Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



A ONE DIMENSIONAL COLLISIONAL MODEL
FOR PLASMA IMMERSION ION IMPLANTATION

by

V. Vahedi, M. A. Lieberman, M. A. Alves,
J. P. Verboncoeur, and C. K. Birdsall

Memorandum No. UCB/ERL M90/60

9 July 1990




A ONE DIMENSIONAL COLLISIONAL MODEL
FOR PLASMA IMMERSION ION IMPLANTATION

by

V. Vahedi, M. A. Lieberman, M. A. Alves,
J. P. Verboncoeur, and C. B. Birdsall

Memorandum No. UCB/ERL M90/60

9 July 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



A ONE DIMENSIONAL COLLISIONAL MODEL
FOR PLASMA IMMERSION ION IMPLANTATION

by

V. Vahedi, M. A. Lieberman, M. A. Alves,
J. P. Verboncoeur, and C. B. Birdsall

Memorandum No. UCB/ERL M90/60

9 July 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



A ONE DIMENSIONAL COLLISIONAL MODEL
FOR PLASMA IMMERSION ION IMPLANTATION

V. Vahedi, M. A. Lieberman,
M. A. Alves', J. P. Verboncoeur,
and C. K. Birdsall

Plasma Theory and Simulation Group
University of California
Berkeley, CA. 94706

ABSTRACT

Plasma immersion ion implantation (also known as plasma
source ion implantation) is a process in which a target is
immersed in a plasma and a series of large negative voltage
pulses are applied to it to extract ions from the plasma and
implant them into the target. A general one dimensional model
is developed to study this process in different coordinate sys-
tems for the case in which the pressure of the neutral gas is large
enough that the ion motion in the sheath can be assumed to be
highly collisional.

I. INTRODUCTION

In plasma immersion ion implantation, a target immersed in a plasma is pulsed
repetitively with large negative voltages. When the pulse is applied, electrons are
repelled from the target on the time scale of the inverse electron plasma frequency,
creating a uniform ion sheath. The ions, on a longer time scale, are attracted and
implanted into the surface of the target. As the ions are implanted, the ion density
in the sheath drops. This causes the sheath-plasma edge to recede and uncover more
ions to increase the ion density in the sheath and sustain the potential drop across
the sheath. The velocity of the moving sheath edge depends upon, among other
factors, the pressure of the background neutral gas. Here we develop a general one
dimensional model to study this process in different geometries for the case in which
the pressure of the neutral gas is high enough that the ion motion in the sheath can
be assumed to be highly collisional. We obtain analytic expressions for normal ion
velocity distribution f{v,), sheath motion s(z), ion flux at the target J(z) and other
parameters of interest. We apply this general model to the planar and spherical
targets and compare the analytic results with those obtained by simulation. The
following analysis was inspired by the work of Lieberman?, and Scheuer, Emmert,
and Conrad et al**
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0. ASSUMPTIONS

At time #=0", the potential at the target drops to -V,. This negative potential
forces the electrons away from the target forming an ion sheath. The sheath-plasma
edge, r,, moves far enough away, as shown in Figure 1(a), so that the potential drop
across the sheath equals V,. The ion density in the sheath, n,, is still the same as that
in the plasma, n,. At this point, the ions in the sheath, starting at essentially zero
velocity, are accelerated by the resultant electric field. However, before traveling
far, the ions collide with the neutral particles and scatter or lose their energy. Since
the ions suffer many collisions before reaching the target, located at r = r,, the
time-varying ion density at any point in the sheath is assumed to change more slowly
than the ion transit time through the sheath. The assumptions for this model are:

(1) The electron motion is instantaneous (inertialess).
(2) Charge exchange is the dominant ion-neutral collision mechanism.
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Figure 1. The ion charge density in the sheath and the sheath edge at time ¢ = 0,
andz > 0.



(3) Theion motion is highly collisional, hence s » A; where s =r, —r, is the sheath
thickness, and A, is the ion-neutral mean free path.

(4) The applied voltage V, is much larger than the electron temperature T,, hence
s » Ap where A, is the Debye length. The plasma potential is also chosen as

the reference potential, ¢ um, = 0.

(5) Theion charge density in the sheath is uniform in space but varying slowly in
time, as seen in Figure 1(b). Thisis seen experimentally in DC glow discharges’
and is also seen in simulation (see Section V). Further, we assume this charge
density to be constant during the ion transit time in the sheath.

(6) In order to sustain a constant potential drop across the sheath, the ion loss at
the target (the implanted ion current) is compensated by the uncovering of ions
at the moving plasma sheath edge.

(7) Ions, having undergone many collisions with the neutrals in the plasma, enter
the sheath at the neutral temperature (room temperature).

III. ONE DIMENSIONAL ANALYSIS

Assuming constant ion charge density in the sheath region, n; = n, (with n, =
0), one can apply Gauss’ law:

V:E==n, (1)

with a boundary condition E,(r,) =0 to get E(r) (r is a general one dimensional
coordinate). Having found the electric field in the sheath, the electric potential can

be obtained from V¢ =-E. The boundary condition at the target states that
¢(r,) ==V, when the pulse is applied.

Now let us assume an ion, after suffering a charge-exchange collision with a
neutral, starts from rest at r = r, as seen in figure 2. This ion is accelerated by E(r)
according to the one dimensional equation of motion:

i AQ @

This acceleration occurs in planar, cylindrical and spherical coordinates since we
assume that the total ion velocity has dropped to near zero after the charge-exchange
collision; hence conservation of angular momentum forces the other velocity
components to remain zero after the collision.



4 ngu) 4

é dr, .
0 Ar, T, r r

2

/)

/)

/

1 Ao

;

/)

/

Figure 2. Anion is assumed to be accelerated from rest at r = r, after a charge-
exchange collision. The electric field shown is typical in the planar
coordinates.

Equation (2) can be integrated with the following substitutions:

F=u,

,_du, du,

"= T ar “
This gives: |

du, e

-d_r-ur -'M Er(r)
or,

ul(r,ry) = Z%J‘E,(r)dr +¢ 3)

where c; can be determined using the initial condition u, = 0 at r = r,. The velocity
of the ion at the target, r = r,, starting at r, is then:

u, =u,r,r,) 4)

assuming the ion does not collide with a neutral again before reaching the target.

We now can get an expression for f{1,), the normal ion velocity distribution,
by applying the condition for conservation of particles:

ro—r,
fu,)du, = CXP(-T)",A (ro)dry

4



where A(r,) is the cross-sectional area at ry, A, is the ion-neutral mean free path and

dr, is as shown in Figure 2. The exponential factor, containing the neutral pressure
dependence, is the probability of an ion, starting from rest at r,, striking the target
without suffering a charge exchange collision. Thus, we have:

Yo—7r, dr,
ua

fw)=c, exp[— ¥ ]n,A o7 )

where dry/du, is calculated from (4) and c, is determined by normalization.

Having calculated the ion velocity distribution, one can compute the average
ion velocity at the target from:

%= [ uaftw s, ©®
The average ion current density at the target is then given by J, = en,u, which is:

J,=enu, @)

where the bar denotes average value over the velocity distribution and the ion density
at the target, n,, is assumed to be the same as in the sheath.

Noting that J¢J * ds +%IV pdV =0 guarantees conservation of charge, the

sheath motion can be calculated from:
J d
JA,)= ~3 (enV(r,r,) +8_t(e n,V(r,)) ®)

where V(r,,r,) is the volume of the sheath region and dV (r,) is the volume of the

shell at r, uncovered by the moving sheath edge over the interval dr. The first term
in the right hand side of (8) is the rate of change of the total ion charge in the sheath.
This rate of change is zero if there is no charge accumulation in the sheath region,
i.e. the ion density in the sheath, n,, decreases at the same rate that the volume of the
sheath region increases. The second term in the right hand side of (8) is the rate at
which the ions in the plasma are uncovered by the moving sheath edge as shown in
Figure 1(b). This is the rate at which the ions are introduced into the sheath region
which must be the same as the ion loss at target if there is no charge accumulation
in the sheath.

Equation (8) can be integrated for r,(z). This could then be used to determine
the time dependence of such parameters as J, and Ug. J(1) represents the rate of ions

implanted into the target per unit time, which is an important parameter in the ion
implantation process.



IV.PLANAR COORDINATE SYSTEM

For simplicity in this case one can assume that the target is located at the ori-
gin, r, =0, hence r, =s. In one dimensional planar geometry (1) becomes:

oE _en,
x &

Integrating this from the sheath edge to some arbitrary position in the sheath, x,
and assuming that E(s) =0, we have:

E(x)=—2(x-s)
x)=—(x-s
&
The electric potential with respect to the plasma potential is then:

x* 5?
(sx _7_5)

Applying the boundary condition, $(0) = -V,, we obtain:

en
o) =

2¢e,V,

= 9
e ©)

Thus, the equation of motion for an ion starting from rest at x = x, after a charge
transfer collision in the sheath is:

d* _eE() _ 28Vo
ar~ M

( 5)

where s, the sheath thickness, is assumed to vary slowly compared with the ion
transit time. Integrating this using (3), we find:

2 U 2 .2
u =;;[(x =Xg) = 2s5(x —x,)}

where u2 =2eV,/M is the maximum ion velocity at the target. The ion velocity at
the target is then given by:

~

2_ Um

Equation (5) in this case becomes:



dx,
du,

fu)=ce ™ nAx)

Solving (10) for x, and differentiating x, with respect to u,:
Cal, N 2, 2.\12
f(ua) TR L (— (1 —ua/um) -1 )
=22y ¥ 7&-( )
The parameter c; is determined by normalization to be:

S
Cy=———————
P aui(1-e™™)

The complete expression for f{u) is therefore:

su,
AuE(1 - ™) (1 - uliu?)

fu,) — exp(% ((1 - u‘f/u,f,)u2 - 1)) (11)

Assuming s » A; , the average ion velocity at the target can be found using (6)

to be:
Ea=(e‘;;’?‘]m (12)
Inserting (12) and (9) into (7), we get:
J,=eﬂ(4’;‘;l")m:i: (13)

The currentdensity given by (13) has the same dependence on s and A; as the equation
obtained by Lieberman®, but is greater by roughly a factor of three. Lieberman uses
| =2eA;/mM u for the mobility of the ions in the sheath; this mobility is valid for the

case in which ions are moving in a constant uniform applied electric field’. The
electric field in the sheath is not constant, hence the expression for the average
mobility has a different coefficient.

In planar geometry, the term n,V(r,,r,) in Equation (8) is time-invariant,
hence:

ds
J, =enoz

Thus the sheath velocity is:



ds & (4ne M )"’ Yiz

dt en\ M s
or,
ds ss’z

where s, = (26,V/eng)'? is the initial sheath thickness, and uy = (e VomA,/M 5o %isa
characteristic ion velocity in the sheath. Integrating (14), we find:

s (1) = so(1 + agt)”’ (15)
where @, = (Tuy/2s,) is a characteristic frequency for the ions in the sheath.
Putting (15) into (9), (12) and (7), we obtain:
Ny

n(t) =m (16)
- _ Uy

ka(t)= (1 +aof)"” tn
J.(0) =(§o‘;—:‘;? (18)

One can also insert (15) into (11) to obtain the velocity distribution of ions as a
function of time.

V. COMPARISONS WITH SIMULATION

We use the code PDP1'*! to simulate a one dimensional planar bounded plasma
system. The Particle-in-Cell method, covered in detail by Birdsall and Langdon
(1985)"2, is implemented in PDP1 to solve for the particle and field parameters
self-consistently. The code also uses a Monte Carlo scheme to model the collisions
of charged and neutral particles (charge-exchange and scattering ion-neutral colli-
sions and elastic, excitation and ionization electron-neutral collisions) with labo-
ratory cross-sections used to determine V(E). In order to compare the analytic results,
Equations (11), (17) and (18), with the simulation, we need only consider ion-neutral
charge-exchange collisions.



Attime ¢ = 0, a pulse with a fall time of 1 sec and magnitude 500 V is applied
to the left electrode, and the potential at the electrode is kept at this constant value
thereafter. Initially the space between the two electrodes is filled with a uniform
plasma. The neutral gas used for theserunsis argon and the other common parameters
are: length = 30 cm, area = 100 cm?, ny = 10’ cm?®, V,=-500 V, fall ime =1
pmsec,andT,=1eV.

Figure 3 shows the ion and electron number densities at time ¢ = 1L sec, when
the pulse is fully applied and a later time 7 = 7 sec for the neutral pressure of p =
50 mTorr. These density profiles tend to justify our assumption of uniform ion
density in the sheath.
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Figure 3. Att = 1psec, the potential at the left electrode is V), the sheath edge has
moved to its initial position and the ion density in the sheath appears to
be roughly the same as that in the plasma. At¢ = 7Lsec, the sheath edge
has moved further away from the electrode and the ion density in the
sheath has a nearly uniform profile.

As previously described, one can put (15) into (11) to get the instantaneous
velocity distribution of ions. Doing so, we compare the result with the simulation
at the following pressures: p = 20, 50, and 100 mTorr, as seen in Figure 4.
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Figure 4. Ion velocity distribution at the target. Note that the maximum ion
velocity at the target, u,, = (2e Vy/M)'?, is roughly 50000 m/sec for this
applied voltage.
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Figure 5 displays a comparison of Equation (17), average ion velocity at the
target as a function of time, with simulation for the neutral pressures of 20 and 30
mTorr,

1.3E 4
u(t)
(misec) p=20mTorr
— Simulation
--—  Theory
0
S5E-7 t (sec) 8E-5
1.2E4
u(t) e
(misec) p =30mTorr
—— Simulation
--- Theory
o] .
SE-7 t (sec) 54E-5

Figure 5. The time response of average ion velocity at the target.

Equation (18), the ion flux at the target as a function of time, is compared in
Figure 6 with simulation for the neutral pressures of 50 and 100 mTorr. Although
the ion flux compares well with the simulation, the analytic average ion velocity
appears to be somewhat smaller than the one obtained by simulation. The dis-
crepancy may come from the constant profile assumed for the ion density in the
sheath. The ion density seen in the simulation is not quite uniform, being slightly
lower at the target.
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Figure 6. The time response of average ion velocity at the target.

VL. SPHERICAL COORDINATE SYSTEM

In this geometry, we assume the target to be a sphere of radius 7,, hence (1)
becomes:

19
r2or

One can integrate this from the sheath edge, r,, to some r in the sheath to obtain:

en( 1}
E(r)= 3_8;[r -;5]

provided E,(r,) = 0. The electric potential with respect to the plasma potential is then:

2E,) ___ﬂl_‘_
&
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Applying the boundary condition, $(0) = -V, we get:

6V, eor,
n, = 19
*  eR? (19)
where
RP=ri+2r-3rkr,

At time r=0, the density in the sheath is assumed to be the same as in the bulk
plasma. Hence, the initial position of the sheath edge can be found from (19) to be:

r,, = @r.Veen)'” +r,12

This expression is the same as that derived by Conrad™ plus a correction term, r,/2,
for the case in which r, is comparable to .

We will carry on the analysis assuming 7, » r,, where the electric field can be

approximated by:
E() en(r?
AT

R*=2r} (20)

s

and R? reduces to:

Equation (2) in this case becomes:

. (e
r= 3eM )r?

Integrating this, using (3), we get:

1
u= r,u,f,(— —l)
r n

where u2 = (2e Vy/M) (2r2/R?) is the maximum ion velocity at the target modified by
a scaling factor due to the geometry. The ion velocity at the target is then:

u3=rau3.(l-1) 1)

r a r 0
Equation (5) in this coordinate system becomes:
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where r,3°= (3V,esraleny) is the initial position of the sheath edge, and

uy = (e Vymh,/2Mr,)'? is a characteristic ion velocity in the sheath. Equation (25) can
be integrated to find r, as a function of time to be:

r=r, (1+0¢)" (26)
where @, = 6u0rf/r; is a characteristic ion frequency in the sheath.

One can put (26) into (19), (23) and (7) to obtain:

n,(t)=ﬁ @7)
0 =1y 28)
Ja(z>=a{—'%::)m 29)

Even when 7, is comparable to r,, Equations (26)-(29) may be used to approximate
the sheath dynamics. One can also obtain the velocity distribution of ions as a
function of time by inserting (26) into (22).

VII. COMPARISONS WITH SIMULATION

The code PDS1* is used in this case to simulate a one dimensional spherical
bounded plasma system. This code is the same as PDP1 with the basic difference
that the field parameters and equations of motion are solved in the spherical coor-
dinates. This code also uses a Monte Carlo scheme to model the collisions of charged
and neutral particles, and again we need only consider ion-neutral collisions to
compare the analytic results with the simulation. In this case we will compare
Equation (11) with the simulation running with argon as the background neutral gas
and the following parameters: r, = 1 cm, p = 50 mTorr, n, = 10’ cm™, V, = -10000
V, falltime =1 pusec,and 7, =1 eV.

For these parameters, the ion-neutral mean free path, initial position of the
sheath edge, average ion velocity, and the characteristic ion frequency and period
in the sheath are calculated to be respectively: A;=0.164 cm, r, =11.8 cm,

Uy=7.86-10"m/s, @,=2.87-10°Hz, and T =, =3.5- 107 sec.

Figure 7 shows a reasonable agreement between theory and simulation for the
distribution function.
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Figure 7. Ion velocity distribution at the target.

Equation (28), average ion velocity at the target as a function of time, is
compared in Figure 8 with simulation. The simulation also suggests that the average

ion bombardment energy at the spherical target, with 7, »r,, is time-invariant in

contrast to the time-variant result obtained for the planar target (Equation 17; Figure
5).

8.1 E 4f-pFaem o
u(t)
(misec) p=50mTorr
— Simulation
— Theory
0
0 t (sec) 94E-5

Figure 8.  Average ion velocity at the target as a function of time.

The ion charge accumulation in the target is obtained by integrating, Equation
(29), the ion current density into the target, over a time interval. This analytic result
was calculated, compared with simulation, and shown to be smaller by roughly a
factor of two. The disagreement may be a result of the assumption of a constant
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profile for the ion charge density in the sheath. The observed ion charge density from
simulation is not quite uniform, being slightly higher at the target, unlike what was
seen for the planar target.

VIII. SUMMARY

A one dimensional collisional model has been developed to study plasma
immersion ion implantation in the high pressure regime. The model describes the
sheath expansion as a function of time, ion velocity distribution at the target, and
the ion flux at the target as a function of time. The problem is solved in both planar
and spherical coordinate systems and the analytic results compare well with those
obtained by simulation.
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