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Abstract

We derive an analytical relationship between the parameters
of a square-wave forced, non-linear, two dimensional ordinary
differential equation which determines conditions under which
the Poincare map has a horseshoe. This provides an analytical
test for chaos for this equation.

In doing this we show that the Poincare map has a closed
form expression as a transformation of R2 of the form FTFT,
where F is a flip, ie a 180 degree rotation about the origin and
T is a twist centered at (a,0), for @ > 0. We show that this
derivation is quite general.

We also show how to relate our results to ODE’s with contin-
uous periodic forcing (e.g., the sinusoidal-forced Duffing equa-
tion).

Finally, we provide a conjecture as to a sufficient condition
for chaos in square-wave forced, non-linear ODE’s.




1 Introduction

This paper is divided into five sections and an Appendix. This sec-
tion provides background information, defines the twist and flip map,
and describes a general method of reducing the Poincare map of
a second order, square wave forced, differential equation to the
double twist and flip map. Sec. 2 presents a proof of the horseshoe!
twist theorem, which is the main result of this paper. Sec. 3 presents
some examples of the applications of the horseshoe twist theorem, and
Sec. 4 shows how to construct a dissipative transformation from the
twist and flip map which is the analogue of the Poincare map of a sec-
ond order, square-wave forced ODE having a dissipative term. The ex-
istence of a strange attractor for this dissipative system is illustrated.
Sec. 5 shows the relationship of our results to the sinusoidally forced
Duffing equation.

The formulae used throughout this paper are derived in the Ap-
pendix.

1.1 Background

The theorem presented in this paper (Sec. 2) was motivated by an
analysis of the general Duffing equation with a sinusoidal forcing term
which has been studied by many authors, for example see [Gucken-
heimer & Holmes, 1983]. This equation is:

&+ bz + cz + 2° = acos(t)

In an effort to discover the fundamental mechanism for chaos in
this equation some simplifications were made which are similar to the
analysis in [Tanaka et. al., 1984] where a study of square-wave forced
circuits may be found. As a result, the following equation was chosen
as the starting point of our analysis:

& + bt + cz + z° = a sgn(sin(wt)) (1)

where,
1 ifz>0
en(z) =1 _] irz<o

!See [Guckenheimer & Holmes, 1983] for an explanation of the Smale horseshoe.
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Reasonable physical and mathematical intuition suggests that chaos
will be no less prevalent in the square-wave forced equation than in the
cosine forced equation. However, the square-wave forced equation offers
some significant analytical advantages that we now explain.

1.2 Definition of the Twist and Flip Map

In this section and throughout this paper we will use F to denote a
flip (a 180 degree rotation about the origin) and T to denote a twist.
In this paper?, a two-dimensional twist is defined as a transformation,
T, of R? that has two properties. First, it preserves a continuum of
closed curves 3 in the sense that each closed curve is invariant with
respect to T (i.e. T(p) € T, for any p € T, where I is any member
of a continuum of closed curves) and the curves in the continuum are
uniquely parameterized by a non-negative scalar, henceforth called the
energy. Second, on each integral curve, the angular displacement (in
polar coordinates) with respect to the "center”, (which need not be the
origin) of the curves is eventually* a decreasing or increasing function of
the energy. We note that we include decreasing in addition to increasing
due to the convention that in polar coordinates the angular velocity is
negative rather than positive. What is important is that the sign of
the angular velocity not change and that the angular velocity is either
increasing or decreasing.

In order to fix these ideas we present the following example: Con-
sider

i+23=0

This equation has the first integral £2/2 + z/4 = H. In the phase
plane this equation describes the family of closed curves y2/2+z*/4 =

2We stress that in the literature the term fwist has a more restricted meaning
than we are presenting here. Our work indicates the need to generalize the present
notion of the twist.

3Which may be thought of as integral curves, much like the integral curves
defined by a periodic two-degree of freedom Hamiltonian system.

4the term "eventually” used here is for convienence of this paper only. In a
forthcomming article this definition will be refined and the term ”eventually” will
be discarded



H. It may be verified that tan(§) = y/z® provides an orthogonal family
of curves to the closed energy curves. Together these two sets of curves
provide a new coordinate system that allows us to compute 36/9H.
Doing this we find that 30/0H = —65sin*(9)/z? < 0.

[FIGURE 1]

The simplest example of a twist ® is the transformation in polar
coordinates defined by the equation T(r,8) = (r,8 + r7), where r is
measured in radians and 7 # 0. The only integral curves which are
preserved by this twist are the circles of radius r. This twist, restricted
to each such circular integral curve is a function of r which plays a role
similar to that of energy. The effect of the twist in this case is that the
angle of rotation is a function of the energy. The greater the energy, or
radius r, the greater the angle of rotation (positive or negative) of the
transformation along a circular energy curve. Fig. 1 shows an example
of a simple twist for 7 = 1,a = 1 which is not centered at the origin.
In general the twist is centered at (a,0), where a > 0. As illustrated in
Fig. 1, the simple twist, and twists which are translates of the simple
twist, transform straight lines emanating from the center of the twist
into spirals.

The twist used in this paper will be a translation of the simple twist
and it will always be assumed that a > 0. The rectangular coordinate

equation for a twist of this type centered at (a,0) will be given in Sec.
2.

Remark It should be noted that the concept of a twist can be
generalized to n-dimensions (e.g. (r,6,,02,...,0,) = (r,rm +6;,rm2 +
02,...,7Tn + 0,)), where as before r is measured in radians and ; #0
for all i. Doing this would be one means of establishing a general
theory for equations of higher dimensions. A second route to gener-
alization would be to factor equations in higher dimensions into lower
dimensional components. For example, the sinusoidally forced Duffing
equation can be shown to be equivalent to an autonomous equation
of degree two in three dimensions. This observation establishes the

SWhen the term twist is used in the literature, this example is usually what is
meant.
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needed link between the two-dimensional case and higher dimensional
equations. Both of these directions will be treated in a later paper
where it will be shown that our results can be extended to equations
in higher dimensions.

1.3 Reduction of the Poincare Map of the Square-
wave Forced Duffing Equation to a Twist and
Flip

In this section we will explain how to reduce the Poincare map © of
certain second order ODEs to a twist and flip. Although the method
is quite general, we use the Duffing equation 1 as a specific example.

The first step in this reduction is to notice that the square-wave
forced Duffing equation can be written as a pair of autonomous equa-
tions:

£ + bz + cz + z° = a, whenever sin(wt) > 0 (2)

& + bt + cx + 2° = —a, whenever sin(wt) < 0 (3)

To use this pair of equations in place of the square-wave equation we
follow the first equation up to time m/w(half the period of the forcing
function), at which time we use the position and velocity at the time
t = m/w as the initial conditions of the second equation. We then
follow the second equation for the same time and switch back to the
first.

We note that the second equation contains no new information,
since its vector field in the (z,Z) phase plane is a 180 degree rotation
of the first(substitute (—z, —z) for (z, #)). From this we conclude that
the solution, from any initial state (z(0),£(0)), of Eq. 1 at the times of
2n7 [w can be generated by integrating Eq. 2 over a time interval equal
to 7/w, then taking the position and velocity at time t = 7/w and
flipping it( (z(7/w),&(r/w)) — (—z(r/w), —&(r/w)) and integrating

8see [Parker & Chua, 1989]



Eq. 2 again over the same time interval with this flipped initial condi-
tion, then flipping the final output again to obtain (z(27/w), 2(27/w)).
Recall that the solution of a periodically forced differential equation
after one period of the forcing term is a point of the orbit of the
Poincare map. Hence, the sequence of points that make up the orbit
of (z(0),%(0)) under the Poincare map is simply obtained by iterating
the above algorithm starting with the point (z(0),£(0)).

We now reduce Eq. 2 to a system of two first order equations in the
phase plane by the substitutions £ = y and § = —ay — bz — 2° + ¢.

Define T as follows: Given a pair of initial conditions (o, 3o), inte-
grate the first order system of equations over the time 7/w to get the
value (z(7/w),y(7/w)). This vector is T(zo,yo)-

If F is the flip then the Poincare map defined by observing the
solution of the square-wave forced equation at the intervals of 27 /w is
simply the transformation FTFT. Unfortunately, since the trajectory,
(z(t),y(t)), after each period of this dissipative (a > 0) system is not
closed, the map T is not a twist as defined in this paper. Since in this
paper we are presenting a theorem that gives necessary conditions for a
flip and twist to have horseshoes, we simplify this equation by removing
the damping factor —ay.” In the following subsection and in Sec.4 we
indicate how our results can be extended to include a dissipative term.
However, a rigorous treatment of this case will appear in a later paper.

The continuum of closed curves around which the twisting takes
place is the first integral curve of the ODE. For Eq. 2 this integral
curve is given by

$'2 .’172 4

T
-2—+c?+f—ax+H (4)

which is parameterized by the energy H.
In phase plane coordinates this one-parameter family of closed curves
is given by
2 2 4
L + = + I —ax +H
2 2 4

"The analytical advantage of removing this factor is that the resulting transfor-
mation T, as defined above is a twist and our theorem provides a result for the case
of a simple twist.




It can be easily verified by the coordinate transformation used earlier
that the angular velocity, 8 (in radians per second) of T is negative
along each integral curve, and that the angular velocity is eventually
an increasing/decreasing function of the energy H (i.e.06/8H < 0 or
86/8H > 0 sufficiently large H. Observe that, in Equ. 4, 80/0H =
—6z sin?(8) /(2% —c). Thus, for small H this partlal undergoes a change
of sign as z goes from zero to infinity, but for large enough z the sign
does not change). Hence T is a twist by our definition.

We have exchanged the problem of analyzing the Poincare map for
the square-wave forced Duffing equation for the problem of analyzing
the double twist and flip map, FTFT, where the components F and T
are quite simple and well understood. If FT has fixed points, these
points are also fixed for FTFT. Therefore, when fixed points exist for
FT, and these fixed points imply the existence of horseshoes for FT,
they are also horseshoes for FTFT.

The most important fact about the FT factorization of the Poincare
map of square-wave forced ODEs such as the Duffing equation is that
the the presence of horseshoes for FT implies the presence of chaos for
the system described by the ODE.

Further, it appears at this time that square-wave forcing is the
extreme case of chaos in ODEs and that cosine forcing has fewer horse-
shoes than square-wave forcing. This is because the cosine forced ODE
has the effect of varying the amplitude a as it moves continuously
through its range [—1,1]. We know that for small amplitudes there is
a greater chance of an unstable manifold being homoclinic. We have
concluded informally that damped, sinusoidal forced ODE have fewer
horseshoes still.

In section 5 we will show how to generalize the Poincare map of the
square-wave forced ODEs to sinusoidally forced ODEs.

As a point of clarification of our results we note here that we are
not presenting a general theory of chaos in Poincare maps at this time.
What we are presenting is a special case of chaos in a particular square-
wave forced ODE for which the Poincare map is the simple twist and
flip. We believe that this example is generic and provides a foundation
for a general theory of chaos in second order ODEs. It is possible at this
time to provide a more complex example using Duffing’s equation and




the Jacobi elliptic functions, however, we believe that the simplicity of
the twist and flip map is particularly useful in forshadowing the general
theory. A careful reading of the proof will show that it is (with a few
removable exceptions) entirely independent of the particular example
we are using.

The system of first order ODEs for which the simple twist (as de-
fined in Fig. 1) and flip is the Poincare map is

. ~yy/(z - a sga(sin(wt)))? + y2

y = (z—a sgn(sin(wt)))\/(x — a sgn(sin(wt)))? + y?

The Poincare map sampling interval is, therefore, 27 /w, and the
Poincare map is FTFT, where T defined by sampling the solution of

& = —yy/(z —a)? + 47
y = (z-a)f(z—a)?+y?
at the times 7 /w.

We may write out the solution of this autonomous vector ODE
explicitly:

z(t)
y(t)

(zo — a) cos(rot) — yosin(rot) + a
(zo — a) sin(rot) + yo cos(rot)

where ry = \/(:co —a)? + 3.

Note that although this solution appears to be that of a linear
differential equation, the initial conditions occur in a non-linear way.
The vector equation for this solution may be written as

z(t) cos(rot) —sin(rgt) To—a a
= +
y(t) sin(rot)  cos(rot) Yo 0
The Poincare map is obtained by evaluating FTFT, where T is evalu-
ated at t = 7 /w



The relevant energy curves are given by
(z—a)2+y2=r2=H

and the partial of the angular velocity with respect to r is exactly 1.

We note that the parameters w, a occur in the Poincare map and so
any analytical condition for these parameters that assures the existence
of a horseshoe for the Poincare map will imply the existence of chaos
for the solutions of the above system of ODEs.

1.4 An Example of FT with Dissipation

Although the dissipative case will be treated in a later paper, we present
here a closed form Poincare map from a dissipative system related to
the twist system for which we will prove our theorem.

This system of first order ODEs is:

& = —a(z — asgn(sin(wt))) + ay\/(a: — a sgn(sin(wt)))? + y?

Yy = —ay—a(z—a sgn(sin(wt)))\/(x — a sgn(sin(wt)))? + y?

The Poincare map sampling interval is, as before 27/w, and the
Poincare map is FTFT, where T is defined by sampling the solution of

i = —a(e-a) e IT
y = —ay—ar—a)/(z—a)+y?

at the times 7 /w.

We may write out the solution of this autonomous vector ODE
explicitly:

y(t)

where we know that roexp(—at) = (/(z — a)? + y2.

z(t) = exp(—at)((zo — a)cos(ro(exp(—at) — 1)) — yosin(ro(exp(—at) — 1)
= exp(—at)((zo — a)sin(ro(exp(—at) — 1)) + yo cos(ro(exp(—at) — 1))

)+a
)



2 The Horseshoe Twist Theorem

In this section we prove the horseshoe twist theorem for the simple
example of the twist described above . This theorem states the condi-
tions between the parameters a,w and the initial conditions for which
FT is a chaotic transformation (has horseshoes). This section is in four
parts. Part one describes the strategy of the proof of the horseshoe
twist theorem. Part two contains definitions used in the proof of the
horseshoe twist theorem, part three contains some lemmas needed in
the proof of the horseshoe twist theorem, and part four is the proof of
the horseshoe twist theorem.

2.1 Strategy of the Proof of the Horseshoe Twist
Theorem

In order to simplify our discussion of chaos we provide the following
definition:

Definition. Assume that we are given a hyperbolic fixed point of
a diffeomorphism having non-trivial stable and unstable manifolds (in
the two dimensional case this means that one eigenvalue lies inside the
unit circle and the other lies outside the unit circle) If the unstable
manifold M has a transverse homoclinic point or a point of homoclinic
tangency® with the stable manifold that produces a horseshoe, then it
will be called a c-manifold (for chaotic manifold).

To prove the existence of horseshoes, one must prove:

(1) The existence of hyperbolic fixed points for which there are non-
trivial stable and unstable manifolds. In the two dimensional case this
means that the hyperbolic fixed point must be a saddle point.

(2) The existence of a c-manifold. (In the case of a tangential cross-
ing, it will be sufficient to show that the stable and unstable manifolds
are symmetric images of one another about the vertical axis and that
the manifold is not homoclinic.)?

3See [Guckenheimer & Holmes, 1983), theorem 6.6.1
9See [Guckenheimer & Holmes, 1983
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The existence of fixed points as well as the fact that all fixed points
lie on the vertical axis follows by direct computation (this is lemma 1).

The existence of hyperbolic (saddle) points for the derivative of FT
is determined by direct computation also (see lemmas 2 and 3). There
we show that the determinant of the derivative of FT is 1 and that for
y > 2w/, the trace is strictly greater than 2. These two facts combine
to prove that the eigenvalues of D(FT) at these fixed points are of the
form A and 1/), where A > 1.

We may now use the stable manifold theorem to find a local unstable
manifold and from this we obtain a global unstable manifold (there
exist a unique continuation of the local unstable manifold since the FT
map is analytic). To prove there exist a c-manifold we first note by
lemmas 4, 5, and 6 the unstable manifold is the symmetric image of
the stable manifold about the vertical axis °. Thus if the unstable
manifold crosses the vertical axis, then so does the stable manifold,
and at the same point. If such manifolds are not homoclinic, we are
done.

At this point we have reduced the problem of finding horseshoes to
the problem of finding unstable manifolds which cross the vertical axis
and are not homoclinic.

We solve these two problems separately. We first show that all
unstable manifolds cross the vertical axis, (lemmas 7- 14 and proposi-
tion 1). Then we present conditions under which the unstable manifold
is not homoclinic, (theorem 1.)

To show that all unstable manifolds cross the vertical axis we need
only find a point of an unstable manifold on each side of the vertical
axis,(because the unstable manifold is a connected set, it must have
crossed the vertical axis). There is one technicality standing in the
way of this strategy. The local unstable manifold has two connected
components joined at the fixed point. The global unstable manifold will
be two connected components joined at the fixed point. It can happen
that FT maps one of these connected components onto the other. We
will prove for all hyperbolic fixed points of FT on the positive vertical

19This symmetry of T is, in this case, a result of the fact that the velocity appears
only as an even power in the energy (or first integral) Eq. 4 above. This is not true
for the dissipative system and this will be addressed in Sec. 4
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axis that this cannot happen (it can and does happen for hyperbolic
fixed points lying on the negative vertical axis). Lemmas 7, 8, 10 and 11
do this.

Having shown this, it remains to prove that if we start with a point
of the local unstable manifold, sufficiently near the fixed point, lying
on the RHS of the vertical axis, its iterates under FT cannot all be
on the RHS of the vertical axis. This is done by showing that any se-
quence of iterates of such a point must remain within a simply described
bounded region (see lemma 12). Also, since these iterates must have
strictly monotonically decreasing energy (see lemma 13), the energy
must approach a limit which means that the sequence of iterates must
approach a limiting energy curve. Further, if the sequence of energy it-
erates converges, the sequence of iterates must converge to the vertical
axis (see lemma 14). We conclude from this that the limit of the iter-
ates must be either a period-two point or a fixed point. The unstable
manifold of a fixed point cannot terminate at a period-two point and
we prove in lemma 9 there are no heteroclinic points.!'. Thus, there
must be a point at which the unstable manifold crosses the vertical
axis.

It remains to find a non-homoclinic manifold. Theorem 1 states
sufficient conditions under which a manifold is a c-manifold. It is not
the most general theorem possible, but it cover all but a small set of
cases.

A more general result which we do not prove, which is believed
to be true is as follows: If (0,y) is a hyperbolic fixed point, with
r = Va¥+y?, and ro = Int(r/2w), where Int(.) denotes the integer

function, then we require that the following two circles intersect:

(c+af+y? = 2
(c—af+y? = 13

From this intersection condition follows a variety of algebraic for-
mulae.

Although the theorem we prove is not the strongest possible its
proof is very intuitive, simple, and geometric. Further it illustrates all

see [ Guckenheimer & Holmes, 1983]
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the properties of chaos observed for square-wave forced ODE’s such as
the Duffing equation.

2.2 Definitions

T is the simple twist centered at the point (a,0) with ¢ > 0. We
define T by T(r,6) = (r,xr/w + 0), where the polar coordinates (r, )
is measured about the point (a,0) and r is in radians. In rectangular
coordinates the equation for T is as follows:

Let z denote a vector in R? and let a denote the vector (a,0) then

T(z) = A(rr/w)(z—a) + a
where
cos(7r/w) —sin(nr/w)
A(rrjw) =
sin(rr/w) cos(nr/w)

and r = ||z — a||.
For any given vector z define p(z) = ||z — a||

F will denote a flip (180 degree rotation) about the origin. The
equation for F is

F(z)=-Iz= —z

where I denotes the identity matrix.
Let @ denote the twist and flip map, i.e.,

®=FT

Define the reflection operator about the horizontal axis by the ma-

trix
1 0
P=
0 -1

and the reflection operator about the vertical axis by the matrix

13



(1)

Note that the flip is given by the equation F = PR = RP

We define C, to be the circle of radius r centered at (a,0) and define
D, to be the circle of radius r centered at (—a,0).

Using these definitions we define G, to be the intersection of D, and
the right half plane {(z,y)|z > 0} and let H, denote the intersection of
C. and the left half plane. Figure 2 illustrates these two regions which
will be important in our proof of the horseshoe twist theorem.

We will use ro to denote 2wInt(r/2w)
We will use D(FT) to denote the derivative of FT.

The derivation of the relevant formulae for FT and its derivative
are given in the Appendix.

Throughout all proofs, we will use polar and rectangular coordi-
nates, depending on which provides the simplest expression within a
given proof. For simplicity, we use the abbreviations RHS and LHS to
denote the right-hand side and left-hand side, respectively.

[FIGURE 2]

2.3 Lemmas

Lemma 1 FT has an infinite number of fized points. Moreover, they
all lie on the vertical azis and approach infinity in both directions.

Proof: At a fixed point, z, we have the equation: F(z) = T(z). Conse-
quently the following equation holds:

A(rr/w)(z — a) = —(z + a).
From this matrix equation follows three scalar equations (see Appendix A2):
Iz —all = ||z + al

14
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which shows that all fixed points lie on the vertical axis. Next we have
cos(mr/w) =1 — 2(y/r)?, and sin(rr/w) = 2ay/r?

which shows where the fixed points lie exactly(see appendix A.2 for
derivation).

The existence of an infinite number of fixed points for FT may
also be deduced from the fact that p(z), the energy, is continuous and
strictly increasing as a function of y and a. W

Lemma 2 Det(D®) =1 at each fized point.
Proof: See Appendix A.4.0

Lemma 3 The Trace of D® at a fized point is given by
a
—4(-)?
)-4(3)
and tr > 2 for y > 2w/m. Consequently, all fired points for which
Yy > 2w/7 along the positive y-azis are hyperbolic.

Proof: See Appendix A.4.0

Remark: The most general condition for a fixed point to be hyper-
bolic is

aym
rw

tr =2(1 4+

r?—a® > 4(afr)}(w/x)?
which is obtained by setting tr > 2 and simplifying.
Lemma 4 PTPT =1. Thus, PT = (PT)!

Proof: The above condition is equivalent to PAPA = I which is clearly
true by a direct computation.l

Lemma 5 R® = o-'R.

Proof: R(FT) = PT = (PT)"}, (by lemma 4) = (RFT)~! = (FT)'R.H
Remark: lemma 5 states that @ is topologically conjugate!? to its
inverse.

2see [Guckenheimer & Holmes, 1983]
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Lemma 8 Given a hyperbolic fized point of ®, the stable manifold is
the reflection of the unstable manifold about the y-azis.

Proof: Follows from lemma 5.0

Lemma 7 Let (0,y) be a fixed point on the positive y-azis. The slope
of the ezpanding eigenvector of the unstable manifold is strictly less
than —a/y for this point, consequently there exist an arc of the unstable
manifold pointing into the circle D,.

Proof: See Fig. 3. In Appendix A.5 it is shown that

_ o |(tr/2)+1
slope = y\ (tr/2) =1
[ ]
[FIGURE 3]

Lemma 8 For any hyperbolic fized point where y > 0, there exist an
arc of the unstable manifold, call it a, starting at the fired point and
lying entirely inside the region G, We may choose a to be a closed arc
having, therefore, a definite end point.

Proof: Lemma’s 1, 2, and 3 prove the existence of hyperbolic fixed
points. Lemma 7 implies that an arc of any unstable manifold must
lie in the stated region. It follows from the Stable Manifold Theo-
rem[Parker & Chua, 1989] that there is a sufficiently small arc a which
is contained in ®(a) and lying entirely in G,.H

Lemma 9 (1)If for any point z, on the vertical azis, T (z) is also on

the vertical azis, then z is either a fized point of T or a fizxed point of
FT.
(2) There are no heteroclinic points for ®.

16
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Proof:(1) Note that ||z — a|| = ||T(z) — a||, and so T(z) = +z.

(2) See Fig. 4. If two hyperbolic fixed points are separated by a
period-two point we are done, since the heteroclinic manifold would
have to cross a circle of fixed points of T to reach another fixed point.
In doing this, it must cross the vertical axis creating either a c-manifold
or a homoclinic manifold. Thus, assume there are two consecutive
hyperbolic fixed points having no period-two point between them.

The straight line between these two points is a curve of Lipschitz
constant 1 (see lemma 5 and the proof of the stable manifold theorem
to see that this line has Lipschitz constant 1 because it bisects the angle
between the stable and unstable manifolds of D(T). Since this is true
for every hyperbolic fixed point, the specific fixed point is irrelevant)
for each unstable manifold and by lemma 7 and the stable manifold
theorem must be mapped, by ® to the RHS of the vertical axis for the
top point and to the LHS for the bottom point. Thus, there must be a
point, call it z,, mapped to a point on the vertical axis, call it z;, by ®.
That is, ®(z;) = 2z, where 2,,2; lie on the same energy curve of T. We
have therefore T(z,) = —2,. Now z; cannot lie on the negative vertical
axis, otherwise it is fixed by ® contrary to assumption. We conclude
that z; = —2, and thus z; must be a period-two point of ®.H

Remark: There can be two consecutive fixed points but one of
them will be elliptic.

[FIGURE 4]

Lemma 10 Let (0,y) be the rectangular coordinates of a hyperbolic

fized point. Let y; = \/r§ — a®. Then the vertical line between (0,y)
and (0,y,) is mapped into the region G, by ®.

Proof: See Fig. 4 again. We know by the stable manifold theorem that
a small arc of this line near the fixed point is contracted toward the
unstable manifold, thus into region G,. Further, by (1) of lemma 9 if
a point on the vertical axis is mapped onto the vertical axis by T it
must be either a fixed point or a period-two point. But the period-two
points separate the fixed points for all fixed points that lie above the
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first period-two point. Hence this line segment cannot return to the
vertical axis before y,. 1

Lemma 11 For all hyperbolic fized points on the positive vertical azis,
the component of the unstable manifold of a hyperbolic fized point that
points into the circle C, is mapped onto itself by .

Proof: We will refer to the component pointing into the interior of
the circle centered at (a,0) and passing through the fixed point as the
interior component and the component that points outside of this circle
as the exterior component.

By lemma 8 there must be a small arc of the interior component of
the unstable manifold, lying in G, and lying above the circle ||z—al| =

\/(y — 6)? + a2, for some 6. By lemma 10, § can be chosen so that this
is mapped into the region H, by T. This arc must be mapped into
the region G, by F and thus the interior component of the unstable
manifold is not mapped onto the exterior component of the unstable
manifold for y > 2w/x.0

Remark:Using the stable manifold theorem we can prove that for
all hyperbolic fixed points on the negative vertical axis the two com-
ponents of the unstable manifold are interchanged (fliped) at each it-
eration. For FT maps in which the partial of the angular velocity with
respect to H is negative, the situation is reversed: The hyperbolic fixed
points on the positive y-axis are fliped.

Lemma 12 (Boundary) Let S denote the line segment of lemma 10.

(1) An arc of the unstable manifold lies in the region bounded by
three curves. The first curve is S, the second is the right hand boundary
of G, (we will call this boundary B, ), the third is the curve T~1(S).(Note
that T~(S) is a continuous curve from S to B,, since the lower end
point of S is fized by T).

(2) If the unstable manifold crosses the curve T~1(S), it must also
cross the vertical axis.

(3) Let A be an arc of the unstable manifold of lemma 8 which lies
in G, but does not intersect D,. Then FT(A) cannot intersect the
circle D,.
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Proof: See Fig. 5. (1) follows from lemma 10.

(2)The second result follows from applying FT to T~!(S), given
that the unstable manifold crosses this curve.

(3) We refer to Fig. 5 again. Assume the contrary and let z be a
point of the unstable manifold on the circle D,. Then ®-(z) must be
in G, — D,, by assumption. But F(D,) = C, and T-}(C,) = C, and
C.NG,=0.0

[FIGURE 5]

Lemma 13 If zo lies on the RHS of the y-azis and Znt1 = ¥(2,) is
a sequence of iterates of ® that all lie on the RHS of the y-azis, then
p(®(2,)) is a strictly decreasing sequence of positive numbers.

Proof: See Fig. 6. The lemma follows from the fact that if z is on the
LHS of the vertical axis, then p(R(z)) < p(z). This follows from the
relation:
p(z) = p(T(z)) = p(PT(2)) = p(RE(2))

Thus, if for any z on the LHS of the y-axis (z < 0), we have p(R(z)) <
p(z), we are done. But this is true by the law of cosines.

Another way to see this is to observe that for two consecutive it-
erates 72, — r2 = d4az,, so that the energy increases or decreases
depending on whether z is positive or negative. Ml

[FIGURE 6]

Lemma 14 If for some point z, p(®"(2)) — ro, then ®*(z) converges
to a fized point or it oscillates between a pair of period-two points.

Proof: Let p(®"(z)) = r,. Given two successive iterates of z we have
241 — 72| = 4alz,|, where z,, is the horizontal rectangular coordinate
of ®"(z). If r, — ro then z, — 0 and z, must converge to the vertical
axis. Therefore ®"(z) must converge to a point which is the intersection
of the vertical axis and the circle ||z — a|| = ro. This is either a fixed
point or a pair of period-two points.ll
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2.4 Statement and Proof of the Horseshoe Twist
Theorem

Proposition 1 Every unstable manifold crosses the vertical azis.

Proof:This proposition is equivalent to the requirement that some iter-
ate of the arc of lemma 8 must cross the y-axis. Assume that it does not.
Then the iterates of the end point of this arc define an infinite sequence
of points of the unstable manifold for which r,, is a strictly decreasing
sequence. This sequence is bounded by the curves of lemmas 12, any
one of which if crossed implies a crossing of the vertical axis. Since the
set bounded by these curves is compact, the sequence of iterates must
either cross a boundary or have an accumulation point, which must be
a limit of the sequence r,, which is a fixed point or a period-two point.
But there are no heteroclinic points for ® by lemma 9.1

Theorem 1 Let (0,y) be a hyperbolic fized point and let M be the
unstable manifold, and assume that ro > a. Define K,q as in ap-
pendiz A.6. If0 < gK < .5(1 + V1 —K) and 72 > (c —a)?, then M is
a c-manifold for FT.

Proof:

We need only show that the manifold at (0,y) is not homoclinic.
Assume M is a homoclinic manifold. It must cross the circle C,,. Thus
it contains a fixed point, z, of T. It must also contain F(z) and by
symmetry of the homoclinic manifold it must contain the reflection of
these points about the vertical axis. Thus we may assume that z is in
the first quadrant of the plane. The flip of this point must be in the
third quadrant. Now T~!(F(z)) is also on the manifold and must be in
the first quadrant closer to the fixed point since a homoclinic manifold
cannot cross the vertical in more than one point. Similarly, T(z) must
be in the fourth quadrant. But because the manifold is homoclinic, it
must lie entirely in the region G, U H,. We now refer to Fig. 7.

It is sufficient to show that under these conditions that it is not
possible that both T(—z) and T~'(—z) lie on the RHS of the vertical
axis.The remainder of this proof is so uneventful and tedious that it is,
for the most part, relegated to the appendix.
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We use the definitions of appendix A.6 where z = z,. We note from
plane geometry that the cords from 2z, to —z¢ and from 2, to —z, (as
defined in appendix A.6) are representative of the angles they subtend.
It is sufficient to show that the length of the cord from z; to —z¢ is
always greater than that from 2; to —2,. This is done in appendix A.6.

[FIGURE 7]

Proposition 2 Assume the definitions of theorem 1.
(1) If s > 0.13 and ¢K > .5(1 + V1 —K), then M is a c-manifold.
(2) Also, ifa <19 — 0.52, and ¢ < K, then M is a c-manifold.

Proof: (1) See appendix A.6. The proof of (2) is a direct computa-
tion using the definitions of appendix A.6.H

We present three conjectures that will be more fully discussed in a
later paper. The setting is quite general. Consider the following ODE

where p(z) is any polynomial in z whose highest power is odd, greater
than 1, and whose coefficient is positive:

% + p(z) = asgn(sin(wt))

For this equation we may factor the Poincare map as FT, where T is
obtained from the autonomous equation # + p(z) = a by evaluating
this equation at the times ¢ = 7 /w. A first integral of the autonomous
equation is of the form z%/2 + ¢(z) = az + H. Where the highest
power of g(z) is even. Note that the first integral defines a set of closed
energy curves and that T is a twist according to our definition. The
center of the twist depends on the polynomial p(z). Assume there is a
hyperbolic fixed point (which will be on the vertical axis) and that H
defines the energy surface passing through this fixed point. Call this
closed curve Cy (It is the analogue of the curve C, for the simple twist)
and let Dy be the curve which is the analogue to D,. Let Ho define
any energy curve, Cy,, of fixed points of T where Hy < H. Let M be
the unstable manifold passing through the designated fixed point. We
have the following conjecture:
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Conjecture 1 The manifold M of FT is a c-manifold if M contains a
fized point of T.

Conjecture 2 A sufficient condition for the above described manifold
to be a c-manifold is that the two curves, Dy and Cy, intersect.

Returning to the simple twist we have the following special case:

Conjecture 3 A sufficient condition for a manifold of ® to be a c-
manifold is that the two circles, (z—a)?+y® = r2 and (z+a)?+y? = r?
intersect.

There are various formulae possible based on this conjecture: r <
To + 2a, 79 > |c — a.

It is a simple matter to write down ODEs for which these conjec-
tures apply. Among the easiest are the ODEs for which the hyper-
elliptic functions are solutions. The following example demonstrates
the ease in doing this.

Let z = A cos(f(A)t+0) and let y = Asin(f(A)t+8). These functions
solve the following first order system of ODEs:

g = —f(VeP+yl)y
¥y = f(VE+yd)a

It is simple to add the necessary translates and square-wave forcing
terms to produce equations whose Poincare maps are of the form FT.

The same approach may repeated with the Jacobi elliptic cosine,
cn(t): For example let £ = Acn(A\%t + ), differentiate twice, and use
the identity cn(t) = —cn?(t), then use the energy equation to eliminate
A to get an ODE free of constants.

2.5 Summary of Main Result

We now summarize the main result of this paper. We begin by restating
the definition of the simple twist:

T is the simple twist centered at the point (a,0) with a > 0. We
define T by T(r,0) = (r,7r/w + §), where the polar coordinates (r, §)
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is measured about the point (a,0) and r is in radians. In rectangular
coordinates the equation for T is as follows:
Let z denote a vector in R? and let a denote the vector (a,0) then

T(z) = A(arjw)(z—a) + a

where

cos(7r/w) —sin(rr/w)
A(rrjw) =

sin(rr/w)  cos(wr/w)

and r = ||z — a||.

Recall that the twist and flip map is FT, where T is defined above
and F is a 180 degree rotation. FT is the Poincare map for a specific
non-linear ODE presented earlier.

Horseshoe Twist Theorem. Let FT be the twist and flip map,
where T is given above. Let (0,y) be a hyperbolic fized point for FT,

and r = \/a? + y2. Let
N = Int(r/2w) ro = 2wN
p=(r—m)/(w) K=(4Np+p?)/(16N?)
K=(afrf  c=alg

Ifry > (c—a)? and gK < (14++/1 = K)/2, then FT has a horseshoe.

2.6 Two Examples of the Use the Horseshoe Twist
Theorem

We illustrate use of the horseshoe twist with the following two exam-
ples. Since the computation of the trace of D(FT) at these fixed points
is a routine application of our formulas, it is ornmited.

Example 1: The amplitude of the forcing function, a = 3; the
frequency of the forcing, w = 7
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A fixed point for the Poincare map FT is found at (0,8.19045). At
this point

r = 8.722584
N =1

To = 27

p = 0.7764845
q = 0.983471
K = 0.2318041
K = 4.313987
c = 3.050421
(c—a) = 0.050421
(1++v1-K)/2 = 0.9382339
qK = 0.2279727

We see that ro > |c — a| and that ¢K < .5(1 + +/1 = K) so that
the unstable manifold at this fixed point is a c-manifold, i.e., FT has a
horseshoe.

Example 2: The amplitude of the forcing function, a = 2; the
frequency of the forcing, w = =

A fixed point for the Poincare map FT is found at approximately
(0,8.75). At this point

r = 8.975661
N =1

To = 27

p = 0.8570417
q = 0.3894453
K = 0.2601679
K = 3.843671
c = 5.135509
(c—a) = 2.135509
(1++v1-=K)/2 = 0.9300675
qK = (.1013212

Again we see that 1o > |c — a| and that ¢K < .5(1 + /1 —K) so
that the unstable manifold at this fixed point is a c-manifold as well
and so FT has a horseshoe.
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3 Some Illustrations Using the Twist and
Flip Map

In this section we will demonstrate that, apart from its value in un-
derstanding the structure of the Poincare map of certain non-linear
square-wave forced ODEs, the twist and flip map can be particualrly
useful in illustrating some fundamental features of non-linear dynamics
and chaos. Its advantage over other algorithms is its simplicity, intu-
itive appeal, ease of computation (it provides about a 100:1 reduction
in computer time in producing these illustrations as compared with a
conventional numerical technique for solving an ODE).'3

All figures are generated on an IBM PC using quick basic. The
fixed point is computed by trial and error and does not have to be very
accurate due to the compressing and stretching action of FT near the
fixed point.

The unstable manifold is produced by iteration of the map FT on
5000 points of a small line segment (length of about .1) having the same
slope as the unstable manifold for the hyperbolic fixed point. (see our
formula for the slope of the unstable manifold at the fixed point) The
value of @ has been chosen arbitrarily to be 1 and w = 7. The fixed
point is at (0,1.95). The slope of the unstable manifold at this point
is about -1.176.

Elliptic regions'* are generated by 2000 iterations of FT on an initial
point near the elliptic fixed point.

[FIGURES 8- 11]

The number of iterations varies for each figure in order to present
the most informative illustration.

Fig. 8 is an unstable manifold generated with 10 iterations of FT.

Fig. 9 illustrates homoclinic tangles for the fixed point. Here, 10
iterations were used.

Fig. 10 shows that both elliptic and hyperbolic regions coexist and
that the hyperbolic region encircles the ellitic region as a result ofthe

13Compare these examples with those found in [Arnold & Avez,1968) and [Ozorio
de Almeida, 1988).
4[Arnold & Avez, 1968
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unstable manifold "wrapping” around the elliptic regions. We used 16
iterations of FT.

4 Twist with Dissipation

As an alternative to the equation of subsection 1.4, we may put dissi-
pation into the transformation FT directly without knowing the ODE
for which FT is the Poincare map. The damped FT map is very useful
in generating strange attractors. The only modification needed is for
T. The damped twist in this case is defined by

T(z) = exp(—ar)A(rr/w)(z—a) + a
We define the matrix A(rr/w) as before:
cos(nr/w) — sin(rr/w)
sin(rr/w)  cos(nr/w) )

A(rrfw) = (

Also as before, we have r = ||z — a||. The scalar « is taken to be
positive, but small. We may recompute the fixed point equations as

before and find
A(rr/w)(z — a) = —exp(ar)(z + a).
As before, this matrix equation leads to three scalar equations:
Iz — al| = exp(ar)||z + al|

cos(nr/w) = exp(ar)(1l — 2(y/r)?), and sin(rr/w) = exp(ar)2ay/r?

These equations show that no matter how small « is, there exist
only a finite number of fixed points, (unlike the undamped case) and
that all fixed points lie on the LHS of the vertical axis. Further, for
relatively small damping factors such as .05 there is only one fixed
point. In short, it appears that damping drastically reduces the domain
of initial conditions that can lead to chaos.
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In Fig. 11 we show a strange attractor generated by the damped
twist. We use 100000 iterations with & = 0.1 and A = 3 and a = 1.
The initial conditions are (0, 1).

It is possible to obtain a strange attractor for the equation of
Sec.1.4. Take w = 7, a = 30, @ = .05. However, a general treat-
ment of these Poincare maps will be presented in a later paper.

5 Factorization of the Duffing Equation
with Sinusoidal Forcing

We illustrate our theory here with the undamped Duffing equation with
the forcing term asin(t). The modifications needed to obtain a general
theory including damping are obvious.
Consider the equation
§+y° = asin(t)
We obtain a uniform approximation of sin(t) by a simple function:
2n
sin(t) = )" a;x (rifnn(i+1)/m) (1)
=1

Where X (, 4 is the characteristic function for the interval [a, b]:

X [a,b](t) = 1, for te [a, b]

and 0 otherwise.

We consider the n differential equations

§ +y° = a; sgn(sin(t)),t € [xi/n,x(i + 1)/n]

We use the output of the i* equation as the input of the (¢ + 1)
with the output of the n** being used as the initial condition of the
first equation. As before we need only half of these equations. If we
define T; as the transformation which maps a point of the plane to
the solution of the :** equation, then the solution of the simple forced
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equation is factored as FoT,0T;0:---0T,0FoT,0T,,_;0---0T,.
The square-wave factorization is a special case of this where n = 1.

In order to simplify notation we need a symbol to represent the
composition of the T;. In particular, we need to indicate the limit
of this composition as n — oo since this limit is the solution of the
original ODE at the period of the forcing function, the Poincare map.
Also, the ODE over any time interval may be factored into a finite
composition such as this. If we take the limit of this composition, it
is the solution of the ODE. This composition represents for the non-
linear ODE an analogue of an integration process, where composition
replaces convolution and addition. In the case of linear ODE’s this
process reduces to the convolution because the general solution is a
sum of the homogeneous solution and the particular solution.

We see that the solution is the composition of infinitessimal twists.
Note that most of the lemmas proved for the twist carry over to this
particular composition of infinitessimal twists.

For lack of a better representation we will define the limit of such
a process by the formula:

[Tdt = lim I}, o T}
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Appendix

A

A.1 Definitions

Define the matrices

;)
()

Note that as a function of u, the rotation matrix A satisfies the
first order ODE,

and

A'(u) = BA(u)
We will use the abbreviations, r, = dr/dz and r, = dr/dy

A.2 Fixed Points of FT
At a fixed point FT(z) = z, so we have

T(z) = —z.

Substituting for the definition of T we get an equation for A (mr/w):

A(nr/w)(z—a) = —(2+a) (5)
From which we conclude

Iz - all = ||z + al|
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cos(nr/w) = 1= 2y/r)? = (afr)? — (y/r)? = 2(a/r)* = 1

and,
sin(rr/w) = 2(ay/r?)

From the first equation we conclude that 2 = 0. The last two
equations are obtained by multiplying out Eq. 5 and solving for cosine
and sine explicitly.

A.3 Derivative of FT

In this subsection we compute the derivative of FT, i.e., the Jacobian
matrix of FT with respect to (z,y). Let ¢ = 7/w. Note that

D(F) = -I

and

D(FT) = —I (0A(ura)a(vz - a), 6A(pr3)3(/z — a))

This is equal to
~(rA"(ur)(z = a), r, A'(ur)(z — a)) — A(ur)
Since A'(u) = BA(u), we have
D(FT) = —u(r-BA(ur)(z - a),r,BA(ur)(z — a)) — A(ur)

This determinant may be evaluated using the following formula for
the computation of the determinant of the sum of two matrices.
Let A= (A;,A;) and let B = (B, By), where A;, B; are 2 dimen-

sional column vectors. Then

det(A + B) = det(A) + det(B) + det(Ai, By) + det(By, A,)
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A.4 Derivative of FT at a Fixed Point

Using the fixed point equations in the equation for D(FT) we have, at
a fixed point:

D(FT) = pu(r-B(z + a),r,B(z + a)) — A(ur)

Therefore at a fixed point, the derivative of FT is given by the
matrix

pay[r —cos(ur)  sin(pr) — py?*/r
D(FT) =
—(ua®/r +sin(ur)) pay/r — cos(ur)
Using these formulae we compute the trace of D(FT) is equal to
trace (D(FT)) = 2(1 + pay/r) — 4(a/r)?

For y > 2/u, trace is > 2 since

y a.,
2(1 2Y—-4(=) >
( +pas) 4(,,) 2

2y —4(%y
2(1 +2r) 4(1-) > 2.
Using these same identities, we compute the determinant of D(FT):
det(D(FT) = 1 — (2ay/r cos(ur) + rsin(ur)((a/r)? — (y/r)?))

=1 — p(rsin(pr) cos(ur) + r cos(ur) sin(pr)) = 1.

A more elaborate computation shows that the determinant of the
D(FT) is 1 everywhere, but we have not used this fact in our proof.

A.5 Eigenvectors and Eigenvalues of D(FT)
The largest eigenvalue of D(FT) is given by the formula:

A=tr/244/(tr/2)2 -1
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where tr is the trace of D(FT). The slope of the corresponding real
eigenvector is given by

slope = (A — tr/2)/(sin(pr) — py?/r)

and this is equal to

V(tr/2)? = 1/(sin(pr) — py?/r)

By appendix A.2 sin(ur) = 2ay/r? so that

sin(ur) — y*/r = 2ay/r® — py’[r = —(y/a)((uya/r) — 2(a/r)?)

we conclude from this that the slope is given by

a |(tr/2) +1
v\ (tr/2) =1

slope = —

A.6 Proof of Homoclinic Condition

We define z, as the intersection of the curves C, and D, below the
origin, and z, as the intersection of the curve C, and the positive y-
axis. The condition of theorem 1 can be analyzed by considering the
difference in the two cords given by

122 — 2o||* — ||z1 — zo|*)/2 = (a2 + zo(a — ¢) + yo(|lv1| + y2) — ac)

Where 2o = (20, %0), 21 = (21,41), and 22 = (z2,,).

We observe that the intersection in the first quadrant of the D,
and the curve C,, is given by ¢ = (r? — r2)/4a. Also, for ro = r —
(r mod(2w)) we may write r = ry + pw, if ro > @, where 0 < p < 1.
These two facts motivate the following definitions:

_4dnp+p’
K= 16n?
a® = ¢riK

0<qg<K,whereK =1 /K This gives us variables which are indepen-
dent of frequency.
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From these two definitions we may conclude that qc = a,ac = o2 /q.
To guarantee intersections we must have r2—(c—a)? > 0. Given this we
parameterize z in terms of ¢ by the formula z = sc, where 0 < s <1.
Then

¥ = o(qK — (s — ¢)?),

yi = a(gK — (s = q)* +2(s + ) — 1)), where o = Kr}/q

In these new parameters, and since y, > yo, half the difference in
the two cords is greater than or equal to

o(s —1)(s + q) + ¥ + yolw:1| (6)

First consider the estimate of Eq. 6 given by o((3¢ — 1)s + q(K —
g—1)). If ¢ >1/3 and ¢ < K — 1, we are done. If ¢ < 1/3, then we
can combine terms to get this estimate to be gK — (g — 1)2, which is
positive since we assume that an intersection actually exist. Thus, for
all 0 < ¢ < K — 1, the result follows.

We now consider ¢ > K — 1. In this case we have |y;| > yo, since
s+ ¢ > 0.5 (The smallest value of K is 3.2).

We add to our estimate the term y2 to get the estimate

a((5g —1)s — s* + ¢(2K — 1 — 2q))
Since ¢ > K — 1, we know that (5¢ —1)s — s2 > 0. Thus, if ¢ < K — .5,
we are done.

The final improvement in this estimate comes from requiring that
Yo(yo + |y1]) = ac or yoly1| > ac — y2. Squaring both sides and sim-
plifying we get the condition 4ac > ¢ + (ac/yo)?. Substituting our
definitions and simplifying we get 4 > 1/q + (K/(1 — ¢K)) which is
equivalent to the quadratic equation for ¢:

4Kg* - 49+1<0
From this we conclude ¢ < K(1 + /1 - K)/2.

This is the best estimate for chaos we have proven so far.

We can show by example that this is the best we can do without
considering the value of s.

If s > 0.13, and ¢K > .5(14++/1 — K), then 2%+ (a—c)z —ac+2y? >
0. This follows from the equation

\/((2q —8)s+2(s+q)—1)(2¢ —s)s > K+ s(1 — 3K)
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Where we take K > ¢ > .9K It is possible to show by example that
this is as far as we can go with this estimate (take p = 0.99,n = 3,s =
0.1,¢ = K — 0.000001).

We may force a better lower bound on s by requiring that s be large
enough that both T and T~! rotate the point (—zo, —yo) into the RHS
of the vertical axis. But we have not done this yet.

To get the complete result which would prove conjecture 3 must use
information about the transformation T. In particular, we must satisfy
the two equations: cos(r) = 2(a/r)? — 1, and sin(r) = 2ay/r?, as well
as the condition that gaurantees the trace is greater than 2.

These equations should eliminate cases where our lower bound on
s fail.
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Geometrical interpretation of p(R(z)) < p(z)

Homoclinic Manifolds Cannot Contain a Fixed Point of T

The unstable manifold of FT for the fixed point (0,1.95)

The homoclinic tangles of FT resulting from the intersec-

tion of the unstable manifold (in purple) and the stable

manifold (in green) for the fixed point (0,1.96).

10  Elliptic regions of FT surrounded by the unstable man-
ifold of the fixed point (0,1.95). The elliptic regions
are shown in green. There are several isolated elliptic
regions. Within each elliptic region can be seen a con-
tinuum of closed curves. This picture raises the question
of whether there exist an infinite set of elliptic regions
disbursed through the folds of the unstable manifold and
whether, with the addition of damping, they can become
attractors.

11 A strange attractor associated with a damped twist and
flip map, FT
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