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Abstract

We semi-globally stabilize certain minimum phase nonlinear sys
tems which are in a normal form where the nonlinear subsystem is
driven by an output of a linear system that possesses (possibly) non
zero peaking exponents. We eliminate the peaking phenomenon by
stabilizing part of the linear system with a high-gain linear control
and part of the linear system with a small, bounded control. The in
terpretation of this approach will be that we are redefining the outputs
to add asymptotically stable nonlinear zeros to the system in a man
ner that allows the new composite zero dynamics to be asymptotically
stable on arbitrarily large compact sets.
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1 Introduction

This paper is anextension of the semi-global stabilizability results of [l] and
[6J for multi-input minimum phase nonlinear systems in the normal form:

V = f(r),Z,u)
Q = g

i (1)

& = *
Vi = ft for i=l,...,m

where the state x = (77, f) € Rn and / is smooth with /(0,0,0) = 0. By
minimum phase it is meant that the equilibrium point 77 = 0 of

») = /(^0,0)

is globally asymptotically stable.
In the works of [l] and [6], the standard semi-global stabilization problem

is to find a family of linear feedbacks (of the states f only) with tunable gain
parameters that allows for local asymptotic stability and regulation to the
origin for any initial condition in some (arbitrarily large) a priori bounded
set. As described in [6], in general such a family of general feedbacks can
fail to exists due to peaking in the linear variables. Loosely speaking, the
linear variables can get large before they get small, inducing instability in the
nonlinear dynamics. In [l] the problem is seen as an undesirable reduction
of the domain of asymptotic stability of the nonlinear dynamics as a result
of redefining new outputs to add linear zeros in the left-half plane and by
employing high gain output feedback to the new output.

We will be able to achieve our extension by allowing our family of feed
backs to be possibly nonlinear, again as a function of f only. Our primary
tool will be the bounded controls of [9] to eliminate peaking when possible.
As motivating examples, we consider two very similar examples in [l] and
[6] that serve as warnings that simple high gain linear feedbacks will not
always be able to solve the nonlinear semi-global stabilizability problem:

Example 1.1 (Example 8.2 of [l]) Consider the single-input system (in
normal form (1))

f) = -(1-776)7?
ii = & (2)
6 = u



Example 1.2 (Example 1.1 of [6]) Consider the single-input system (in
normalform (1))

r) = -0.5(1+ 6)r?3
(i = 6 (3)
£2 = u

Both examples are globally minimum phase. Our philosophy for semi-
globally stabilizing these systems canbe summed up in the following heuris
tic argument that we make more precise in the sequel. In each case, if the
state fi were not a part of the system we would choose a linear high-gain
feedback function of & alone to drive & exponentially to the origin. The
necessary rate of decay would be determined by the initial state of 77. In
both cases, if asymptotic regulation of f2 were not crucial, it would actually
be sufficient to drive & exponentially to an arbitrarily small neighborhood
of the origin. The rate of decay and size of the neighborhood would be
chosen based on the initial state of 77. But this allows us to reintroduce
the state & since it can be steered to the origin with an arbitrarily small
bounded "control" &. In summary, for both examples, we will choose to
drive £2 arbitrarily fast to an arbitrarily small control that will (slowly) drive
£1 to zero without destabilizing the dynamics of 77. The problem with the
fully high gain approach of [l] and [6] is that they drive both &,& rapidly
to the origin. To drive fi fast requires peaking in &. The peaking in &
destabilizes the original zero dynamics. However, in the examples, the rate
of convergence of £1 is unimportant.

One interpretation of our approach is that we are adding a (slow) non
linear zero to the system by reducing the order of the linear subsystem by
one. Most importantly, the addition of this nonlinear zero still allows for
asymptotic stability of the new composite zero dynamics on arbitrarily large
compact sets.

2 Problem Statement

We make the following definition to clarify the problem at hand:

Definition 1 The system (1) is semi-globally stabilizable by state feedback
if for any compact set of initial conditions X there exists a smooth state
feedback

u = a(^n) (4)



such that the equilibrium (0,0) of the closed-loop system (1),(4) is locally
asymptotically stable andX is contained in the domain ofattraction o/(0,0).

We will focus on generating feedbacks that depend only on the linear states
f. (i.e. u = a(f).)

We will be able to achieve semi-global stabilization for multi-input sys
tems in the following special normal form:

V = /fa.&.-'-.C) j,€{l,...,r, + l}
6 = 6

fr, = U
y* = £j for 1= 1,...,771

(5)

where f*.+1 = wt-. With respect to the outputs yi the system (5) is said to
have vector relative degree {t*i, .. .,rm}. We define r = r\ + ... + rm. We
then have £ € Rr and 77 € Rn"r.

We make the following standard assumption:

Assumption 1 The equilibrium point 77 = 0 of the dynamics

77 = /(77,0,...,0) (6)

ie. the zero dynamics of (5), are globally asymptotically stable.

The distinguishing feature of the systems in the special normal form of
(5) is that no more than one state in each of the m chains of integrators
appears in the 77 dynamics. Systems of the form (5) are more general than
those in [l] in that the one state is notrequired to be the first state of the
chain associated with y,-, namely £}. In the terminology of [6], (0,.. .,0) is
not necessarily an achievable sequence of peaking exponents.

3 Main Results

Our general approach for nonlinear systems in the form (5) is to redefine the
nonlinear subsystem toinclude the dynamics off{,.,., {j j for i = 1,..., m
and redefine the tth output to be yf- = £!•. We also define the nonnegative



constants ft- = r; —ji + 1. We then have the following nonlinear system:

fl = /0?,Vi, ••-,&»)
2j — Z2

i; = a (7)

ft = fl for i=l,...,m

The vector relative degree with respect to the new outputs y,- is given by
{n, •••>^m}« Observe that some entries of the vector relative degree may
in fact be zero. Define f = f\ + ... + fm. We now have f € Rf and
z € Rr~r. With respect to the new outputs, it is straightforwardto see that
the system is not minimum phase. We are now interested in some further
output redefinition that makes the system (7) minimum phase at least on
sets U = VxRr~T where V C Rn_r is any arbitrarily large compact set. This
will be sufficient since we are only interested in semi-global stabilizability.

In preparation for our choice of output redefinition we establish the fol
lowing result for the system

V - /0?»V>i(tM)»---»¥>m(t>m,0)
z\ = 4

: (8)

4-1 = vi(zi) for »'=l,...,m

Proposition 3.1 Assume the system (8) satisfies assumption 1. Then,
given the compact set V C Rn~r, there exists a positive constant vq such
that for any set of controls {vt}£i tfiat globally stabilizes z and is such that
\v{\ < vq and Vj(0) = 0, and for any functions <pi('.,t) such that

limt_>oo Vi(t) = 0 =>• lim^oo <pi(viit) = 0
M <vQ => \<pi(vitt)\ < Mi/0

for some M > 0, the dynamics of (8) are asymptotically stable with basin of
attraction containing V x Rr~f.



Proof. The local asymptotic stability is straightforward (see, for exam
ple, [l, Lemma 4.2].) To determine the basin of attraction note that any
state z € Rr~r is driven to the origin by the assumption on v(z). Now con
sider initial conditions 77 € V. We will demonstrate that 3i/o such that if
|v«| < vq then the trajectories of 77 remain bounded for all t > 0. Regulation
to the origin then follows from the main theorem of [3] since z —• 0 as t —• 00
by assumption, vt(«) is smooth with vt(0) = 0 and

lim Vi(t) = 0 => lim v?(vi, t) = 0

To this end consider a smooth positive definite and proper Lyapunov func
tion

W : Rn"r -> R

such that

<W(77)./(t?,0)<0 (9)

for all nonzero 77. The existence of such a Lyapunov function follows from
assumption 1. It then follows that

dW(rj)-f(rjM^t))<0 (10)

for all ||v?(v,i)ll < J'(IMI) for some continuous function u that is decreasing
on [1, +00). (See [4, Lemmas 3.1,3.2].) Now let c be the largest value of W
on the compact set V and let ||t7|| < R V77 € {77: ^(77) < c}. Such an R
exists because W is proper. Then R and the function v together with the
constant M determine a bound v$ and an additional constant L < R such
that

dWW'f(lM*>*))<0 (11)
for all L < \\n\\ < R and all ||v|| < u0. Now, by assumption, 77(0) 6 V and
hence W(0) < c. Finally, since W is decreasing whenever W = c it follows
that W(t) <cfor all t>0. This in turn implies ||77(t)|| <Rfor all t>0. •

Remark. It is well known that such bounded controls vt- exist since any
finite length chain of integrators can be globallystabilized with an arbitrarily
small control, (see [2], [5], [9].)

We could now proceed with a standard output definition procedure
choosing new outputs as

Vi = Vi - Vi(z%)

In this case, the zero output dynamics would be given by (8)with <pi(vi, t) =
V{. The drawback to this choice is that the procedure to generate the closed



loop control involves repeated differentiation of the necessarily complicated
(see [7]) bounded controls v,-. Instead we choose a procedure that avoids
this repeated differentiation. (This type of procedure has also been used
with success in [8] for certain stabilization problems when the system is not
initially minimum phase.) The outputs chosen will depend on the feedback
gains used and so will be saved for the last step.

We begin by choosing a high-gain feedback law to stabilize the dynamics
of f in (7). We also include the small bounded control v which will be
instrumental in stabilizing the zero dynamics. We choose

ui = -KficitfJi Karfi. + KfiVi (12)

where «,-(•) will be specified and K > 0.
Next, we make a linear coordinate change to move V{ so that it directly

controls the zx states. To do so, we begin by defining

a =^a (13)
Then the dynamics for Q are

ci = m

0 = K(-ci,f<;\-...-ci,1(i + v)

Recalling that

we define

(14)

|4-i =ei =cj (15)

4-1 = <V*i.-i + 17(<V-iCi + ... + cuCJ-i + Cj) (16)
K

It can then be shown that

£**-! ="•• ("J
Likewise, we define z\ for k = 1,...,j{- 2 such that

-jfi =3b+i (18)

It is straightforward to show that this can be done in a way such that the
transformation between (C,z{) and (C%«*) is invertible.



We arenow ready to define the appropriate outputs. To do so, we denote
by A{ the controllable canonical form matrix associated with the Hurwitz
polynomial

** +CM**"1 +••• +«,*, (19)
We also let d € Rlxf' and B{ € Rf<xl be such that

d = [ 1 0 ••• 0
Bi = [0 0 •.. 1

Then we define the ith output to be

ft = deKAitC(0)
Observe that

fc(0 = § = Cj
= fc(«) +HCieKA^-^KBiVi(r)dT
= Vi(t) + <Pi(vi,t)

Finally, we have the nonlinear system

i = /0?>yi + w(t;f-,t))
Z\ — z2

Vi = v«
ci = m

(20)

(21)

(22)

(23)

Cf = K(-citf<;{-...-ciilG + vi)
y{ = C-e^^'rtO) /or i = l,...,m

To check the minimum phase property we must examine the system

V = f(ri,<Pi(vi>t))
'z\ = 4

*«-l = Vi

(24)

It is easy to show from (22) that the functions <pi satisfy the requirements
of proposition 3.1 with the constant M independent of the choice of K.
Further, it is important to note that K canbe chosen to drive the outputs yt-
to zeroexponentially with an arbitrarily fast rateof decay without exhibiting
peaking. We then have the following results.



Theorem 3.1 Assume the system (5) satisfies assumption 1. Then the
system (5) is semi-globally stabilized by the family of feedbacks (12). That
is, (12) locally asymptotically stabilizes (5) and for any compact set X of
the state space (77, f) there exists a Kx > 0 and vx > 0 such that, for all
K > Kx and all globally asymptotically stabilizing v(z) such that \\v(z)\\ <
vx, the basin of attraction for the closed-loop system (5),(12) contains X.

Proof. The proof of this theorem follows from the proof of [l, Theorem
7.2] together with proposition 3.1. Following the proof of Theorem 7.2 in
[l], we can show that it is possible to choose K in (23) large enough such
that the trajectories of 77, z with exponentially decaying inputs converge to
trajectories of the undriven 77, z dynamics that take initial conditions in some
compact set X determined by X. Then applying proposition 3.1, given X,
there exists vq sufficiently small such that if v is chosen with ||v(2)|| < vq,
all trajectories of 77, z that originate in the compact set X are driven to zero.
Finally, the states £ converge to zero since they are the states of a linear
system driven by bounded inputs that converge to zero. D

It is possible to slightly weaken the compact set restriction since the
dynamics of z are autonomous and globally asymptotically stable.

Corollary 3.1 Assume the system (5) satisfies assumption 1. Then the
feedbacks (12) locally asymptotically stabilizes the origin of (5) and, for all
initial conditions in the setY = X^x Rr~f xX$ where Xv C Rn_r is compact
and X$ C Rr is compact, there exists Ky > 0 and vy > 0 such that, for all
K > Ky and all v(z) such that \\v(z)\\ < vy, the basin of attraction for the
closed-loop system (5),(12) contains Y.

4 Examples

We return now to examples 1.1 and 1.2. Both examples have essentially the
same structure and are solved by the same family of feedbacks. To describe
this class of feedbacks we define the smooth function a : R —• R by

sa(s) > 0 for s ? 0
\o~(s)\ < V ^ '

The semi-global stabilization problem for examples 1.1 and 1.2 are then
solved by the family of feedbacks

u^-Kfa +o^ +^h)] (26)



parametrized by K, v > 0.
We give one further example to demonstrate the methods when j = r+1.

Example 4.1 Consider the single-input system (in normal form (1))

ff = -77 + T)2U
Si = 6 (27)
62 = u

Given 77 € V where V C R compact, the family of feedbacks is specified by

u = -(7(Cl£i + c2&) (28)

where c\ and C2 are chosen such that the dynamics of £1,62 are globally
asymptotically stable and where v is chosen such that

77 > rfv (29)

for all 77 6 V.

5 Conclusion

We have solved the semi-global stabilization problem for a slightly more
general class of systems than in [l] by combining small, bounded controls
with high-gain feedback to eliminate the peaking phenomenon. This was
systematically done by redefining the outputs to add nonlinear zeros to the
system in a manner that allows the new composite zero dynamics to be
asymptotically stable on arbitrarily large compact sets.

References

[1] C.I. Byrnes and A. Isidori. Asymptotic stabilization of minimum phase
nonlinear systems. IEEE Trans, on Automatic Control, 36 (1991) 1122-
1137.

[2] W.E. Schmitendorf and B.R. Barmish. Null controllability of linear sys
tems with constrained controls. SIAM J. Control and Optimization, 18
(1980) 327-345.

[3] E.D. Sontag. Remarks on stabilization and input-to-state stability. In
Proceedings of the 28th Conference on Decision and Control, Tampa,
Florida (Dec. 1989) pp. 1376-1378.

10



[4] E.D. Sontag. Further facts about input to state stabilization. IEEE
Trans, on Automatic Control, 35 (1990) 473-476.

[5] E.D. Sontag and H.J. Sussmann. Nonlinear output feedback design for
linear systems with saturating controls. In Proceedings of the 29th Con
ference on Decision and Control, Honolulu, Hawaii (Dec. 1990) pp. 3414-
3416.

[6] H.J. Sussmann and P.V. Kokotovic. The peaking phenomenon and the
global stabilization of nonlinear systems. IEEE Trans, on Automatic
Control, 36 (1991) 424-439.

[7] H.J. Sussmann and Y. Yang. On the stabilizability of multiple integra
tors by means of bounded feedback controls. In Proceedings of the 30th
Conference on Decision and Control, Brighton, England (Dec. 1991) pp.
70-72.

[8] A.R. Teel. Global and semi-global stabilization for single-input nonlinear
systems using saturation functions. In Proceedings of NOLCOS, 1992,
to appear.

[9] A.R. Teel. Global stabilization and restricted tracking for multiple inte
grators with bounded controls. Systems and Control Letters, 18 (1992)
issue 3.

11


