\ < [l+EEO^^^OI+^ma^i^,/)!)]^!
\ hj k,l J

+EE (\B(iJ;k,l)\+ \BmaX(i.J',k,l)\) \u\ +|/| (40)
i,j k,l

Therefore F maps bounded subsets of Cf into bounded subsets of Rn. Since x(t) is continuous,

Cf is positively invariant. From proposition 5.2 uj(<j>) is bounded for all <j> in Cf and the map

<j> -» xt(<t>) maps bounded sets into bounded sets for all t > 0.

By theorem 4.5 in [15], the union of the basins of attraction of all stable equilibrium points is

a dense open set in Cf. •

6 Conclusions

Many motion related phenomena can be represented and/or modeled by delay-type CNNs. Simple

and useful stability conditions have been presented in this paper including the case when the

templates are nonlinear and delay-type.
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