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Abstract

We propose a market for interruptible, or callable, forward
contracts for electric power, in which the consumer grants
the power supplier the right to interrupt a given unit of
load in return for a price discount. The callable forward
contracts are traded continuously until the time of use.
This allows recourse for those customers with uncertain

demand, while risk-averse consumers can minimize their
price risk by purchasing early. Callable forward contracts
are easily enforced, and can be directly incorporated into
the utility's economic dispatch procedure.

1 Introduction

In existing power systems, the required generation capacity
is usually much larger than the average amount of power
actually provided. This is due to two factors: load varia
tion over time (or load factor) and the need for a nonzero
"reserve margin," or spare capacity, to be used in the event
of unanticipated contingencies (unexpectedly high demand
or failure of generation components). These are important
because electric power is storable only at very high cost,
if at all, requiring production to equal consumption on a
second-to-second basis. Thus, installed generating capac
ity must always exceed the annual peak demand (plus a
reserve margin), even though some of the capacity is idle
for much of the time.

If it is uneconomic or infeasible to build sufficient ca

pacity, occasions will arise in which demand exceeds avail
able supply. It is then necessary to remove some of the
load demand to maintain system security. Methods cur
rently in use include voltage reduction and rotating out
ages. Both methods are fairly indiscriminate, and result
in welfare losses. If rationing occurs infrequently, these
welfare losses are relatively small. However, if generation
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capacity lags behind demand, service interruptions will be
come more frequent, and so the need to efficiently ration
electric power will become more important.

A number of proposals have been made to reduce sys
tem load in a socially efficient manner. We will refer
to these load-reduction schemes as "demand-side manage
ment" (DSM) [1]. Perhaps the simplest DSM technique is
conservation through efficiency improvements (in lighting,
motors, etc.). Other examples of DSM include direct load
control and cycling of certain loads.

Other DSM techniques may be described as price-based
schemes, because they provide the consumer with mone
tary incentives to help reduce system peaks. The simplest
scheme, at least conceptually, is spot pricing: through the
operation of a "spot" market, price would instantaneously
adjust until the market "clears" (i.e. demand equals sup
ply) [2]. Under certain standard assumptions, it can be
shown that spot pricing achieves a social-welfare maximiz
ing allocation.

A variety of other schemes have been proposed to sup
plement or replace spot pricing. The use of forward con
tracts has been suggested to allow users to schedule their
consumption in advance and to ease some of the price risk
inherent in spot pricing [3]. The use of priority service
contracts, in which the consumer selects the probability
of service interruption according to the need for reliable
power (and pays accordingly), has also been proposed [4].
The pricing method discussed here is closely related both
to forward contracts and priority pricing, but has certain
implementational advantages, such as ease of enforcement
and the ability to be incorporated into economic dispatch.

2 Callable Forwards

The basic market instrument we propose is a type of
interruptible-load contract, which we call a callable for
ward. A callable forward is a bundle of two contracts. The

first of these is a forward contract, which is owned by the
consumer, and which guarantees that the utility will deliver
to the consumer one unit ofelectrical energy at a particular
time T, the delivery date. The price paid for this unit is
determined at the time the contract is made. The second

contract is a call on the same unit of energy. A call confers
the right, but not the obligation, to purchase a given com
modity at a given price, called the strike price, which we
denote by k. The call portion of a callable forward is sold
by the consumer back to the utility; we describe the con
sumer's resulting obligation by saying that the consumer
is short a call. Using this terminology, a callable forward
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1: Contractual obligations for a callable for-

is a bundle of a forward and a short call.

Thus a consumer who owns a callable forward is guaran
teed to receive from the utility at time T, either one unit of
energy or $k (and no energy), at the option of the utility.
In the second case, we say that the utility has exercised its
call option at a cost of $&, thus relieving itself of the obli
gation to provide energy. If the utility does not exercise
the option, it remains obligated (by the forward contract)
to deliver the energy. These contractual obligations are
shown in Figure 1.

Conceptually it may be helpful to envision a central
ized implementation of callable forward contracts, in which
there is a single utility or price-setting authority, which we
will call the "price-setter." The price-setter unilaterally
sets the prices of the callable forwards based on its best
information about the future spot price. Consumers re
spond by purchasing the appropriate collection of callable
forward contracts, taking the prices as given. To make this
decision, the consumer trades off the probability of inter
ruption (which is lower for higher k) against the cost of
the contract (which is higher for higher k). Consumers
will then select contracts as we describe below: consumers

with a lower cost of interruption will choose contracts with
a lower k, and so will be interrupted iirst in the event of
a shortage, since they are less expensive for the utility to
interrupt. This results in socially optimal rationing.

Payoff
so

Figure 2: Payoff of forward (black) and call (gray,
k=$25/MWh) vs. spot price pr (Both in $/MWh).

3 Pricing callable forwards

A common device used to depict contracts and options is
the payoff diagram [5]. A payoff diagram is simply a graph
of the value, or price, of the contract or option as a function
of the price of energy at time T. For such a diagram to
make sense in our context, we must assume that there is
a well-defined price of a unit of electric energy at time T,
which will be denoted by pr- This price could be a "spot"
price or shadow price. Figure 2 shows the payoff diagram
for a forward contract and for a call option with strike price
$25/MWh written on a unit of electrical energy deliverable
at time T.

At the time of delivery T, a forward contract must have
a price exactly equal to the spot price of the underlying
commodity. Thus if ft denotes the price of the forward
contract at time t, we must have

St =Pt, (1)

so that the payoff diagram for the forward is just a line
through the origin with unit slope.

To evaluate the payoff of a call option at time T, we
must consider two cases. In the first case, the spot price
pr is greater than the strike price k of the call. Exercising
the call in this case yields a unit of energy for only k, which
could be sold on the open market for pr. Thus, the call
is worth pr —k. In the second case, the spot price pr is
less than or equal to the strike price k of the call. Since
a unit of electrical energy may be purchased on the open
market for less than the strike price of the call, the call is
not exercised and becomes worthless. (Note that nothing
prevents the holder of the call from exercising it even in
this second case, but this would be foolish, as it would
result in a loss of k —pr.) To summarize these two cases,
we can write

cr(fc) = max{0,pr - *}, (2)

where ct(k) denotes the price of a call having strike price
k at time t.

To find the payoff diagram of a callable forward with
strike price k, we just subtract the payoff of the call from

Pavoff

Receive $25

Figure 3: Payoff for callable forward (k=$25/MWh)
vs. spot price pr (Both in $/MWh).



that of the forward. The resulting payoff can be seen in
Figure 3. Mathematically, we have

jT(k) = fT- cT(k) = pr- max{0,pr - *} = min{pr,*},
(3)

where jt(k) denotes the price of a callable forward with
strike price k at time t.

We have discussed the time T payoffof a callable forward
contract. We now examine the price of such a contract
when it is purchased at some time t < T.

First, define the conditional distribution of the terminal
spot price by

Qt(k) = Prob{pr < k\Ht], (4)

where Ht denotes all that is known at time t, and define
the associated density qt(k) = ^Qt(k)t which weassume
exists.

We assume that consumers price a particular contract at
time t as the expected value of the terminal (time 7) payoff
of the contract, conditional on what is known at time t. So
the price of a forward contract is

/t =E[pr|«t]= / pgt(p)dp.
Jo

Similarly, for the callable forward contract we obtain

(5)

jt(*) = E[ir(*)|«t]
Jo

van{ptk}qt{p)dp. (6)

Just as knowledge of the conditional density $(&) allows
calculation of the price of a callable forward contract jt(k),
knowledge of contract prices can be used to infer the den
sity qt(k). To see this, we first integrate (6) by parts to
yield the expression

i.(*)
Jo

Qt(p)]dp. (7)

Differentiation of (7) yields

3j*(*) =i-Q.(fc), (8)

and, differentiating again,

Qt(k) = -Q%2Jt(k). (9)

Additional properties of jt(k) which follow from its def
inition and the discussion above are:

• jt(k) is nondecreasing and concave in k.

• it(*) < *, VJb.

• limfc^oojt(fc) = /«.

Figure 4 illustrates how the price curve for callable for
wards varies with the uncertainty of the spot price pr.
The lighter gray curves are associated with more uncer
tainty than the darker curves; as the uncertainty decreases,
the price curves approach the kinked graph of min{ft,k}.
Since the uncertainty of pr generally decreases as t -*• T,
Figure 4 may also be interpreted as a possible time evo
lution of the curves jt(k), with darker curves representing
later times.

Figure 4: Price vs. k for different amounts of uncer
tainty (ft = $25).

4 Consumer Self-Selection

A desirable feature of any market-based allocation scheme
is that individuals* choice of contracts collectively maxi
mizes social welfare. That is, each consumer freely chooses
the same contract that he or she would be assigned in a
social-welfare maximizing allocation. For a consumer who
has a single unit of load having valuation $», spot pric
ing, or any other optimal allocation, will allocate a unit
of energy whenever pr < v, and will not allocate the unit
when pr > v. Since a callable forward will be called when
pr > k, a callable forward with k = t» is the contract which
yields this allocation. Thus, we would like the consumer
to make the selection k = v.

We show this is the case if the consumer's demand is

independent ofpr, under the assumption that the density
qt(k) > 0 whenever k > 0. First we examine the case in
which a consumer has only a single unit of load, which will
yield a benefit or value to the consumer of $v if the load is
supplied, and which yields a benefit of $0 if is not supplied.
If such a consumer purchases a unit callable forward having
strike price k, the resulting monetary benefit will be

Benefit =Bt(k) =[ *"*(*)

0 =
dk

(*)

E[Bt(k)\Ht]

d

if service is received,
otherwise.

(10)
Because the consumer's contract will be called if pr > k,
the consumer will receive power with probability Qt(k). If
the consumer is risk-neutral (i.e., the consumer's perceived
benefit equals the expected monetary benefit), then he or
she will choose a contract which maximizes

E[Bt(k)\Ht] = k- jt(k) + (v- k)Qt(k). (11)

A necessary condition for an interior solution to this max
imization is that

= l-j%Mk)-Qt(k) + (v-k)qt(k). (12)

Recalling from (8) that ^jt(k) = 1- Qt(k), this becomes

0 = (»-%,(*). (13)



Using the assumption that qt(k) > 0, VJb > 0, we obtain

k = v. (14)

Further, since &E[Bt(k)\Ht]- (v-k)qt(k), it follows that

jfi-E[Bt(k)\Ht] > 0ifk< v
< 0 if * > v. (15)

Finally, if the consumer chooses k = v, the resulting utility
will be

E[Bt(v)\Ht) = v-jt(v), (16)
which is positive for t> > 0 by virtue of the assumption that
qt(k) > 0, VA > 0, so that the consumer with t> > 0 will
always choose to purchase the contract with k = t> rather
than purchase no contract. Thus we have shown that the
choice k —v is the unique maximizer of (11). So, in this
case, the consumer self-selects the optimal contract.

It is worth noting that the selection k = v is a riskless
contract for the consumer, since he or she receives either
electricity (with a utility of $«) or $Jb = $t> in cash. Since
even risk-neutral consumers choose a riskless allocation,
one might suspect that risk-averse consumers would make
the same choice. This is, in fact, the case, as is shown in
Appendix A.

Until now we have assumed that the consumer's valua

tion v was a deterministic quantity. We now consider the
case where v is a random variable, which may or may not
be independent of pr- We again ask which contract the
consumer will select.

In the case where v is independent ofpr the self-selection
is quite similar to that in (14), except that v is replaced by
its conditional expectation. Thus we have

k = E[v\Ht], (17)

which may be interpreted as the consumer's "best guess"
of the true value of the unit. This result is a special case of
(32) in Appendix B. It can be shown, using the same argu
ment as above, that (17) is, in fact, the unique maximizer
of the consumer's benefit.

Uncertainty in v which is uncorrected with pr may re
sult from factors which are unique to a particular consumer
(provided that the consumer is small relative to the total
system demand). For example, an industrial user may not
know whether its machinery will fail before the time of use,
or it may not be known whether a shipment of raw mate
rials for a manufacturing process will arrive in time for a
production run. If the machinery fails, or raw materials are
not available, the benefit derived from a unit of electrical
energy will obviously be reduced. Correlated uncertainty
may result either from the consumer being large enough to
affect the market price, or from systemwide factors which
affect a significant portion of the system load, such as am
bient temperature.

In the general case, where v and pr are not independent,
the necessary condition for an interior maximum of (29) is

k = E[v[Ht,pr = k]. (18)

This result is derived in Appendix B. Because the right
hand side of (18) depends on k, there may be no solutions

Quantity (MXh)

Figure 5: Demand and supply curves for section 5;
price is in $/MWh, quantity is in MWh.

for k, or there may be multiple solutions. If there is a solu
tion, it may not be the global maximizer of the consumer's
benefit. Appendix B also gives an example to show that the
consumer may "hedge", by buying a contract with higher
or lower k, depending on whether the correlation with pr
is positive or negative, respectively. When this occurs, the
consumer will receive a suboptimal allocation (i.e. at time
T, we will not have k —v).

5 An Example

To illustrate our results, we now turn to an example. Let
T=l. We assume that the aggregate demand curve is de
terministic, and is given by

P(?) =^[1000-g] =50-^, (19)
where p(q) is the price (in $/MWh) corresponding to a
given quantity q (in MWh). This is the demand curve
corresponding 1000 MWh of load, with values uniformly
distributed between 0 and $50 per MWh. On the supply
side, we assume, for simplicity, that electricity has zero
variable cost, but that the generation capacity available
is limited to some value a. An equivalent assumption, at
least for calculating prices, is that variable cost is nonzero,
but that the capacity constraint is always binding, so that
the demand curve always intersects the vertical portion of
the supply curve. We assume that 8 is a Gaussian random
variable, with mean 500 MWh and standard deviation 100
MWh. The supply and demand curves are illustrated in
Figure 5. We assume that s is actually the terminal value
8\ of a rescaled Brownian motion [6], given by

dst = 150 W, and

so = 500, (20)

where Wt denotes standard Brownian motion. In terms of
a, the spot price is simply

PT=Pi =p(si) =50- |jp
Thus we can write the forward price as

/,=E[pr|W«] =50-|l.

(21)

(22)
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Figure 6: Callable forward prices vs. strike price k at
t=0,l/2,3/4 and 1.

Because s is Gaussian and p(-) is linear, we can write the
conditional density of pr given Tit as

9t(p) = ,^[ *JtaLk
7.5V2x(l-<) 2(7.5)2(1-*)'

(23)

that is, pr, given Tit, has a Gaussian distribution with
mean ft and variance (7.5)2(1 —f).

We can now compute jt(k) from (23) by integrating once
to obtain Qt(k), then integrating 1—Q»(fc) to obtain jt(k).
Figure 6 shows numerically obtained plots of jt(k) as a
function of the strike price k for t = 0, y, |-, and 1, with
price curves for larger t shown in darker gray.

6 Contract Repurchasing

So far, we have considered the decision of the consumer
who first purchases a contract at time t. However, it may
be the case that the consumer already holds a contract at
time t. We now examine whether the old contract should
be held or a new one purchased at time t. Suppose the
consumer's original contract was purchased at some time
to < t, and that the strike price of the original contract
was ko. It is assumed that the old contract may be sold
back to the market at the current price. The consumer's
net benefit from the two transactions will be

Bt(k) = k-jt(k) + (v-k)l{pT<k)
+ bt(ko)-jt0(ko)], (24)

where k is the strike price of the new contract purchased
at time t. The bracketed term above represents the gain
or loss resulting from holding contract Jbo from time t0 to
time t; notice this term does not depend on k. Thus, the
gain or loss term above is "sunk" (the consumer has al
ready incurred it, and cannot affect it by the choice of the
new k). The consumer maximizing E[Bt(k)\Tit] will thus
choosethe same k as in the case where no previouscontract
existed. Note that the maximization of E[Bt(k)\Tit] actu
ally includes two other options for the consumer: choosing
k = ko corresponds to the decision not to change con
tracts, while choosing k = 0 corresponds to selling one's
contract without repurchasing (since a contract with k = 0

is guaranteed to be interrupted, and is thus equivalent to
no contract at all).

For consumers with deterministic v, this implies that,
once the original contract purchase is made, the consumer
will hold the contract until the time of use. Such consumers

initially purchase the optimal contract, and never change
contracts, regardless of price changes. On the other hand,
consumers with nondeterministic demand which is inde

pendent of pr will trade continuously, once they have ini
tially purchased a contract, in such a way that at each time
t they hold a contract with k = E[v|%]> If we assume that
information is revealed continuously (no shocks), so that
limt—t E[t»J7it] = v, such consumers ultimately hold the
optimal contract (i.e., k = v) at time T.

7 Implementation

There are two basic mechanisms for implementing the con
tracts described above: a centralized implementation and
a market implementation.

In the centralized implementation, mentioned earlier, we
assume that there is a single price-setter which unilater
ally sets the price curve jt(k) based on its best information
about the future spot price, summarized by Qt(k). Con
sumers respond by self-selecting and purchasing the ap
propriate collection of callable forward contracts, taking
the price curve jt(k) as given. If consumers believe that
the price-setter's basis for setting prices, namely Qt(k), is
correct, they will self-select as described above. In par
ticular, consumers whose demand is independent of future
spot price will truthfully reveal their best estimate of their
demand.

A major drawback of the centralized implementation is
that consumers may themselves have information concern
ing the future spot price. While some of this information
may come from the price-setter's Qt(k), the individual may
possess some information which the price-setter does not.
In this case, the consumer's Qt(k) will be different from
that of the price-setter; consequently the consumer's Qt(k)
will not be consistent with the price curve jt(k) set by the
price-setter, in the sense that (8) will no longer relate the
consumer's Qt(k) and the price-setter's jt{k). There is
no guarantee, under these circumstances, that consumer
self-selection will result in a socially optimal allocation of
electrical energy.

In a market implementation, there may be many utili
ties or energy suppliers, without the necessity of a price-
setting authority. The producers and consumers interact
via a market, in which any two participants are free to
trade at a price and time of their own choosing. This mar
ket need not, of course, be a physical market like the New
York Stock Exchange - it could be an electronic market,
in which bid and ask quotes are exchanged electronically.
Each market participant has his or her own information
regarding the future spot price, and thus possesses an in
dividualQt(k). Each participant thus alsopossesses a price
curvejt(k), related to his orherownQt(k) through (8). As
trading occurs, information will be exchanged through the
market, causing participants to update their Qt(k), and
hence jt(k), accordingly. In a perfect market, every par
ticipant has the same Qt(k) and the same jt(k) as every-



one else, as a result of this information exchange, and this
becomes public information. The resulting market Qt(k)
thus reflects a "consensus" view, reflecting the information
possessed by all market participants.

Regardless of which implementation is used, we assume
that trading is permitted on a continuous basis from the
time the contracts are initially offered (time 0) until the
time of use (time T). While many participants may sim
ply purchase a contract which is held until time T, some
consumers will choose to dynamically adjust their holdings.
The ability to do this provides recourse to those consumers
who find they have chosen the "wrong" contract, due to
lack of information at the time of contract purchase.

Callable forward contracts possess the useful property
that they can be directly implemented and easily enforced.
Since the seller of the contract must either provide power
or pay the strike price k to the contract holder, it is easy to
determine whether the contract has been breached. This
is in contrast to interruptible-load contracts which are,
in theory, specified in terms of the probability of receiv
ing service, such as priority service contracts [4] or the
interruptible-load contracts described in [7]. Since it is dif
ficult to determine whether a contract specified in terms
of probabilities has been breached, such contracts are typi
cally implemented by specifying the frequency of interrup
tions, total number of interruptions, or total duration of
interruptions. However, such contractual approximations
are not directly addressed by the underlying theory1.

Finally, an extremely important property of callable for
ward contracts is that they may be integrated into eco
nomic dispatch. In economic dispatch, when an increment
of power is required, it is supplied by the generating unit
with the lowest incremental cost. A callable forward con

tract, as a dispatchable demand-side resource, has a well-
defined incremental cost, namely the strike price k. Thus,
dispatch of callable forwards by the utility could be eas
ily integrated into the usual economic dispatch procedure,
even though it is a demand-side resource.

8 Conclusions

We have proposed a type of interruptible-load contract, the
callable forward, which has a number of useful properties.
It is a contract which can be directly implemented and
easily enforced. The decision to call (interrupt) a given set
of callable forwards is easily made within utilities' existing
economic dispatch procedures. By permitting continuous
trading in callable forwards, consumers have recourse in
the event that their initial contract selection is no longer
appropriate.

For consumers whose future demand is independent of
the future spot price, self selection yields a contract which
provides power to a consumer if and only if the spot price
is less than that consumer's valuation of that power. This
allocation is identical to that achieved under spot pricing,

1Reference [4] mentions the concept of "threshold spot price,"
which is equivalent to our strike price k, to illustrate the allo
cation achieved under priority pricing, but the menu of priority
service contracts is specified as contract price as a function of
service probability. The concept of "priority insurance" is much
closer to the callable forwards described here [4, 8].

which is known to yield a socially optimal allocation. In
spite of the fact that there is a risk of power interruption,
these consumers suffer no financial risk as a result of their

contract purchase (since they choose k = t>); they choose
k = v even if they are risk-averse.

Self-selection conditions were also derived for consumers
whose demand is correlated with the spot price, but in gen
eral these selections do not result in selection of the "cor

rect" contract: consumers choose Jfe greater or less than
v, depending on whether the correlation between their de
mand and the spot price is positive or negative.

Future work will address the question of what other op
tions or financial instruments may need to be introduced
into the market in order to induce these consumers to self-

select in a socially optimal way. We also plan to examine
what type of options or instruments would be appropriate
for decision-makers on the supply side of the power system,
such as cogenerators of independent power producers, fo
cusing particularly on the issue of dispatchability.

Appendix A:
Risk-Averse Consumers

As before, we assume that the consumer has a single unit of
load with valuation v. We assume that the consumer's atti

tude towards risk is that he or she chooses a contract which

maximizes the expected utility of the outcome, where the
utility function U(-) is a strictly increasing, concave func
tion, having derivative ti(ar) = -§^U(x). The consumer's
monetary benefit is again given by (10), and the consumer
maximizes

E[U(Bt(k))\Tit] = Qt(k)U(v-jt(k))
+ [l-Qt(k)p(k-jt(k)). (25)

Differentiation, and the identity (8), yield

±E[U(Bt(k))\Tit) =
qt(k)[U(v-jt(k))-U(k-jt(k))]

- Qt(k)[l - Q.(fc)][u(t, - *(*)) - «(* - >,(*))]. (26)

The choice of k = v clearly causes 'the derivative (26) to
vanish. To see that k = v is the unique choice maximiz
ing (25), recall that (/(•) is strictly increasing and a(«) is
decreasing. Thus if v > k, the first term in (26) is strictly
positive, while the second term is nonpositive, so that their
difference is strictly positive. A similar calculation holds
for the case v < k. Thus,

2£E[U(Bt(k))\Ht] > 0Hk<v
< 0 if Jfc > v, (27)

so that Jfc = v is the unique maximizer of (25), showing
that risk averse consumers will also self-select the desired

contract.

Appendix B:
Demand Uncertainty

We now assume that v is a random variable, which is not
necessarily independent of pr- Assume that pr and v have



a joint density given by qt{p, v). We again ask the question
of which contract the consumer will select.

As in section 4, we can write the consumer's benefit as

Bt(k) = k - jt(k) + (v- k)l{pT < k), (28)

where l{pr < k} is 1 on the event {pr < k] and 0 other
wise. A risk-neutral consumer maximizes

E[Bt(k)\Tit] = k- jt{k) - kQt(k) + E[vl{pr < *}|W.].
(29)

Setting the derivative of (29) to 0, substituting (8) and
solving for k yields

k= _4r-~E[Vl{pr < k}\Tit],q^a-k— — (30)
assuming again that qt(k) > 0, Vifc > 0. To evaluate the
last term, note that

1 a

qt(k) dk E[vl{pT < k}\Ht]

qt(k) dk

1 a

' / vl{p < k}qt(p,v)dvdp
o Jo

<mdkJol vqtMdvdp

= E[v\Tit,pr = k). (31)

Thus, the necessary condition for an interior maximum of
(29) is

* = E[t;|Wt,pr = *]. (32)
When the consumer's valuation is correlated with the

spot price pr, the consumer may "hedge" when selecting
a contract. As an example of this, suppose that the con
sumer's valuation is given by

v = vo + for + €, (33)

where t»o is a constant, and c is a zero-mean random vari
able independent of pr- Since the RHS of (32) is condi
tioned on the fact that pr ~ k, the self-selection condition
becomes

k = vo+ 0k, (34)
or, if0< 1,

*=7^T (35)
1-r

Thus, when /? € (0,1), so that the consumer's valuation
is positively correlated with pr, we see that the consumer
hedges by purchasing a contract with a higher strike price
(higher probability of service) than would be purchased in
the case of v and pr independent. Similarly, if 0 < 0,
so that there is a negative correlation, then the consumer
would hedge lower, purchasing a contract with a lower k
than would otherwise be purchased.
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