
Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



A GENERALIZED QUADRATIC

PROGRAMMING-BASED PHASE l-PHASE II

METHOD FOR INEQUALITY-CONSTRAINED

OPTIMIZATION

by

E. J. Wiest and E. Polak

Memorandum No. UCB/ERL M90/46

24 May 1990



A GENERALIZED QUADRATIC

PROGRAMMING-BASED PHASE l-PHASE II

METHOD FOR INEQUALITY-CONSTRAINED

OPTIMIZATION

by

E. J. Wiest and E. Polak

Memorandum No. UCB/ERL M90/46

24 May 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A GENERALIZED QUADRATIC

PROGRAMMING-BASED PHASE l-PHASE II

METHOD FOR INEQUALITY-CONSTRAINED

OPTIMIZATION

by

E. J. Wiest and E. Polak

Memorandum No. UCB/ERL M90/46

24 May 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A GENERALIZED QUADRATIC PROGRAMMING-BASED PHASE I - PHASE H
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ABSTRACT

We present a globally convergent phase I - phase II algorithm for inequality-constrained minimi

zation, which computes search directions by approximating the solution to a generalized qua

dratic program. In phase II, these search directions are feasible descent directions. The algorithm
is shown to converge linearly under convexity assumptions. Both theory and numerical experi
ments suggest that it generally converges faster than the Polak-Mayne-Trahan method of centers.
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1. INTRODUCTION

We consider the inequality-constrained nonlinear programming problem,

min {/°(x)l/'(*)*0 y/jep) , (U)

where p denotes the set of natural numbers [l,...,p] and the functions /':]R"-»R,

jepujo], are continuously differentiable. [Pol.4] proposed algorithms for the solution of
problem (1.1) which obtain a search direction at each iteration by solving a natural approximation
to (1.1) in which each function /'(•) is replaced by the quadratic approximation

fJ(x) + (VfJ(x). h)+Vt{h ,Hjh), for some Hi eR"x". The resulting subproblem is a qua
dratic program with quadratic constraints, which we will call a generalized quadratic program

(GQP):

min, {f\x)+{Vfi(x),h)+Vi{h ,Hjh)\fi(x)+{Vfi(x),h)+U{h ,Hjh)Z0 v/ e p) . (1.2)

The use of GQP subproblems in algorithms for the solution of (1.1) offers some potential advan

tages over the use of quadratic programs. For example, information about the curvature of indivi

dual constraints can be incorporated directly into the constraints of the GQP subproblem. If the

matrices //, are positivedefinite and the current iterate is feasible, the resulting search direction is
a feasible descent direction. This paper presents the first thorough analysis of convergence and

rate of convergence of an implementable GQP-based algorithm.

There has been some theoretical analysis of GQP-based algorithms. The convergence of

conceptual phase n algorithms is treated in [Pol.4]. Rates of convergence are obtained for GQP-

based minimax algorithms in [Pol.5-6] under assumptions of uniform convexity. It is shown in

[Pan.3] that, on uniformly convex problems, the norms of the search directions constructed by a
conceptual GQP-based algorithm converge superlinearly to zero as the iterates approach a solu

tion.1

The GQP-based algorithms proposed in [Pol.4, Pan.3-4] were conceptual, that is, they
assumed that the GQP subproblem is solved exactly. These algorithms were not implemented (to
our knowledge) because no finite step procedures for solving problem (1.2) were known [Pol.4,

Pan.4]. Furthermore, (1.2) may not have feasible solutions if x is infeasible for (1.1). In this

paper, we resolve these difficulties for the case of first-order information, whereeachHi is taken
to be a multiple of the identity.

Our GQP-based method approximates the solution to (1.2) by adding a correction to the
search direction of the Polak-Mayne-Trahan algorithm [Pol.2, Pir.l]. The approximation is exact

under certain conditions, and requires the solution of only one quadratic program and a projection

operation. The method uses the Polak-Mayne-Trahan search direction when no solution to (1.2)

exists.

Because we set each H} in (1.2) to a multiple of the identity, the search direction at each
feasible point is a feasible descent direction. Hence, once the algorithm constructs a feasible

'Quadratic constraints have also appeared in the subproblems of trust region algorithms [Morel]. However, in these algo
rithms, they function to limit the searchdirection, ratherthan to representthe constraintsof the problem.



point, Xit, the inequalities

/>fc) *0 Vjep and /°(x,+1) <f°(Xi) . (1.3)

hold for all subsequent iterates, {x,}, >,-,. This property is important in engineering design prob

lems for which function evaluations are extremely costly and for which designs failing to satisfy
specifications are unacceptable [Nye.l]. Other first-order algorithms satisfying these require
ments include [Hua.l, Mey.l, Mif.l, Pir.l, Pol.1-2, Top.l, Her.l].

We compare the efficiency of our GQP-based algorithm with that of the Polak-Mayne-

Trahan algorithm, because the GQP-based algorithm can be viewed as a modification of the
Polak-Mayne-Trahan algorithm and because the Polak-Mayne-Trahan algorithm satisfies (1.3)
and has been shown to converge linearly in Phase n [Pir.l, Cha.1] under convexity assumptions.

We show that the GQP-based algorithm converges linearly with a smaller bound on the cost con

vergence ratio2 than that obtained for the Polak-Mayne-Trahan algorithm. Numerical experi
ments also show the new algorithm to be generally superior to the Polak-Mayne-Trahan algo
rithm, and competitive with the feasible descent algorithm of [Her.l].

The GQP-based algorithm presented in this paper accepts infeasible starting points, and a
linear rate of convergence obtains even if the sequence of iterates approaches feasibility only
asymptotically.

In Section 3, convergence and rate of convergence results are obtained for a local, concep
tual GQP-based algorithm. In Section4, an implementation of the local, conceptualalgorithmis
developed. In Section 5, the convergence and rate of convergence results are obtained for the sta
bilized, implementable algorithm, and the results of numerical experiments are presented in Sec
tion 6. The propertiesof the Polak-Mayne-Trahan algorithm are reviewedin the next section.

2. PROPERTIES OF THE POLAK-MAYNE-TRAHAN ALGORITHM

The Polak-Mayne-Trahan (PMT) algorithm [Pol.2] is a phase I - phase n extension of the
Pironneau-Polak algorithm [Pir.l], which, in turn, is an implementation of Huard's method of
centers [Hua.l]. The PMT algorithmis one of very few first-order phase I - phase II methodsfor
whichthe rate of convergence is known(seealso [Pol.3]), andits computational behavior is quite
competitive in this class. We will use the PMTalgorithm as a benchmark for evaluating the new
algorithm. The PMT algorithm solves problemsof the form

mm{f\x)\f'(x)ZO,jep) , (2.1a)

under the assumption that the functions /'rR* -> R are continuously differentiable and the con
straint qualification that the function msxJepfJ(x) not have any stationary points outside the
interior of the feasible set

We will use the following definitions. Wedenote the set of naturalnumbers {1 p } by
p, and the set {0,1.....; } by puO. The p smooth constraints /'(*)£0 in (1.1) can be

^e define the cost convergence ratio of a sequence {*}<«•« which converges to x to be
Ifawpi^J/^*!)-/^)!/!/^)-/"^)!.



combined into asingle nonsmooth constraint «/(*)^0, where \j/(x)^maxiepf\x). Constraint
violation is indicated by the values of the function y+(x) k max {y(x), 0} ."Finally, we define
first-order convex approximations to the functions/'(•) at jc by

;,/tlxA f/^)+(V/>(x)./i)+^^l2 ifyep

for some fixed y> 0. Note that/°(0 Ix) =0 and/^(0 Ix) =/'(x) for all y € p.

Algorithm 2.1

Data: x0; a,pe (0,1); y>0; i = 0.

Step J: Compute the search direction,

A(*i0 =argmin max fi{h lx,) , (2.2a)

and evaluate the optimality function

8fo)£ m^/'fofe) Ix.) - ^(x.). (2.2b)

5fe-p2: If \|f(x,)£0,set

X,. =max{0*l/W^Ato))-/fy)*a^^ . (2.2c)

else set

X, =max {p* I\j/(x,. +p*A(*,)) - \j/(x<) <; ap*8(xi)} . (2.2d)

Step 3: Set xM =x, + X,- h(x,).

Step 4: Replace i by i+l, and go to Step 1. D

Step 2 ensures that, once a sequence generated by Algorithm 2.1 has entered the feasible
region X£ {x e R* If'(x) £0\fj e p ), it can never leave it Referring to [Pol.1] we see that
the search direction vector h(xt) can be computed in two steps. First one solves the dual of
(2.2a), i.e., the positive semi-definite quadratic program

"^ tmi5. Z tfPth l*)-v+(x)

- max £ HV^-V+W-'VI I H'V/>(x)l2, ^

for any solution ji(x4). We denote the set of solutions to (2.3) by
tfPp(x)£argmax £ M.'/'C*)-¥+(*)-V4Y"1! j n/V/'*(x)l2. This can be done using one of

116 **♦• yep yepuO
several methods [GU.1, Hoh.1, Hig.l, Kiw.l-2,~Rus.l]. The unique primal solution, /t(x,), is then
given by

A(x)=argmin £ u'(x)/'(/» Ix) =̂ £ u '̂(x)V/>(x). (2.4a)

From (2.3), we can write



<Kx)=max £M//'(*)-v+C*)-ViTr1. £ p/V/'OOl2. (24b)

The following theorem summarizes the properties of the optimality function 9:R" -» R, the
search direction function h:R" -» R* used in the above algorithm.

Theorem 2.1[Pol.l]

(a) Ifx is a local minimizerfor problem (1.1), then 0(x) = O.

(b) Forany x e R*, 8(x)=0 ifandonly if there exists (1 e Zp+1 jmcA r/wf

£ A>V/'0E) =O. (25a)
y epuO

E&Y'(x)=V+CO. (2.5b)
yep

(c) Itor/i G(-) and A(•) are continuous. •

Note that ifx satisfies (2.5a-b) for some \le lp+1, and \jf+(x) >0,then u.0 =0, and hence x satisfies

the standard first order condition for a local minimizer of y(-). Ifx* is a local minimizer of (1.1),

then U?P(x) is the set of Fritz John multiplier vectors which, together with x , satisfy (2.5a-b).

Theorem 2.2:[Pol.l] Ifx is an accumulation point ofa sequence (x*} ~o constructed by Algo
rithm 2.1 in solving (1.1), then 6(x) = 0. Furthermore, if, for all x e R" such that v(x)£0.
0 £dy(x) (where3y(x) denotes thegeneralizedgradient ofy(') at x [Cla.l]), then\p(x)£ 0. D

It was first shown in [Pir.l] that an algorithm based on the search direction rule (2.2a) con
verges linearly under convexity assumptions. Chaney [Cha.1] later established linear conver

gence under slightly weaker assumptions. The following theorem is a variant of Chaney's result,
accounting for the fact that Algorithm 2.1 uses an Armijo-type line search [Arm.l] ratherthan an
exact minimizing line search as in [Cha.l, Pir.l]. Let

F'(x)£#fJ(x)/dx2 , (2.6)

andu_°£min{u°lHe £/«.(*)}.
Theorem 2J: Suppose that
(i) thefunctions fJ(-), j e puOaretwice continuously differentiable,
(ii) the setLk {x e R" I\p(x) £ v+(xo)} is bounded, and the necessary conditions (2.5a-b) are
satisfied at a single point, $ eX, at which theMangasarian-Fromovitz constraint qualification

holds (i.e. - there exist h e R" and 5 > 0 such that (V/'CB), h )<-8 for each j e p such that

fJ$) = 0),

(iii) for %as above, and with

y £uU(u)'He£/pp(x)} , (2.7a)

whereforany\ie l±+l, J(y£)£ [j e p I\iJ >0}, there exists me (0,y) such that



mihP<{h,
y«pco

/»). (2.7b)

for every u,€ U?t(x) andfor every nonzero h e H, where

Hk{h l{V/'(£),/i)=0, V;'€? } . (2-7c>

IfAlgorithm 2.1 constructs a sequence {x,-} ^ w solving problem (1.1), then (a) x,- -> x as
i -> oo, ana* (b) jf\[f(x,)£ Ojbr any i € N, /wen

lunsup £l-ap|r— , (2.7d)
''~*~ f°M-f°&) ~M

foranyM>maxj6pyj0{lFJ(x)\,y). D

Inequality (2.7d) then gives an upper bound on the cost convergence ratio of sequences con

structed by Algorithm 2.1.

3. A CONCEPTUAL GQP-BASED ALGORITHM

We begin by considering a conceptual, local algorithm for solving (1.1) which computes a

search direction at xt- by solving the generalized quadratic program,

GQP(x): min, [f\h Ix) Ip(h Ix) <; 0 v/ € p ) , (3.1a)

withx =x,-.

Local Algorithm 3.1:

Data: x0; Pe(0,l); y>0; i = 0.

Step 1: Compute the search direction,

hi =/»GQp(*i) &argmin {/°(A Ix) Ip(h Ix) <;0 vy e p ) . (3.ib)

5/eT? 2: Compute the step size,

X,. =max {p* If\xt +p*/t,) -/%%) <; p*/°to1 x.),

V+(x,- +p*At) - V+(x,) <; p*[max {/'ft Ix.), 0} - V+(x,)]} (3.ic)
yep v '

Step 3: Set x,+1 = x, + Mi •

.Step4: Replace i by i+1, and go to Step 1. •

Lemma 3.1: Suppose that assumptions (i)-(iii) of Theorem 2.3 hold, and let St be as defined in

assumption (ii) ofTheorem2.3. Thenthere exists a neighborhood V ofSt such that GQP(x) has a
continuous solution, hGQ?(x),forallx e V.

Proof: Suppose that x e R" is such that there exists an h' e R" satisfying p(K Ix) <0 for all
j e p. Then the set-valued map G(x)£ {h e R" Ip(h Ix) <0, v j e p } is upper



semicontinuous at x. G(x) is compact since the functions / '(•) are uniformly convex. Hence, by
the Maximum Theorem [Ber.l], the set of solutions to GQP(x) is an upper semicontinuous set-
valued map at x. Since GQP(x) is a strictly convex program, its solution set is a singleton,
( Agqp(x) }. Therefore, the solution, AgqP(x), to GQP(x) is continuous at any point x at which

GQP(x) is strictly feasible.

By assumption (ii) of Theorem 2.3, there exist AeR* and 5 >0 such that

(V/'(x), h)<- 8 for each j e J{St). Therefore, there exist t >0 and a neighborhood, V, of St
such that p(th Ix) <0 for all x e V and j e p. Therefore, GQP(x) is strictly feasible for all
x € V. In light of the previous paragraph, AgqP(x) existsand is continuous in V. •

For any x e R" such that GQP(x) has a solution, we will denote the set of Fritz John multiplier

vectorsassociated with the unique solution, /igqpCO by

tfgqpOO = (H € Vi' Z »Jv/''(Agqp(*) Ix) =0,
y epuO

E^/'<W*)i*) =o}. (31d)
jep

Consider the /. penalty function, Pe(*) =«/0(*)+V+(*). where e>0. The proofs below
exploit the correspondence between minimizers of the constrained problem (1.1) and those of the
minimax problem,

min.pe(x). (3#2a)

As is shown in the following lemma, the solution to (1.1) is also a strict local minimizer of pc()
for sufficiently small e. Let

dz(x) £ argmin {zf\h Ix) +max {0 ,p(h Ix)} }. (3.2b)

and let

6e(x) £ zf\dz(x) Ix)+max {0,p(dt(x) Ix)} - V+(x). (3.2c)

Recall that u.0£min{u°lue U?t(x)).

Lemma 3.2: Suppose that assumptions (i)-(iii) of Theorem 2.3 hold, let St be as defined in
assumption (ii) of Theorem 2.3, and let V be as defined in Lemma 3.1. Then, for any

ee (0 .u.°/(l - u.0)), there exists a neighborhood, We c V, of St, such that, for all x e We,
(a) Pt(x)*pefi)+yvnlx-x\2,andQ>) d^x) =hGQ?(x).

Proof: (a) Assumptions (i)-(iii) of Theorem 2.3 ensure that the point St satisfies the standard

second-order sufficiency conditions for problem (1.1) [McC.l]. In fact, they ensure that St
satisfies these conditions for the problem,

min. {f\x)-yvnlx-St\2\f>{x)-yvn\x-Stt<,0) . (3.2d)

It follows from Theorem 4.6 of [Han.l] (see Theorem A.1 of the Appendix for a restatement),



therefore, that x is a strict local minimizer of pe()-^(e+l)l-xl2, provided that
1/e>2y epu' for some Kuhn-Tucker multiplier vector for the problem (3.2d), me Rp, associ

ated with x . Since the Kuhn-Tucker multiplier vectors for (3.2d) associated with x are the same

as those of (1.1), we can construct a Kuhn-Tucker multiplier vector for (3.2d) from any Fritz John

multiplier vector, u e Uf?(x), as follows:

w^Oa1 H')/u°. (3.2e)

because the Mangasarian-Fromovitz constraint qualification (assumption (ii) of Theorem 2.3)

ensures that u.0 £ji0 >0. Hence, if 1/e>\u^ =(1 - \i°) I\i°, then J? is a strict local minimizer of
PeO- fyn(e+ l)l-x I2. This implies that/»e(x )<>p£x)- tyn(e+l)lx -St I2 forx in some neigh

borhood ofx.

(b) We recall that by Lemma 3.1, the solution AgqpCO to GQP(x) exists for all x in aneighbor

hood V ofSt. We will now prove that, for any e<u_° /(1 - ji0), </e(x) =AgqpCO for all x in a
neighborhood of St.

We first show that, for x nearSt, the norm of some Kuhn-Tucker multiplier vector associ
ated with the solution to GQP(x) is bounded from above by (1 -\i°)/\i°. We denote the set of
Kuhn-Tucker multiplier vectors for GQP(x) by "~

KT^x) £ {u e R> IV/^A^x) Ix)+ £ «'V/'tf^x) Ix)=0.
jep

Zh>Aagqp(x)Ix) =o} , (33)
yep

for xeV. Since hG(ff(xK) = 0 and v+(2) =0, an inspection of (3. Id) reveals that

tfgqp(* )=Un(x). By assumption (ii) of Theorem 2.3, ja°>0. Since £/GQP() is an upper sem
icontinuous, compact-valued set-valued map at St, there exists, for any 8 e (0. u), a neighbor

hood, W8 c v, of St, such that u° >u° - 6 for every p. e tfgqpO^s)- Now, every Fritz John multi
plier vector u,et/GQP(x) corresponds to a Kuhn-Tucker multiplier vector,
uR k (u>/u° \ip/\L°)e KTgqpQc). For such Kuhn-Tucker multiplier vectors,
Im^ =(l-^°)/ji°<(l-ji0+8)/ai0-8)foreveryu€ l/GQP(^5).

Because CO for any 8 € (0, *i), there exists a neighborhood Ws of St such that
min[lu^lue KTGQP(x)} <(1 - u.° +8)/(u_°-8) for x e W6 (from the previous paragraph), (ii)
"«* j*PPW I*)<0 for x e V and some /»' e R" (from the proof of Lemma 3.1), and (iii)
problem GQP(x) is a convex program, we canapplyTheorem 4.9 of [Han.l] to conclude that, for

e<(fl0-8)/(l-{l0+8), AgqP(x) is the unique minimizer of the convex function
min d6r" e/V Ix)+max {0 J\d Ix)} for all x e W8. (See Theorem A.2 of the Appendix
for arestatement of Theorem 4.9 of [Han.l].) Hence, AGQP(x) =rfe(x) for allxe Wh. Since8was
arbitrary, such a neighborhood exists for anye <u°/(1 - u°). •

Theorem 3.1: Suppose that assumptions (i)-(iii) of Theorem 2.3hold, and letSt beas defined in



assumption (ii) of Theorem 2.3. Then,for any neighborhood, W,ofSt, there exists a neighbor

hood Vw c W of St such that, ifx0 e VW, the sequence [x,-} 16N constructed by Algorithm 3.1

remains in Vw and converges to x .

Proof: Let A() denote the iteration map of Algorithm 3.1. The function A() maps one iterate

into the next, i.e., x,+1 =A(x,). The sequence [x(} 16 N will remain in a set VW if the set Vw is

invariant under A(), i.e., A(W) c VW. We now show that such a neighborhood Vw cW of St

exists.

Let e <u°/ (1 - \i°) be arbitrary. By Lemma 3.2(a), there exists a neighborhood Wz of x

such that pe(x)2pi(x) + tyn'tx-x I2 for x e lVe. For small enough S>0, therefore, the set

Vwk [xeWe\pz(x) <pt(St) +8} is contained in W. By the continuity of pe(), the setW is a

neighborhood ofx.

By Step 2 of Algorithm 3.1, with x t = A(xq) for any x0 € V,

Pe(^i)-/>eW =el/Vi)-/Wl + [V+(*i)-V+W]

£Xofe/^cQpCto) I*o) +max {pih^xo) IXq) ,0} -y+(x0)]. (3.4a)

By Lemma 3.2(b), AGQp(x0) = Ae(x0) forx0 € Vw, and, hence,

Pe(*i)-Pe(*o)^ Me/o(Ae(X(0 IX(0 +max (/^e(xo) Ix0),0} - v+(xq)]
>«p

=Aoee(xo)£0. (3.4b)

Therefore, p e(x{) £ pe(xo)£ /> e(S) +8, implying that A (VW) c VW.

Now we show that only St can be an accumulation point of the sequence {*,•}, e N con

structed by Algorithm 3.1, from an x0 e Vw. Suppose that {x(-},- e * converges to x e Vw, where

K c N and x *x. Since, by assumption (ii) of Theorem 2.3, St is the only stationary point for
(1.1) in Vw, x cannot be stationary for problem (3.2a). By Lemma 3.1, /°(AGQp(x) Ix)) is con
tinuous in Vw, and therefore there exist 8 >0 and a neighborhood, W c VW, of x such that

68(x)<-8 , (3.4c)

for all x e W. Clearly, there exists an i0 e A', such that x, e W for all i >i0, i e £. Let Af' <«>

be such that IF'(x)l £ Af' for all x e IV. Then,

/'(*,• +Mcqp^)) S/'fo) +X(V/>(x,.). /»gqp(x,))+ ^'X^c^)!2 . (3.4d)

for all i € JT, i >i0. Hence, for; e p and X£ 1,

/ Cx.- +XAgq^... j- V+(x.) £ X{/'(x.) +<V/'(x,), /iGQp(xl))+ »>*Af'XI/»GQp(xi)l2 - V+(x,) J . (3.4e)

since v+(x-) £/'(x,). For X £ y/Af', then

/'(* +X/»GQP(x,)) - V-(x,-) £X{/'(x.)+ <V/>(x.). AGQP(xl))+ V^yI/igqpCjc,)!2 - V+(*i)}



=X{p(hGq?(xi) \Xi)-yfM)} . (3.4f)

Taking the maximum over j e p,

\|f+(Xf +XA^x,)) -v+(x.) <, Xjmax {0,/ '(AgqpCxi) '*.) J-V+(*.) f. (3.4g)

for all X e (0, yl Af'] and i >i0, i e £. Setting j = 0 in (3.4d),

A* +Mgqp^))-/°0c)*X{(V/>fo), AGQp(x,))+ ViTlAcQP^OP)

=V\hCQ?(xi)\xi) , (3.4h)

for X£ y/Af' and i e A", i >i0. Inequalities (3.4g) and (3.4h) and Step 2 of Algorithm 3.1 imply

that X,- £ py/ Af'. From Step 2 of Algorithm 3.1 and the fact thatAcqp(x,) =hc(x,) for i >i o,

Pe(*i+l) -/>e(*i) =Pefo +McQp(*i)) -Pe(*»)

*̂ Wg^) Ix.)+max {0 ./><*aorta) «*.))- V+(*,) [

*X,. je/°(/re(x(.) Ix.)+max {0 ,/''(/»c(x,.) Ix.)} -v+(x,) I

=Mefc) • (3.4i)

Then fori e AT ,i >i0,

Peta+i)-Peta) =Ps-^ee(x,.) <;-M . (3<4j)
Now pe(x,+1)£pe(x,) for a// i >«0 by (3.4i). Hence (3.4j) implies that pe(x.) ->-« as i -><».
However, this is impossible, since {x,}1€N is contained in the bounded set VW. Therefore,

x *x cannot be an accumulation point for the sequence.

Since V; is compact, the sequence {xf}, e N c vw must converge to the set of its accumu

lation points. We have shown that x can be the only accumulation point for the sequence.

Therefore, the sequence converges to St. D

Ut?£rnax{u0lu.€C/Pp(x)}.

Theorem 32: Suppose that assumptions (i)-(iii) of Theorem 23 hold with St as defined there,
that xQ € Vw, with any Vw as defined in Theorem 3.1, and that Algorithm 3.1 constructs a
sequence {x,} /^> in solving (1.1) startingfrom a point x0 e Vw. Then, (a)for any e <u° / (1 - \l\

,taSup>£«L££i£1_(,£min{^_il) , (35a)

and(b)ifvCO£Oforanyi0e N,



Ita sup /W-rtE) ^j_ftfh?)% (3 5b)
'"*" /0(*,)-/°(*) ~ M n

Proof: (a) Let positive e e (0, u° / (1 - u0)) be arbitrary. The proof of Theorem 3.1 gives us a
relation between the decrease in the penalty function pe(x) at iteration i and the decrease

predicted by 6e(x),

P^+i)-P^) £•§*«*>. (3-6)
for large i. Hence,

.. Pt(Xi+i)-p&(xj) py,. Qe(^«) ,„^
lim sup £ -^r km sup . (3.7)
'-" PM-P&) M '-" PM-P&)

To complete our proof, we will make use of Theorem A.3 in the Appendix, which is a restate
ment of Lemma 3.3 of [Wie.l]. This result provides an upper bound on the right-hand side of
(3.7). For this purpose, we will show that the assumptions of Theorem A.3 hold. Assumptions
(i) and (ii) of Theorem 2.3 ensure that assumptions (i) and (ii) of Theorem A.3 hold with respect

to the minimax problem (3.2a) at St. Next we turn to assumption (iii) ofTheorem A.3.

We associate with the minimax problem (3.2a) the set of multiplier vectors Ut(x) consist
ing of those u, e Ij,+1 such that

u°eV/°(S) + 2 vJ {tVf\St)+V/'(S)} =0 , (3.8a)
jep

\i°tf\x )+2nMe/V) +/y(*) J =Pzix). (3.8b)
yep

The sets tfe(x) and U„(x) are related as follows. Since \p+(x) = 0, (3.8a-b) can be rewritten as

eV/°(*) + J \iJ vY'"(x) =0 , (3.9a)
jep

Zn'/'C*)-0. (3.9b)

Then,smcel-^° =£y«pU/'(e'U> u*)/(e+1-M-V t^pOc), for any \ig Uz(Jt). Since
UGQr(x) = U?t@) as we showed in the proof of Lemma 3.2,

(e, u,1,... , uf) / (8 +1 - n°) e tfPp(x) for any jie Ue(x). It follows from assumption (iii) of
Theorem 2.3, that, with H as defined in Theorem 2.3,

ml/il2<U .
e+l-u° * ' ;TpE+l-u°

for any ji € Ut(x). Hence for any \i € Uz0t),

r^°tf)+ £ ?' qfj(x) h), VheH,h*0, (3.10a)

10



mJh?<{h, \i°zF°(£)+ X ^ (eF°(^)+F>(J?)} h) V heH ,h*0 , (3.10b)
jep

where me £ min{m (e+l-u°)lne t/e(x)} =m (e+l-max{^°l^e t/e(x)}). Hence,

assumption (iii) of Theorem A.3 is satisfied at St for the minimax problem (5.1), and it therefore

follows from Theorem A.3 that

limsup
ee(x,)

£-
min{me,(l+e)y}

(l + e)Yl_>" PM-pAx)

Combining (3.11) with (3.7) yields

P&hO-P&j) ^ 3Y min{me,(l +e)y}
lim sup ^ —XJ-

'-" PJM-P&) M a+tYt

min{me/(l+e),y}
— P Af

(3.11)

(3.12)

Next consider any u. e t/e(x). As mentioned above, (e, u,1,... ,\lp) I(e +1- u°) e tf PP(x).

Recall that ?£ max(u°l^e C/PP(x)}. Then

e

e+l-u°

and hence

*?.

m 8=m(e+l-max{n°luel/e(j?)})2:m^

Substituting (3.14) into (3.12) yields

limsup P'^-P^ ^^Amin(me/al0(l-fe)),y} <;-p-g-min(•=-£— 11) .
'-" PJM-Pffi) M M ^(1+e)

Adding 1 to each side of the inequality in (3.15), we obtain (3.5a).

(b) Usingthe fact thatpe(xf) =/°(x.) for i > i0,

.. f (Xi+O-f (x) am . , e ,,
limsup ^1-p—min{^-—-.1} .
"*~ /V.0-/V) M ^<1 +e>

Sincee <p.0 / (1 - \i°) is arbitrary, (3.5b) holds.

Unless J? is also an unconstrained minimizer of /°Q (in which case, u° = 1), the bound in
(3.5b) on the cost convergence ratios of sequences constructed by Algorithm 3.1 is smaller than

the bound in (2.7d) for sequences constructed by Algorithm 2.1,

1-otpqt0/?0)^^ 1-If0^" •

11

(3.13)

(3.14)

(3.15)

(3.16)
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4. GLOBALIZATION AND IMPLEMENTATION OF THE GQP SUBPROCEDURE

There are two issues associated with the use of the problem

GQP(x): min {f\h Ix) Ip(h Ix) <; 0, Vj e p } , (4.1)

as a search direction subprocedure that must be resolved. The first is the issue of globalization.
When x is not feasible for (1.1) and is far from a solution to (1.1), GQP(x) may not have any
feasible solutions. The second is the issue of implementation. Unlike the search direction prob
lem (2.2a) of Algorithm 2.1, GPQ(x)cannot be transformed into a quadraticprogram to be solved
by known methods. We must find an efficient method for solving it in a neighborhood of any

solution x of (1.1), where, by Lemma 3.1, GQP(x) is known to have a solution.

We will develop the globalized, implementable search direction subprocedure in three
steps. First, we will show that GPQ(x) is equivalent to a problem GQP(x) with linear equality
constraints and a single quadratic inequality constraint, determined by the constraints active at the
solution to GPQ(x). Second, we will use the PMT search direction subprocedure to predict which
constraintsare active at the solution. This will allow us to constructa problem with linear equal
ity constraints and a single quadratic inequality constraint which approximates GQP(x). We will
show that, when the approximating problem has a solution, it can be easily obtained from the
PMT search direction vector h(x). Third, we will incorporate these observations in a search
direction subprocedure which reverts to the PMT search direction when the approximating prob
lem has no solution.

Because, the PMT search direction subprocedure correctly predicts the constraints active at
the solution to GQP(x) when x is near a solution to (1.1) at which strict complimentary slackness
holds, the globalized, implementable search direction subprocedure leads to a phase I - phase II
algorithm which has the same robustness properties as the PMT algorithm and the same rate of
convergence as the conceptual Algorithm 3.1.

Thus, we begin by developing an equivalent statement for GQP(x). For any x e R" and set
/ cp, we define the problem

P(x,/): mm {f\h \x)\fJ\h \x)Z0.p(h \x)=p\h \x) ,\/j e J\j0) , (4.2a)

where j0e J is arbitrary. A brief inspection of (4.2a) reveals that the problem P(x ,J) is
independentofthe selectionof j0 e J. We will denote the solutionto P(x ,/) by d(x ,J).

Since the functions /'(• Ix) all have the same quadratic term, Vfcyl/il2, the equality con
straints in (4.2a) are linear. Hence, problem (4.2a) requires the minimization of a quadratic func
tion subject to linear equality constraints and a single positive-definite quadratic inequality con
straint. A subproblem of this form appears in trust region methods, and efficient methods for
solving it havebeen developed [Mor.l]. However, because /°(-1 x) and p\-1 x) havethe same
quadratic term, a simpler technique can be used to solve (4.2a) for our choice of/ (see Proposi
tion 4.2).

Assuming that (4.1) is feasible, we definethe activeconstraint indexset by
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JgojOc)£ U e p IPihoojix) Ix)=0} . (4.2b)

(The set/GQp(x) may be empty.) A small amount of reflection confirms thatthe problem GQP(x)
is equivalent to the problem P(x , /<3qp(x)). (Problem P(x , /cqP(x )) is what we referred to above
as GQP(x).) Hence, when the set /Gqp(x) is known, the problem GQP(x) is relatively easy to
solve. Next, for any\i e 5^,+1, let

J<M)£ (jep lu'*>0] (4.3a)

and let jjpP(x) be any selection from U?v(x). In the following propositions, we will prove that the
use of

/Pp(x)^y(npp(x)) . (4.3b)

asanestimate of/GQP(x) has several desirable consequences.

The following proposition shows that d(x ,J??(x)) can be obtained rather easily from h(x).
Recall that, for any x e IR* such that GQP(x) has a solution, we denote the set of Fritz John mul

tiplier vectors associated with the solution by C/cqp(x) (see (3.Id)).

Proposition 4.2: Suppose that problem P(x ,J?9(x)) has a solution d(x ,J?P(x)). Let
y0e/pP(x) be arbitrary, let Gx be a matrix with columns Vfi(h(x)\x)-Vfi\h(x)\x),
j e /pp(x)\y0, letNx be a matrix whose columnsform an orthonormal basis for the null space of

Gj, and let Px ^N^J be the orthogonal projection operator whose range is the null space of
GJ. Then there existsaxeR such that

d(x ,/PP(x)) =h(x) +xPxVp(h(x) Ix). (4.4)

Proof: First, we rewrite P(x , /pP(x)) in the form

min{/°(A \x)\p\h lx)£0, gx +Gjh=0) , (4.5a)

where joeJn(x) is arbitrary, gx is the vector with elements fJ(h(x) \x)-f'\h(x) Ix),
j e /pp(x)\y0- Since gx +Gjh(x) =0, it follows that if we set h =h(x) +8h in (4.5a), then we
must have Gj6A =0, whichimplies that 8A =Nj for somey. Hence, By substituting 5/i =Nxy
into (4.5a), the equality constraint in (4.5a) can be eliminated. Upon expansion of the functions
/'(•1 x) around h(x), (4.5a) becomes

min{/°(/i(x)lx)+(V/0(A(x)lx),^y >+V4yWxyl2l

P\h{x) lx)+ (V/'Wx) \x),Nxy )+V4yWxyl2<;0} . (4.5b)

If /pP(x) =O, then \i$f = 1,thenVf\h(x) Ix) =0 and the optimal solution to (4.5a) is 8/t(x)=0.
Now suppose that V/°(A(*) Ix)*0. This implies that UpP(x) <1 and that /PP(x)* *>. Then the
solution 8h(x) for problem (4.5b) satisfies the first-order condition

Nl\vPVf°(h(x) Ix) +(l-\i°)Vp\h(x) lx)+76/»(x)j =0. (4.5c)
forsomeu°e [0,1]. Since NxNjdh(x)=Pxbh(x)^8h(x), we obtain from (4.5c) that
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bh(x) =y1 (^xV/°(A(x) Ix)+(1 -\P)PxVpXh{x) Ix)j . (4.5d)
Now, h(x), the solution to (2.2a), satisfies the optimality condition

£y ePyjo\4v(x)Vp(h(x) Ix) =0. Rearranging this equation (and dropping the dependence of
jiPp on x) yields

0=u^PV/°(A(x) Ix) +(1 -u&yV/'W*) Ix) +J \4? [v/'tfOO Ix)- Vp'(h(x) Ix)l. (4.5e)
yap L

Applying Px to both sides of (4.5e), we conclude that

0 = Up°pP,V/°(A(x) Ix).+ (1 -\4?)PxVp\h(x) Ix) , (4.5f)

since Px(V/>(/»(x) Ix)- VfJ\h(x) Ix))=0for all; e p bythe definition ofPx. Since u£P < 1,

WPXh(*) Ix) =- t^V^V/°(/i(x) Ix). (4.5g)
1-M-pp

Substituting (4.5g) into (4.5d) yields

-*/-!8/»(x)=T u^-d-u0)-^
1-Hpp

^V/°(/,(x)lx). (4.5h)
a

The searchdirection d"(x »-Jppc*)) may not be a feasible solution for GQP(x). The following
subprocedure returns the Polak-Trahan-Mayne search direction in this case.

Search Direction Subprocedure 4.1:

Step1: Compute the Polak-Trahan-Mayne search direction h(x) and identify the set 7PP(x).

Step 2: Computethe step, AA(x) = Px V/°(/r(x) Ix).

Step3: Compute x e TR by solving

min {/°(A(x) +xAA(x)lx)l/>(A(x) +TAA(x)lx)^0 Vj ep) . (4.6)

(If problem (4.6) is infeasible, set x = 0.)

Step4: Setd(x) = A(x) + xAA(x). D

The minimization in Step 3 can be performed very quickly since it involves only quadratic
functions of a single variable. Note that Ah(x) of the SearchDirection Subprocedure 4.1 is equal
to xbh (x), with bh (x) as defined in the proofof Proposition 4.2. The following proposition sum
marizes the useful properties of d(x).

We now prove that, if h(x) is feasible for GQP(x), then d(x) is a feasible direction promis
ing as much decreasein the objective as h(x). Ifh(x) is not feasible for GQP(x), then d(x) pro
vides as much improvement in the constraint violation as h(x).

Proposition 4.3:

(a) Ifp(h(x)\x)Z0for each j e p, then f\d(x)\x)<.f\h{x)\x) and p(d(x)\ x)£0 for
eachj e p.

(b) lfmaxj6pf^h(x)\x)>0,thenmaxjepp(d(x)\x)<maxjepp(h(x)\x).
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(c) //GQP(x) isfeasible andJrv(x) = /cqp(x), then d(x) solvesGQP(x).

Lemma 5.1 shows that the assumptions of Proposition 4.3(c) hold in a neighborhood of a

solution x to (1.1), provided that strict complementary slackness holds at St.

Proof: (a) This follows from the fact x = 0 is feasible for the single-variable minimization in

Step 4.

(b) If problem (4.6) is feasible, then

maxJepj'(d(x)\x) =OZmaxjeppmx)\x). (4.7)
If problem (4.6) is infeasible, d(x) « h(x).

(c) Since /PP(x) = /GQp(x), d(x ,/PP(x)) solves GQP(x). We show that Algorithm 4.1 com
putes d(x ,7PP(x)). Since d(x ,J?r(x)) minimizes /°(-l*) over
[heBT\p(h \x)Z0,jep),

f°(d(x ,/pP(x))) = min [f\h \x)\p(h lx)<S0.y e p }
A 6 R -

Smin {/°(A(x)+TAA(x)lx)l/>(/»(x) +xAA(x)lx)50,y ep) .
x« R —

Since d(x ./PP(x)) can be expressed as h(x) + x<fih(x) Ix) for some x0e IR, problem (4.6) is

feasible and has the solution Xq. Therefore, d(x) = d(x , /PP(x)). D

5. A STABILIZED IMPLEMENTABLE GQP-BASED ALGORITHM

We replace Step 2 of Algorithm 3.1 with the Search Direction Subprocedure 4.1 to obtain a
global phase I - phase n method, and we establish its convergence properties.

Algorithm 5.1:

Data: x0; pe (0.1); y>0; i =0.

Step1: Compute a search direction dx = d(x{) by means of Search Direction Subprocedure
4.1.

Step 2: Compute a step size,

\ = max { p* I f\xi +p*d,)-Ax,) <p*/V, Ixj),
keti

V+(x,- +P*^) - V+(xf) ^ p*[max {/>(^ Ix.), 0} - V+(x,)]} . (5.i)
j ep

Step 3: Set xl+1 = x,- + Xfdi.

Step 4: Replace i by i+l, and go to Step 1. •

The three cases listed in Theorem 5.1 are exhaustive. In case (b), 9(x) = 0 implies that
0€ <fy(x), where dy(x) denotes the generalized gradient of y() at x. This case is normally ruled
out by assumption. The convergence result obtained for Algorithm 5.1 is slightly weaker than
that obtained for Algorithm 2.1 in Theorem 2.2. In case (c), where Algorithm 5.1 constructs a
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sequence which remains infeasible but has feasible accumulation points, not all of the accumula
tion points areguaranteed to be stationary pointsof problem (1.1).

Theorem 5.1: Suppose that the functions /'(•) in (1.1) have continuous derivatives, that Algo
rithm 5.1 constructs a sequence {x{}£<, in solving (1.1), andthat x is an accumulation point of
the sequence.

(a) If there exists an i0 e N suchthat y(xlt) £ 0, then G(x) = 0.

(b) //v(x.) >Ofor all i g N andy(x) >0, then6(x) =0.

(c) Ifyrte) > Ofor all i e N and \p(x) = 0, then lim inf Ie(x.) I =0.

Proof: First we derive boundson \d(x)\ foruse in the proofof parts (a) and (b). Supposethat
the subsequence (x,}isif converges to x, for some subset K c N, and that G(x>0. By
Theorem 2.1, ©(•) is continuous, and, by (4.2b), 6(x) <, 0 for all x g R\ Therefore there exists a
8 >0 and a neighborhood, W0, ofx such that

6(x)= .maxj/^COl*)} -V+(*)<-5 . (5.2a)

for all x g W0. We use this fact and Proposition 4.3 to showthat \d(x)\>0 for all x in a neigh
borhood ofx.

Suppose that \|f(x) £ 0. In view of (5.2a), there exists a neighborhood, Wl<zwii, of x, such
that \y(x) <V48 for all x g Wx. Then, forx g Wlt

max/>(/i(x)lx)^e(x)+v+(x)^--1/i8<0. (5>2b)

From Proposition 4.3(a), we have that

/V(x)lx)-v+(x)^/0(A(x)lx)-V+(x)^8(x)<-8 . (5.2c)

for allx g Wq. Since y(x) <V4S, if follows from (5.2b) and (5.2c) that/°(dOO Ix) <- V48 for all
x g Wx. Hence, since/°(0 Ix) =0, and since f\h Ix) is continuous in /», uniformly inx, there
exists V >0 such that W(x)l >^ for allx g W j.

Now suppose that \jr(x) >0. We proceed in a manner similar to that in the previous para
graph. There exists a neighborhood, W2 c w0, of x, such that y(x) >>/4y(x) for each x g W2.
For each x g W2, either maxy «, p(h (x) Ix)>0, or else maxy 6pp(h (x) Ix)<, 0. In the former
case, it follows from Proposition4.3(b) that

max/'(d(*) Ix)-y+(x) £ max/>(A(x) Ix)-\jr+(x) <- 8. (5 2d)
yep jep v •*.%»/

In the lattercase, it follows from Proposition 4.3(b) that

max/'(d(x) Ix) - v+(x) <0-y+(x) =- ^\jf(x) , (5>2e)
yep \ • /

for all x g W2. Therefore, for all x g W2, maxj6pp(d(x) lx)-y+(x)<-min{ 8, Vty(x)}.
Hence, since maxy6,/'(0lx)-\jf+(x) =0 for" xe^, and since the function
n"*yepfJ(h Ix) is continuous inh, uniformly inx, there exists b g (0,6') such that W(x)l >b
forallx'e W2.
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Because the functions /*(• Ix) are strongly convex in h, uniformly in x, \d(x)\ is also
bounded from above in W2. Because W(x)l is bounded on W2 and the gradients V/'() are con

tinuous, there exist X>0 and a neighborhood, W3, of x, such that

ljov/J(x +sXd(x))ds - V/>(x)l <xhi> for all x g W3, Xg [0 ,X] and j g puO. (We assume
without loss of generality that W3 c wx if y(x) £ 0 and that W3 c w2 if y(x) > 0.)

(a) Suppose that y(xIt) £ 0 for some i0 g N. (This implies that \|/(x,) <0 for all i >i0 and that
Y(x) £ 0.) Then there exists an il > i0 such thatx,- g W3foTdHi>ilti e K. For i>ilti e K and

Xg (0,X],

/°fo +H)-/V.) =W0(x,), H)+ {Jo[V/0(x,- +**4)-V/°(x,)Wy.W

*X{(V/°fc),^)+ W,lijo[V/'(xf +jM)-V/'fc)Wil}

^X{(V/°(x,)^,)+Vi^WIl}

<M<V/%^,4)+V47H.|2} =V°(4U). (5.3a)

Similarly,forXg (0,X],i>ilti e K,and,/ g p,

/>fo +H)**{/'(*) +Wta), dt)+ W\\lm\xi +sXdi)-Vf'(xi)]ds\)

* X{fJ(Xi) +(V/'fc), *>+ ttyfrtyl} £ X/'(4 Ix.) . (5.3b)

Taking the maximum over; e /?, and using the fact that y+fo) =0, we obtain from (5.3b) that

V+(xf +A4) - V+(xt) <; X[max {/^ Ix.), 0} - v+(xf)] , (5.3c)
yep

for i > il, i g K and Xg (0,X]. It follows from (5.3a), (5.3c) and Step 2 of Algorithm 5.1 that

Xi >pX for i >i!, i g K. By Proposition 4.3(a), / Vi I*i) ^ 6(x,) for i >i j, i e K, and hence

/°(x,- +M) -f°M £ Xj\dk IX.) <, X,8(*i) <S- 160X5 , (5.3d)

fori >ilti g A".

However, this is impossible, since /°(x.) is monotone decreasing for />*! and

f°(Xi) -»/°(x), as i ->«.. Thus, the necessary condition (2.5a-b), must be satisfied at x in this
case.

(b) Now suppose that v(x,) >0 for all i g N and that y(x) >0. Then there exists ant^N such

that Xi g W3 for all i £ ii, i g /iT. For any x g R* such that fJ(h(x) Ix) 5 0 for each yep,
P(d(x) Ix) £ 0 for each ;"€/» by Proposition 4.3(a). For any jteR" such that
maxy-6p/'(/i(x)lx)>0, max.jGpp(d(x) \x)<maxj6pp(h(x) lx)£0 by Proposition
4.3(b). Therefore, /'(d(x) Ix) <y(x) for all y g /> and x g~ R\ Hence,

i

f\xi +Xdi)-v+(Xi) =/'(x,) +(V/^),m+ <J[V/>fo +jH)-V/^)14 ,XA(x,))-V+(x,)
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* X[f'M + (V//(x.). di)+Vtyfr W,l - V+(xf)}

£ X{/'(x.) + <V/>fr), <*)+ IfcyU,!2- V+(x4.)}

=X{/>(dllx,)-V+(x|.)} . (5.4a)

for all i > ij, i g AT, Xg (0, X], and j g p. Taking the maximum over jep, and using the fact
that 0- v+(x.) <; X[max y- 6J*(ft Ix.) - yjfc)],

V+(Xf +Xd.) - v+(x.) <; X[rnax {/'(4 Ix.), 0} - y+(x,.)]. (5.4b)
jep N '

Similarly,

f\Xi +X4)-/°(x,) * VVi I*,) . (5.4c)

for all i >i!, j g AT, X g (0, X], and y g /?. It follows from (5.4b), (5.4c) and Step 2 of Algorithm
5.1 that Xi > pX for i >i1, i e K.

From Proposition 4.3(b), if max kep /*(/»(x.) Ix.) >0,

max/*(4 Ix.)-v+(x.) <; max/*fo Ix.) - v+(x,) £9(x.) <J - 8. (5.4d)

Otherwise, max *e, /*(/» (x,) Ix.) £0, which, together with Proposition 4.3(a), implies that

max* «pp(di Ix.) - y+(x.) <; 0- y+(x,). (5.4e)

There exists i 2> i t such that y+(x,) >Vto|f+(x) for i > i2, i e K. Substituting (5.4d) and (5.4e) into
(5.4f),

Vf&+Ud-vM*-'klufa[vfM)th) Z-$mm[ULy+(x),b) . (5.4f)

fori >i!,* g K.

Since y(x,) is monotone decreasing, (5.4f) implies that y(x,) ->- «» as / -» «. However, this

is impossible, since \|/(x,) -• y(x) as i -»«>, Therefore, the necessary condition (2.5a-b) must be
satisfied at x.

(c) Now suppose that y(x.) >0 for all i g N andthat y(x) =0. In this case, we do not show that
9(x) =0, but merely that lim inf, _,. 19(x*) I = 0.

To obtain a contradiction, suppose that lim inf, _»„efo) <- 8' <0. Then there exists t^eN
such that 9(x.) <- 8' for all i > i x. By Proposition 4.3(a-b),

maxy6p/^llxl)^max{0,maxy-6p/>(/I(xl)lxl)}

<; max {0,9(x.) + y+(x,)} . (5.5a)

Hence

18



maxy€p/^lxi)-v+(xl)^max{-\lr+(xi).9(xl) }<;max{-v+(*).-5') <0 . (5.5b)

for all i > ix. This implies that y+fo) is monotone decreasing, and, since y(x) = 0, the sequence

(¥+(*•)h8N converges to 0. Therefore, there exists i2 >' i such that y+(x.)< V48' for all i >i2.

Hence,

max j6, p(h (Xi) Ix^ <; 9(x.) +v+(x.) <S - 8'+V48' <0 , (5.5c)

for all i > i2. From Proposition 4.3(a), then,

P(di\Xi)*p(h(Xi)\Xi)ZB(Xi) +v+(Xi)Z-V48' , (5.5d)

for alli > i2. This implies that/°(x,) is monotone decreasing for fori >i2.

Now we use the fact that x is an accumulation point of the sequence {x, }iaK. It follows

from an argument similar to the ones used in parts (a) and (b) that there exists X>0 such that
Xi > X for all i > i2, i e K. Combining this fact with (5.5d) and Step 2 of Algorithm 5.1,

/V,+i)-/°(*i)*-^'X. (5.5e)

for i >ii,i g K. Since /°(x,) is monotonically decreasing, (5.5e) implies that /°(X|) ->-«» as
K

i ->oo. This is impossible, however, since /0(x,)->/°(*) as i -»«o. The contradiction proves
that lim inft _,«19(x.) 1=0. D

Recall the definitions of /gqpOO and /PP(x) in (4.2b) and (4.3b) respectively, and that
Acqp(x)denotes the solution to GQP(x).

Lemma 5.1: Suppose that assumptions (i)-(iii) of Theorem 2.3 hold, and that (iv) strict comple

mentary slackness holds at the solution, St, of (1.1), (i.e. -for every \ie U(x) and) e p, \lj> 0 if

and only if f'(x) = 0). Then, there exist a neighborhood, V"', ofSt ,h* g R" and 8 > 0 such that,
for allx g V", (a)/PP(x) =Jc^x), andQ>) d(x) = /»gqP(x).

Proof: First we observe that assumption (ii) ofTheorem 2.3 implies that y(x) £ 0. Assumption

(iv), above, implies that £/PP(x) is asingleton {(I } for some ft g 2^,+1, and hence that 7 =J($L)
= [j g p I /'(x) = 0}. Let V be as defined in Lemma 3.1.

(a) Because (i) £/PP(x) = {(1 }, (ii) U?P(-) is an upper semicontinuous, compact-valued set-

valued map, and (iii) $.* >0 for all j g J, there exists a neighborhood W0 c v of x such that

u/>0 for every j e7 and \i g tfPP(Wo). From the definition of Jrv(x) in (4.3b), /PP(x) 3 7 for

all x g W0. Now we show that /PP c ?. By strict complementary slackness, f\St) <0 for every

;'*?. Since A(j?) =0 and /»(•) is continuous [Pol.l], there exists aneighborhood, Wx c w0, of St

such that P(h(x) lx)-y+(x)<0 for all j<i7 and x g Wx. It follows from the definition of

U?r(x) that u/ =0 for every j4? and every \ie Un(Wi)' Hence yg? implies j4Jn(Wi)>

Therefore, 7PP(x)=? for every x g Wx.

Byasimilar argument, we show that /Gqp(*) =? for all x contained inaneighborhood of
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St. (i) Since AcqP(x)=0 and y+(x) =0, an inspection of (3.Id) reveals that

tf gqp(* ) =tfrp(£)s {P }• (ii) Lemma 3.1 implies that /tGQP(x) is continuous in WXt and hence

tfgqpOO is an upper semicontinuous, compact-valued set-valued map. (iii) For all j g7, P'>0.
Hence, there exists a neighborhood, W0 c v, of x such that u7>0 for every y g ? and
^g C/coyWo). From the definition ofUcq?(x) in (3.1d), this implies that/^cQpC*) Ix)=0for

7 g7 and x g W0- Hence, by the definition of/cqP(x) in (4.2b) /cqP(x) o 7 for every x g Wq.

Now we show that 7cqp(x) c 7. By strict complementary slackness, /'(£) <0 for every ytf?.
Since hGQ?(x) =0 and Acq>() is continuous, there exists a neighborhood W^ c W0 of x such

that/y(AGQP(x) Ix)<0 for every j4? and x g W\. From the definition of C/cqpCx), yJ - 0 for

every yd? and every jig Z/cqpi '̂i). Hence y*? implies that y^/GQp(Wi). Therefore,

•JgqpCO =? for every x g W\. Statement (a) holds with V" =Wx n w\.
(b) This follows from (a) and Proposition 4.3(c). D

The following theorem asserts that, under an additional strict complementarity assumption,

the implementable Algorithm 5.1 has the same asymptotic rate of convergence as Local Algo
rithm 3.1. Without the stria complementarity assumption, the bound on the cost convergence

ratio which can be obtained for Algorithm 5.1 is the same as that obtained for Algorithm 2.1 in
Theorem 2.3. However, an improved bound is not obtained for Algorithm 2.1 under this addi

tional assumption. Under the strict complementarity assumption, U??(x) = {P } for some

A g Ep+l and hence u° =Jl° =(1°.

Theorem 5.2: Suppose that assumptions (i)-(iii) of Theorem 23 hold, that (iv) strict comple

mentary slackness holds at (x , (i)for every p, e C/PP(x), (i.e. -for every j e p, Qlj >0 if and only
if f'(x) = 0), and that Algorithm 5.1 constructs a sequence [x,-} £> in solving (1.1). Then, (a)

x,->£ as i -> °o, (b) for anye< &° /(l- ft0),

limsup Pc(W"^}^l-p^ min{—g—,1) , (5.6a)
'"*" Pz(Xi)-pt$) M A°d +e)

and (c) ify(Xi) £ Oforany i0 e N,

.. / fo+i)-/ (x) . w „AX
limsup ^1-p-j. (5.6b)

/°(*,)-/°(*) M
•

Proof: (a) The sequence lies in the bounded set L defined in assumption (ii) ofTheorem 2.3, and
hence it converges to the set of its accumulation points. By Theorem 5.1, lim inf, _*„ 19(x,) I = 0.

We prove that St must be an accumulation point Suppose not Then there exists a neigh

borhood W of x such that {x,-},- 6 N c I \ w. By assumption (ii) of Theorem 2.3, there is no

point in L \ W which satisfies (2.5a-b). Since L \ W is compact, this and Theorem 2.1(b) imply
that inf {9(x) Ix e L \ W} >0. But this contradicts the fact that lim inf f- _».. 19(x.) I =0. Hence
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x must be an accumulation point

Let V" be as defined in Lemma 5.1. The iteration maps (see the proof of Theorem 3.1) of
Algorithms 3.1 and 5.1 coincide for x e V". By Theorem 3.1, there exists a neighborhood

V" c V" of St such that if the sequence {x,}, 6 N enters V", it remains in V" and converges to

x . Since x is an accumulation point of the sequence, it must enter V". Hence, the sequence

converges to x.

(b) and (c) Since, by (a), {*,-},• e N converges to x and the iteration map of Algorithm 5.1

coincides with that of Algorithm 3.1 in the neighborhood V" of St, the results of Theorem 3.2

hold. Sincel/Pp(x)= (P },p.0 = ji0 =P°. D

6. NUMERICAL RESULTS

Algorithm 5.1 was compared with Algorithm 2.1 and the feasible descent algorithm in

[Her.l] (which also satisfies (1.3)) on several well-known inequality-constrained problems. Table
1 summarizes the performances of the three algorithms on these problems. The results for the
algorithm of [Her.l] are quoted from that paper. The abbreviations in the table have the follow
ing meanings:

NF: Number ofobjective function evaluations.

NG: Number of constraint function evaluations.

NDF: Number ofgradient evaluations of the objective function.

NDG: Number ofgradient evaluations of the constraints.

Each constraint was counted separately in the tabulation of NG and NDG. Bounds on the vari
ables, i.e., x* £ 0, were not included in the tabulation.

The algorithm parameters for both Algorithms 2.1 and 5.1 were set at

a = 0.9, p = 0.9, y = 1.0 in the experiments. To reduce the number of trial step sizes tested in the
Armijo step rule, quadratic interpolation was used at each iteration of both algorithms to deter
mine the initial trial step size.

The Rosen-Suzuki problem is problem 43 in [Hod]. See Figure 1 for a comparison of the per
formance of Algorithms 2.1 and 5.1. (The y-axis label "Cost Error" of the figures refers to the

quantity, /°(xi)-/°(x)). Colville's Test Problems One and Two are problems 86 and 117,
respectively, in [Hoc.l].

Kuhn-Tucker Problem [Con.l]: This problem has a unique minimizer at which neither the
Kuhn-Tucker constraint qualification nor the Mangasarian-Fromovitz constraint qualification

holds. It serves as a test of algorithm robustness. The minimum value of-1 occurs at x = (0,1).
Both algorithms converged to the solution from the feasible initial point x0 = (0.25,0.25). How
ever, Algorithm 2.1 converged sublineariy, while Algorithm 5.1 converged linearly. See Figure
2.
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Circular-Quadratic Problem: In this problem, the function approximations are exact for 7= 1,
thatis,/'(* Ix) =fj(x+h)f0Tj gpuO.

min {Vi(xf+ (x2+4)2) I Vi((x! + l)2+x2)-2£0 , V4((xt-l)2+x|)-2^0 } . (6.3)

The minimum value of 4.5 occurs at x = (0, -1); the feasible initial point x0 = (1,1) was used.

Infeasible Problem: This simple problem was constructed to demonstrate the behavior of the
algorithms when the constraints cannot be satisfied.

min { -Xl\ (Xi+loy+xIsO ,(Xi-10)2+x2£0 } . (6.2)

The minimum value of 1 occurs at the origin. Both Algorithms 2.1 and 5.1 converged to the solu

tion from the initial point x0 = (-10, -20).

7. CONCLUSION

We obtained a bound on the cost convergence ratio of sequences constructed by Algorithm

5.1 which is smaller than that obtained for Algorithm 2.1. On all of the standard problems on
which they were tested, Algorithm 5.1 far surpassed the performance of Algorithm 2.1 and was
competitive with the first-order feasible descent algorithm of [Her.l]. Search Direction Subpro
cedure 4.1 was developed as a method for approximating the solution to the GQP subproblem.

The above facts show that the subprocedure can profitably be viewed as a speed-enhancing
correction to the method ofcenters search direction (2.2a).

8. APPENDIX

The following two Theorems are special cases of Theorems 4.6 and 4.9 of [Han.1], used in
the proofof Lemma 3.2.

Theorem A.1 [Han.l]: Considertheproblem

tmnm {g°(x) Igj(x) <; 0. vy g p } , (A.l)

andsuppose that the functions gJ(-) are twice continuously differentiable.

IfxelR*, together with a Kuhn-Tucker multiplier vector u e R?, satisfies the standard
second-order sufficiency conditions[McC.l], then, for any e < 1/ lull, x is a strict local minimizer
ofthefunction eg°()+ maxg'Q. n

jep u

Theorem AJ2 [Han.l]: Consider theproblem (A.l) andsuppose that(i) thefunctions g'(-) are
convex and continuously differentiable, and(ii) there exists x1 g R* such that gi(x')< Ofor all
jep.

IfxelRH, together with a Kuhn-Tucker multiplier vector u g R£, satisfies the standard
second-order sufficiency conditions [McC.l], then, for anye < 1/ lullt x is a globalminimizer of
thefunction tg°() + max gJ(•). _

jep u

The following theorem is a restatement of Lemma 3.3 in [Wie.l].
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Theorem A3 [Wie.1]: Suppose that
(i) for yea, the functions £y:R* -»R are Avici continuously differentiable, and that e>Ou

given,

(ii) iwere exists TgR suc/t rto die set s£ [x g R" l<t>(x)£T J e £}, w/tere
<Kx) = max #^(x), wbounded andcontains a single pointSt suchthat

£ u/Vtf) =0 , (A.2a)

and

Z nV(* )=*(*). (A.2b)

for some jig 2^.

Lef 7* oe rte union of the sets 7(u), r^ten over all \ig I, w/iic/i, together with St, satisfy
(A.2a-b). Let B denote the null space ofthe matrix with columns [VgJ(x)) imf. Suppose also
that

(iii) there exists r > 0 such that,for all p. g U(jt),

rlh\2<(h, "LVG'iSt) h) Vn g B , (A.3)

where GJ(x) denotes the second derivative matrix ofg'(x). Then,

.. <b(x) ^ min {r , p}lim sup ^-L— £ i—LtJ- , (A4)
*->; <Kx)-<K*) p

where <&(x) k min max *'(x) + (Vy(x), A)+ V^pl/t I2—<Kx) wir/i p>0. n
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Problem Algorithm NF NG NDF NDG FV

Rosen-Suzuki [Her.l]
Algorithm 2.1
Algorithm 5.1

7

66

6

27

198

18

7

33

3

21

99

9

-43.81453

•43.83851

-43.82342

[Her.l]
Algorithm 2.1
Algorithm 5.1

15

132

20

54

396

60

15

66

10

45

198

30

-43.99907

-43.99912

-43.99927

Colville#l [Her.l]
Algorithm Zl
Algorithm 5.1

6

265

12

60

2650

120

6

127

6

60

1270

60

-32.03453

-32.06142

-3221449

[Her.l]
Algorithm 2.1
Algorithm 5.1

9

884

32

90

8840

320

9

436

16

90

4360

160

-32.34851

-32.34851

-32.34865

Colville#2 [Her.l]
Algorithm 2.1
Algorithm 5.1

36

1840

526

190

9200

2630

36

872

246

180

4360

1230

32.81567

32.81530

32.66952

[Her.l]
Algorithm 5.1

53

1741

320

8705

53

324

265

1620

32.34897

32.34906

Kuhn-Tucker Algorithm 2.1
Algorithm 5.1

92

45

184

90

46

6

92

12

-0.9009127

-0.92223418

Algorithm 2.1
Algorithm 5.1

6116

110

12232

220

3058

15

6116

30

-0.9900006

-0.9905035

Circular-Quadratic Algorithm 2.1
Algorithm 5.1

10

2

20

4

5

1

10

2

4.526097

4.530063

Algorithm 2.1
Algorithm 5.1

54

4

108

8

27

2

54

4

4.500000

4.500000

Table 1: Summary of Numerical Results
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