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ABSTRACT

Plasma immersion ion implantation (also known as plasma
source ion implantation) is a process in which a target is
immersed in a plasma and a series of large negative voltage
pulses are applied to it to extract ions from the plasma and
implant them into the target. A general one dimensional model
is developed to study this process in different coordinate sys
tems for the case in which the pressure of the neutral gas is large
enough that the ion motion in the sheath can be assumed to be
highly collisional.

I. INTRODUCTION

In plasma immersion ion implantation, a target immersed in a plasma is pulsed
repetitively with large negative voltages. When the pulse is applied, electrons are
repelled from the target on the time scale of the inverse electron plasma frequency,
creating a uniform ion sheath. The ions, on a longer time scale, are attracted and
implanted into the surface of the target. As the ions are implanted, the ion density
in the sheath drops. This causes the sheath-plasma edge to recede and uncover more
ions to increase the ion density in the sheath and sustain the potential drop across
the sheath. The velocity of the moving sheath edge depends upon, among other
factors, the pressure of the background neutral gas. Here we develop a general one
dimensional model to study this process in different geometries for the case in which
the pressure of the neutral gas is high enough that the ion motion in the sheath can
be assumed to be highly collisional. We obtain analytic expressions for normal ion
velocity distribution f(vj, sheath motion s(t), ion flux at the target J(t) and other
parameters of interest. We apply this general model to the planar and spherical
targets and compare the analytic results with those obtained by simulation. The
following analysis was inspired by the work of Lieberman2, andScheuer, Emmert,
and Conrad et a/.3"6
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H. ASSUMPTIONS

At time r=0+, the potential at the target drops to -V0- This negative potential
forces theelectrons away from thetarget forming an ion sheath. The sheath-plasma
edge, r„ moves far enough away, as shown in Figure 1(a), so that thepotential drop
across thesheath equals V0. The iondensity in thesheath, ns, is still the same asthat
in the plasma, n0. At this point, the ions in the sheath, starting at essentially zero
velocity, are accelerated by theresultant electric field. However, before traveling
far, the ions collidewith the neutral particles and scatter or lose theirenergy. Since
the ions suffer many collisions before reaching the target, located at r = rfl, the
time-varying iondensity atany point inthesheath isassumed tochange more slowly
than the ion transit time through the sheath. The assumptions for this model are:

(1) The electron motion is instantaneous (inertialess).

(2) Charge exchange is the dominant ion-neutral collision mechanism.

(a)

(b)
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Figure 1. The ion charge density inthe sheath and the sheath edge at time t =0+,
and t > 0.



(3) The ion motion is highly collisional, hences » A., wheres = rs - ra is the sheath

thickness, and 7^ is the ion-neutral mean free path.

(4) The appliedvoltage V0 is much larger than the electron temperature 7C, hence
s » XD where XD is the Debye length. The plasma potential is also chosen as

the reference potential, typlaima =0.

(5) The ion charge density in the sheath is uniform in space but varying slowly in
time, as seen inFigure 1(b). This isseen experimentally inDC glow discharges7
and is also seen in simulation (see Section V). Further, we assume this charge
density to be constant during the ion transit time in the sheath.

(6) In order to sustain a constant potential drop across the sheath, the ion loss at
the target (the implanted ion current) is compensatedby the uncovering ofions
at the moving plasma sheath edge.

(7) Ions, having undergone many collisions with the neutrals in the plasma, enter
the sheath at the neutral temperature (room temperature).

HI. ONE DIMENSIONAL ANALYSIS

Assuming constant ion chargedensity in the sheathregion, «t- = ns (with ne =
0), one can apply Gauss' law:

V-E=-/i, (1)

with a boundary condition Er(rs) ~ 0 to get Er(r) (r is a general one dimensional

coordinate). Having found the electric field in the sheath, the electric potential can
be obtained from V<j> = -E. The boundary condition at the target states that

ty(ra) = -V0 when the pulse is applied.

Now let us assume an ion, after suffering a charge-exchange collision with a
neutral, starts from rest at r = r0 as seen in figure 2. This ion is accelerated by E/r)
according to the one dimensional equation of motion:

r=^Er(r) (2)
This acceleration occurs in planar, cylindrical and spherical coordinates since we
assume that the total ion velocity has dropped to near zero after the charge-exchange
collision; hence conservation of angular momentum forces the other velocity
components to remain zero after the collision.



Figure 2. An ion is assumed to be accelerated from rest at r = r0 after a charge-
exchange collision. The electric field shown is typical in the planar
coordinates.

Equation (2)can be integrated with the following substitutions:

f=ur

dur dur

dt dr

This gives:

or,

u?(r,r0) =2^JEr(r)dr +Ci (3)

where c7 can be determined using theinitial condition ur =0 atr = r0. The velocity
of the ion at the target, r = ra, starting at r0 is then:

ua = ur(rayr0) (4)

assuming the ion does not collidewith a neutral again beforereaching the target.

We now can get anexpression for/fwj, the normal ion velocity distribution,
by applying the condition for conservation of particles:

f(ua)dua =exp\
r0-ra

*< J
«/(r0)rfr0



where A(r0) is the cross-sectional area at r0, A., is the ion-neutral mean free path and

dr0 is as shown in Figure 2. The exponential factor, containing the neutral pressure
dependence, is the probability of an ion, starting from rest at r0, striking the target
without suffering a charge exchange collision. Thus, we have:

/(«a) = c2exp
( r -r ^

J
Mwg (5)

where dr^dua is calculated from (4) and c2 is determined by normalization.

Having calculated the ion velocity distribution, one can compute the average
ion velocity at the target from:

«!= \uj(ua)dua (6)

The average ion current density at the target is then given by Ja = enaua which is:

where the bardenotes averagevalue over the velocity distribution andthe ion density
at the target, na> is assumed to be the same as in the sheath.

Noting that js J • ds+^fvpdV =0 guarantees conservation of charge, the
sheath motion can be calculated from:

JMra) =-^t(ensV(rs,rJ)+^(en0V{rs)) (8)
where V(rs,ra) is the volume of the sheath region and dV(rs) is the volume of the

shell at rt uncoveredby the moving sheath edge over the intervaldt. The first term
in the right hand side of (8) is the rate of change of the total ion charge in the sheath.
This rate of change is zero if there is no charge accumulation in the sheath region,
i.e. the ion density in the sheath, n„decreasesat the same rate that the volume of the
sheath region increases. The second term in the right hand side of (8) is the rate at
which the ions in the plasma are uncovered by the moving sheath edge as shown in
Figure 1(b). This is the rate at which the ions areintroduced into the sheath region
which must be the same as the ion loss at target if there is no charge accumulation
in the sheath.

Equation (8) can be integrated for rs(t). This could then be used to determine

the time dependence of such parameters asJa and ua. Ja(t) represents the rate ofions

implanted into the target per unit time, which is an important parameter in the ion
implantation process.



IV. PLANAR COORDINATE SYSTEM

For simplicity in thiscase onecan assume that the target is located at the ori
gin, ra =0, hence r, =s. In one dimensional planar geometry (1) becomes:

BE _ens
dx £o

Integrating this from the sheath edgeto somearbitrary position in the sheath, x>
and assuming that E(s) = 0, we have:

ens
E(x)=-1(x-s)

Co

The electric potentialwith respect to the plasma potential is then:

en. ( X* s*
sx—z——

2 2,

Applying the boundary condition, <|>(0) = -V0, we obtain:

2£oV0

es2
(9)

Thus, the equation of motion for an ion starting from rest atx =x0 after a charge

transfer collision in the sheath is:

d2x eE(x)_2eV0
dt2' M ~MslK }

where s, the sheath thickness, is assumed to vary slowly compared with the ion
transit time. Integrating this using (3), we find:

u2
u2=-^[(x2-xZ)-2s(x-x0)]

s

whereu2 = leVJM is the maximumion velocity at the target. The ion velocity at

the target is then given by:

ul =̂ (2sx,-xl) (10)
s

Equation (5) in this case becomes:



-xJK dXQ
/(«,) = c,e 'n^(x0)—

Solving (10) for x0 and differentiating x0with respect to u„:

/("„) =

c,=

^xp^d-MX)"2-!)

The parameter c3 is determined by normalization to be:

s

huliX-e^)

The complete expression for f(u) is therefore:

/0O =
su*

^M-e^Kl-ullu^ V<
exp(f((l-«Xr-l)] (11)

Assuming s » X^, the average ion velocity at the target can be found using (6)

to be:

_ f eVoitXi \l/2

(12)

Inserting (12) and (9) into (7), we get:

Ja=%
f4ra?O1/2V03

M

3a

.sa
(13)

The currentdensity given by (13)hasthe samedependenceons and X,- astheequation

obtained by Lieberman8, butis greater byroughly a factor of three. Lieberman uses
\i = leXjnMu forthe mobility of the ionsin the sheath; this mobility is valid forthe

case in which ions are moving in a constant uniform applied electric field9. The
electric field in the sheath is not constant, hence the expression for the average
mobility has a different coefficient.

In planar geometry, the term n,V{rtira) in Equation (8) is time-invariant,

hence:

Thus the sheath velocity is:

ds_
dt

Ja = en0—



ds e„ (AneXTv?
dt erio

or,

^ M

dt'"0**2

s™

(14)

where s0 ={Tz^y^en^112 is the initial sheath thickness, and Uq =(e V07ttyMs0)1'2 is a
characteristic ionvelocity in the sheath. Integrating (14), we find:

s(f)=;y0(l+co0r)2'7 (15)

where co0 =(Iuq/Isq) is acharacteristic frequency for the ions in thesheath.

Putting (15) into (9), (12) and (7), we obtain:

^•o^ (16)

^•(h5^ (17)

^ (l +coor)5/7
One can alsoinsert (15) into (11) to obtain the velocity distribution of ions as a
function of time.

V. COMPARISONS WITH SIMULATION

We use the code PDPl10"11 to simulateaone dimensionalplanarbounded plasma
system. The Particle-in-Cell method, covered in detail by Birdsall and Langdon
(1985)12, is implemented in PDP1 to solve for the particle and field parameters
self-consistently. The code also uses aMonte Carlo scheme tomodel the collisions
of charged and neutral particles (charge-exchange and scattering ion-neutral colli
sions and elastic, excitation and ionization electron-neutral collisions) with labo
ratory cross-sections used todeterminev(£). In ordertocompare the analyticresults,
Equations (11), (17) and (18), with the simulation, weneed only considerion-neutral
charge-exchange collisions.



At time t = 0, a pulse with a fall time of l|i sec and magnitude 500 V is applied
to the left electrode, and the potential at the electrode is kept at this constant value
thereafter. Initially the space between the two electrodes is filled with a uniform
plasma. The neutral gas used for theseruns is argonand the othercommon parameters
are: length =30 cm, area = 100 cm2, n0 = 107 cm"3, V0 =-500 V, fall time= 1
p.sec, andTe = leV.

Figure 3 shows the ion and electron number densities at time t = l|isec, when
the pulse is fully applied and a later time t = 7|isec for the neutral pressure ofp =
50 mTorr. These density profiles tend to justify our assumption of uniform ion
density in the sheath.

1.5 E 7
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n' \ t = 7 \LS
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Figure 3. At t = 1\xsec, the potentialat the left electrode is V0t the sheathedge has
moved to its initial position and the ion density in the sheath appears to
be roughly the same asthat in the plasma. At t = l\i sec, the sheath edge
has moved further away from the electrode and the ion density in the
sheath has a nearly uniform profile.

As previously described, one can put (15) into (11) to get the instantaneous
velocity distribution of ions. Doing so, we compare the result with the simulation
at the following pressures: p = 20,50, and 100 mTorr, as seen in Figure 4.
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Figure 4. Ion velocity distribution at the target. Note that the maximum ion
velocity at the target, um =(2e vyM)1/2, is roughly 50000 m/sec for this
applied voltage.
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Figure 5 displays a comparison of Equation (17), average ion velocity at the
target as a function of time, with simulation for the neutral pressures of 20 and 30
mTorr.
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Figure 5. The time response of average ion velocity at the target.

Equation (18), the ion flux at the target as a function of time, is compared in
Figure 6 with simulation for the neutral pressuresof 50 and 100 mTorr. Although
the ion flux compares well with the simulation, the analytic average ion velocity
appears to be somewhat smaller than the one obtained by simulation. The dis
crepancy may come from the constant profile assumed for the ion density in the
sheath. The ion density seen in the simulation is not quite uniform, being slightly
lower at the target.
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Figure 6. The time response of average ion velocity at the target.

VI. SPHERICAL COORDINATE SYSTEM

In this geometry, we assume the target to be a sphere of radius ra, hence (1)
becomes:

r2dr(rEr) eo
One canintegrate this from the sheath edge, r„ to some r in the sheath to obtain:

ens

\ r)
E£r) =

3eo

provided Er(rs) =0.The electric potential withrespect totheplasma potential is then:
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en,

♦"-IS
(tAj >

1 r 2**

Applying the boundary condition, <(>(0) = -V0, we get:

6V^m

eR-

where

R3 = r*+ 2r*-3r2r„

(19)

At time f=0, the density in the sheath is assumed to be the same as in the bulk
plasma. Hence, the initial position of the sheath edge can be found from (19) to be:

1/3rSo~(3raV0ev/en0Y" +re/2

This expression is the same as that derived by Conrad13 plus acorrection term, rJ2,
for the case in which rs is comparable to ra.

We will carry on the analysis assuming r,» ra, where the electric field can be

approximated by:

ens rrA
Er(r)~-

3eo ^r J

and R reduces to:

R3~2r: (20)

Equation (2) in this case becomes:

' en. x"

\}*<Mj

Integrating this, using (3), we get:

2 2fl 1

where u2 =(2c Vq/M) (2r///?3) is themaximum ionvelocityatthe target modifiedby
a scaling factor due to the geometry. The ion velocity at the target is then:

2 2
u =r u

Ja r0j

Equation (5) in this coordinate system becomes:
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/(wa)=c4exp
V

2dro

'°dua
Solvingforr0in(21)anddifferentiatingitwithrespecttoua:

(ra{ujuj"
^h\-(ujum)2j

/0O=<V
ujum

r*txv
(l-(ua/um)2)

Theconstantc4isdeterminedbynormalizationtobe:

2r3
Ca=
4MM(A,rfl2+2A?ra+2X|)

Forra»\:

2ra

umXi

Puttingthisvalueintotheexpressionforf(u):

2raujum
2^

ra(MjuJ
/("«)=;exp

w«\(l-(«a/MJ2)4Ihl-(ujuj

Theaverageionvelocityatthetarget,givenby(6),isthen:

'r'TfeV&Y
u=

K*3JVMraj

Inserting(23)and(19)into(7):

(36nera\y*"mr^
rfU3

(22)

(23)

(24)

UsingEquation(8)todeterminethemotionofsheathedgeinthisgeometry
andnotingthatthetermn,V(r„ra)istime-invariantforr,»ra,wehave:

22dr* ^KJ^Awr^n^—

which,assumingr,»raandusing(20)canalsobewrittenas:

dr,wlrl
dt"r?
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where r43 =(3V0eora/e«o) is the initial position of the sheath edge, and

Uq =(eV0n\i/2Mra)m is acharacteristic ionvelocity in thesheath. Equation (25) can

be integrated to find rs as a function of time to be:

r, =r,o(l+ov)1/6 (26)

where(Qq =6w0ra/rJ3 is acharacteristic ion frequency in the sheath.

One can put (26) into (19), (23) and (7) to obtain:

(1+COoO
*,(') =„ . .^ (27)

«a(0 = «o (28)

erlpUp

(1+COoO1•W-TTT^iS <29>

Even when rs is comparable to ra, Equations (26)-(29) may be used to approximate
the sheath dynamics. One can also obtain the velocity distribution of ions as a
function of time by inserting (26) into (22).

VII. COMPARISONS WITH SIMULATION

The code PDS114 is used in thiscase to simulate a onedimensional spherical
bounded plasma system. This code is the same as PDP1 with the basic difference
that the field parameters and equations of motion are solved in the spherical coor
dinates. This code also uses a Monte Carlo scheme to model the collisions ofcharged
and neutral particles, and again we need only consider ion-neutral collisions to
compare the analytic results with the simulation. In this case we will compare
Equation (11) with the simulation running with argon as the background neutral gas
and the following parameters: ra =1cm, p =50mTorr, n0 = 107 cm"3, V0 =-10000
V, fall time = 1 p.sec, and Te = 1 eV.

For these parameters, the ion-neutral mean free path, initial position of the
sheath edge, average ion velocity, and the characteristic ion frequency and period

in the sheath are calculated to be respectively: X, =0.164 cm, ^=11.8 cm,

Uq =7.86• 104 m/s, (Oo =2.87• 104 Hz, and T =citf=3.5• 10"5 sec.

Figure 7 shows a reasonable agreement between theory and simulation for the
distribution function.
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Figure 7. Ion velocity distribution at the target.

Equation (28), average ion velocity at the target as a function of time, is
compared inFigure 8withsimulation. The simulation also suggests that theaverage
ion bombardment energy at the spherical target, with rs» ra, is time-invariant in
contrastto the time-variantresultobtainedforthe planar target(Equation 17; Figure
5).

8.1 E4- ZIjEx&Z
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- Theory
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Figure 8. Averageion velocity at the target as a function of time.

The ion charge accumulation in thetarget is obtained by integrating, Equation
(29), theioncurrent density intothetarget, overatimeinterval. This analytic result
was calculated, compared with simulation, and shown to be smaller by roughly a
factor of two. The disagreement may be a result of the assumption of a constant
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profile for the ion charge density in the sheath.The observed ion charge density from
simulation is not quite uniform, being slightly higher at the target, unlike what was
seen for the planar target.

VIE SUMMARY

A one dimensional collisional model has been developed to study plasma
immersion ion implantation in the high pressure regime. The model describes the
sheath expansion as a function of time, ion velocity distribution at the target, and
the ion flux at the target as a function of time. The problem is solved in both planar
and spherical coordinate systems and the analytic results compare well with those
obtained by simulation.
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