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ABSTRACT

The standard map has a divided phase space in which two dimensional regions of stochas-

ticity are isolated by one dimensional KAM curves which form a barrier to diffusion in action.

When two standard maps are coupled together, the two dimensional KAM surfaces no longer

divide the four dimensional phase space, and particles diffuse slowly along stochastic layers

by the process of Arnold diffusion. We compare an analytic calculation of the rate of lo

calized Arnold diffusion with numerically determined rates in regions having rotational and

librational KAM curves for a single map, in the weak coupling limit for which the three reso

nance model holds. We then determine the rate of global Arnold diffusion across many cells

of the 27T periodic mapping. The global diffusion rate depends both on the local diffusion

rate and on the relative volume occupied by the various stochastically accessible regions in

the four dimensional phase space.



I. Introduction

In non-integrable Hamiltonian systems of more than two degrees of freedom, KAM

curves cannot isolate the stochastic layers that lie along the separatricies of system reso

nances. That is, the entire web of stochastic layers are inter-connected, and initial conditions

in any part of the web can ultimately diffuse to all parts of it. The process, first proved

to exist by Arnold [1] and now known as Arnold diffusion, has been studied in a variety of

problems.

If three resonances can be locally isolated to be of dominant importance, then a method

exists for calculating the rate of diffusion along a local resonance layer, known as the three

resonance or stochastic pump model. The model has been used to analytically predict the

diffusion rate, with good agreement obtained with numerical results [2,3,4]. However, the

thickness of the stochastic layer in action, A/,, produced by the interaction of the two

strongest resonances, is exponentially thin in a perturbation parameter e : AIa oc e~Al* 2,

(Awl). As e becomes small the interaction typically involves an increasing number of

resonances, and the three resonance model under-estimates the diffusion.

An upper bound on the diffusion rate has been obtained by Nekhoroshev [5] of the form

D = (AIa2) /T oc e~i4/e1f/2, (A « 1) where for the number of degrees-of-freedom N = 3,

7=|, and therefore the diffusion may be quite rapid for relatively small e. In the regime

where many resonances overlap, this scaling has been investigated numerically for a model

problem, for N = 3, obtaining 7 = | [6]. This scaling with e is intermediate between

the three resonance model and the Nekhoroshev upper bound. All of the above results are



local, with the value of e associated with different resonant interactions varying widely over

different regions of the phase space.

Alternatively, a different question can be asked in connection with Arnold diffusion, ie.,

how long does it take for an initial condition to globally explore the phase space in a coarse

grained sense. Only the widest pathways of the Arnold web are considered to participate

in the diffusive process in this macroscopic sense, and thus a three resonance model might

be adequate, together with appropriate phase space averaging, to predict a global rate of

diffusion. This procedure has been successfully used to compute the global diffusion rate

through a stochastic web in a simpler problem [7].

In order to compare theory with numerical results, it is important (1) to investigate

a problem for which the main resonances span the space in a coarse-grained sense, such

that the dominant diffusion is along the main resonances, (2) that the diffusion is calculable,

locally, from a three resonance model, and (3) that the structure of the phase space is globally

regular. All of these conditions are satisfied by a pair of weakly coupled standard maps in

which the action is not restricted to a torus. The standard map also is convenient in that it

has been extensively studied and it's structure is well known. Probably for this latter reason,

there has been recent interest in the Arnold diffusion in such mappings [8,9,10].

The standard map, described by the equations

(1)

^n+1 = ^n + Ai+H

has been very useful in studying Hamiltonian chaos. It has the important property of being

2t periodic in both angle and action, this latter property being of particular importance for

the study of diffusion [11,4]. In addition, many interesting maps can be locally approximated
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by the standard map. As can be seen in Figure 1, generated by iterating a number of initial

conditions with K; = 0.8, the phase space consists of regions of stochasticity separated by

regular motion on KAM curves. The KAM curves consist of two types, librational motion

about fixed points and phase spanning rotational motion.

A four dimensional phase space can be produced by linking two standard maps together

with a coupling term:

4+i = 4 + Ki ^n Bn + iisin (Bn + <f>n),

9n+i = Bn + 4+n
(2)

4+i = 4 + Kj sin K + fi sin(9n + <£n),

4>n+l = 0n + 4+l-

The one dimensional KAM curves in the single map (1) become two dimensional KAM tori

in the coupled map (2). Since a two dimensional tori cannot divide a four dimensional phase

space, there can be diffusion of particles around the KAM surfaces in the coupled map,

which is the Arnold diffusion. The diffusion can be thought of as a random walk across

KAM curves in one map due to the kicks in action delivered by a stochastic component of

the phase motion of the other map. For small values of y. this viewpoint allows a reasonably

accurate calculation of the diffusion rate, as described in the next section. An example of

the Arnold diffusion is shown in Figure 2. which is a projection onto the (/, 6) and (J, <j>)

phase spaces of the position of a phase point recorded over9000 mapping periods. The initial

condition in (J, <j>) explores the available stochastic phase space around the separatrix of the

main island, but is transiently confined between KAM curves. The initial condition in (J, 6)

on a rotational KAM curve for the uncoupled map slowly diffuses to neighboring rotational



curves over a time long compared to the time for the (J, <f>) motion to define it's stochastic

separatrix region.

There will be three characteristic rates of diffusion in the coupled map. The first is

the fast diffusion across stochastic layers, which occurs simultaneously in both actions when

a particle is in the stochastic regions of both individual maps. The second is the Arnold

diffusion driven by the main stochastic layer. Slower Arnold diffusion occurs when a particle

is in a secondary stochastic layer in one map and on a KAM curve in the second map. For

small values of the coupling parameter /*, particles on regular orbits in both uncoupled maps

are on a two dimensional KAM torus in the coupled system. In this case no diffusion occurs.

II. Local Rate of Arnold Diffusion

We can calculate the rate of Arnold diffusion from the three resonance stochastic pump

model [2,3,4] which we outline here. Assuming diffusion in the (1,9) map is driven by

stochasticity in the (J, <j>) map, the Hamiltonian of the mapping is approximated as H «

Hi + Hj, with

P
Hi = -— + Ki cos 0 + 2/x cos (0 + <i>),

2 (3)
J2Hj = — + Kj cos <j> + 2KjCos <t> cos 2:rn,

where we havekept only the lowest fourier term from the mapping frequency in the Hj equa

tion of (3), and considered that the stochasticity in H{ is driven by the couphng. To calculate

the changes in H{ per iteration due to kicks delivered by (J, <£), we take the derivative

oHi dH: d r_ .. ... ^ d9 . .n ., vx , .0jp =-£ =-£ [2fi cos (9 +<f>)] +2ii-j- sin (9 +<f>(n)). (4)



The first term produces no net change over long times, and can be dropped. For rotational

orbits we assume that 9 = u^-n + 0O, where u>,- is a frequency which is approximately equal

to the average action of the rotational KAM curve, and 90 is a phase. Scaling the "time"

variable to revolutions of the map, s —a; -n, and defining the ratio of frequencies

(4) is integrated to obtain

o - —I - '

3 iYj
(5)

1 y_oo dn ds
r /"oo /"oo

= 2fjtQ0 \cos90 sm[Q0s + (j>($)]ds + sm90 cos[Q0s + <j>{s)]ds . (6)
L «/—oo «/—oo

Since ^(3) is an odd function, the first of the integrals in (6) integrates to zero. The second

is a Melnikov-Arnold integral [2], which can be evaluated to produce the result

AH{ = StthQq* sin 0O—:
sinh(7rQ0/2)
sinh(7rQ0)

Squaring A£Tt- and averaging over 90 gives

{(Aff,.)2) = 32ir»Q0V2\ _ o0,2n 4..2sinh2(7rQ0/2)
sinh2 (7r<50)

(7)

This is the change in Ht over one characteristic half period of the (J, cj>) map. To determine

the diffusion constant D, divide ((Ail,)2) by twice the average number of iterations in this

half period,

T,= —In
"J

32e

Wi

where w1 = H AH is the relative energy of the edge of the stochastic region,
'scparatrix

w1 = 8tt
2?r

T3

K>'2
,-*/Kil/*

(8)

(9)



Combining (7), (8), and (9), and using Aff, = IAJ, the diffusion distance in action is

The range of values of J and Kj which are interesting numerically produce values of Q0

between 2 and 6. For these values of Q0, (10) can be approximated in a form which exhibits

the main QQ scaling:

A/rm, « W'iQoe-*q'''\ (11)

where we have assumed in (10) that J « w,- and that ir2/Kj1^2 is the dominant term of the

square root in the denominator.

These analytic results can be compared with the numerically determined diffusion dis

tances. Some typical numerical results plotting A Jrma versus n for a few representative values

of fi, and QQ are shown in Figure 3. The initial conditions for 200 particles were taken on

the KAM curve with a rotation number of the golden mean in the (I, 9) space, and in the

primary stochastic region in the (J, <j>) space. The slopes on the log-log scale are j, and the

heights are proportional to /*, both characteristic of the scaling in (11). For these cases we

might expect the local diffusion formula to hold. The numerical calculations are terminated

at A7rm5 = 0.2 to keep the diffusion local.

In Figure 4 the analytic value for AIrma from (10) is compared with the numerically

computed values after218 iterations for a single f.i and a variety of values for Ki and Kj. The

analytic curve for a fixed fi and n depends only on QQ and therefore corresponds to all values

of Ki. The exponential dependence on Q0 in (11) is clearly observed. In all these curves,

(10)



the particles in (I, 9) were started on the KAM curve with a rotation number equal to the

golden mean (0.618...). This KAM curve was chosen because it is far from sizable island

chains which would distort the diffusion calculation. Numerically there is a weak dependence

on Kit with the large Ki curves lying above the small Ki curves. A possible explanation is

that the rotational KAM curves have larger variations in action for larger values of if,-. Our

analytic value for AIrm3 was derived using an average value of wt- for these curves. However,

since o^ enters into (10) exponentially through Q0, the use of an average frequency would

tend to underestimate A/rma.

The calculation of the diffusion across the librational curves is done similarly to (3)

through (10), except that for a librational curve 9 = 0ocos (u^n + Xo)» where u;,- = if,1'2, Xo

is a phase, and 90 is the maximum angle of the librational orbit. The calculation involves

an expansion for small 9Q and is therefore more involved. A quite similar calculation can be

found in reference [4]. The result is

A/_ =
rma

^ixKjl'Aii}l290Q2 sinh (7rQ0/2)
!/2 sinh(7rQ0) (12)/[fln^ +^-4.27

which looks like (10), except that it includes 90, and Q0 = ( ^-J depends on K^ As in

the rotational case, we can approximate (12) to emphasize the main Q0 dependence. The

approximate result does not depend on 9Q, because 9QK^2/I w 1 over a wide range of 9Q

and K{. The result is the same as in the rotational case:

A/rms « i^2Q0e-^/\

However, the range of QQ is now from 0.5 to 1.5, which produces quite different rates of

diffusion than in the rotational case.

8
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In Figure 5 we present a numerical calculation of A7rma versus n for libration orbits,

using the same parameters as in Figure 3, except that 9Q = 0.2, IQ = 0 for the initial

conditions in the (1,9) plane. We now note some significant anomalies from the expected

behavior. For the larger values of \i the diffusion rate does not scale proportional to /*.

For the smaller Kj there is a more dramatic effect at large /x, with non-diffusive behavior

observed. We believe these effects are due, in part, to a reordering of the resonance strengths

that occurs for large couphng, and possibly also related to a change in phase space structure

that appears near the origin of the main resonance [9]. We stay away from these anomalies

in comparing the theory and numerics for local diffusion on librational orbits, by choosing

H sufficiently small.

In Figure 6 the analytic value for A7rn„ from (12) is compared with the numerically

computed values after 218 iterations for a variety of values for K{ and Kj. In these curves,

the particles in (1,9) were started on the librational KAM curve with 90 = 0.2, JQ = 0. Note

that (12) is parameterized by Kj rather than by Ki as was the case in (10). The analytical

curve appears to form an upper bound on the numerical curves and appears to agree most

closely at the larger values of Kj. For smaller values of Kj, the numerically computed curve

lies below the analytical curve. Further numerical work has shown that this reduction for

small Kj is even greater for larger values of 9Q. However, for the global diffusion calculation

in the next section, the librational orbits play a role in the calculation that does not depend

on their local diffusion rate, so this disagreement between numerical calculation and theory

will not concern us for that calculation.



III. Global Rate of Arnold Diffusion

We now examine the global diffusion in action across the entire phase space for a large

number of iterations. An example of this diffusion in action is shown for K{ = Kj = 0.8

and y. = 0.01 on a surface of section at 9 = 6 = ir in Figure 7. This is not simply a trivial

extension of our local results to large n, because the diffusion carries the particles across

island chains and into regions of different I.

We will formulate an intuitive model of how the global diffusion proceeds. Assume a

particle starts in the primary stochastic regions of both the (1,9) and (J,(j>) maps. The

particle will explore this double stochastic region until it is kicked out onto a nearby KAM

curve in one of the maps, say, a rotational curve in (1,9). The stochasticity in (J,<j>) will

then drive Arnold diffusion across the rotational curves in (1,9). This corresponds to motion

along one of the major horizontal lines away from one of the four central "blobs" in Figure

7. Eventually, the particle will encounter another stochastic region in (1,9). For instance,

in the K = 0.8 case shown in Figure 7, the next stochastic region of substantial size will be

that surrounding the island chain with four islands and a rotation number of 1/4 (see Figure

1). The particle will then explore this double stochastic region until it is again kicked out

onto a nearby KAM curve. In the case at hand, it is most likely that the primary stochastic

region in (J,<t>) would kick the particle off the "1/4" stochastic region in (1,9), but there is

a possibility (in the ratio of the kick sizes) that the opposite will happen. In the latter case,

the "1/4" stochastic region in (1,9) will begin driving Arnold diffusion across KAM curves

in (J, <f>). It is by this process that the interior of some of the "squares" in Figure 7 are filled

10



in. The particle will continue this process of hopping from one stochastic layer to another

as it diffuses along the various layers in the (I, J) plane.

The kick size delivered by a stochastic region is proportional to the width of the stochas

tic region. Since the phase space of the angle variable is limited to 2tt, the kick size is also

proportional to the area of the stochastic region. These quantities are exponentially small

in the ratio of the local frequency to the mapping frequency for the uncoupled map. In

the coupled map, there are couphng resonances which thicken the stochastic regions. This

thickening is demonstrated in Figure 8, which shows the total area covered by the stochastic

region, for island chains of differing periodicities, without coupling and with a couphng of

fi = 0.003 and /t = 0.01. In Figure 8 we have taken into account the differing multiplicities

of island chains of differing periodicity, ie., that there are two island chains which have four

islands (rotation numbers 1/4 and 3/4) versus four island chains which have seven islands

(rotation numbers 2/7, 3/7, 4/7, and 5/7). Note that the relative thickening is greater for

thin (larger period) island chains. This suggests that the thin stochastic regions can deliver

a larger kick than would be expected from their thickness in the uncoupled map, increasing

the likelihood that they drive Arnold diffusion by kicking a particle out of a larger stochastic

region in the other map of the coupled system. They can also store a significant number

of particles in stochastic layers in which the diffusion is relatively slow, which will be the

important property for our global diffusion calculation. Although the total area of the /*

thickened stochastic regions does not appear to be converging to a particular value in Figure

8 we find that island chains with periodicity higher than eight tend to have been absorbed by

\i thickened stochastic regions of lower periodicity. By carrying our summation of stochastic
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region area out to periodicity nine island chains, we feel we have accounted for almost all of

the stochastic area.

We can check this result by counting the number of particles in the various portions of

the stochastic web. Figure 9 shows the (I, J) plane at a surface of section through 9 = <j> = tt

for 1000 particles iterated 2 million times each. In this figure K{ = Kj = 0.8 and y = 0.003.

The (I, J) plane has been made 2ir periodic to show the detail of the diffusion. The particles

are superimposed upon a grid which shows the stochastic regions at this surface of section

around the island chains which have 1, 2, 3, and 4 islands. The width of the stochastic

region is resolved only for the primary island. The clustering of the particles positions near

the stochastic layers indicates the particles are diffusing along this grid. Using Figure 9 and

similar results for y = 0.01, shown in Figure 10, we can test a key requirement of our global

diffusion calculation: that the phases space is reasonably filled on the time scales of the

numerical calculation. For y = 0.01, in Figure 10, 33% of the particles are in the primary

stochastic region of either map, and the phase space appears to be uniformly populated.

Referring to Figure 8, we find that for y —0.01, about 39% of the stochastic phase space

is in the primary stochastic region. Although this figure is slightly high, we expect the

inclusion of the stochasticity of the remaining higher periodicity island chains would make

it fully consistent with the value from Figure 10. In contrast, for y —0.003, in Figure 9,

55% of the particles are in the primary stochastic region of either map, and the phase space

is not uniformly populated. Referring to Figure 8, we find that for y = 0.003, about 52% of

the stochastic phase space is in the primary stochastic region. As in the previous case, we

expect the actual figure to be somewhat lower. The fact that more particles remain in the
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primary stochastic regions in Figure 9 than is predicted by Figure 8 is consistent with the

phase space not being uniformly populated for y = 0.003 after two rnillion iterations.

As noted above, the stochastic regions are exponentially thin in K. However, there is

an additional variation with K and position in the phase plane which should be noted. As

K is increased, big stochastic regions absorb smaller stochastic regions. For instance, at

K « 0.76 the stochastic region around the island chain with rotation number 1/5 merges

with and becomes part of the primary stochastic region. Before undergoing this merge, the

1/5 stochastic region itself thickens by absorbing still smaller stochastic regions which lie

between it and the primary stochastic region. This process continues to smaller scales, with

a renormalization scaling [12]. In this way, the stochastic Tegions are extended across the

map until, at K « 0.9716, the last rotational KAM curve disappears (specifically, the one

with the golden mean rotation number) and a stochastic path extends across the entire map

in action. The importance of this to our investigation is that the phase space accessible from

a particular stochastic location increases with K irregularly, and hence the rate of Arnold

diffusion may change substantially with a small change in K. It should also be noted that

the multiple examples of a particular period island chain will not necessarily have the same

size stochastic region. For instance, we might expect the stochastic regions of the island

chains with rotation numbers 2/7 and 3/7 to be of the same size. We have numerically

determined that the 2/7 stochastic region has an area that is 4.8 times that of the 3/7 island

chain at K = 0.8 in the uncoupled map. Similarly, the 2/9 island chain has an area equal

to 29 times that of the 4/9 island chain. These irregularities should be more evident in the

local diffusion calculations than in the global diffusion calculations, where they will tend to

be smoothed.

13



When a particle diffuses into a resonance zone consisting of libration orbits surrounded

by a stochastic layer, it is quickly transported across the island chain. There is also some

probability of diffusing more deeply into the central librational area. Diffusion across libra

tional curves differs from that across rotational curves in two important ways beside the

difference in Q0. First, the second order island chains within a librational region are much

smaller than the higher period island chains in the rotational regions. Second, because the

librational orbits encircle a singular elliptic fixed point, there is less phase space in the in

ward direction than in the outward direction. Thus there will be fewer particles at smaller

values of action in the librational region of the primary resonance. This fall off in density

can be seen in Figure 10 as a relative absence of particles in the regions where 7 or J are

near 0 or 2tc. The near total absence of particles in the four corners (a typical region is

labeled with an "A") corresponds to particles being on librational orbits within the primary

stochastic region in both of the maps. Similarly, there are empty regions in Figure 10 at all

combinations librational-librational regions inside the island chains as well (typical regions

are labeled with a "B").

The net effect of the librational phase space within the stochastic layer in calculating the

overall global diffusion is that it stores particles that do not actively diffuse. In other words,

the librational phase space removes a portion of the particles from the global diffusion, but

the remaining particles can be considered to jump over this phase space in diffusing across the

(I, J) phase plane by passing through the stochastic regions around the librational regions.

This librational phase space can account for a substantial portion of the total phase space.

In the uncoupled map, we have determined numerically that the fraction of the phase space
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which is librational scales approximately linearly with K between K = 0.2 and K = 0.7 and

reaches a maximum of about 50% at K = 0.8, as shown in Figure 11.

A summary of the four types of coupled phase space is given below:

1. Stochastic-stochastic: a particle in this region is immediately transported a distance

in action equal to the width of the island chain around which the stochastic region lies.

Particles in this region contribute to the diffusion, but with a very high diffusion rate.

2. Stochastic-librational: the motion of a particle in this region averages to the fixed

point as it librates around the island. It is therefore effectively removed from the global

diffusion while in this region.

3. Stochastic-rotational: a particle Arnold diffuses slowly through this region until it

encounters another stochastic region in the rotational map. We divide this region into

two classes: (a) the primary stochastic layer and (b) regions other than the primary

layer for which the diffusion is very slow, and to first order can be ignored.

4. Regular-regular: particles which begin in a stochastic region in at least one of the

maps cannot diffuseinto these regions. This phase space is removed from the calculation

of global diffusion.

The following method is suggested to calculate the global diffusion. A diffusion rate

along the stochastic layers of the primary island chain is calculated by averaging the local

Arnold diffusion rate across regions 1 and 3(a). Regions 2 and 3(b) act as sinks for particles,

removing them from the diffusion process. Region 4 is omitted from the calculation.

The local diffusion constant, Dt, varies greatly with a;^ « I, as shown in Figure 12.

To determine an average diffusion constant, Davc, over a 2tt interval, we must average the

reciprocal of Dt across the regions participating in the diffusion. The diffusion through the

15



stochastic regions is very fast, so it will contribute little except it's area to Dave. Due to the

symmetry of the map about I = tt, we need only calculate the average for half the map, so

we take as the limits of our integration the edges of the primary and period 2 island chain

stochastic regions, as shown in Figure 1. The integration is:

/ i \ _^ln/^ +̂ r-4.27 ,.92, sinh2 (xuJK^) _^
\DZ)~* Kffl&nlKj)2 Jm. sinh2(™i/2J<-//2)a'' "'"

This equation can be evaluated numerically to produce Dave = (l/Dave)~ = 5.8 x 10~5 for

Kj = 0.8 and y = 0.01. To produce the proper global diffusion constant we must weight

the average diffusion constant by the proportion of particles that actually participate in the

diffusion:

D =^LD . (13)
iVfot

To determine Ndij, we need to numerically calculate the relative areas of the libra

tional, rotational, and stochastic regions of a single map with coupling-resonance-thickened

stochastic regions. For Kj = K{ = 0.8 and y = 0.01, we find that approximately 40% is

librational, 11% is rotational, 19% is primary stochastic, and 30% is secondary stochastic.

In making this numericalcalculation, we have included island chains with period < 9. Since

we have two maps, we multiply out the various combinations of these regions and sum over

like regions, finding that 26% of the phase space is in regular (ie., librational or rotational)

regions in both maps. No particles diffuse into the regular-regular regions, so we remove

that phase space from the calculation. Of the remaining phase space, 32% is stochastic-

stochastic, 6% is primary stochastic-rotational, 9% is secondary stochastic-rotational, and

53% is stochastic-librational. The 32% stochastic-stochastic phase space can be subdivided
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into primary-primary (5%), primary-secondary (15%), and secondary-secondary (12%) re

gions.

Only those particles in the primary-primary, primary-secondary, and primary stochastic-

rotational regions will contribute to the diffusion. Assuming that all regions are uniformly

populated with particles in the limit of long times, we find that -^- « 0.26. Substituting

this value into (13) gives Dg « 1.5 x 10~5. Similarly, for y = 0.003 we obtain j^ « 0.29

and Dg » 1.5 x 10"6.

The expected diffusion distance is then

A/ -<=£«£ (M)

where (7) « j. The resulting AJrma is compared to the numerically determined value as a

function of the number of iterations n for 1000 particles with A",- = Kj = 0.8 and y = 0.01

and 0.003 in Figure 13.

The initial flat portion of the numerical curve is the result of all particles immediately

taking on an action value equal to the width of the primary stochastic region at our surface

of section 9 = </> = ir. As the particles diffuse outward and distribute themselves more

evenly over the accessible phase space the numerical curve approaches the theoretical curve

predicted by (14). The numerical curve remains some distance above the theoretical curve,

because the theoretical curve was derived assuming that particles evenly fill the accessible

phase space. In reality, there is a transient region at the outer edge of the diffusion where

this even distribution has not been estabHshed. However, for long enough times the effect of

this transient region will become negligible. We can estimate the time required for this to

happen by examining the relative rates of Arnold diffusion driven by primary and secondary
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stochastic regions. Define two characteristic diffusion times as t = L2/Dj and At = P/Da,

where L is the long diffusion distance over the (I, J) phase plane, Df is the fast rate for

Arnold diffusion driven by the primary stochastic region along the stochastic grid shown

in Figure 7, £ « tt/2 is a characteristic short diffusion distance to fill in square regions

"inside" the stochastic grid in Figure 7, and Da is the slow rate for Arnold diffusion driven

by the secondary stochastic regions. At is the characteristic time required to fill in the

square regions "inside" the stochastic grid. We then have L'2 = Df(t + At), where V is the

distance fast particles diffuse after an additional time At. Letting AL = V —L, we see that

L'2-L2v2LAL = Df--

Dividing through by L2, we find

AL lAr

~*2~

so that the diffusion distance due to the transient effect, AX, will be negligible after a time

which makes At/t small. The time required to make AX negligible will be greater for small

y, because, as shown in Figure 8, the width of the primary stochastic region that drives

the fast Arnold diffusion along the stochastic grid depends weakly on y, whereas the widths

of the secondary stochastic regions depend strongly on y. It is these secondary stochastic

regions that drive the slow Arnold diffusion which fills the squares inside the stochastic grid.

IV. Conclusions

We have calculated local rates of Arnold diffusion across rotational and librational KAM

curves in a system of coupled standard maps, for small couphng, employing a three reso

nance, stochastic pump model. Using these rates together with general arguments concerning

18



different classes of diffusing particles and the assumption that the long-time limit gives a

uniform density in the accessible phase space, we have calculated a global rate of Arnold

diffusion across the phase space on the action scale of 2n at which the mapping equations

are periodic. The numerically determined rates of both the local and global diffusion are

in reasonable agreement with analytical calculations. Some anomalies exist, particularly in

the local rate of diffusion across librational orbits, which merit further investigation. Two

extensions of this work are to make similar calculations for large coupling, and to increase

the number of degrees of freedom by coupling together a larger number of standard maps

[13].
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Figure Captions

Figure 1. The standard map for K = 0.8 and a number of initial particle positions. The

bracket shows the region between the primary and period 2 island chains in which rota

tional KAM curves exist.

Figure 2. The coupled standard map for 9000 iterations of a single particle, projected onto

the (I, 9) and (J, <t>) planes. The particle was started in the primary stochastic region in

(J,<f>), and on the golden mean rotational KAM curve in (1,9).

Figure 3. Arnold diffusion distance, AJrmj, versus number of iterations for 200 particles and

differing values of y and Kj, when particles are started on a rotational KAM curve in

Figure 4. Arnold diffusion distance, AJrma, after 218 iterations versus Q0, for 200 particles,

y = 0.0001, and differing values of K^ when particles are started on a rotational KAM

curve in (1,9).

Figure 5. Arnold diffusion distance, AIrma, versus number of iterations for 200 particles,

9Q = 0.2, and differing values of y and Kj, when particles are started on a librational

KAM curve in (I, 9).

Figure 6. Arnold diffusion distance, A7rma, after 218 iterations versus Q0, for 200 particles,

90 = 0.2, y = 0.0001, and differing values of Kj, when particles are started on a librational

KAM curve in (1,9).

Figure 7. Arnold diffusion in the (I, J) phase plane for a surface-of-section at 9 = <f> = tt,

with Ki = Kj = 0.8 and y = 0.01. 500 particles were started in the primary stochastic

regions of both (1,9) and (J, <j>), and run for two million iterations.
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Figure 8. Area of the stochastic regions around island chains of varying periodicities for

K{ = K = 0.8. Values are plotted for the uncoupled map, and for the coupled map

with y = 0.01 and 0.003. Each value is the total area for all island chains of a particular

periodicity, ie., there is a single island chain each with periods 1and 2, there are two island

chains each with periods 3, 4, 5, and 8, there are four island chains each with periods 7

and 9, and there are no island chains with period 6. The "missing" island chains of each

periodicity either heon top of a lower period island chain, or have been absorbed into the

stochastic region around a lower period island chain. Areas are normalized to 1.

Figure 9. Arnold diffusion in the 2n periodic (I, J) phase plane for a surface-of-section at

9 = (j> = 7r, with I<i = Kj = 0.8 and y = 0.003. 1000 particles were started in the primary

stochastic regions of both (1,9) and (J, <j>), and run for two milhon iterations. The particles

are superimposed upon a grid showing the primary stochastic region and the stochastic

regions around the period 2, 3, and 4 island chains in the uncoupled map.

Figure 10. Same as Figure 9, except y = 0.01. The region labeled "A" is in the primary

librational region in each map. The regions labeled "B" are in the period 2 island chain

librational region in one or both maps.

Figure 11. The total librational area inside all island chains of the uncoupled map as a

function of K. Areas are normalized to 1.

Figure 12. The local Arnold diffusion constant, Dt, for rotational orbits as a function of

a;,- « I for K{ = 0.8. It is normalized so the maximum Dt = 1.

Figure 13. The numerically calculated global Arnold diffusion distance is compared with the

theoretical value, versus number of iterations, for Ki —Kj = 0.8 and y = 0.01 and 0.003.

1000 particles were started in the primary stochastic regions of both (1,9) and (J,<j>).
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Rotational Diffusion Region
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