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THE IDENTIFICATION OF GENERAL PSEUDO-GRADIENT VECTOR FIELDS, f

Robert Lum and Leon O. Chua. ff

Abstract

A vector field is called pseudo-gradient if it is either the composition of a matrix with a

gradient vector field or under composition with a matrix becomes a gradient vector field.

This paper deals with those pseudo-gradient vector fields formed from the composition

of a matrix with a gradient vector field. Such vector fields are especially important

in the field of electrical engineering due to their comparative ease of implementation

when compared to the general vector field.

In this paper, the identification of such vector fields is completed for the cases

when the matrix is either invertible, invertible symmetric, symmetric positive definite

or diagonal positive definite. In the process of such identification, a decomposition of

the original vector field as the composition of a matrix and a gradient vector field will

ensue.

f This work is supported in part by the Office of Naval Research under Grant N00014-89-J-1402.
tf The authors are with the Department of Electrical Engineering and Computer Sciences, Uni

versity of California, Berkeley, CA 94720, USA.



§0. Introduction.

It is a well known fact that not all vector fields are gradient vector fields. As vector fields, those

that are gradient vector fields are much easier to implement as electronic circuits than those which

are not of that form. As to those vector fields which are not gradient vector fields, one looks for

particular structures that may help in modelling them as electronis circuits. One such class of vector

fields that may be modelled with slightly more difficulty than gradient vector fields are those that

are called pseudo-gradient.

The paper "The identification of pseudo-gradient vector fields," [4] addresses that identification

problem for psuedo-gradient piecewise-linear vector fields. In a more general setting, this paper

considers the identification of psuedo-gradient vector fields when the vector fields are C1 differen-

tiable. Note that piecewise-linear vectorfields are not C1 functions, although the techniques usedare

very similar in both cases, the approach used are fundamentally different. In the case of piecewise-

linear vector fields, an explicit construction of the state function (the function whose derivative is

the piecewise-linear vector field) is constructed, whereas for the case of C1 vector fields the state

function is implicitly proved to exist.

§1. Definitions.

This section will present the definition of gradient vector field and pseudo-gradient vector field.

Examples ofboth these types ofvectorfields will be given. Note that not all vector fields are gradient

vector fields, and that not all psuedo-gradient vector fields are gradient vector fields. However, the

set of psudo-gradient vector fields is much more general than the set of gradient vector fields and

includes the latter as a proper subset.

Definition 1.1. Let /(x) be a C1 vector valued function. The vector field given by /(x) is a

gradient vector field if and only if there is a C2 real valued function F(x) such that /(x) = VF(x).

Example 1.2. (Figure 1.) The vector field given by

/

is a gradient vector field since /(x) = VF(x) where F(x) = x\/2 + x\/2.

Example 1.3. (Figure 2.) The vector field given by

/

is not a gradient vector field. Assume to the contrary that a function F(x) exists such that /(x) =

VF(x). Then
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As F(x) is a C2 function then
d2F

dx2&X]
= 0

*l
d2F

dx\dx2
By contradiction, f(x) is not a gradient vector field.

Theorem 1.4. Let f(x) bea C1 vector valued function defined onan opensimplyconnected domain

D. Then f(x) is a gradient vector field if and only if the Jacobian matrix D/(x) is symmetric.

Definition 1.5. Let /(x) be a C1 vector valued function. If there exists a matrix M and gradient

vector field gr(x) such that either /(x) = Mg(x) or M/(x) = ^(x), then f(x) is said to be a

pseudo-gradient vector field.

Theorem 1.6. Let
Xn ... xln

X =

LZnl

be an n x n matrix and
xi 7i(xi,...,xn)

lx. ,/n(*li."»«n).
be a C1 vector valued function. Define the functions

n ( 8 /) \

Gu(x) =5Z \*ikdx~fk(Xl''**'Xn) " zikd~x~^Xu'''' *"))
for 1 < i < j < n. Then M/(x) is a gradient vector field if and only if

Gij(X) = 0

for 1 < i < j < n.

Proof. By theorem 1.4, X/(x) is a gradient vector field if and only if DX/(x) is a symmetric
matrix,

[DX/(x)]t.i = [DX/(x)]it.

for 1 < i < j < n, thus

Gij(X) =^y*ik^fk{x1}...,Xn)-Xjk—fk(xU...,Xn))
= 0

for 1 < i < j < n.



§2. Pseudo-gradient vector fields /(x) = Mg(x) where M is invertible.

Given a vector field /(x), this section will determine if there exists an invertible matrix M and

gradient vector field g(x) such that /(x) = Mg(x).

Since M is invertible, the problem is equivalent to finding an invertible matrix X such that

X/(x) is a gradient vector field. Finding matrices X such that X/(x) is a gradient vector field is

done by application of theorem 1.6. There remains the problem to determine which, if any of the

matrices X are invertible. If no such matrices exist then /(x) may not be written as Mg(x) with

M invertible and g(x) a gradient vector field. If however, an invertible X exists, then M can be set

to X-1. Then /(x) = X-1(X/(x)) is a decomposition of the desired form.

The problem becomes one of solving

Gij(X) = 0

for 1 < i < j < n and

detX ^ 0.

The following examples will demonstrate the method outlines above.

Example 2.1. (Figure 3.) Let

then

Xi

x2

esin *» (1 + 2x2 cos xi)
gsin xi

G12(X) =*u A/l(x) _X21_L/l(x)+

*12^/2(X)-X22A/2(X)
_ gSinxi cosxi(2xu - x22) - e8inxi(-2x2 sinxi + cosxi + 2x2 cos2 xi)x2i.

Thus Gi2(X) = 0 if and only if x2i = 0, x22 = 2xn. Thus

X =

If X is invertible then 2x\x ^ 0, i.e. xn 5^ 0. Let xu = 1 and define M = X"1, then

42]-[i"iT([S?]'fc])
4- 2x2 cos xi 4- xi2)

Xn X12

0 2xu

2 -xi

0

X12] fe8in^(l
1 J [ 2e8,n*i

is a desired decomposition for the pseudo-gradient vector field /(x).

Example 2.2. (Figure 4.) Let
Xi

x2

e8in*x +X2

X2sinxi



then

G«(X) =*u^/i(x) - x2i^-/i(x)+
^12^/2(X)-X22^r/2(X)

= xn —X21C8"1 Xl cos xi + X12 sin xi —X22X2 cos xi.

Thus Gi2(X) = 0 if and only if xn = xi2 = x2i = x22 = 0. It follows that there does not exist

invertible matrix M and gradient vector field g(x) such that /(x) = Mgr(x).

§3. Pseudo-gradient vector fields /(x) = M<jr(x) where M is symmetric invertible.

This section will determine if the vector field /(x) can be written as Mg(x) where the matrix M is

symmetric invertible and g(x) is a gradient vector field.

The solution to the identification problem can also be achieved by determining symmetric

invertible matrices X such that X/(x) is a gradient vector field. By setting M = X"1 then f(x) =

M(M_1/(x)) is a desired decomposition.

Determinationof matricesX such that X/(x) is a gradient vector field is achieved byapplication

of theorem 1.6. By applying polynomial restrictions on the entries of the matrix X, the matrix can

be assured to be both invertible and symmetric.

Namely, solutions are required that satisfy the following set of conditions,

Gij(X) = 0

Xij = Xji

for 1 < i < j < n,

detX j* 0

and

Xii — X ji-

The first condition ensures that X/(x) is a gradient vector field. The second condition state that

X is a symmetric matrix while the last condition considers only those matrices that are invertible.

If no solution exists to the above set of conditions then a decomposition of the required form does

not exist. A solution, if it exists, to the above set of conditions will determine a matrix M = X-1

such that /(x) = M(M_1/(x)) is a decomposition of the required form. The following examples

will demonstrate the methodology involved.

Example 3.1. (Figure 5.) Let

Xi

x2

cos(ex» + x|)(cx» + 2xi)
cos(eXl + x|)(eXl + 4x2)



then

G»(X) ="ug^/iM- «2iEr/i(x)+

^^•/2(X)-X22^7/2(X)
= (xn + 2xi2)(2 cos(eXl + x\) - Ax22 sin(ex» + x\)) - (x2i + x22)(cos(eXl + x^)eXl +

sin(eXl + xl)e2xi) - (xn+ xi2 - x2i - 2x22)eXl2x2sin(eXl + x\).
A simultaneous solution to

<?ia(X) = 0

*12 = «21

det IXl1 x" ^0
is given by

Xn X12

X21 X22

X(xn) = xu 1 -}
1

2" J

for xn ^ 0. Let X(xu) be the matrix corresponding to the choice of in = 2, with M = X(2)_1

then

/
Xi

x2

Example 3.2. (Figure 6.) Let

then

-U -.']([-'. -']'[:;])
1 1

1 2

Xi

x2

cos(eXl + x2)eXl ]
cos(eXl + xl)2x2 J

7x\ + 4xix2 + 4x2
6xJ + 6x2

Gi2(X) = xn—/i(x) - x21—/!(x)-|-

*12^/2(X)-X22^-/2(X)
= 2x2(2xn - 7x2i - 6x22) - 4x2x2i -|- 2(2xn + 3xi2).

Note that if Gi2(X) = 0 then
Xu X12

X21 X22

It is immediate that there is no solution to

G?n(X) = 0

det

= Xu
1 _2

0 I

X12 = X21

7*0
Xu X12

X21 x22

since the first and third conditions require that xu ^ 0 from whence X12 = —2/3xu ^ 0 = X21 in

violation of the third condition. It can be concluded that /(x) may not be written as Mg(x) with
M symmetric invertible and g(x) a gradient vector field.



§4. Pseudo-gradient vector fields /(x) = Mg(x) where M is symmetric positive definite.

An algorithm will be presented to determine if a given vector field may be rewritten in the form

Mg(x) where the matrix M is symmetric positive definite and the function g(x) is a gradient vector

field. The algorithm works by observing that if such a decomposition exists then there exists a

symmetric postive definite matrix X such that X/(x) is a gradient vector field. Conversely, if

the matrix X symmetric definite positive exists then a decomposition of the required form can be

constructed. It may also be noted that if such a matrix X cannot be found then a decomposition of

the desired form does not exist.

Theorem 1.6 will determine those matrices X such that X/(x) is a gradient vector field. Re

strictions on the elements of X create a set of conditions that, if met, will determine that the matrix

X is symmetric positive definite.

Effectively, one looks for solutions to the following set of conditions,

Gij(X) = 0

Xii = X
J*

for 1 < i < j < n and
Xu xu

det

Lx,i ... x,-,j

for 1 < i < n. The first condition ensures that X/(x) is a gradientvector field. The second condition

states that X is a symmetric matrix while that last condition restricts the symmetric matrices under

consideration tothose that are positive definite. If such matrices X exist, then by setting M = X"1

a decompostion /(x) = M(M_1/(x)) is obtained.

The following examples should illustrate the algorithm.

Example 4.1. (Figure 7.) Let

>0

X!

x2

8xfx2* + 4xfxf + 4xixl + 2xjx2 + 2x2 + xx
4x?xJ + 16x}x| -|- 2xix| + 8x?x2 + x2 + 4xx

then

Gl2(X) = xu—f^x) - ar2i^-/i(x)+
d ., . _d_

dxi

= (16xlxl + 4xix2 + l)(2xu - *2i + *i2 - 4x22) + 2xf(6xfx\ + l)(xu + 4xi2)

- 2x|(6xfx\ + l)(2x2i + x22).
A simultaneous solution to

Gw(X) = 0

Z12 = £21

det[xu] = xu > 0

, . X\\ Xyy
det ,. -. = a?ll«22 ~ X12X21 > 0

X21 X22

Xl2Sx7/2(x)~X22~/2(x)



is given by

X(xu) = xu

for xu > 0. Let xX\ = 4/7, then a desired decomposition is given by setting M = X(4/7)_1, thus
"4" 2"

Xi

.Z2.
=

' 4

71 "2
.~7 1

=

2 1

1 4

Example 4.2. (Figure 8.) Let

then

Xi

x2

-1

4x?x| -|- 2xix^ + x2
4x^X2 + 2x^X2 + Xi

ex«I3(2xix2-x^)
eXlXa(x^ + 8xix2)J '

[s])

G12(X) =xu^-/i(x) - x2i^-fl(x)+
OX2 OX\

X12^7/2(X)-X22^7/2(X)

= eXlX=2x!(l + 2xix^)(xu + 4xi2) + e*lX'2x2(l + *i*2)(-*n - x2i + xi2 - 4x22)+

eXlX'x|(x2i - x22).

A simultanoeus solution to

G«(X) = 0

«12 = «21

det[xu] = xu > 0

det

requires that

Xu X12

X21 x22
= X11X22 — Xi2X2t > 0

Xu + 4Xi2 = 0

X21 —X22 = 0

X12 = X21

xu >0

^11^22 —^12^21 > 0.

The first four conditions determine the matrix

X(xu) = xu 1 -4

-4 4

with xu > 0. However, this matrix has determinant -20xu < 0, violating the last condition. Thus,

/(x) does not have a decomposition of the required form.



§5. Pseudo-gradient vector fields /(x) = M<j(x) where M is diagonal positive definite.

This final section will consider the decompostion of a vector field /(x) as Mj(x) where the matrix

M is diagonal positive definite and the vector field g(x) ia a gradient vector field. Since the matrix

M is diagonal, it may be written as M = A(mu,.. .,mnn) where mu,...,m„„ are its diagonal

elements.

The identification problem is the same as finding a diagonal positive definite matrix X =

A(xu,.. .,xnn) such that X/(x) is a gradient vector field. Once this is achieved, by setting M =

X-1, a decomposition ofthe required form is/(x) = M(M_1/(x)). If the vector field /(x) does not

have a decomposition of the required form then the matrix X does not exist.

Theorem 5.1 gives conditions on the elements of the diagonal matrix X = A(xu,..., x„„) to

ensure that X/(x) is a gradient vector field. Of these diagonal matrices, one searches for those

that are positive definite, this entails the consideration of those matrices for which xu,..., xnn > 0.

Examples follow to illustrate the technique.

Theorem 5.1. For 1 < i < j < n define the functions

Hij(X) = x«—/,•(*!,...,x„) - Xjj-—fj(xu •..,zn).
dx. dxi

The diagonal matrices X = A(xUl..., xnn) satisfy X/(x) a gradient vector fieJd if and onJy if

Hij(X) = 0

for 1 < i < j < n.

Proof. Thevector field X/(x) isa gradient vector field ifand only ifDX/(x) isa symmetric matrix,

[DX/(x)]t.J. = [DX/(x)];,.
d a

^ Xiidl^Xu *' •'x") =xH'qI^^Xu ''''Xn)

for 1 < i < j < n, thus

for 1 < i < j < n.

Example 5.2. Let

Hij(X) = xu—/,(xi,..., xn) - Xjj—fj(xi,..., xn)

= 0

/

Xi -2eXa sin(xieXa)
x2 = —4xieXa sin(xieXa) + 4eXaX3

.Z3. eXa



then

Hl2(X) = xn—f^x) - x22—f2(x)

= -2e2xa (xi cos(xieXa) + sin(xieXa)) (xu - 2x22)
d \ , . _d_

dx\

= 0

5"i3(X) = zu—/i(x) - X33—/3(x)

#23(X) = x22-—/2(x) - x33-_/3(x)
0x3 0x2

= eXa(4x22-x33).

A solution is required for

#12(X) = -2e2xa (xi cos(x!eXa) + sin(xieXa)) (xu - 2x22) = 0

ffi3(X) = 0

F23(X) = eXa(4x22-X33) = 0

Xu,X22»Z33 > 0.

Solutions are given by

"l 0 0"
X(xu = xu 0 h 0

0 0 2

for xu > 0. Let xu = 1/2, setting M = X(l/2)_1 then

Example 5.3. Let

then

Xi " 1
7 0 0" "

-1 / £ 0 0 xx' \
x2 = 0 1 0 1 0 | 0 / X2

x3 0 0 1 \ 0 0 1 .X3. /
"2 0 0" —cXa sin(xieXa)

= 0 4 0 —xieXa sin(xieXa) + eXaX3
0 0 1 eXa

Xi ex»

x2 = 2eXa

*3
3exlx3x3

Hl2(X) = 2n^-/i(x) - ar22^-/2(x)
= 0

tfl3(X) =̂ H^/l(x) "*33^-/3(x)
= -3x1X2X3eX,X3X3X33

-H23(X) = X223 /2(x) - X33 « /3(x)
0X3 0x2

= -3xix3eXlXaX3x33.

9



A solution is required for

Hl2(X) = 0

JTi3(X) = -3xix2x3eXlXaX3x33 = 0

S23(X) = -3xix3eXlXaX3x33 = 0

^11»^22»^33 > 0.

By the first three set of conditions, X33 = 0. This is in violation of the third set of conditions for

a diagonal positive definite matrix X with X/(x) a gradient vector field. It can be concluded that

a decomposition of /(x) as Mgr(x) where M is diagonal positve definite and g(x) a gradient vector

field does not exist.
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Figure captions.

Figure 1. This is the phase portrait corresponding to the vector field given by

, xi _ Xi

[x2J [x2 J '
This vector field is also a gradient vector field.

Figure 2. This is the phase portrait corresponding to the vector field given by

/
Xi

x2

X!

Xi

This vector field is not a gradient vector field.

Figure 3. This is the phase portrait corresponding to the vector field given by

Xi

x2

e8inXl(l + 2x2cosxi)
„sin xi

This vector field may be written as the product of an invertible matrix M and a gradient vector

field g(x) as /(x) = Mg(x).

Figure 4. This is the phase portrait corresponding to the vector field given by
esinx! +X2

x2 sinxi

This vector field may not be written as the product of an invertible matrix M and a gradient vector

field g(x) as /(x) = Mg(x).

Figure 5. This is the phase portrait corresponding to the vector field given by

Xi

x2

/

/

X!

X2

/

Xi

X2

xi

x2

Xi

x2

cos(eXl + x|)(ex» + 2xx)
cos(eXl +x2J)(eXl +4x2).

This vectorfield may be written as the product ofan invertible symmetric matrix M and a gradient

vector field g(x) as /(x) = M<?(x).

Figure 6. This is the phase portrait corresponding to the vector field given by -

lx\ + 4xiX2 4-4X2
6x\ + 6x2

This vector field may not be written as the product of an invertible symmetric matrix M and a

gradient vector field g(x) as /(x) = M^(x).

Figure 7. This is the phase portrait corresponding to the vector field given by

8x?x| + Ax\xl+ 4xix| -f 2x?x2 + 2x2 + xi "
4x?x| -I- 16x}xf + 2X1X2, + 8x?x2 + x2 + 4xx J '

This vector field may be written as the product of a symmetric positive definite matrix M and a

gradient vector field g(x) as /(x) = Mg(x).

Figure 8. This is the phase portrait corresponding to the vector field given by

eXlXa(2xix2-x|)"
,exix3(x^ + 8xix2)J '

This vector field may not be written as the product of a symmetric positive definite matrix M and

a gradient vector field g(x) as /(x) = Mg(x).
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