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1 Introduction

The current allocation of electric energy is based on a system of fixed
prices. In such a system the gap between marginal cost of energy gener
ation and the marginal value of energy consumption, hence the resulting
inefficiency, is quite large [10]. One scheme that closes this gap is that of
spot pricing, [11], [3], [2].

Spot pricing is impractical today because the necessary communica
tions infrastructure is not yet in place. A more practical scheme might
employ future prices: the power company announces prices a day (or
week) in advance and consumers then have the lead time to adjust their
demand. The announced future price would depend on forecasts of some
of the determinants of supply (e.g. scheduled generator shutdown times)
and demand (e.g. weather).

Future prices can more easily be implemented than spot prices, see
[1]. However, since a price is announced in period 1 (now) for energy
to be delivered and consumed in period 2 (later), and since significant
unanticipated fluctuations in supply and demand can occur in the interim,
some consumers will be rationed when the actual period 2 demand exceeds
the supply. The model we develop in this paper recognizes the cost of
rationing borne by frustrated consumers who have their electricity cut
ofL

Thus a future pricing scheme must take into account rationing loss,
and it must ration on the basis of available information. Also there must
be a balance between raising prices to reduce rationing-caused losses and
lowering prices to increase welfare gains from increased consumption. The
interruptible service contracts proposed here incorporate both aspects.
These are contingent contracts that condition service on particular events
or contingencies. A model for the market operation can be described as

•Supported in part by NSF grants ECS-8715132 and IRI-8902813
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Figure 1: Market operation

a two-step process as depicted in Figure 1. In this paper we assume the
supply is random, but the consumer preferences are deterministic.

Step 1. At the beginning of period 1 the power company announces
a set of contracts (p*,pjb), k = 1, •• •. Each consumer t chooses one type
of contract k(t) and a quantity d(t) kWh of energy for which t pays
Pk(t)d(t) dollars. In period2 the company will deliver d(t) kWhof energy
to consumer t with probability pk(ty With the complementary proba
bility 1 —pk(t) our consumer will not receive electricity. Thus p* is the
guaranteed reliability of service if the Jfeth type of contract is purchased.
Note that it is immaterial whether customer t selects the quantity d(t) in
period 1 or 2; it is important that the type k(t) is selected in period l.1

Step 2. At the beginning of period 2 the company finds out the ac
tual value of energy supply, 5(w). Here w denotes the sample point or
contingency. The company has to decide which customers to ration so
that (i) the total energy delivered does not exceed the available supply
for each contingency, and (ii) each customer's contract is fulfilled. The lat
ter decision is represented by the 0-1 valuedfunction Ru(t). If Ru(t) = 0
customer t will not receive service, if it is 1 she will receive d(i) kWh of
energy. Hence conditions (i) and (ii) are respectively given by:

^2Rw(t)d(t) < 5(w), for all w (1)
t

Prob {w | Ru(t) = 1} = flfc(0, for all t (2)

1If there is randomness in demand, the consumer selects her demand in period2
after her preference is revealed [9].
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The optimal contracts are obtained by first formulating a welfare prob
lem. We then show that the optimum can be sustained by interruptible
service contracts. The welfare problem for N types of consumer groups
is formulated in §2. In §3 and §4 we consider the consumer and supplier
decision problems. In §5 we show that the optimal contract prices are
the fixed point of a point-to-set mapping. In §6 we examine several im
portant properties of the fixed point. In §7 we obtain the structure of
optimal contracts. The structure turns out to be remarkably simple, and
the contract reliabilities are given by an ordering of the contingencies.
Some concluding remarks are collected in §8.

The interruptible service contracts discussed here bear a family resem
blance to the priority service contracts presented in [4], [7]. However, our
consumer model is significantly different, and there are some differences
in interpretation.

Part of this work was done while the second author was visiting the
International Institute of Applied Systems Analysis in Laxenburg, Aus
tria. He would like to thank Alexander Kurzhanski for the opportunity
of working at IIASA.

2 Problem formulation

The structure of optimal contracts is obtained indirectly by first formu
lating a welfare maximization problem and then by showing that the
optimum can be sustained by interruptible service contracts offered to
consumers in a decentralized market. We assume that the demand is

deterministic and there is no variable supply cost.
We first model the supply side. The total energy supply available (in

period 2) is a random variable that takes values S{ > 0 with probability
7T,- > 0, i = 1,•• ♦, n. The set of values {(«,-, tt,)} is known in period
1. However, the actual realization or "contingency" that will occur in
period 2 is known only at the beginning of period 2.

Next we model consumer welfare. A consumer is characterized by her
preference which consists of a utility and a loss function. We assume
there are N distinct types of consumers. The demand of any individual
consumer is assumed to be infinitesimal compared with the total demand
of all consumers. This permits us to model the set of customers as a
continuum indexed by t G[0, l).2 Since there are N types of consumers,
the set t € [0,1) is partitioned into N sets G\, •••,Gpf. Let the Lebesgue
measure of the set Gj be (3j, j = 1, —, JV; so ]Ct=i Pj —1* Suppose a
consumer t € Gj is allocated energy d(t) with reliability p(t). The net

2With this convention the total number of customers is 1, so the supplies s,- are
measured in average kWh per customer.
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benefit to this consumer is her welfare. It is given by

w(t) = p{t) Uj(d(t)) - [1 - p(t)] Lj(d(t)) (3)

The interpretation is that if consumer t actually consumes energy d(t)
her utility is Uj(d(t)), and since this occurs with probability p(t), the
first term in (3) is the expected utility. But if service is interrupted she
suffers a disutility of Lj(d(t)), and since that happens with probability
1 —p(t), the second term in (3) measures the expected rationing loss.
The disutility will generally depend on d(t) since the customer planned
on using that amount. It is assumed that

Uj(0) = Ls(0) = 0; Uj(d) > 0, Uj'(d) < 0; L^d) > 0, L^d) > 0

These are standard assumptions: Uj is strictly concave and Lj is convex,
and both are increasing. The total social welfare is the integral

W = / w(t)dt =£ / {p(t) U,(d(t)) - [1 - p(t)] Lj(d{t))}dt (4)

We now consider the allocation problem. In period 1 each t is allocated a
pair (p(i), d(t)). At the beginning of period 2, the contingency is revealed.
Suppose it is *,-. The power company now decides which, if any, consumers
are to be rationed. This is given by a rationing function R{ : [0,1) —•
{0,1} defined as

p.(f\ —[ 0 if<is rationed in contingency t
'^ ' —\ 1 otherwise

The rationing function must satisfy the physical constraint

Ri(t)d(t)dt < Si for all i (5)/
which simply says that supply meets rationed demand. The rationing
functions must also meet the contracts, that is,

n

^2vt Ri(t) - p{t) for all t (6)
i=i

The welfare maximization problem is to find functions </,#!,••♦,Rn sub
ject to constraints (5) and (6) so as to maximize the total social welfare
W. This can be reformulated as an optimal control problem. Introduce
the 'state' vector x and the 'control' vector z,

x(t) = (*!(*), ••., *„(<)), z(t) = (<*(<),r(t))
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where

ri(t) := inRi(t)t r(<) =(n(<), ••-,*•„(*)), *,(*) := / Trf^i(T)d(r)dr
Jo

Then the welfare problem can be reformulated as

,1 n .

max W= / w(t)dt =£ / MO W)) " t1 " P(0] iiWO)}*

(7)
subject to

**(*) = -d(t)ri(t), t G[0,1), i = 1,..., n (8)
7Tt-

x<(0) = 0, *,-(l) < Si, i = 1,..., n (9)
n

<*(<) > o, n(0 g {o, *,}, p(<) = Y r«(<) (10)
«=i

This is a standard optimal control problem with state equations (8), state
constraints (9), and control constraints (10).

The Maximum Principle [8] gives necessary conditions for a solution
of (7)-(10). However, we are interested in sufficiency which will be needed
for contract design. For each ,; = 1, •• •,N, define the Hamiltonian

Hj(d, r, n) =£ nUj(d) - [1 - E r^LM ~E*r*V (n>
i=l i=l i=l

where d > 0, r,- G {0,^}, and p. = (/xi, •• -,pn) with pt > 0. The term
iriPi is the adjoint variable associated with the supply constraint (9). It
is the scarcity cost of an additional unit of capacity in contingency i.

Theorem 1 (Sufficiency conditions) Suppose there exist p* > 0 and
Hi,'",Hff > 0 such that for each j = 1,• ••,N, and for all d > 0 and
r,€{0,7rt},

Hj(d,r,p*)<H] (12)
Then the maximum social welfare W* satisfies

N n

W = max W<YPjR] + Y*"*<•< (13)
i=i 1=1

Moreover, if there is a feasible control z* = (d*,rm) which satisfies

Hj(<r(t),r*(t),p*) = H;, teGj, j = l,-.-,iV (14)

and

^(s<-x^(l)) = 0, i=l,-..,n (15)

then this control is optimal.
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Proof. Let z be any feasible control and x the corresponding trajectory.
Let W be the welfare attained when control z is applied. From (7), (8),
(11), we get

W = E/ Hj(d(t),r(t),p*)dt +Y Etfr«(*M0*
N n

^ £/*;#;+ l>tf*.(i)
i=i 1=1

N n

* Ew+E^< (16)
i=i »=i

where the two inequalities in (16) follow from (12) and (9), respectively.
The second part of the assertion follows since (14) and (15) yield equalities
in (16). •

Thus an optimal solution z* maximizes the Hamiltonian Hj{d,r,p")
for each t G Gj, j = 1, •• ♦, N. Condition (14) means that the net benefit
is the same for consumers of the same type. Condition (15) is the comple
mentary slackness condition. It implies, as will be seen later, that at the
prevailing prices the power company cannot increase its profit by offering
a different set of contracts. Hence (14)-(15) are conditions for consumer
equilibrium and supplier equilibrium.

To obtain theoptimum, we must find pm and H* = (J5TJ, •♦ •, Hjf) that
satisfy (14) and (15). We briefly outline the ideas here. First, for d > 0,
1 > P > °» P > 0, and for each j = 1, •••, N, define

hj(d,p,p) := p Uj(d) - (1 - p) Lj(d) -pd (17)

This is the net consumer surplus derived by a consumer in group Gj who
purchases d kWh of energy with reliability p at unit price p.

Next we order the contingencies in decreasing order of severity so
that Si < "' < sn. The contracted reliability levels are p\,• • •,pn, where
Pm := X}»>m w*' Tne searchfor H can be formulated as a resource alloca
tion problem in which we seek for a fixed point. The fixed point is a vector
of prices p* = (pj, •••,p*), where pm is the price for the contract with reli
ability pm. We beginwith an arbitrary price system3 p = (pi, •••, pn) > 0.
The powercompanyoffers the n contracts {(pm, pm)}m=i' Eachconsumer
will choose one of these contracts. For this set of prices, the best contract
for consumers in group Gj is the one that gives the highest net surplus.
However, there may be more than one best choice for consumers in Gj.
Hence there is more than one way to allocate contracts to consumers in

3The price system in our formulation also includes the price index of all non-
electricity commodities. This will be elaborated later.
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Gj. Therefore we need to deal with demand correspondences (or point-
to-set mappings) rather than demand functions. Note that since every
consumer in Gj picks one of her best contracts, they will all end up with
the same surplus. Thus (14) is satisfied.

The next step is to derive the supply correspondence, and hence, the
excess demand correspondence. We say that a given price system is an
equilibrium if the supply meets the demand in all contingencies. Our
goal is to show that there is an equilibrium price system for the allocation
problem by adjusting the prices appropriately. The idea of the adjustment
scheme is to reduce positive excess demands by increasing the prices of
those commodities for which the excess demand is the greatest. Suppose
the equilibrium prices are pj, •••,p*. We show that it is possible to con
struct an optimal solution z* to the welfare problem from the contracts
{(Pm« Pm)}m=i- Hence the contracts offered at the equilibrium prices sus
tain the optimal solution of the welfare problem. Our desired p* and H
can then be computed from these equilibrium prices.

3 Consumer behaviour and allocation of contracts

The main purpose of this section is to describe situations in which the
desired actions of the consumers are mutually compatible and can be
carried out simultaneously (i.e. in a decentralized market), and for which
we can prove that there exists a set of prices that will cause consumers
to make mutually compatible decisions.

3.1 A decentralized consumer decision problem

In period 1 the power company offers the n contracts {(Pm»Pm)}m=i»
where pm > 0 is the price of the contract with reliability pm. Each
consumer selects one of these contracts. Consider a consumer in group
Gj. To decide which contract to pick, she needs to compute the net
surplus derived by purchasing a contract (pm>pm)i m = l,***, n. Since
each consumer in Gj picks only one contract, she will be faced with the
following decision problem if she decides to purchase contract (pmiPm)'

<**<$*** PmUi(d) ~ (1 " Pm)Xj(d) + 6 (18)
subject to the constraint

pmd+ pod<I (19)

The constant I, measured in dollars, is the income of each consumer.
A consumer in Gj spends her income on electricity and other commodities
such as food. The price po > 0 is a price index for all commodities other
than electricity, and 6 is the amount of this composite commodity. Thus
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(19) is the income constraint. Let the optimal consumption of problem
(18)-(19) be denoted by djm(po,pm,I) and b(po,pm,I). We shall assume
M » 8n. Note that if we allow the demand to be a free variable in
[0,oo), it may be unbounded if pm = 0. However, since the supply that
is actually available to a consumer is bounded above by sn, the exclusion
of extremely large demand from consideration is justified. Moreover, the
limitation of the choice of demand not to exceed the quantity M will not
alter the results of our analysis.

Remark 1. The demand djm{po,pm,I) is homogeneous of degree zero
in (po,Pm,I)- That is, djm(Xpo, Xpm, XI) = djm(po,pm, I) for any X> 0.

Remark 2. It is not difficult to see that the optimal solution of problem
(18)-(19) always satisfies the income constraint with equality. That is, we
always have

Pmdjm(po, pm,I) + Po&(PO»Pm» J) = I

Then problem (18)-(19) is equivalent to

oS<m *>{pmUj{d) ~ (* ~ Prn)Lj(d) +1- pmd) (20)

Since J is a constant, (20) reduces to

o<J<M pmUj^ " (1" *JL*W " Pmd <21)
Thus the demand for electricity is independent of income I. From now
on, we let djm := djm(pm) = djm(po,pm,I). Note from (21) that djm =
arg maxd>ohj(d, pm,pm).

3.2 Allocation rule

If consumer t 6 Gj purchases contract (pmiPm)i then her surplus is

Hjm := hj(djm, pm, pm) > 0

Let Hj := mazi<m<„ Hjm. Suppose the contracts{(pmiPm)}m€/i> where
Ij Q {1>•••>*»}> achieve the surplus Hj. Then each consumer in Gj will
pick a contract from {(pm»Pm)}m6/i- Since the contracts indexed by el
ements in Ij are indifferent to consumers in Gj, we see that in case the
cardinality of Ij is greater than one, there is more than one way to allo
cate the contracts to consumers in Gj. Let 0jm, 1 < m < n, denote the
number of consumers in Gj who are assigned the contract {pmtPm)' The
(jjm are chosen by the following rule:

Allocation rule:

Pjm > 0 ; /3jm := 0 if Hjm < Hj (22)
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and

Eft« = # (23)
m=l

The allocation rule ensures that each consumer in Gj gets the same net
surplus. It also implies that each consumer is allocated only one contract.
Thus an individual demand for electricity is a point in &+ (since there are
n types of electricity to choose from) with at most one positive component.
For a given price system (po,p) := (po,Pi»•• •> Pn)> let

*i(Po, p) := {Tj= (Pju •••, Pjn) IT$ satisfies (22)-(23)} (24)

be the set of preferred allocations for group Gj. Let djm '— djm(potp) =
djm(Pm)' The aggregate demand for electricity of type m (i.e. electricity
to be delivered at reliability pm) is the set

N

dm(po, p) :=(E Pjmdjm IPjm satisfies (22)-(23), j = 1, ••-, N} (25)

The demand for the n types of electricity from group Gj is the set

£>i(Po,p) := {(ftirffi.--. A»«W IPj€ *;(Po,p)} (26)

The demand correspondence (or consumption set) for electricity is given
by

N

D(Po,p) := E^PO'P)

N N

= {(Yfad»>'-'>!L,0J»din) Ift G*i(»»«W.
i=l i=l

i = l,2,...,AT} (27)

Remark 3. By Remark 1 the demand correspondence is homogeneous
of degree zero in (po, p, I).

4 Supplier's production plan

We consider the supplier's plan of action. The production plan of the
supplier is constrained to belong to the technology set, which represents
all feasible supplies of electricity of each type. Let qm be a supply quantity
for electricity of type m. That is, the amount qm will serve exclusively
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those consumers who have chosen contract (pmtPm)- Since only those
consumers who have chosen one of the contracts in {(pm,Pm)}m<i will
be served in contingency i, we must have 0 < qi + • ♦ • + qi < Sj. So the
technology set T is described by

T:={q = (qir-',qn) \ qm > 0 ; qi + •••+ q{ < st, 1 < t < n} (28)

The supplier chooses a production plan in the technology set T that
maximizes profit for given prices (po»p). For a given price system p
and production plan q for electricity, the profit is given by < p,q >:=
^2m=iPmQm' The supply correspondence is given by

S(po,p) :={qeT\ <p,q>><p,t> for all ? € T} (29)

Remark 4. The supply correspondence S(po,p) is homogeneous of de
gree zero in (po,p). Let ir(po, p) be the maximum profit when the price
system is (po, p). Then 7r(po, j>) = maxygr < p, q > is homogeneous of
degree one in (po,p).

The following lemma characterizes the set 5(po, p). By this lemma, if a
contract with higher reliability is offered at a lower price than a contract
with lower reliability, then it is more profitable for the supplier not to
supply electricity of the higher reliability type.

Lemma 1 Suppose q € <S'(po,p) and pi < pk for some 1 < / < k < n.
Then qt = 0.

Proof. Suppose by contradiction that qi > 0. Consider the alternative
production plan 7? = (q[, •••,q'n) given by

{qm ,m^l,k
0 ,m = /

qt + Qk ,m=k

To see that qf is technologically feasible, we let Qi := Ylm<* qm and
Qi := Em<i9m- Then we get Q\ = Q, for 1 < i < / and i~> k, and
Qi< Qi < ~Si for / < i < k. So q' 6 T. Next

<p,q>- <p,q >= qi(pi - Pk) < 0

which contradicts the hypothesis that q € S(po,p). •

5 Existence of equilibrium prices

To define an equilibrium we must have a "closed" economy. So we must
model what happens to the company profits. We do this by assuming a
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private ownership economy [5]. Let Oj > 0 be the share of the supplier's
profit for group Gj. The shares 0i,*",0jv satisfy £f-i Oj = 1. Suppose
q G S(po, p) when the price system is (po,p). Since the profit ir(po, p) =
< p,q > is distributed to shareholders, the income of group Gj is given
by

#/= / pobj{t) +Ojir(po,p) (30)
where bj(t) is the quantity of the composite commodity that consumer
t G Gj has purchased.

For each (po, p), define the set

X(po, p) := D(po, p) - 5(po, p) (31)

This is a nonempty set of excess demands compatible with the selection
by each consumer of a consumption optimal for her income constraint and
by the supplier of a supply optimal for that price system. The point-to-set
map (po»p) *-*• X(po,p) is called the excess demand correspondence. We
say that (po, p) is an equilibrium price system for electricity if x < 0 for
some x G X(po, p). That is, there is an allocation given by the allocation
rule (22)-(23) such that the supply meets the demand for each type of
electricity. We will show that an equilibrium price system exists and it
induces a set of contracts that is optimal for the welfare problem. This
is done by showing that a certain correspondence has a fixed point. The
fixed point is our desired equilibrium price system. We appeal to the
Kakutani Theorem [6] to show the existence of such fixed point.

By Remarks 3 and 4 the excess demand correspondence is homoge
neous of degree zero in (po>p). Hence we may fix the level of (po>p)
arbitrarily without restricting our analysis in any way. For our purpose,
this is most conveniently done by considering those points that belong to
the n-dimensional simplex En, where

n

S„:={(po,p)| Ew = 1» »£°>
t=0

When p £ 0, the set X(po,p) is below the hyperplane through the
origin and orthogonal to p. This is given by the next result.

Lemma 2 For each (po,p) € £n, <p,x> < 0 for all x G X(po,p).

Proof. Let x € X(po,p). Then x = d —q for some d G D(po,p) and
£_G 5(po,p). From the definition of the demand correspondence there are
Pi->'"t Pn sucn that fij G$j(po> p) isa feasible allocationforgroupGj and
d = C>=i Pjidji, •••, £;-=1 Pjndjn). Let dj = (fyidji, •••, 0jndjn), j =
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1, •••, N. The income constraint gives

n fYP^Jrndjm-r / pobj(t)dt < ftI (32)
m=l «/<€Oi

Then (30) and (32) imply <p,dj> < 0jir(po,p). Summing over j gives
<p,d> < J2j=i fyniPoiP) = t(Po»p) since £j=i fy = *• Finally, since
^(Po* p) =< P» 9 >» we get < p,d - q >< 0 as desired. D

Lemma 3 For each (po,p) G En and j = 1,..., JV, <Ae set $;(po»p) »* «
nonempty, compact, and convex subset of$t+.

Proof. The set Ij = {1 < m < n \ Hjm = Hj} is clearly nonempty. Then
by the allocation rule the set $;(po,p) is nonempty. It is also compact
since those nonzero 0jm are determined by (23). The convexity property
is obvious since (23) is a linear constraint. D

The notion of upper semi-continuity was introduced in proving the
Kakutani Theorem. We repeat the definition for completeness.

Definition 1 Let * be a correspondence from X to Y, and x G X. * is
upper semi-continuous (u.s.c.) atx iffor every sequence {*n}£=i> {yn}E=i>
the conditions xn -+• x, yn -*• y, yn G*(xn) imply y G^(x). * is u.s.c.
if it is u.s.c. at every x G X.

Lemma 4 For each j = 1,••♦, N, the correspondence (po,p) »-• $;(po,p)
is upper semi-continuous.

Proof. Let (po,p) GE„ and {(&,&) = (Po,pi»"-,p!»)}Si <= s»- Also let
Jj =(#i, ••',#„)_€ *i(l4.rt. Suppose (p^) —(po,p) and^ —£~
We need to show fy G $,(po,p). Let /,- = {m | J5T;m = ify}. Also let
Hjm = hjidjmiPoijf^Pmiitm) and #j = maxi<m<n H'jm. From (18)-
(19) it is easy to see that /ij(djm(po»p)>PmiPm) is continuous in (po»p)«
So there is a positive integer /* such that J5TJm < Hj for all m £ Ij and
/ > /*. The allocation rule then gives /?jm = 0 for m g Ij and I> lm. In
particular, we get

#m — #m:=0, m^/,- (33)
Next consider m G J;. We have 0jm = 0 if #jm < ffj. If Fjm =
flj, then /3jm > 0 is determined by (23) (see allocation rule). Since
{/?J*m}/=i converges and /?jm = 0 is also a solution of(23), we must have
0jm ~* Pjm ^ 0, where /3£m is a solution of (23). This observation and
(33) imply J* = (j^, ••-,/?;„) G$j(Po>p)- Since ^ -, ^, we get
/?;• = /?,• G Oj(po,p). So the u.s.c. property is established. •
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Lemma 5 For each (po»p) G E„, the set X(po,p) is nonempty, compact,
and convex. Moreover, X(po,p) is uppersemi-continuous.

Proof. S(po,p) is clearly nonempty and convex. Its compactness follows
from that of the technology set T. Next since $/(po»p) is nonempty and
convex, the set D(po,p) is nonempty and convex. By Lemma 3 $j(po,p)
is compact. Also since 0 < djm < M, and djm is continuous in (po»p) for
all j and m, D(po, p) is compact.

It is immediate that the supply correspondence is u.s.c. So it remains
to show that D(po,p) is u.s.c. The demand djm(po,p) is continuous in
(POip) for each j. This and Lemma 4 imply that Dj(po,p) defined in (26)
is u.s.c. The claim follows since D(po,p) =]£j=i Dj(po,p)- E

We would like to adjust the current price system so that an equilibrium
price system can be obtained. The idea of the adjustment scheme is
to increase the prices of those types of electricity for which the excess
demand is the greatest. We begin by considering the excess demand
correspondence. By Lemma 5 the set X(po,p) is compact for all (po»p) G
E„. So there is a compact and convex set E C &n such that X(po, p) C E
for all (poip) G E„. Let x G E. Define the set A(x) by

A(x) := {(po,p) G E„ | < p,x > > < $,x > for all (p^tf) G E„} (34)

If x G X(po, p), then A(x) adjusts (po,p) to a set of price systems given
by (34). Define the correspondence * from En x E to itself by

((Po, p), x) hf *((po, p), x) := A(x) x X{po, p) (35)

Lemma 6 For each x G E, the set A(x) is nonempty, convex, and com
pact. Moreover, the correspondence Fw A(x) is u.s.c.

Proof. Since En is nonempty and compact, the set A(x) is nonempty and
bounded. From the definition of A(x), the set is clearlyclosed. So A(x) is
compact. The convexity property follows from that of E„ and the linear
constraint in (34). The u.s.c. property is straightforward to check. D

Proposition 1 The correspondence V has a fixed point, i.e. there exists
a point ((Po,p*)»x*) G En x E such that (p5,p*) G A(x*) and x* G
X(Po,p>).

Proof. The product set En x E is nonempty, compact, and convex since
E„ and E are. By Lemmas 5 and 6 the set A(x) x X(po, p) is nonempty,
compact, and convex for all ((po»p)ix) G E„ x E. These two lemmas
also imply the correspondence $ is u.s.c. Therefore all conditions of the
Kakutani Theorem are satisfied, and $ has a fixed point. a

Lemma 7 There exist (po,p*) G E„ and T = (xi,---,x*) G X(po,p*)
such that xm < 0 for allm= 1, ♦ ••,n.
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Proof. By Proposition 1 there exists ((pj,p*),x*) G En x E with the
property

(Po>P ) € A{T) and x* G X{p*0,p~) (36)

The first relation in (36) implies < p*,x* > > < tf,x* > for all (pq,P) G
En. By Lemma 2 the second relation in (36) implies < p",x" >< 0.
Hence

< p ,x* > < 0 for all (po.p') G E„ (37)

For each rn = 1, •• •, n, consider the point in En with pm = 1 and p,- = 0
for %£ m. Then (37) gives x^, < 0. This completes the proof. •

Hence the fixed point (Po»p*) obtained in Proposition 1 is an equilib
rium price system. We obtain further properties of this price system.

Lemma 8 (Walrasian property) The prices p* = {p\, •• ',p*n) and the
excessdemand vectorx* = (xj, •• ♦, x*) satisfypmxm = 0 for a^ m« Hence
<p*,x* >=0.

Proof. By Lemma 7 we have xm < 0. So pmxm < 0, and it suffices
to show that for each m, pmxm < 0 is not possible. We prove this by
contradiction. Suppose p* > 0 and x* < 0 for some /. Consider the new
price system (pq,pf) defined by

( Pm ,m*0,/
Pm = \ 0 ,m =l

( Po + Pi »m = 0

Then (p'0,p) G En, (p'0,p) £ (p*0,p*), and < f,T > - < p'.x* >=
pjx* < 0. Clearly this contradicts (po>p*) G ^(x*). d

By Lemma 8, if xj^, < 0 so that there is a positive excess supply of
electricity of type m, then the contract (pm, pm) is free and offered at
price pm = 0.

6 Properties of an equilibrium price system

In this section we derive some important properties of the equilibrium
price system obtained in §5. These results will be used in §7 to construct
a set of contracts that sustain the optimal solution of the welfare problem
(7)-(10). The next lemma is useful for several of the subsequent results.

Lemma 9 Ifpm < p%, where k > m, then no consumer will purchase the
contract (pjfe,p£).

Proof. Since pm > pjt> the strict inequality

pmUj(d) - (1 - pm)Lj(d) - Pmd > PkUj(d) - (1 - Pk)Lj(d) - p*kd
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holds for all j and 0 < d< M. So H]m := M<Wp5>P*)>Pm,Pm) > #;*
for all j. Therefore fyk = 0 for j, and hence, dj = 0. D

The following result gives an ordering on the equilibrium prices.

Lemma 10 The prices p" = (Pii"-,Pn) are monotonically decreasing in
the order of decreasing contingency severity, i.e. p\ > p£ > ••• > p*n.

Proof. We prove the assertion by contradiction. Suppose p? < pj+1 for
some 1 < i < n —1. Let <f G£>(po,p*) and q* GS(po,p*) be such x* =
d ~q*. Then Lemma9 gives dj+1 = 0. Since pj+l > p\ > 0, Lemma 8
implies g*+1 = dj"+1 = 0. We need to consider two cases.

Case 1: qm = 0 for all m > i + 1. (If i + 1 = n, take g^+1 = 0.) Consider
9* = {q'v •' •» 9n) with 9m = 9m for m # »+ 1» and 9?+i = *«+i - «t- Since
53m<l- gm < Si and gm = 0 for all m > i + 1, we see that q1 GT. Next we
obtain

< P*.^ > - < P*»9* >= Pi+i(*t+i - Si) > 0
But this contradicts g* G S(po,p").

Case 2: There exists m > i +1 such that gm > 0. Let Jb := min{m >
i+1 \ qm > 0}. We claim that p'i+l > pmk. If p*k > p*i+1 > 0, then by
Lemmas 8 and 9 we get qk = d£ = 0. This contradicts ql > 0. So we
must havepj+1 > pj. Consider q* defined by q'm = qm for m 0 {x + 1,k),
q'i+i - mm{«i+i - «,-, ?*}, and q'k = max{^ - (si+i - *,-), 0}. Then q' GT
since gm = 0 for x' + 1 < m < ife. Next we obtain

<p',g/>-<p*,$* > = pl+iqi+i + PUk-PUt
> Pjb(9f+i+9*)-P*9*
= pmk max{qk, si+i - Si} - pkqk

> 0

Again this contradicts q' G S(po,p*). •
The next result is useful for obtaining the complementary slackness

condition (15).

Proposition 2 Consider the fixed point (p5,p*). Let 5* G£(p5»P*) and
5* G S(Po>P*) oe 8Ucn thai x* = d —§*. Then for each 1 < x' < n,

p*i > 0 implies Si = E 9m = E <» (38)
m<i m<i

Proof. The proof is carried out by an induction on x'.
Step 1; x' = 1. Suppose pj > 0. We claim that gj = si. We show this by
contradiction. So suppose q{ < s\. By Lemma 10 the prices are ordered



C.-W. TAN AND P. VARAIYA

as p[ > • •• > p^ > 0. There are two cases to be considered.
(i) If pi = ••• = p*, then by Lemma 9 we get d^ = 0 for all m > 2. Now
by Lemma 8 we obtain qm = dm —0 for all m > 2. So the production
(*it 9i»*•*»9n) *s feasible and yields a profit strictly greater than that of
<f. This contradicts q' G S(pQ,p*).
(ii) If there is 1 < k < n such that p\ = ••• = pk > pk+l > ••• > p*, then
q% = ••• = q^ = 0. (If k = 1, we simply have pj > p$ > ••• > pn.) Next if
5Zm>t+i 9m < si ~ 9i» tnen the production ^ i= («ii0,••♦, 0) is feasible
and""

<?,?>-<p%5*> = Pi(«i-9D- E P^m
m>Jfe+l

> P*i(si-qmi)-pl Y fm
m>Jfe+l

> o

Thiscontradicts q* GS(po,p*). Now if^m>t+1 qm > si —q\, then there
isa smallest integer h in {k+ 1, ••♦, n} such that 52k+i<m<h qm ^ si—9i«
Let

*+l<m<A

By our definition of the integer h, we have 0 < 6 < q^. Next consider q
defined by q[ = $i, q? = •••= q'^ = 0, q£ = 6, and ^ = qm for m > h.
It is easy to check that q €T. We also obtain

<?,i' >-<?,?> = pUsi-«I)+P^- E Pm?™
k+l<m<h

= Pl('l-ffl)- E Pmqm-PH(qH-6)
k+l<m<h

> Pi(si-9l)-P*i E 9m-P*i(9fc-^)
fc+l<m<fc

= 0

where the strict inequality follows from the monotonic property of the
prices and the fact that ql > 6. Again we get the same contradiction.
The equality ql = d[ follows from Lemma 8.
Step 2; Induction assumption. Assume (38) holds for all x = 1,2, • •*, /.
Step 3: x' = / + 1. Supposep*+l > 0. By Lemma 10 we get p* > 0. So the
induction assumption gives s\ = £m</<7m. Hence 0 < q*+1 < sj+i —$/.
By the same argument used in Step~l, we infer that gf+1 = si+i —sj.
Consequently, we get s/+i = 52m<i+i qm- The other equality in (38)
follows from Lemma 8. This completes the proof. •
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Corollary 1 Let If be as given in Proposition 2. If p* > 0, then qm —
sm —*m-i > 0 for all m < i. (Take so = 0.)

Proof. Since pj > 0, Lemma 10 gives pm > 0 for all m = 1, •••, x. The
claim then follows from Proposition 2. D

Lemma 11 Ifp-> 0, then pi > p*+1.

Proof. Let d and q* be given as in the proof of Lemma 10. By the
same lemma it remains to show that pj = p*+1 is not possible. Suppose
Pi —P?+i* Then by Lemma9 we get dj+1 = 0. On the other hand, since
P?+i = P* > 0, Corollary 1 implies g,*+1 > 0. Hence weget x*+l < 0. This
contradicts Lemma8 since pj+1 > 0. D

An immediate consequence of Lemma 10 and Lemma 11 is the follow
ing corollary.

Corollary 2 Letk be the smallest integer in {1,••♦, n} such thatpk = 0.
Then pj > ••• > p*k_x > pk = ••• = p* = 0. // this integer k does not
exist, then p\ > ••• > p* > 0. D

Lemma 12 Consider the fixed point ((Po»p")»x*). If p* > 0, then con
tract (Pi,p1) will be purchased by some consumers in [0,1).

Proof. Let d and q* be given as in the proof of Lemma 10. Lemma 8 and
Corollary 1imply d? = q* > 0. Since dj = Sj=i Pjidji, we must have
(3ji > 0 for some j. •

Corollary 3 (i) If the contract (pi,p*) is purchased by some consumers
in [0,1), then so will be the contracts (pi, Pi)t-•-(Pi-i,Pi-i).
(ii) Let 1 < k < n be the integer such that pj > ••• > pj_j > pj = ••• =
p* = 0. Then none of the contracts in {(Pm»Pm)}m>*+i will be chosen
by any consumer in [0,1).

Proof, (i) Lemma 9 implies p'-_l > pj > 0. Next by Corollary 2 we get
Pi > ••• > p*_x > 0. The claim then follows from Lemma 12.
(ii) This is immediate from Lemma 9 since pm = pk for all m > k + 1. D

7 Optimal contracts and allocation

In this section we construct an optimal allocation for the welfare problem
and show that a set of contracts of the form {(PmiPm)} sustains this
optimum.

Consider the fixed point ((Po»p*)» x*) obtained in §5. The power com
pany offers the contracts {(Pm>Pm)}m=i' Contract (pm,pm) is a winning
contract if some consumers in [0,1) pick this contract. By Lemma 12
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and Corollary 3, if p{ > ••• > p* > 0, then all the n contracts are win
ning contracts. If there is 1 < / < n such that p\ > ••• > p[ = ••• =
p* = 0, then contracts {(Pm» Pm)}m<J are winning contracts, and con
tracts {(PmtPm)}m>i are not. By Corollary 3 there is 1 < k < n such
that {(pm,Pm)}m=i are the only winning contracts. The prices are or
dered as p\ > ••• > pk > pk+1 = ••• = p* = 0. To construct an optimal
allocation we first compute the surplus vector H = (HI, •••,-ffjv)» where
HJ = maxi<m<„ HJm and H]m = fy(djm(Po»P*). Pm,Pm)> Let <f and q*
be given as in Proposition 2. Then d is of the form

5* = (dl,..-,dJ,0,---,0)
N N

= (E^^i'-'-'E^^'0'---'0)

where Jj = (#i, ••.,#*, 0, •••, 0) G$j(po,p*)i i = 1,•••, W. For each j,
let qtj be the cardinality of the set Ij = {m \ HJm = HJ}. Denote the
Lebesgue measure of a set Z C & by C(Z). We partition the group Gj
intoofj sets Gj\, •••,Gjt<Xj such that m G1/ ifand only if C(Gj\) = /?jm for
some 1 < / < ctj. This is clearly a one-to-one correspondence between Ij
and the partition sets {Gjt}%v Also, Eg^Gji) = Eme/i^ = £?•
Moreover, a consumer in Gj\ is assigned to contract (pm,Pm)t m G Ij, if
and only if C(Gjt) = 0jm.

For each m = 1, • ♦ ♦, n, define the vectors rm = (rm, •••,rm) by

„m ._ / T» i if X>
r« —\ 0 ,ifx<

We construct an allocation (or control) z* = (d*, r*) as follows:

<f (0 := djm , r'(<) := rm , if t GG,, and C(Gj,) = ftTO (40)

Also let /i* = (/ij, •••,pn) be defined by

..* . Pm ~ Pm+1 i />iiN/um := , m = 1, • • •, n (41 j

where p*+1 := 0. Since Pi > ••• > p* > pk+l = •••= 0, we get

pmm>0, l<ro<*-l; /4>0; p*k+1 = ••• = pn = 0 (42)

We will show that the /im's are ordered as p\ > ••• > pn > 0. To
establish this ordering, we need to introduce the concept of bid prices.
For H > 0, define the bid price Pj(p) := pj(p;H) for group Gj as

m

m
(39)

Pj(p) := { max{p> 0 | there exists d > 0 with hj(d,p,p) > H} . .
undefined if there is no d> 0 with /»j(d, p,p)> H ^ '
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This is the maximum price that a consumer in Gj is willing to pay for
energy with reliability p if she is to attain surplus H.

It follows from the definition of hj(d, p,p) that a bid price curve p *-+
Pj(p) is increasing and defined on a set of the form 1 > p > pi,jn(J5T),
where p'miniH) is positive and increasing in H. Since Remark 2 gives
HJm = maxo<d<M hj(d, pm, pm) = maxd>0 hj(d, pm, pm), it follows easily
from (43) that pm = Pj(pm', HJm) for allm. We have the following useful
lemma which says that a bid price curve is convex.

Lemma 13 The map p *-*• Pj(p) is convex over the set 1 > p > /a^,^.

Proof. For each d > 0 define the function p *-* Pj(p;d), with d as param
eter, by

Pj(p;d) := PU>(d)-[l-p]Lj(d)-H
d

This is an affine function of p, and since by (43), Pj(p) = supdPj(p', d), it
follows that Pj(p) is convex. •

Lemma 14 The scarcity costs are ordered as p\ > ••• > pn > 0.

Proof. From (42) we get pmk_t > pk > pk+1 = ••• = pn = 0. So it
remains to show pm > pm+1 for all 1 < m < k —2. Suppose p* < /ij"+1
for some 1 < / < k—2. By Lemma 13, the bid price curves pj(p;Hj{)
and pj(p;Hjl+2) are convex. So p* < p*+1 implies

pl+1 > min{Pi(pl+i; HJ,) , Pj{pi+i; HJl+2)} (44)

Since the bid price curves are decreasing in surplus, (44) implies HJi+1 <
max{Hjj , Hj,+2}' Therefore /+ 1 £ Ij. This holds for each j, so no
consumer will choose the contract (pt,Pi). This contradicts Lemma 12
since p* > 0. D

We now show that the allocation z* is optimal for the welfare problem.

Theorem 2 The allocation (or control) z* given by (40) is optimal.

Proof. Let t G Gj. Then t G Gj, with C(Gjt) = Pjm for some m G Ij.
By (40) d*(t) = djm and p*(t) = pm, and the consumer gets surplus HJ.
Also since Xw=*i £(Gjt) = PJ> every consumer in Gj gets surplus HJ.
Condition (14) is thus satisfied.

Next we check the complementary slackness condition (15). By (42)
this condition clearly holds for x' > k. For i < k, the total demand in
contingency i is xj'(l) = 52m<idm. By Proposition 2 we get xj(l) = s,-.
So condition (15) holds for x' < k. For x' = k, we see that pk > 0 implies
pi > 0. So it follows from Proposition 2 that condition (15) also holds for
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i = k.

It remains to show that

HJ = max Hj(d,r,p') , j = 1,•.., TV (45)

Now suppose (d*, r+) maximizes

Hj(d, r,p*) = Y r< UM - [i - E r*i lm - IE ^r»id (46)
i=l »=1 i=l

Since the term involving r,- in (46) is linear in r,-, it follows that

U,(#) +L,dt) -^{llZ^Z I' (47)
Now let m = min{x | rf = 7Tj} and consider thecontrol value (d, f) given
by

d = d"**; fi = iri, x> m and r,- = 0, i < m

It is straightforward to verify using the ordering of pm in Lemma 14 and
(47) that

Hj(d+,r+,p*) = Hj(d,r,p*)

But from (40) we see that

(d, f) = (d*(t), r*(t)) for some t GGj-j and 1 < / < Qj

which shows that HJ is the maximum value oftheHamiltonian as required
in (45). •

8 Concluding remarks

In this paper we have considered a two-period pricing model for an electric
power system. The power company offers a set of contracts in period 1.
Each customer picks a contract in period 1 and then decides her demand.
This is a decentralized decision problem. The supplier, on the other hand,
needs to design a rationing scheme so that the demand can be met by the
supply available in period 2, and each contract can be fulfilled. We have
shown that it is possible to design a set of contracts that induce customers
and the supplier to act optimally. The reliability levels of these contracts
are given by an ordering of the supply contingencies.

In §7wehave shown that the optimal contracts are (pi, pj), •••, (pn» Pn)»
where the reliabilities pm = ]C,>m7r« are obtained by ordering the sup
ply contingencies such that si < ••• < s„. That is, the mth contract
guarantees delivery under contingencies m, m + 1, •••,n. The price vector
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(Pv' **» Pn)ls shown to be a fixed point of a certain correspondence. They
are ordered as pj > ••• > pn, hence a higher price is tagged to a more
reliable service. If pk > pk+1 = 0, then customers will only demand the
first k —1 and possibly the kth contracts.

By using the complementary slackness condition (15), it can be shown
that the prices p\, '",pn are market equilibrium prices, [10]. That is, the
contracts {(Pm»Pm)}m=i is a feasible allocation of contracts that simul
taneously maximizes consumer surplus and company profits.

In this paper we have neglected the variable cost of supply and as
sumed that consumer preferences are deterministic. Extensions of the
present model to include these situations can be found in [9] where it is
shown that the structure of optimal contracts is similar to that obtained
in this paper. However, the reliabilities are no longer given by orderings
that coincide with that of the magnitudes of the contingent supplies, and
algorithms that search for these orderings are more complicated.
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