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1 Introduction

Simulated annealing (SA) is a recent technique for finding good solutions to a wide variety of combinatorial

optimization problems. Given is a graph with an energy E assigned to each node. In simulated annealing

parlance, the nodes are called 'states', the arcs represent 'moves' from one state to a neighboring state, and

the energy is sometimes called 'cost'. A typical application is a placement problem, say that of placing

100 circuits on a 10 x 10 grid. Here a state is a permutation of the numbers from 1 to 100, representing a

placement. A movecould consist of interchanging any two circuits. Thus each state would have C\°° = 4950

neighbors. We will also define the distance between any two states as the length of a shortest path connecting

them.

The simulated algorithm is as given in figure 0.

The temperature T is a parameter of the algorithm. It is always decreased gradually as the annealing

proceeds, but the optimal control of T is not understood.

It can easily be shown that this process is equivalent to that of a random walk on the graph, with self-loop

edges present, with random selection of an edge out of a node in proportion to the weight of that edge, and

with the edge weights determined by the temperature T.

While annealing works well on a wide variety of practical problems, it cannot work well on arbitrary

graphs, nor on any graph with an arbitrary energy function. The goal of my research has been to characterize

the energy landscape itself (the graph and energy function) and the behavior of the annealing algorithm.
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state = random initial state

repeat (until done) {

T = new temperature

repeat (until inner-loop criterion) {

newstate = random neighbor(state)
£E = E(newstate) - E(state)
If AE < 0, state = newstate.

Else state = newstate with probability e~^ElT

}

Figure 0: Annealing algorithm.

Because the energy landscape itself is terrifically complex, we have focused on the energy trajectory, i.e. the

sequence of energies following each move accepted.

2 Background

We chose a simplified version of circuit placement for experimental analysis. The problems considered consist

of unit-square circuits, with n circuits to be placed on a grid ofsize 1 x n ('one-dimensional placement') or

size y/n x y/n ('two-dimensional placement'). The cost ofa placement is the total Manhattan length ofwire

required to connect the circuits; a netlist defines which circuits are to be connected. Since the structure

of the netlist may influence the nature of the cost function and the behavior of annealing itself, 3 different

netlists were considered. The first, r, came from a real sample of VLSI logic. The second, f, specifies

interconnections between randomly-selected pairs of circuits. That is, the graph whose vertices are circuits

and whose edges are those circuits to be connected is a random graph. The third, h, was constructed in

a random but hierarchical fashion. That is, the graph of circuits/nets has cut-edge sets of size oc m2/3 to

isolate vertex sets of size m.

For each netlist, both 1- and 2- dimensional energy functions were examined.

Each netlist and energy function was annealed at a number of temperatures, and the resulting energies



as a function of time constitute the data sets. The temperatures used were infinity (which is well-defined in

the annealing context since it is really 1/T that is used), 100, 10, and 1. These temperatures were chosen to

match the energy scale of these problems: typical energy changes are in the thousands, while the minimum

nonzero energy change possible is 1.

Finally, time can be defined as the number of moves attempted or the number of moves accepted.

Thus there are 48 data sets available for analysis: {r,h,f} x {dim=l,2} x{T = oo, 100,10, l}x {accepted,

attempted}. For the time being we have looked primarily at timeseries with time defined as moves accepted,

though attempted move data has been looked at for one or two cases. The data sets have names such as

'rl3': 'r' means the 'real' netlist, the first '1' means 1 dimensional placement, and the final digit maps to

temperature by 0 i-» oo, 3 >-* 100,2 i—• 10,1 i—»• 1. An 'a' as the final character of a dataset means time is

defined by attempted moves rather than accepted moves.

Our analysis is guided by a few basic facts. First, there is reason to expect that annealing is useful on

spaces which have a fractal energy structure. This belief is supported by a recent proof that for a family of

deterministic 1-dimensional fractals, annealing can give good results, requiring run time polynomial in the •

size of the problem (log number of states) and in the 'quality' of the anneal - the inverse of the expected

final cost, assuming the absolute minimum cost is 0 [2].

Unfortunately it is difficult to test directly whether combinatorial problems have fractal structure; even

the definition of fractalness in this context is problematical. In Euclidean space, a random self-affine fractal

/ : X ►-♦ Y, X = 3tn,Y = £, has the defining property that as surfaces in SF1*1, {(X,/(A"))} and

{(rxX, ryf(X))} are statistically identical for appropriate scaling constants rx and ry. Because the space

X of interest for annealing may be the permutation space previously described, the rescaling of X is not a

simple matter, and the 'similarity' of a subspace of X to X itself is difficult to define.

However, an implicationof the definition offractalness is that for points xi, X2 € X7 E{(yi—y2)2|d(xi,X2)} oc

d(xi, X2)211 where 2H = ryf lnrs. Thisisa propertythat canbe checked directly for the combinatorial spaces

of interest. Results for the real netlist and 1 dimensional placement energy function are shown in figures

1-2. Random walks of length 200 moves were taken from some 500 different starting points, and the starting

point paired with every fifth generated point defines the samples. Almost all point pairs in this permutation

space on 105 objects have distance close to the average distance of about 99.5; the diameter of the space

is 104, very close to the average distance. The 200-long walk was sufficiently long to generate point pairs



at distances covering the full range, with each run generating pairs around 100 apart. Of course, each run

in its earlier steps also generates pairs with distance about 5, 10, and so forth, so each distance range in

the scatter plot is covered by at least 500 samples. Despite the overwhelming noise, it can be seen that the

mean square energy differences of these random point pairs are approximately polynomially related to their

distances.

Another property of fractals in Euclidean space is that a random walk on such a fractal yields fractal

Brownian motion [4]. Fractional Brownian motion (fBm) is a fractal on A' = Y —3£, and is characterized

by the parameter 2J3". (An example is the drunkard's walk, where 2H = 1.) Fractals on permutation space,

defined by the property E{(yi —y2)2|d(xi,X2)} a d(xi,X2)2H, also satisfy the property that random walks

yield fBm, with the power law relation holding at least for short time scales. Since the power spectrum of

fBm satisfies fyy (A) oc l/A'3 with /3 = 2H+ 1 [4], it is easy to check whether a time series is fBm. It will be

shown that the data sets analyzed here do appear to be fBm. In fact, as their 0 seems to be in the range

of 1.7 to 2, corresponding to H around .35 to .5, very likely they are simple random walks. This point will

be discussed a bit more, but for the theoretical analysis of annealing in [2, l] it is only important that some

power law relation holds; it is immaterial whether the process is fBm or simple Brownian motion.

_ Finally, it is worth noting that in the definition of the annealing algorithm, only the energy changes

matter: the absolute value of the energy function is irrelevant. (The same property is almost always true

as well of computer programs for annealing, which compute the energy change directly rather than by

computing the energy itself and subtracting.) Thus it may be natural to consider the first differences of the

timeseries rather than the series itself.

In particular, we might hope that these differences are uncorrelated noise. A little thought reveals

that this cannot quite be the case. Because of the finiteness of the problem space, annealing at a given

temperature is (after equilibrium is reached!) a stationary process; uncorrelated first differences would give

nonstationarity. Stationarity does hold if the process is defined not by X(t) = X(t —1) 4- e(t) but by

X(t) —aX(t —1) + e(t) with a close to 1 but a < 1. Such a first-order autoregressive model will be shown

to describe the data well.



3 Methodology

Figures 3-8 show the raw energy vs. accepted move data for each dataset. Because each run was started
in a fairly low energy state, the runs at high temperatures take some time to reach equilibrium. Because

the initialstate was not of extremely low energy, some of the runs at low temperatures also took some time

to equilibrate. Each run consisted of15,000 accepted moves. Visual inspection ofthe datasets was used to

estimate starting times by which the process seemed to be stationary, ranging from 2000 to 4000. (The hll
dataset continues to showa downward trend and large, low-frequency oscillations suggesting nonstationarity,

and indeed the estimated a had value greater than 1.) Starting and stopping times for the datasets are

indicated in the same figures; stopping times were 15,000 in all cases. The data before the start time were

discarded and time was shifted to start from 0; it is this data that will be considered henceforth.

Because we were looking for evidence offractalness we began with a periodogram estimate ofthe spectrum.

There are a few choices to be made in the computation of the spectrum: whether to prewhiten the spectrum;

what order smoothing to use; and how much of the data to taper. rl3 was arbitrarily chosen as the guinea

pig to resolve this. The first row offigure 9 (or figure 10, ifone prefers a point plot ofthe periodogram) shows
the results ofusing a few different tapers, all with no smoothing to avoid losing detail. We note that there

does not appear to be anyparticular period in thedata: nopeaks stand out in the unsmoothed periodogram.

As the differences caused by taper values seem minimal (not surprising considering the length of the series),

a taper of0.1 was chosen. The second row ofthefigure shows the results ofvarious smoothers in combination

with the .1 taper. Order 10 seems to be too small, leaving a substantial amount of noise. Order 100 can

be seen to shift the apparent breakpoint between where the spectrum is constant and where it is power

law. Because the spectrum is basically power-law, the large values are much larger than the nearby smaller

ones, and, as long as there are anyof thempresent, they dominate the average in the smoothing. Order 20

appears to be a reasonable compromise. Thus, tapering 10% of the data and smoothing the periodogram

with a 20-point moving average was taken as the default method of estimating the spectrum.

Figure 11 compares the spectrum computed by this default method with the spectrum obtained from

prewhitening the data by taking residuals after fitting an AR(l) model. The first frame shows the spectrum

computed the standard way. The second shows the spectrum of the filtered (whitened) series, which was

computed with taper .1 and smoothing order 20. It is plotted on a linear scale to emphasize its apparent

uniformity (whiteness), indicating that the prewhitening should be successful. The third frame shows the



frequency response function of the filter. Note that because the autoregressive parameter is near 1 but not

exaclty 1, the response is not quite 0 at frequency 0, so the division of the whitened spectrum by the response

function is possible (though in any case the power at frequency 0 is not visible on the log-logscale used). The

final frame shows the spectrum obtained by the prewhitening. Figure 12 superposes the spectrum computed

the default way (solid) with that computed by prewhitening (dashed), and they are seen to be virtually

identical. Figure 13 is of the same type as figure 11, and confirms a similar result for the timeseries fl2.

Given this fact, for simplicity the rest of the spectra were computed without prewhitening.

For the 1-dimensional data, figures 14-16 show the spectral estimate, the non-constant portion of the

spectrum estimated by an autoregressive fit of the logarithm of power against that of frequency, and the

spectrum from an AR(l) model fitted to the data.

The power-law fit was done using points where spectral density was a factor of 10 or more below the

density of the constant portion (the maximum density) as this was an easily systematized and consistent

procedure which seemed to attend to the correct portion of the spectrum. This fit, interpreted as seen on

the log-log scale, is influenced more by the high-frequency end of the spectrum than by the low-frequency

end, as there are more points packed into that region by the log function. It is unclear what the 'proper'

fit for the power law would be, and by inspection, the fit done seems close to what one would hope for,

so no further refinements were made. Remember that a slope of -2 would be indicative of a random walk,

within the limitations imposed by the finiteness of the space. The actual measured slopes cf about -1.8 seem

ambiguous.

One property of a random walk, or of fBm with 0 = 2, is that X(t)\X(t —1) is independent of {X(t —

2)yX(t —3),...}. This can be tested directly by the partial autocorrelation coefficients and so the partial

autocorrelation function (pacf) was computed. This information was used to round out the frequency-side

analysis: the third line superposed in figures 14-16 is the spectrum computed from the pacf and the prediction

error. It is a close fit to the measured spectrum.

Because the power-law fit was deemed less important than the AR(1) spectral fit, it is not shown for

other than the rlO, hlO, and flO samples of figures 14-16.

Instead, a different set of statistics is collected into each of the 24 figures 17-40 (one figure for each

accepted-move timeseries). The first frame of each figure each shows the data itself (between times startand

end.



The second frame shows the spectrum and the spectrum of a fitted AR(l) process (Splus's program ar

was used).

The third frame displays the pacf itself up to lag 50. Independently, the pacf was also computed using the

Akaike information criterion (AIC) to determine the order; the order returned was 1 in most cases, though

it was 2 for a good number. Since the AIC is something of a black box (at least at this point), the display

of the pacf to the relatively large lag of 50 gives a better feel for what is going on. The pacf(l) values are

all close to 1; as previously mentioned they cannot quite be 1 for a stationary process. By contrast, all later

values of the pacf are comparitively tiny, generally in the range of 0.01 and inconsistent in sign. Confidence

intervals for the pacfs were not computed. However, their standard deviations should be 0(l/vT) - roughly

0(0.08) for timeseries of this length. That and the seemingly random mix of positive and negative values

suggests that the true pacf does fall to 0 for lags greater than 1.

If the pacf is a for lag 1 and 0 elsewhere, it follows immediately that the acf at lag u is a u. Thus in these

cases the acf decays veryslowly (this wasconfirmed by booking at it for a number of the datasets), and is not

interesting until viewed over lags over 100. The acf tools in Splus compute the direct estimate, and thus take

time 0(maxlag x T) which proves to be prohibitive for lags over about 50. The frequency-domain estimate

of acf was coded as an S macro, but for reasons as yet not understood gave incorrect results. Because of

these practical difficulties in estimating the acf over an interesting range and because the form of the acf is

clearly dictated by the pacf, we have not shown the acfs.

The next step in evaluating the quality of the AR(l) model suggested by the very crisp pacfs is to

compute the residuals. [Incidentally, it was verified experimentally that the pacf, autoregressive parameters,

and residual produced by Splus's ar function are unaffected by the mean of the data.] Residuals for dataset

rlO are shown in figure 41; they are not shown in general because their noisy appearance does not lend itself

to meaningful interpretation.

Instead, the fifth frame on the figures shows the spectrum of the residuals; this is of course the same as the

'whitened' spectra constructed earlier for the two datasets used to test our spectrum estimation procedure.

These residual spectra are shown on a linear scale because the spectrum should be uniform noise from end

to end, a feature distorted by logarithmic plotting.

In the sixth and seventh frames are shown the pacf and the autocovariance function are of the residu

als. If the residuals are indeed pure noise the pacf should be 0 for all lags greater than 0, as should the



autocovariance. In fact the pacfs are generally of magnitude less than 0.02, with sign varying seemingly

randomly, and our interpretation is that they are simply noise. We interpret the autocovariance similarly,

as it is miniscule compared with the variance. Error estimates for the pacf and acf should be used as a more

scientific test for whether their measured values are consistent with 0-mean noise; this is planned.

The crispness with which the pacf of the original timeseries falls to 0, the whiteness of the power spectrum

of residuals, and the pacf and acf of the residuals, all seem to give strong evidence that the process is AR(l).

One consequence of this is that in the region where the original spectrum obeys a power law, the power

must be -2. The theoretical (not estimated) spectrum of any AR(l) has power = frequency-2 for higher

frequencies, so it is important to resolve why the estimated powers were only about -1.8. Reexamination of

figures 14-16 does show the deviation between the spectrum computed from the autoregressive parameters

and the regression-fitted line; the former generally seems to better approximate the estimated spectrum.

While the slope difference appears small, it in fact is precisely the discrepancy between -2 and -1.8. While

the fit could perhaps be improved, it seems silly at best, and perhaps even dishonest, to try different fitting

techniques, each equally reasonable a priori, until finding one giving us the result we now know we want.

Many results in annealing theory rely on knowing the density of states of the problem [5]. This is the

same as the density of X for a T = oo annealing. It is generally assumed that the density of states is either

Gaussian or Beta. The density at any other temperature follows from the T = oo density from Boltzmann's

law, and in particular if the density is either Gaussian or Beta at T —oo, it also has Gaussian (respectively

Beta) density at all other temperatures. Quantile-quantile (qq) plots of each timeseries against a normal

distribution (frames 4 of figures 17-40) indicate that this assumption is not too far from the truth, although

the small deviations from normality are probably significant given the volume of data.

Finally, the distribution of residuals is that of the noise in the process, so qq plots were made of it too

for all datasets (frames 8). The noise seems not to be Gaussian, a fact whose significance is not clear.

4 Attempted-move data

While some mention has been made of attempted move data, only a small amount of analysis has been

done on it. The annealing program actually produces a vector of energies and a vector of attempted move

numbers at which these energies were accepted; an S macro was written which expands this into a vector of



energies for attempted move numbers 1,2, Since at low temperatures the number of moves attempted

before 15,000 moves are accepted can be in the hundreds of thousands, these vectors are restricted to a given

maximum length.

This was done for rl2 and rll; to produce timeseries rl2a and rlla of lengths 32,768. The same analyses

were applied to them (figures 42-43) and yield generally similar results, though of course the time scale is

greatly expanded.

The approach was not pursued further at this time for two reasons. First, the volume of data is potentially

even larger than that for the accepted move paradigm, and the processing is quite time-consuming. More

importantly, it seems that other methods of analysis may be easier and more revealing. If the timeseries of

the number of moves attempted until one is accepted were understood, that would probably lead directly to

an understanding of the attempted-move process. For example, if the number of attempts is uncorrelated

with itself (and with the energy), then one would guess that the attempted-move spectrum is identical to

that of the accepted-move spectrum but for rescaling. In short, it may be more productive to treat this as

an issue in bivariate time series analysis than to treat the attempted- and accepted-move processes as if they

were unrelated.

5 Interpretation of Results

Simulated annealing is a random process which by construction is Markov on the state space consisting of

all possible solutions of the given optimization problem. Viewed on the reduced state space defined by the

energies alone, it is not clear whether the process will still be Markov. Some approaches to the automatic

control of the cooling schedule get all their information from the energies seen, and implicitly rely upon the

process being Markov in energy.

The partial autocorrelation function (pacf) provides a partial answer to the question of whether the

process is Markov in energy: Restricting our attention to linear predictors of the energy, the fact that the

pacf falls to 0 for times greater than 1 means that old energies do not improve the prediction of future

energies, and the process is seemingly Markov. This is not a necessary nor obvious conclusion. A simple

4-state space can be constructed on which annealing at low temperature is not Markov in energy, and in

general we might expect for example that observation of a number of low energies would indicate the process



is in a low-lying region of the state space, so that future energies will also be low.

The characterization of the energy trajectory as an autoregressive means quite simply that, at least

as far as energy is concerned, we know everything about annealing at a fixed temperature. If we could

extend this understanding to the transition from one temperature to a slightly lower one we would have a

complete characterization of the timeseries of energies as a function of the cooling schedule, which would

enable computation of a good cooling schedule.

A characterization of this sort would rely on knowledge of the space such as that acquired here at great

compuational expense (both in the annealing itself and in the data analysis) and thus may seem infeasible.

However, one of the most important properties of the data apparent from this analysis is its uniformity. The

different netlists all produce qualitatively similar timeseries data. So do the runs of annealing at different

temperatures, where the spectra seem to have different power scales (i.e. they are shifted vertically on a log

scale) but similar shapes and even similar roll-off frequencies. (Figures 44-49 show superposed spectra for

each netlist and cost function at all 4 temperatures.)

This last fact is surprising. When annealing is run at low temperature, moves are accepted very rarely,

and energy changes seen are small. While the fact that we are looking only at accepted moves means that

the low acceptance rate has been factored out, the fact that energy changes are small suggests that many

such changes need to be made before the energy limits of the problem itself are approached. Another way

to put it is that the low-frequency power is related to the variance of the process. If the variance of energy

at low annealing temperatures were the same as that at high temperature, then it would take longer for

low-temperature anneals to reach this energy scale. The fact that the time required is about the same means

that the energy scale is smaller.

This too may relate to a fundamental fractal property of the space: If the problem is fractal, restriction

to a subspace corresponds to scaling down the energy. Thus if the temperature is scaled down, the timeseries

may be just a rescaled version of that at higher temperature, the annealing process being essentially the

same but with smaller energy and distance scales. This similarity would explain the similarity of time scale,

though it is still not obvious why the roll-off frequency, which is related to the finiteness of the problem rather

than to its fractalness over some energy/distance range, is approximately the same for all temperatures.

Another small mystery of these superposed spectra is that the T = oo and T = 100 spectal estimates

often intersect. Since the energies are generally smaller at lower temperatures, along with their variances,
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one would expect lower-temperature spectra to lie strictly below higher-temperature ones, as is in fact the

case for most of the temperatures. Whether this is significant, or even whether it is an artifact of the spectral

estimation (as opposed to the true spectrum) is not yet understood.

6 Summary

A simulated annealing for placement was run on 3 different netlists, each at 4 different temperatures (includ

ing T = oo, a random walk), and using two different cost functions corresponding to 1- and 2-dimensional

placements. In each of these 24 cases, recording the energy after each accepted move yields a timeseries.

Another 24 timeseries could be obtained by recording the energy after each attempted move rather than

just after the accepted moves. This was done for a couple of cases.

For each timeseries selected we performed a number of analyses. The timeseries itself was plotted to

confirm stationarity and to reveal any obvious properties. A smoothed periodogram was constructed. In all

cases it revealed a power law relationship between spectral energy and frequency, except at low frequencies

where the spectral energy levels off to a constant. Such spectra are typical of real-world fractals where there

is some limit to the frequency range.

The partial autocorrelation function (pacf) was constructed. In all cases the lag 1 value was close to 1,

while the value at all other lags was near 0. This was taken as evidence that the process was c, first-order

autoregressive (AR(l)). Overlaying the power spectrum of the AR(1) model over that of the process itself

supports this hypothesis. For more detailed verification, we took the residuals after this autoregressive fit and

subjected them to analyses like those used for the series itself. The periodogram of the residuals appears to

be purely noise, indication that the residuals themselves are uncorrelated. The pacf and acf of the residuals

are close to 0 for all lags, indicating that no further ARMA modeling of the residuals is possible.

Thus the processes were concluded to satisfy an AR(l) model.

A couple of additional observations were made. For each timeseries, the energy values were examined on

a q-q normal plot; they seem to be approximately normal. Since the distribution of energies is one of the

central quantities used in the study of simulated annealing, it is useful to know that the energies do seem

to follow this simple distribution. Also the distribution of residuals was examined in the same fashion. The

fact that it does not seem to be normal means that while the process may be AR(l), the underlying noise
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process is not Gaussian white noise. The signficance of this is unknown.

Finally, for each netlist and cost function, the spectra of the AR(1) fitted processes (used as smooth

versions of the true spectra) at all 4 temperatures were plotted together. Since they are all AR(1) spectra

they are guaranteed td have a similar overall shape, but they are also seen to have similar rolloff points.

This indicates a common time scale to annealing at any temperature, a surprising result.
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f22: data; range for analysis f21: data; range for analysis
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a—

op

5

e-5

r13 spectrum: smooth=1, taper=0

r13 spectrum: smooth=10, taper=.1

5

e-4
5

e-3

0.05 0.5 5

e-5

r13 spectrum: smooth=1, taper=.1

rl3 spectrum: smooth=20,taper=.1

5

e-4
5

e-3
0.05

r13 spectrum:smoolh=1, taper=.2

r13 spectrum: smooth=100, taper=.1

0.5



D

r13 spectrum: smooth=1f taper=0
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r10 : spectrum; ar(1) spectrum; power= -1.72328
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cT r10 :data spectrum; ar(1)=0.966983 fit r10 : pacf q-q normal plot
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f13:data spectrum; ar(1)=0.993685 fit f13 : pacf q-q normal plot
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O 2000 4000 6000 8000 10000

r20 : ar(1)-residual spectrum
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r22: data
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r21 : data spectrum; ar(1)=0.991913 fit r21 : pacf q-q normal plot
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h23: data spectrum; ar(1)=0.987276 fit h23: pacf q-q normal plot
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f23: data
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f22: data
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f22: ar(1)-residual spectrum
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r12a: ar(1)-residual spectrum ar(1)-residualpacf
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r11a: ar(1)-residual spectrum ar(1)-residual pacf
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r1T: ar1-estimated spectra for each T
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h1T: ar1-estimated spectra for each T

-3 -

o

1

"^v1^-^
"*». *^\

—— ^ ^>v.

\ V. ^**s.

\ \\.\ \V
\ N. ^^

\ \. ^sss-

\ *\_
N.

—

V.

—

1 II II 1 1 1

5
e-5

1
e-4

5
e-4

1
e-3

5
e-3

0.01 0.05 0.1 0.5



s
e-5

1
e-4

5
e-4

1
e-3

f1T: ar1-estimated spectra for each T

e-3
0.01 0.05 0.1 0.5



r2T: ar1-estimated spectra for each T
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