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THE IDENTIFICATION OF PSEUDO-GRADIENT VECTOR FIELDS, f

Robert Lum and Leon O. Chua. ft

Abstract

A vector field is called pseudo-gradient if it is either the composition of a matrix with

a gradient vector field or under composition with a matrix becomes a gradient vector

field. Of particular interest are those pseudo-gradient vector fields formed from the

composition of a matrix with a gradient vector field. Such vector fields are especially
amenable to construction as electronic circuits.

In this paper, the identification of such vector fields is completed for the cases

when the matrix is either invertible, invertible symmetric, symmetric positive definite

or diagonal positive definite. In the process of such identification, a decomposition
of the original vector field as the composition of a matrix and a gradient vector field
will ensue. The algorithm for identification is sufficiently deterministic to be fully
implementable as part of a larger software package dealing with electronic circuits.

f This work issupported inpart by the Office of Naval Research under Grant N00014-89-J-1402.
ft The authors are with the Department of Electrical Engineering and Computer Sciences, Uni

versity of California, Berkeley, CA 94720, USA.



§0. Introduction.

In the paper[3], "Invariance properties of continuous piecewise-linear vector fields," several different

types of vector fields were presented. For some of these types of vector fields necessary and sufficient

conditions were imposed for their identification. However, one large and important class, pseudo-

gradient piecewise-linear vector fields, had unanswered questions to whose resolution this paper is

addressed.

The particular question that concerns this paper considers the decomposition of a piecewise-

linear vector field as the composition ofa matrix, either invertible, invertible symmetric, symmetric

positive definite or diagonal positive definite, and a gradient piecewise-linear vector field. Thus,

it is the identification of a psuedo-gradient vector field for which there is a decomposition with a

matrixthat iseither invertible, invertible symmetric, symmetric positive definite or diagonal positive
definite.

Resolution of the above question allows the quick and efficient identification ofpiecewise-linear

vector fields whose electronic implementation is less complicated than the general piecewise-linear

vector field but not as simple as the gradient piecewise-linear vector field.

§1. Definitions.

In this section the definitions ofthe different piecewise-linear vector fields are presented.

Definition 1.1. Acontinuous piecewise linear vector field £ in n independent variables is given by
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where 0 < a)x + ... + ajn, 0 < &)x + ... + 0]n for j = 1.. .m. Henceforth, continuous piecewise
linear vector fields will be called vector fields.

Definition 1.2. The vector field £ is a gradient vector field if there exists a function G such that

mxi'

= VG
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Definition 1.3. A pseudo-gradient vector field £, is a vector field for which there exists a matrix

X and gradient vector field Csuch that either (Xo()(x) = <(x) or£(x) = (Xo<)(x).



Definition 1.4. Given a matrix A, define the set

Pg(A) = {X : XA = A'X'}.

The matrix X is such that XA is a symmetric matrix.

§2. Rejoiner to [3].

The following are results from [3] that will be used in this paper.

Lemma [3] 3.11. Considering a matrix X written in the form ofa n x n-tup7e

«ii
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there exists a finite set of vectors vi,..., vp G3?nx" such that

Pg(A) = {<!Vl + ... + <pvp :<i,..., tp € »}.

Proof. To solve the equation XA = A'X* is the same as solving
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Thus, X € Pg(A) if and only if it solves the above equation. This means that
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is in the kernel of the matrix in the right-handside of the above equation. By Unear algebra, the

kernel is a linearsubspace of 3ftnxn which can written as the span of the linearly independent vectors

V!,...,vp. Thus,

Pg(A) = {<iV! + ... + tpvp :*i,..., tp e »}. |

Lemma [3] 3.12. Given two linear subspaces spanned by the vectors vi,..., vp and wi,...,w,
respectively, the intersection of the two subspaces is given by the span of some vectors ui,..., ur

with r < p,q.

Proof. Let x G{h\i + ... + tp\p : *i,..., tp € »} n {5lwi+ ... + s,w, : su..., sq G£}. Then

[vi,...,vp,wi,...,wg]

• <1 " '0"

-*i
=

0

0

.-sq. .0.

Bylinear algebra, the solution for tu ..., tp, -su..., -sq is in the kernel of the matrix in the left of

the above equality. Let the kernel be spanned by the vectors y1,..., yr. Thus,

til vi vl t'l

UDJ lvP vl\ L*'rj

from which it follows that a spanning setofvectors for the intersection ofthe two subspaces is given
by

v\ ... y[
[ui,...,ur] = [vi,...,vp]

ivi Vp\

Without loss of generality, the vectors ui,...,ur may be assumed to be independent and form

a basis. The dimension of the intersection cannot exceed the dimension of the subspaces that it
intersects, thus r <p,q. •



Theorem [3] 3.13. Let £ be a vector field of the form
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There exists a matrix X such that (Xo£)(x) isa gradient vector field ifand only if
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Proof. Assume that there exists a matrix X such that (Xo£)(x) is a gradient vector field. As
the proof of theorem[3] 3.2, it is necessary and sufficient that

and

X
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to be symmetric matrices for (X o£)(x) to be a gradient vector field. Thus
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§3. Auxiliary results.

The following are some auxiliary results needed to ensure that the alogrithms to be presented can

indeed be implemented in a deterministic fashion. Unhke existence proofs where it is sufficient

to demonstrate validity of a claim, constructive proofs are much more useful in the design and

implementation of functional algorithms.

The first two results deal with properties of polynomials while the rest deal with symmetric

matrices.

Definition 3.1. Let a G (IN U{0})*, then

i=l

and

c - xx ...xk .

Proposition 3.2. Let

f(xi) = ^2cix[
i=0

bea polynomial in the variable xx ofdegree r with cr £ 0. There exists yi £ 0 such that f(yx) ^ 0.

Proof. If 0 = r then let yx = 1. In this case, /(yi) = c0 ? 0. Assume that 1 < r, then

r-l

/(xi) = crxj + ^c,xi.
i=0

It may be assumed that cr > 0, otherwise consider -f{xi) instead of/(xi).

Let

M = max{|cj| : i = 0,..., r - 1}

Then

yi = max{l, }.

r-l

/(yi) = cry[ +^c,yi
i=0

r-l

>cry;-A/£yj
i=0

> cry[ - Mry[~l

= y[~1(cryi-Mr)

>0.



Proposition 3.3. Let

r ( \
/(xi,...,xjk) =^ J2 C*X°

i=0 \ |a|=r ,
\o,€(INU{0})'< /

be apolynomial in k variables of degree r with cQ ? 0 for some \a\ =r. There exists yi,..., y* ^ 0
such that/(yi,...,yfc)^0.

Proof. If 0 = r then let Vl = ... = yk = l. In this case /(l 1) = c(0 0) * 0. Assume that
1 < r, then

r-l

/(*i **)= Ec°*°+E Ec«x° •
|o|=r i=0 \|a|=i /

Consider the nontrivial homogeneous polynomial given by

0(xi,...,xfc)= ^ cax°.
|a|= r

Define new variables Vl y* by y,- = x(1r+1,"\ Then g(yu..., yk) = h(Xl) is a polynomial in xx
of order at most r(r + l)*"1. By proposition 3.2 there is a value yi ^ 0such that h(yx) ^ 0. Then
the values yi,..., yj'*1^"1 £0satisfy g{yi y[r+l)"~l) =K? 0. It may be assumed that K>0,
otherwise consider -f(xu...,xk) instead of/(xi,.. .,xfe).

Let

M- max{|c0| : |a| = 0,...,r-1}

e=max{|y,| :t = !,...,*}
and choose

Then

A = max{'•'tU"^'—)Y
r-l

/(Ayi,...,Ayfc)= YI c«(W+E E c«(Ay)°
|o|=r i=0 \|a|=i

r-l

=*' E <°y°+E E c«Aiy°
|o|=r t=0 \|o|=,-

r-l

>XrK -Mi-L±tz^lrx^€r-1

>0.



Proposition 3.4. Let {wi,..., wff} be a basis for a linear manifolds of matrices. An element

is symmetric ifand only if

Proof. An element

is symmetric if and only if

Ex<w«
t=0

Ea?,-(w,--w{) = 0.
•=o

Ex«w»
•=0

J^x.w,- =I^x,w<
\i=0

=Ex«w«-

i=0

t=0

Proposition 3.5. Let the given symmetric matrix be

vn ... yin

Define the symmetric submatrices

xi

x,-

0

0
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Yn =

ym V*

Vn Vu

yn ... Vi

for 1< i < n. The matrix Yn ispostive definite ifand only ifdet(Y.) > 0 for 1< i < n.

Proof. Assume thatdet(Y.) < 0for some 1< i < n. As det(Y.) is the product ofthe eigenvalues of
the Y, then one of the eigenvalues of Y, is nonpositive. Let Abe this eigenvalue and x ?& (0,..., 0)
be the associated eigenvector. Then
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vn

= A(x? + ...,x?)

<0.

Thus, if Yn is positive definite then det(Y,) > 0 for 1 < i < n.
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Conversely, assume that det(Y.) > 0 for 1 < i < n. The proof will be by induction on n. If
n = 1 then Yi = [yu] is a matrbc with 0 < yri. It is clear in this case that Yx is positive definite.
Assume that 1 < n and the proposition is true for n0 < n. Observe for 1 < i < n,

yu yu
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Define

i Wyn ••• y.i/yir*
o l ... o

.0 o ... 1

yn o ... o
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0 1 ... 0
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. yi2 - yny2i/yn •.. yu - ynyn/yn

Asyndet(Zi-i) = det(Y.) thendet(Z,--i) = det(Y,)/yn. Thusdet(Zi_i) > Oforz-1 = l,...,n-l.
By induction, the matrix

Z„_i =

is positive definite. Thus

for (x2,...,xn)^ (0,...,0) and
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\ i=2 / i=2 j=2

>0

for (x1?..., x„) 5^ (0,..., 0). Thus Yn is positive definite.



§4. The pseudo-gradient vector field £ = X o £ with X an invertible matrix.

If £ is a pseudo-gradient vector field of the form ( = Xo( where X is an invertible matrix then

X"1 o£ is a gradient vector field. Thus, a pseudo-gradient vector field of the form £ = X o£, X
invertible, has an invertible matrix Y such that Y o£ is a gradient vector field. Conversely, if there

does not exist an invertible matrix Y such that Y o£ is a gradient vector field then £ cannot be

decomposed as f = X o£ with X an invertible matrix and Ca gradientvector field. It is immediate

that if such a matrix Y exists then £ = Y"1o(Y o£) is a valid decomposition of the desired form.

Let the vector field £ be given by

'11"Xl" "«r
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then an algorithm to determine the existence ofinvertible matrices Y with Yo(a gradient vector
field is given by the following sequence of steps:

Step 1: Let 5 = {w°,..., wJJ where the vectors {w°,..., w°0} form a basis for

("&n ... &i„

i i
L&nl ... &nn-

Step 2: For i=l to m repeat the steps 2.1 through to 2.3.

Step 2.1: Let T = {vj,..., vj.} where the vectors {vj, ., v*p.} form a basis for

/ <*iifl.'ji <*jlPjn

Pg

\LQin0jl .-. Oijn0jn_

Step 2.2: Let R= {wj,...,wjf} where the vectors {wj,...,wj.} form a basis for span(S) n
span(T).

Step 2.3: Let S = R.

Step 3: Form the matrix
9m

Y(*i,...,*,j =E*«wr
i=l

and let /(xi,..., xqm) be the polynomial given by

/(xi,..., xqn) = detY(xi,..., x9m).

Step 4: Determine if/(xi,.. .,xgra) is identically the zero function. If it is then go to step 5 else
choose values for *i,..., xqm such that f{xx xqm) ± 0 and go tostep 6.

Step 5: In this case, all matrices Y such that Yo^isa gradient vector field are non-invertible.

Thus, there do not exist invertible matrices Y such that Yo£ isa gradient vector field. The vector

field £cannot be written in the form { = Xo( where X is invertible and <is a gradient vector field.



Step 6: In this case, there exists a set ofvalues xi,..., xqm such that the matrix

9m

Y(*i,...,z,m) =E**wr
1=1

isinvertible and Yo£ is a gradient vector field. Thus £ can be written in the form ^ = Y_lo(Yof)
with Y-1 invertible and Yo^a gradient vector field.

Example 4.1. (Figure 1.) This example will demonstrate a case where the desired decomposition
does not exist. Let the vector field be given by

T~.l Ta il r~ 1 Tnl lm«Xl
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Step 1: By lemma[3] 3.11, it is required to solve for X where

r
i

V
i

t
Xi
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Xn xi2

X21 X22

0 1

0 0

0 0

1 0

xn X21

X12 X22

This means solving the set of linear equations given by

0 = 0

xn = 0

0 = xn

X21 = X21

which is the same as finding the kernel of the matrix given by

"0 0 0 01

10 0 0

-10 0 0

.0 0 0 0J

A basis for S is given by the vectors

roi

1

0

L0J

roi

o

l

L0

roi

o

o

LU

>.

Step 2: Since m = 2 then steps 2.1 to 2.3 need only be used twice.

Step 2.1: By lemma[3] 3.11, it is required to solve for X where

xn xi2l 1*0
*21 X22J [l

0 1

0 0

This means solving the set of linear equations given by

X12 = X12

0 = x22

x22 = 0

0 = 0

10

xn x2i

X12 x22

+ 1



which is the same as finding the kernel of the matrix given by

0 0 0 0

0 0 0-1

0 0 0 1

LO 0 0 0 J

A basis for the T is given by the vectors

' -1- -o- -o- 1

<

0 1 0

0
»

0
1

1
•

» .0. .0. .0. J

Step 2.2: By lemma[3] 3.12, it is needed to find the kernel of the matrix given by

which is the span of the vectors

0 0 0 1 0 01

10 0 0 10

0 10 0 0 1

0 0 1 0 0 0J

'

0

• o -

-1

'

<
0

0

1

1

0

0

0

>.

k . 0 . . 1 . .

Thus, R is given by the span of the vectors

• o • - o • •>

-1 0
• .

0
1

-1

. 0 . . 0 . 4

Step 2.3: Let S be the span of the vectors

' - o • - 0 " •<

<
-1

0
»

0

-1
•

k . 0 . . 0 . 4

Step 2.1: By lemma[3] 3.11, it is required to solve for X where

xn xi2] [0 l] [0 (
.X21 x22J [0 lj [l ]

This means solving the set of linear equations given by

0 = 0

xn + x12 = 0

0 = xn-|-xi2

x2i + x22 = x2i +X22

11

xn X21

Xl2 X22



which is the same as finding the kernel of the matrix given by

r 0 0 0 01

1 10 0

-1-10 0

L 0 0 0 0J

A basis for the T is given by the vectors

' r-ii roi r°i
^

<

l 0 0

0
i

l
J

0

> Lo J Lo J LiJ j

Step 2.2: By lemma[3] 3.12, it is needed to find the kernel of the matrix given by

0 -1 0 01
-1 0 0 0

which is the span of the vector

0

L 0

Thus, R is given by the span of the vector

-10 10

0 0 0 1J

f •o-

1

>

< 0

1

•

k LoJ J
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0
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•
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Step 2.3: Let S be the span of the vector

Step 3: The matrix Y(xi) is given by

0 1^

0

-1

LOJ

> .

Y(xi)=Xi
0 0

-1 0

and the function /(xi) is given by /(xi) = det(Y(xi)) = 0.

Step 4: It is clear that /(xi) is identically the zero function.

Step 5: It can be concluded that £ may not be decomposed as the composition of an invertible

matrbc X and a gradient vector field C.

Example 4.2. (Figure 2.) This example will demonstrate a case where a desired decomposition
exists. Let the vector field be given by

Xl

.X2.
=

0 1

1 0

Xl

.*2.
+

1

0

1

.0.
Xl

X2
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+ 1
-1

1

0

1

1

xi

x2
-1



Step 1: By lemma[3] 3.11, it is required to solve for X where

xn xi2j To r
x2i x22J [l 0

This means solving the set of linear equations given by

0 1

1 0

xn x2i

Xi2 X22

X12 = X12

Xn = X22

X22 = xn

x2i = x2i

which is the same as finding the kernel of the matrix given by

0 0 0 0 1

10 0-1

-10 0 1

L 0 0 0 0 J

A basis for S is given by the vectors

' -1-

0

-0-

1

-0-

0

1

<
0

t

0
>

1
•.

k .1. .0. .0. 4

Step 2: Since m = 2 then steps 2.1 to 2.3 need only be used twice.

Step 2.1: By lemma[3] 3.11, it is required to solve for X where

'xn xnl Tl
X21 x22j [0

This means solving the set of linear equations given by

1 0

0 0

xn X21

X12 X22

xn = xn

0 = x2i

x2i = 0

0 = 0

which is the same as finding the kernel of the matrix given by

-0000-

0 0-10

0 0 10"

.0 0 0 0.

A basis for the T is given by the vectors

t -1- -0- -0- >

<
0 1 0

0
»

0
1

0
>

k .0. .0. .1. 4
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Step 2.2: By lemma[3] 3.12, it is needed to find the kernel of the matrix given by

which is the span of the vectors

ri o o i o oi
0 10 0 10

0 0 10 0 0

LI 0 0 0 0 U

' - o •

-1

•-1-

0

>

i
0

0

1

»

0

1

0

•

. . 0 . . 1 . 4

Thus, R is given by the span of the vectors

' - o - --1- >

<

-1

0
1

0

0
•.

k . 0 . .-1. 4

Step 2.3: Let S be the span of the vectors

' - o - •-1- >

i
-1

0
»

0

0
•

k . 0 . .-1. 4

Step 2.1: By lemma[3] 3.11, it is required to solve for X where

0 0] fxn
-1 lj L*i2

This means solving the set of linear equations given by

xn X12

X21 X22

0 -1

0 1

0 = 0

-X11+X12 = 0

0 = —xn + X12

—X21 + x22 = —x2i + x22

which is the same as finding the kernel of the matrbc given by

- 0 0 0 0-

-1 1 0 0

1 -1 0 0

. 0 0 0 0.

A basis for the T is given by the vectors

' -1-

1

-0-

0

-0-

0

•<

<
0

»

1
»

0
•

k .0. .0. .1. J
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Step 2.2: By lemma[3] 3.12, it is needed to find the kernel of the matrix given by

which is the span of the vector

- 0 - -i i 0 01

-1 0 10 0

0 0 0 10

. 0 -10 0 1.

' -i-

i

<

< i

0

•.

k

.tor

.1. ,

r --1- '

-l

0
• .

I .-1. 4

Thus, R is given by the span of the vector

Step 2.3: Let S be the span of the vector

Step 3: The matrix Y(xi) is given by

-1

-1

0

Ik L-1J )

Y(«i)=«!

> .

-1 -1

0 -1

and the function /(xi) is given by /(xx) = det(Y(xi)) = x\.

Step 4: It is clear that /(xi) is not identically the zero function. By proposition 3.2, a value of

xi = 1 satisfies f(xx) £ 0.

Step 6: It can be concluded that £ may be decomposed as the composition of an invertible matrix

X and a gradient vector field C as

xi

X2

-1 1

0 -1

15
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§5. The pseudo-gradient vector field £= X o£ with X an invertible symmetric matrbc.

If£ is a pseudo-gradient vector field of the form £= Xo Cwhere X is an invertible symmetric matrix
then X"1 o£ is agradient vector field, Thus, apseudo-gradient vector field of the form £= Xo<, X
invertible symmetric, has an invertible symmetric matrix Ysuch that Yo£ is a gradient vector field.
Conversely, if there does not exist an invertible symmetric matrbc Y such that Yo£ is a gradient
vector field then £ cannot be decomposed as £= Xo< with X an invertible symmetric matrbc and
Ca gradient vector field. It is immediate that if such a matrbc Y exists then £= Y"1 o(Y o£) is
a valid decomposition of the desired form. However, ifthere does not exist an invertible symmetric
matrix Y such that Y o£ is a gradient vector field there may still exist invertible matrices Y with
Y o £ a gradient vector field.

Let the vector field £ be given by

611 ••xi <*i

+

Lx„J iQnJ -&nl

hn~\ [Xi

OnnJ LXn.
+E

i=i

<*»i

LainJ

to

Pin.

Xi

-7;

Lx»J

then an algorithm to determine the existence of invertible symmetric matrices Y with Yo£ gradient
vector fields is given by the following sequence ofsteps:

Step 1: Let 5 = {w°,...,w°o} where the vectors {w°,..., w°J form a basis for

r&11 6ln1

Pg

-&nl

Step 2: For i=l to m repeat the steps 2.1 through to 2.3.

Step 2.1: Let T= {vj,...,vj.} where the vectors {vj,..., vj.} form a basis for

<Xjl{3jl OCjlPjn

Pg

\\.<Xinto ... <Xjn0jn\)

Step 2.2: Let R= {wj,..., wj.} where the vectors {wj,..., wj.} form a basis for span(S) n
span(T).

Step 2.3: Let 5 = R.

Step 3: From the equation
9m

X>,(w;" - (wj")') =0
t=i

determine a set of independent variables xi,...,x* and dependent variables xfe+i,...,x?m. Form
the matrix

Y(x1,...,xJt) = £s,-w?n
1=1

16



and let /(xi,..., x*) be the polynomial given by

/(xi,...,xfc) = detY(xi,...,xfc).

Step 4: Determine if /(xi,...,x*) is identically the zero function. If it is then go to step 5 else

choose values for z\t..., x* such that /(xi,..., xjt) ^ 0 and go to step 6.

Step 5: In this case, all symmetric matrices Y such that Yo^isa gradient vector field are non-

invertible. Thus, there do not exist invertible symmetric matrices Y such that Y o£ is a gradient

vector field. The vector field £ cannot be written in the form { = Xo( where X is invertible

symmetric and £ is a gradient vector field.

Step 6: In this case, there exists a set of values xi,..., x* such that the matrix

9m

Y(xi,...,x?m) = ^xiw7
i=i

is invertible symmetric and Y o £ is a gradient vector field. Thus £ can be written in the form

£ = Y_1 ° (Y o£) with Y"1 invertible symmetric and Yo{a gradient vector field.

Example 5.1. (Figure 2.) This example will demonstrate a case where a vector field £ can be

decomposed as£ = Xo£ where the matrbc X cannot be invertible symmetric butmay be invertible.
Let the vector field be given by

Xl

.X2.
=

0 1

1 0

xi

x2
+

1

oj
1

[o
Xl

.X2.
+ 1 +

-1

1

0

[l
Xl

.X2.
-1

This is the same vector field as in example 4.2. All the steps are identical until the end of step 2.3,
at which point a basis for 5 is given by

r-n

-1

0

L-U

Step 3: The equation

Xi

determines that

from which xi = 0. Thus,

•-1 -l" '-1 -l' •) "o o]
0 -1 0 -1 )- 0 0

J /

Xl
0 -1

1 0

Y(xi) =

0 0

0 0

0 0

0 0

and/(x!) = det(Y(xi)) = 0.

Step 4: It is clear that /(xi) is identically the zero function.

17



Step 5: It can be concluded that £ may not be decomposed as the composition ofan invertible
symmetric matrix X and a gradient vector field {.

Example 5.2. (Figure 3.) This example will demonstrate a case where a vector field £ can be
decomposed as £= XoCwhere the matrix X is invertible symmetric. Let the vector field be given
by

xi

X2
+ 3 iJM +UJ [2] [III

Step 1: By lemma[3] 3.11, it is required to solve for X where

xn x

x2i x22

12U1 2
22J L3 1

1 3

2 1

xn x2i

X12 x22

This means solving the set of linear equations given by

xn + 3xi2 = xn + 3xi2

2xn -I- Xi2 = x2i + 3x22

X21 + 3X22 = 2xn + X12

2X21 + x22 = 2x2i + X22

which is the same as finding the kernel of the matrix given by

0000-

2 1-1-3

-2-11 3 '

L 0 0 0 0 .

A basis for S is given by the vectors

' - 1 - •1- -3- >

<
-1 0 0

0
»

2
»

0

k . 1 . .0. .2. 4

Step 2: Since m = 1 then steps 2.1 to 2.3 need only be used once.

Step 2.1: By lemma[3]3.11, it is required to solve for X where

xn X12

X21 X22.

5 10

5 10

5 5

10 10Ite
This means solving the set of linear equations given by

5xn + 5xi2 = 5xn + 5xi2

lOxn + 10xi2 = 5x2i + 5x22

5x2i + 5x22 = lOxn + 10xi2

10x2i + 10X22 = 10x2i + 10X22

18
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which is the same as finding the kernel of the matrix givenby

0 0 0 0 1

10 10 -5 -5

-10 -10 5 5

L 0 0 0 0 J

A basis for the T is given by the vectors

' - 1 - -1- "1" ^

<
-1 0 0

0
»

2
>

0
•

k . 0 . .0. .2. 4

Step 2.2: By lemma[3] 3.12, it is needed to find the kernel of the matrix given by

113 111

-200-100

0 2 0 0 2 0

L 0 0 2 0 0 2J

which is the span of the vectors
' --2"

0

- o •

-1

>

<

-1

4

0

>

0

0

1

•

. . 1 . . 0 . 4

Thus, R is given by the span of the vectors

' --5- --1- '

<

4

0
»

0

-2
•

k .-2. . 0 . 4

Step 2.3: Let S be the span of the vectors

Step 3: The equation

«(
determines that

-5 4

0 -2

' --5" --1" >

<

4

0
»

0

-2
•

k .-2. . 0 . 4

-5

0

4

-2

ii'

+ X2
-1 0' -1 o' V 0 o'
-2 0 -2 0 )- 0 0

Xl
• 0 4" ' 0 2 "o o"
-4 0

+ x2
-2 0

^

0 0

from which x2 = —2xi. Thus,

Y(xi) = xi

= X!

-5 4 " -1 o'
0 -2

+ x2
-2 0

-3 4 '
4 -2
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and /(xi) = det(Y(xi)) = -10x?.

Step 4: It is clear that /(xi) is not identically the zero function. By proposition 3.2, a value of
xi = 1 satisfies f(x\) £ 0.

Step 6: It can be concluded that £ may be decomposed as the composition ofaninvertible symmetric
matrix X and a gradient vector field Cas

i-i

(CH-* «'][:;] ♦[J]|[s],[:]«

Xl

.X2.
=

-3 4

. 4 -J

=
"0.2 0.4
0.4 0.3

§6. The pseudo-gradient vector field £ = X o C, X a symmetric positive definite matrix.

If f is a pseudo-gradient vector field of the form f = Xo( where X is a symmetric positive definite

matrix then X-1 o£ is a gradient vector field. Thus, a pseudo-gradient vector field of the form

^ = Xo(,X symmetric positive definite, has a symmetric positive definite matrix Y such that Yo£

is a gradient vector field. Conversely, if there does not exist a symmetric positive definite matrix

Y such that Y o£ is a gradient vector field then £ cannot be decomposed as £ = X o £ with X

a symmetric positive definite matrbc and C a gradient vector field. It is immediate that if such a

matrix Y exists then £ = Y~l o (Y o£) is a valid decomposition of the desired form. However, if

there does not exist a symmetric positive definite matrix Y such that Yo£ isa gradient vector field
there may still exist invertible symmetric matrices Y with Y o£ a gradient vector field.

Theorem 6.1. Let £ be a vector field of the form

"xr "Qi"
•

= •

+

-x„. -<*n-

r&ii

rbii

XGPg

L6„i .

There exists a symmetric positive definite matrix X such that (Xo£)(x) isagradient vector field if
and only if

\L6„i

X is symmetric and for i = 1,

bin

bnn

&ln" "Xi"
m

+E
'etji' Jil'

t
'Xi'

-Ti

&nn- -x„. ;=i .ajn. Jin. -x„.

onto

\L <*>»#/!

xn xu

Otjlfijn

GjnPjn.

0<det

L Xn x,-,J

Proof. Immediatefrom theorem[3] 3.13 and proposition 3.5.
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Let the vector field £ be given by

r*»"Xl" "Ofl"
.

= • +

.Xn. -<*„.

&ln" Xl

+E
L6„i ... 6„„J Lx„J J-1

<*n to
-t t

Xl

-Tj

Lainj Jin] LXn.

then an algorithm to determine the existence ofsymmetric positive definite matrices Y with Yo{
gradient vector fields is given by the following sequence of steps:

Step 1: Let 5 = {wf,..., w°0 } where the vectors {wf,...,wj0} form a basis for

(-&n ... &i„"

:- i
.6„i ... 6nn.

Step 2: For i=l to m repeat the steps 2.1 through to 2.3.

Step 2.1: Let T= {vj,..., v<.} where the vectors {vj,..., v£.} form a basis for

QjlPjl ... Ctjifljn

Pg

\lainPjl ... OCjnPjn.

Step 2.2: Let R= {wj,...,wj.} where the vectors {wj,...,wjj form a basis for span(5) n
span(T).

Step 2.3: Let S = R.

Step 3: From the equation
9m

^x,(wf»-(w,?n)t) = 0
i=l

determine a set of independent variables xi,...,xfc and dependent variables x*+i,...,x,m. Form
the matrix

9m

Y„(xi,...,xJb) = ^x<wJn.
i=l

Define the matrices

Yj(xi,...,xjk) =
Y„(xi,...,xjl.)ii ... Yn(xi,...,x*)u

Yn(xi,...,xfc)li ... Y„(xi,...,xjb),-,_

and let /,(xi,...,x*) be the polynomial given by

/,(xi,...,xjb) = detYj(xi,...,xjfc)

for 1 < i < n.

Step 4: Determine if there exist values xi,...,x* such that the following set of inequalities hold
simultaneously,

/i(xi,...,xfc) >0

/n(*i,...,Xfc) >0.

21



If suchvalues do not exist then go to step 5 else go to step 6.

Step 5: In this case, all symmetric matrices Y such that Yo^isa gradient vector field are either

non-invertible or invertible and not positive definite. Thus, there do not exist symmetric positive
definite matrices Y such that Y o£ is a gradient vector field. The vector field £ cannot be written
in the form{ = Xo( where X issymmetric positive definite and Cisa gradient vector field.
Step 6: In this case, there exists a set of values xi,..., x* such that the matrix

Yn(xi,...,xgm) = ]Txt-w?
i=l

is symmetric positive definite and Yn o£ is a gradient vector field. Thus f can be written in the

form £= Y"1 o(Y„ of) with Y"1 symmetric positive definite and Y„ o£ a gradient vector field.

Example 6.1. (Figure 3.) This example will demonstrate a case where a vector field £ can be

decomposed as £ = X oCwhere the matrix X cannot be symmetric positive definite but may be
invertible symmetric. Let the vector field be given by

[si-
y
4

+
1 2

3 1

xi

x2
+

5

5

1

2

xi

x?
+ 3

This is the same vector field as in example 5.2. All the steps are identical until the end of step 2.3,
at which point a basis for 5 is given by

Step 3: The equation

xi

determines that

-5 4

0 -2

r-51

4

0

-2J

r-n

o

-2

L 0 J

>.

-5

0
+ x2

-1 0

-2 0

-1 0

-2 0

xi
r o 4i [° 21 [o o]
-4 0

+ X2
-2 0

—

0 0

from which X2 = —2xi. Thus,

and

Y2(xi) = xi

= Xi

Yi(xi) = xi[-3]

/2(xi) = det(Y2(xi)) = -10*}

/i(xi) = det(Y!(xi)) = -3xi.

22

[-5 4 1 [-1 ol
.0 -2

+ x2
-2 0

-3 4 '
4 -2

0 0

0 0



Step 4: It is clear that the inequalities
-lOx?. > 0

-3xi > 0

cannot be satisfied simultaneously.

Step 5: It can be concluded that £ may not be decomposed as the composition of a symmetric

positive definite matrix X and a gradient vector field £.

Example 6.2. (Figure 4.) This example will demonstrate a case where a vector field £ can be

decomposed as £ = X o£ where the matrbcX is symmetric positive definite. Let the vector field be

given by

Xl

.X2.
=

Y
l

+
y
7

|Y
2

t

xi

x2
+ 3

Step 1: A basis for S is given by the vectors

"1- -o- -o- -o-

0 1 0 0

0
1

0
»

1
»

0

0 0 0 1

Step 2: Since m = 1 then steps 2.1 to 2.3 need only be used once.

Step 2.1: By lemma[3] 3.11, it is required to solve for X where

xn X12

X21 X22 ][; i
3 7

6 14

xn x2i

Xl2 X22

This means solving the set of linear equations given by

3xn + 7xi2 = 3xn + 7xi2

•6Xn + 14Xi2 = 3X21 + 7X22

3X21 + 7X22 = 6xn + 14xi2

6X21 + 14X22 = 6X21 + 14x22

which is the same as finding the kernel of the matrixgiven by

0 0 10

14

-6 -14

L 0 0

-3 -7

3 7

A basis for the T is given by the vectors

r-7

3

0

n

o

2

0

L 0 J LOJ

Step 2.2: By lemma[3] 3.12, it is needed to find the kernel of the matrix given by

1 0 0 0 -7 1 71

0 10 0 3 0 0

0 0 10 0 2 0

L0 0 0 1 0 0 6J
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which is the span of the vectors

Thus, R is given by the span of the vectors

T-71

3

0

L 0 J

Step 2.3: Let S be the span of the vectors

r-7i rn

Step 3: The equation

xi

determines that

' - 7 "

-3

0

--1-

0

-2

--7-

0

0

>

< 0

1

0

> 0

0

1

» -6

0

0

k . 0 . . 0 . . 1 . 4

3

0

L 0

rn r7

o

2

LOJ

o

o

L6J )

>.

71 ^

00

2

LOJ

0

L6

>.

-7 3

0 0

it
-7 0

3 0
+ X2

1 0

2 0

1 2

0 0

0 -2

2 0

')+I3(
7 0

0 6

xi
0 3

3 0[- + x2

from which x2 = Z/2x\. Thus,

Y2(xi,X3) = Xi -7 3

0 0
+ x2

1 0

2 0

-^•xi+7x3 3xi
3xi 6x3

Yi(xi,x3) =
11

-yX! + 7x3

0 0

0 0

+ X3
7 0

0 6

7 0

0 6

0 0

0 0

and

/2(xi) = det(Y2(xi)) = -9x? + &*l - 33xix3

/i(xi) = det(Yi(xi)) =-Hxi +7x3.
Step 4: It is clear that the inequalities

-9xf + A2x\ - 33xix3 > 0
11

-yxi + 7x3>0
can be satisfied simultaneously by (xi, X3) = (0,1).

Step 6: It can be concluded that £ may be decomposed as the composition ofa symmetric positive
definite matrix X and a gradient vector field £ as

"*il _ T7 0T1 /[7 01 rN
X2

7 0

0 6

: :].([:]*[s]|[j]"
24
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§7. Tbe pseudo-gradient vector field ( = Xo(,Xa diagonal positive definite matrix.

If £ is a pseudo-gradient vector field of the form { = Xo( where X is a diagonal positive definite

matrix then X"1 o £ is a gradient vector field. Thus, a pseudo-gradient vector field of the form

^ = Xo(,X diagonal positive definite, has a diagonalpositive definite matrix Y such that Y o £ is

a gradient vector field. Conversely, if there does not exist a diagonal positive definite matrix Y such

that Y o £ is a gradient vector field then £ cannot be decomposed as^ = Xo( with X a diagonal

positive definite matrix and C a gradient vector field. It is immediate that if such a matrix Y exists

then f = Y"1 o(Yo{) is a validdecomposition of the desired form. However, if there does not exist

a diagonal positive definite matrix Y such that Y o £ is a gradient vector field there may still exist

symmetric positive definite matrices Y with Y o £ a gradient vector field.

Definition 7.1. Define the set

/ "of

»

Jl'

Y\
'

-<*r

\ • Otn- jn. ) 1k
•dn.

3A€»9

" diori' Jl'
y

\ = A I

.dnan. jn_ 4

Lemma 7.2. There exists vectors such that

mQl' Jl'

-<*n-

»

jn.
= £<•

1=1

Cil

: Ui G 8

- C»n -

Proof. It is required to solve the equations

diai =A/3i

dnotn =Xpn.

If there exist a, = 0 with /?,• ^ 0 then 0 = A/3,- from which A= 0 and the above equations reduce to

diori =0

dnocn =0.

Let e, denote the i-th coordinate vector. IfQjx,..., Qij ^ 0 and a,-J+1,..., ain —0 then

<*i

La„j VPn\) U=;+i

Ifit happens that whenever a. = 0 that0, = 0 then consider a„,..., aij £ 0, a,i+1,..., ain = 0.
The equations reduce to

dijaij =XPir
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Thus

/ ~<*l' "A" \
c I » '.

I • Otn- Jn. I
=\A (E|:e'0 +£ *«**»:A^ €*

Ufe=l

Definition 7.3. Define the set

r&n ... 6i„-

-&nl ... bnn-

= <

^1] |"di&n ... di&in-

kL^nJ Ld„6„i ... <*„&„„.

Lemma 7.4. There exists vectors such that

(-&11 ... &i„

.&„! ... 6nn

Proof. It is required to solve the equations

-di&n ... di&in

-dnbni ... dnbnn-

k -dn-

£* •

i=l .din.

di6u

-dnbni

*,€»

di&n ... di6i„ _ t

•dnbnl
"di&n

• • dnbnnj

•« dnbni

-dl&l„ ... dnbnn.

i.e. d,-6,j = djbji or,
r 0 0 ... 0 1

&12 -&21 ... 0

bm 0 ... -6„i

bin 0
0 -b2n

bnl
bn2

.0 0 ... 0

By linear algebra theory there are vectors such that

r&n ... &in"|\ (

dil

UJ

L6„j bnn-
= E<-

dn'

. din -

Definition 7.5. Given dj,..., dn € ft then

A(di,...,dn) =

i=l

di 0
0 d2

LO 0
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Theorem 7.6. Let £ be a vector field of the form

*xr "of

I =
•

+

-Xn. -<*„.

&11 ... &ln"l |"*l"| m

. i : +E
.6„i ... 6tmJ LxnJ i-1

<*ii

Lainj

to
-i t

Xl

-Ti

Jin. XnJ

There exists a diagonal positive definite matrix A(di,..., dn) such that (A(dx,...,d„)o£)(x) is a
gradient vector field ifand only if

A(di,...,dn)€D
&11 ••. bi„"

-bni ... bnn.

\ m / ~<*il' "ftl"

n nc ;
>

:

/ v-1 V . <*;«». .&».

and 0 < d,- for i = 1,..., n.

Proof. Assume that there exists a matrix A(dif..., dn) such that (A(di,..., dn)o£)(x) isagradient

vector field. As in the proof of theorem[3] 3.2, it is necessary and sufficient that

'dibn ... di&in'

and

A(di,...,dn)6D

-dnbni ... dnbr

diotj]

= Xj

.dnCtjn] iPjn
for (A(di,..., d„) o£)(x) to be a gradient vector field. Thus, by lemmas 7.2and 7.4,

&n ... &i„-

to

-bnl ... bnn-
nine

/ "°il" Jil'

V .ain.

i

Jin.

The condition that 0 < dt is necessary and sufficient for A(di,...,d„) to be a diagonal positive
definite matrix. •

Let the vector field £ be given by

'Xl' ~<*l'
*

=
• +

-x„. •Ocn-

bn ... &lnl

; : ; +E
L&ni ... bnn] Lx„J i=l

Xl <*il

Lai«J

fcl
-l t

Xl

"Ti

Jin. X„J

then an algorithm to determine the existence ofdiagonal positive definite matrices Y with Yo{
gradient vector fields is given by the following sequence ofsteps:

Step 1: Let 5 = {w?,..., w°J where the vectors {w?,...,w°J form a basis for

"&n ... &i„

-bni ... bnn.
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Step 2: For i=l to m repeat the steps 2.1 through to 2.3.

Step 2.1: Let T = {vj,..., v£J where the vectors {vj,...,vjj form a basis for

Oil

L ain J

to

IPin]/

Step 2.2: Let R = {wj,..., wj.} where the vectors {wj,...,w*.} form a basis for span(S) n
span(T).

Step 2.3: Let S = R.

Step 3: Determine if there exist values xi,.. .,xflm such that the following set of inequalities hold
simultaneously,

xi(w^)l + ... + xgm(w-)i>0

«l«)n + ... + Xgm(W7m)n>0.
If such values do not exist then go to step 4 else go to step 5.

Step 4: In this case, all diagonal matrices Y such that Y o£ is a gradient vector field are either

non-invertible or invertible and not positive definite. Thus, there do not exist diagonal positive

definite matrices Y such that Y o£ is a gradient vector field. The vector field £ cannot be written

in the form £ = X o£ where X is diagonal positive definite and Cis a gradient vector field.

Step 5: In this case, there exists a set of values xi,..., x* such that the matrix

A(j/i,...,y„)

with

i=i

is diagonal positive definite and A(yi,...,yn) o£ is a gradient vector field. Thus f can be written

in the form £ = A(yu..., y„)-1 o(A(j/i,..., yn) o£) with A(yx,...,y,,)"1 diagonal positive definite
and A(yi,..., y„) o £ a gradient vector field.

Note that if there exists a solution yi,..., yqm to

*i(wHi + ... + **.(*£)! = ei >0

*i(wr)„ + ... + x,m(w™ra)n = en>0

then there exists a solution yj,..., y' to

*i(wni+...+x,ro(w™ji>i

a:i(wIn)ll + ... + xgm(w_nro)n>l
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byscaling the original values ylf..., yqm witha sufficiently large constant. Decompose the variables

xi,...,xgm as Xi = x\ - x? for i = l,...,gm. It then follows that y\ = y'i,...,yjm = ^.yl =
0,..., yqm = 0 is an optimal solution to the linear programming problem of

minimise

1=1

subject to

*K)i " *?(wr)i +•••+xjm(w- )i - x?m(w-)i + Vi - Ui =1

«iW« - «!(wDn + •.. + Xjm(w- )„ - X5m(w-)i + Vn-Un =1

*l>*i>..MxJm,x*m>0

ui,...,un,vi,...,vn >0.

Conversely, given an optimal solution to the above hnear programming problem, if 0 < u,- —v,- for

i = 1,..., n then x,- = x* —x? is a solution to the original problem

*i(wni + ... + xgm(w£)i>0

*i(wnn + ... + xgm(w£)n>0.

Example 7.1. (Figure 4.) This example will demonstrate a case where a vector field £ can be

decomposed as^ = Xo( where the matrix X is diagonal positive definite. Let the vector field be

given by

£ ~J = ; + ; i ; -1 +3
Xl

x2
=

1

1
+

3

7

1

2

xi

x?,

Step 1: A basis for S is given by the vectors

{[!]•[:]}
Step 2: Since m = 1 then steps 2.1 to 2.3 need only be used once.

Step 2.1: By lemma 7.2 a basis for the T is given by the vector

{[!]}
Step 2.2: By lemma[3] 3.12, it is needed to find the kernel of the matrbc given by

which is the span of the vector

1 0

1 ?1 7

• 11

0 >

" 2 •
7

1

1 . 0 _
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Thus, R is given by the span of the vector

«»]}•
Step 2.3: Let S be the span of the vector

{[»}•
Step 3: The equations

-xi >0

2
-xi >0

can be satisfied simultaneously with Xi = 21.

Step 5: It can be concluded that £ may be decomposed as the composition of a diagonal positive

definite matrix A(7,6) and a gradient vector field Cas

Xl 7 o
x2 0 6.

" l
7 0

0 1
5

-1

i]|[s]'
xi

x2
+ 3
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Figure captions.

Figure 1. This is the phase portrait corresponding to the vector field given by
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Figure 2. This is the phase portrait corresponding to the vector field given by
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Figure 3. This is the phase portrait corresponding to the vector field given by
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Figure 4. This is the phase portrait corresponding to the vector field given by
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