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INVARIANCE PROPERTIES OF CONTINUOUS PIECEWISE-LINEAR

VECTOR FIELDS, f

Robert Lum and Leon O. Chua. ft

Abstract

In the application of continuous piecewise-linear vector fields to the modelling of sys

tems, it is often desirable that the model preserve certain properties of the system that

it is supposed to emulate. These properties may represent fluid incompressibility, con

servation of energy and symmetries. In this papar necessary and sufficient conditions

are stated for the identification and imposition of several such properties.

The first part of the paper addresses continuous piecewise-linear vector fields that

are divergence free, gradient systems, and Hamiltonian systems. The second half of

the paper determines possible relationships between a lattice piecewise-linear vector

field and a transformation matrix. This will facilitate the identification of symmetries

of a lattice vector field and the classification of lattice vector fields possessing certain

symmetry properties.

With these results, the modelling process via piecewise-linear vector fields will have

the capacity to preserve intrinsic structure of the modelled system.

t This work is supported in part by the Office of Naval Research under Grant N00014-89-J-1402.
ft The authors are with the Department of Electrical Engineering and Computer Sciences, Uni

versity of California, Berkeley, CA 94720,T)SA.



§0. Introduction.

The modelling of physical systems may require certain salient properties of the original system to

be preserved. For example, in modelling a reciprocal RC or RL circuit, the vector field must be a

gradient system. In the modelling of fluid flow, the model should be divergence free to reflect the

incompressibility of the original fluid. In buckling plate problems, with the deformations of a square

plate under increaing pressure, the symmetry of the situation has to be taken into account. In this

paper, the identification of several important types of continuous piecewise-linear vector fields is

undertaken.

The first half of the paper is devoted to giving necessary and sufficient conditions for the

identification of divergence tree, gradient, and Hamiltonian piecewise-linear vector fields. With these

results a researcher will be able to validate whether certain properties of the original vector field are

maintained under a piecewise-linear vector field modelling. On the other hand, the researcher may

a priori require that a piecewise linear vector field have certain properties, and determine whether

or not it is possible to model the original vector field under the condition of possesing this property.

The second half of this paper determines some results between lattice piecewise-linear vector

fields and symmetry. Given such a vector field and a matrix acting on the state space there are

several questions that can be asked about the relation between the lattice piecewise-linear vector

field and the matrix. Are the vectors of the lattice piecewise-linear vector field invariant under the

transformation induced by the matrix? Is the lattice piecewise-linear vector field invariant under

transformation of the state space by the matrix? Do the lattice piecewise-linear vector field and

matrix commute as functions? Answers to these questions form the second half of the paper.



§1. Definitions.

In this section the definition of a continuous piecewise-Unear vector field and lattice piecewise-linear

vector field are presented.

Definition 1.1. A continuous piecewise linear vector field £ in n independent variables is given by

•*r •<*r

2 = i +

• xn. .<*!»•

"6n . •• &ln" •*r m '<*iil fAi" (

"*l"

• •

•

+E ; j J
"7i

-&nl • •• bnn - .*n- i=i .ajn. L&«. -*».

where 0 < ojt + ... + a|n, 0 < /9?t + ... + 0?n for j = 1.. .m. Henceforth, continuous piecewise
linear vector fields will be called vector fields.

Definition 1.2. The signature of a point x is the m-tuple givenby

sig(x)= (sgn(#x - 7l),..., sgn(/3i,x - ym))

where sgn(x) is —1,0,1 depending on whether x<0, z = 0,0<x respectively.

Definition 1.3. Given a vector field £ in n independent variables there is an associated partition

of »n where

Parttf) = {AiltMtim : A,-, ,m = {x: sig(x) = (ii,...,*ro)},(ti,...,tra) € {-M}m}

and Atl ,m is the closure of the set A,it..Mlm. The set A,lf...,,m is open, being the intersection of

half-planes of the form 0 < $x - yt or #x - 7,- < 0.

Lemma 1.4. For everyAilf..Mlm € Part(£) ofa piecewise-linear vector field £ there isa unique linear

vector Held ^ im such that &,..,.•JAil m=^|a4i m.

Proof. For x € A,lt..M,m the vector £(x) is given by

*

Xx <*i

L«„J Lo„J

*i

"&11 ... 6i„] Txi] ro

; i hk
lbnl ... bnnj L*»J i-1

'611 ... bi

<*3l [A.' 1
'Xi'

I
1

I -7i

.<*j«\ u». .*„.

*u ... &m"| r*ii m

= : h +E<
L6„i ... 6noJ LxnJ ,=l

•ai-E^i«i«ii7i"| rhi +E^iWi^i ••• *i» +E;LiW

.«»-EJLi*i«i«7iJ L*toi +EJLi<i«i«fti ••• *»« +£JLiw
It is immediately clear that there exists a unique linear vector field 6i,~.,*m ^h the property

that 61 ••-.Ui, <m = fk, m. The linear vector field fclt...,<m will be written as £it <m(x) =
d»i fm + M,-, Imx. I



Definition 1.5. A lattice continuous piecewise linear vector field £ in n independent variables is

given by
*i <*i 'bn ... bin~\ [Xi" n nt-

+EE
<*ij\

|*<-T«I

L*„ .a„J L6„i ... 6„„J Lx„J <-ii=i .a»i«.

where 0 < ocf^ +... +er^n» 7a < ... < 7,n< for *= 1...n. Henceforth, lattice continuous piecewise

linear vector fields will be called lattice vector fields.

Definition 1.6. Given a lattice vector field £ in n independent variables there is an associated

partition of $n where

Part(£) = {A*,,...,*. = Lifcl x ... x Lnkn : 0 < *i < nu..., 0 < kn < n„}

with

Li0 = (-co, 7<i]

Um = binnioo).

1 < j < n<

Lemma 1.7. For every Aj^,...,*,, € Part(£) ofa lattice vector field £, there is a unique linear vector

fold &i,...,*« such that &„...,*JA*t *. = fk, fcn-

Proof. For x € A*lt...f*„ the vector £(x) is given by

"&n ... 6i„"| Txi"

<*i

LanJ

x1 <*i

LX«J La„J .6ni ... bnn.

"6ll ... bin~\ r

+E E
&„i ... &»J LxnJ »=1 V^1

Ofyi

La»i»J

<*i - ELi (Ejii «wiTw - E;;*i+i or0i7o)

.<*n - S?=1 (X^Ll <*ijnlij - Y!fLki+l aun7iiJ .
&11 +Ej=l °lil - E"i*l+l <*ljl ••• &ln +E*=l «nil - E"=fc.+1 ttnil

n n

+EE
fei i=i

x.-!<-*y<ii

Otii

L««inJ

{in - *i)

Xi

.&nl +52j=i Olin - E"=t1+1 <*lin ' •• &»» +53j=l <*»in - £jF=*»+l <*t .
It is immediately clear that there exists a unique linear vector field &,,...,*,, with the property

that fti^^k, kn = £Ufcl km. The linear vector field &„...,*. will be written as 6i,...,*. W =
d*lf...,fcn+Mjbl,...1*„x. |

*njn. Lx.J



§2. The divergence firee vector field.

In this section necessary and sufficient conditions are givenfor a vector field to be divergence tree.

Theorem 2.1. Let £ be a vector Geld of the form

•*r "ori"
•

=
*

+

-*n. -On- 'nl

•*r m "<*>i" "Ai"
t

"*i"

• +£ • • * -7i

.*„.
i=i

.<*>*». .&'«. .x„.• • • bnn•

The vectorfield£ is divergence free ifand only if

•=i

and EJ=i ^i*/3!;* = 0 for 1 < j < m.

Proof. First note that if a linear vector field £(x) = d + Mx is divergence free then the trace

of the matrix M is zero. Assume that the vector field £ is a divergence free. For given signa

tures (t*i,...,t;_i,tf,ff+i,...,*m)>(tii..Mij-ij—*jj»>+ii...i*m) consider the linear vector fields

&i,....iV-i,«i,»i+i,....«m and 6i,...,iV-x,-«i,«i+»f...,im Thus, as divergence free linearvectorfields, the traces

of the matrices Mi,,...,^,,^^,...^ and M^,...,^.,,-^,,^,...,^ corresponding to these two linear

vector fields are zero. In particular, the matrix MSl ^.i,,,-,^,...,,,, - M^...,,,.,,^.,,^ ,m has

zero trace from which it follows that

<*ii/fyi ••• <*ji0ju
2 : :

,<*jnPjl ... <*jnPjn.

has zero trace. Thus £J=1Qty*jfy* = 0 for 1 < j < m. Now consider the linear vector field & i.
The matrix Mi,...,i corresponding to this linear vector field also has zero trace, thus

"&11 +EJLiOtjiPji ... bin + 2JLi <*jiPjn '

.bni +EJLi <*jnfij1 ••• bnn +£JLi <*jn&jn .

has zero trace from which it follows that E?=i &« = 0.

Conversely, assume that 2"=16« = 0 and£JBl ajt#* = 0 for 1 < i < m. Then for the linear

vector fields &,...,<„ the matrices M,lt...,<m,

&ii + lyjLi ijtXjiPji •" *i» + J2jLl *jajiPjn'

have trace

.Kl +Ejfel *S<*jn0jl ... &nn +Ej^l WnPjn.

« / m \ n m n

£ I*» +S W*ft* =E 6» +Z)«i ]£ "**A* =°-
*=i \ i=i / i=i ,=i k=i



Thus, the linear vector field &i,...ttm is divergence free, from which it follows that the original vector

field ( is divergence free. |

Example 2.2. (Figure 1.) A divergence free vector field in Si2 is that given by

[;]-[sW]|[->]'[;]-4
It is clear that the defining constants of the vector field satisfy the conditions of theorem 2.1, thus

implying that the vector field is divergence free.

Example 2.3. (Figure 2.) A divergence free vector field in 92s is that given by

x

y

f

This is another application of theorem 2.1 to construct a divergence free vector field, this time in

R3.

1 0 0 " x" "l" r i"
t

X " 1 " 1*1"
<

"x"
0 2 0 y + 2 4 y -1 + 4 2 y + 1
0 0 -3 z _ 3 L-3 z m -3 [3 mz m

Corollary 2.4. Let £ be a lattice vector field of the form

m ... binl fXi" <*ijl*1 <*i

• = • +

Lx„J La„J L >m ... bnn^ LxnJ »-ii=i

The lattice vector £eld £ is divergence free ifand only if

X>.,=o
t'sl

and otiji = 0 for 1 < i < n, 1 < i < n,-.

Proof. Immediate conseqence of theorem 2.1. |

Example 2.5. (Figure 3.) A divergence free lattice vector field in tft2 is that givenby

«[;]-B]+[!i][;]+[s]'-^[J]i-'i-
It is clear that the defining constants of the latticevector field satisfy the conditions of corollary 2.4,

thus implying that the lattice vector field is divergence free.

l*<-7*i|.
l **«i» J

Example 2.6. (Figure 4.) A divergence free lattice vector field in B3 is that given by

x 0 2 0 1 x 0

y = l + 23 0 y+1

z\ L2J L1 1 -5 * 3

"0* r i "1
«-ll+ 3 |x+l| + 0

1 -2
\vl

This is another application of corollary 2.4 to construct a divergence free lattice vector field, this

time in 8S3.



§3. The gradient vector field.

In this section necessary and sufficient conditions are given for a vector field to be a gradient system.

Lemma 3.1. Let £ be the linear vector Geld given by

w± r*«ii minimJ mJ *i

LXnJ
nl

m m""J Lx„J

Then £ is a gradient system ifand only if the matrix

"m11 ... m

.mnl ... mUnj

is symmetric.

Proof. Assume that £ is a gradient system with gradient function G(xi,..., xn). Then

Xi

LXnJ

from which it follows that

inn

r 9G n
VxT

BG
S*T J

*i r«,iim
lni

m

D£

Thus

LX(

rmllr m

Lmnl ... mn**J

. e^G b*g .

Inn
m

nlLm . mww J

is a symmetric matrix.

Conversly, suppose that the matrix

m
Inn

m

Lm"1 ... mnn

is symmetric, then a gradient function for £ is given by

d1

.d"

1 n n n

G(xi,..., x„) = - 2 ^ m^x.x,- +53«***< +c
t=i i=i •=i

for some constant c.



Theorem 3.2. Let £ be a vector Geld of the form

*i <*i rbn ... bIn "*r m "<*/il [ftl" t

•*r

• +E j ; .

-is

.*n. i=i -ain. u». -Xn-.XnJ LonJ L&ni ... bnn-

The vector Geld £ is a gradient system ifand only if

"611 ... binl

.6„i ... 6nn.

is symmetric and

<*ji

= *i
L^jnJ

Proof. Assume that the vector field £ is a gradient system with gradient function G. For given sig

natures (»i,..., tj_i, ij, ij+u •••» *m)» («i> •••» ij-it —iji »i+i» •. •» »m) consider the linear vector fields

6i.....<i-i.<;.<i+i.....<M a*"1 6i.....</-i»-<;.</+i«...*<-»* By lemma 3.1, the matrices Mllf..Mti_ltiiiti+l^.ftllt
and Milt...tij_li-ijiij+li...tim corresponding to these two linear vector fields are symmetric. In partic

ular, the matrix M,lt..Mli_ltlifli+1 ,m - M,lt...lti_1,_,i,li+lt..M,m is symmetric from which it follows

that

<*jiPji ••• <*jlPjn

.<*jnPjl ... <*jnPjn

issymmetric. Thus ctjkPji =Qjtfa. As0< fa +...+0jn then fa ? 0 for some 1<7< n. Assume
that fa ? 0, then ajk = {aix/fa)fa. Let hj = (ctji/fa), then

Lainj .#n.

Now consider the linear vector field &,...,i. The matrixMi,...,! corresponding to this linear vector

field is symmetric, thus

.&nl +£Jll kjPjnPjl

is symmetric from which it follows that

r*ii

bnn +EJLi kjfafa.

6l«l

,6Bi ... frf

is a symmetric matrix.



Conversely, assume that

is symmetric and

"6n ... bin'

,bni ... bnn

*<*;i" 'Pji'
• = *i •

.<*;». .Pin.

for 1< j < m. Then for the linear vector fields &,,...,«„, *he matrices MtJ,...,,m,

"&11 +SJLi *i<*iiPii ... &in +EJLi *i<*iiPin

.bnl +2^-i *i<*inPi\ •.• &nn +£JLl *i<*inPin

'&11 +E/Li *ikiPiiPji ... &in +EJLi ifefafa
• • .

bn\ +E/Ll iifyPinPil ••• &nn +E/Li b'^iPinPin,
are symmetric. By lemma 3.1, there exists a gradient function Cr(-ll..M<m(xi,...,xn) defined on

•A-ti,...,«m. Finally define

G(xi,...,xn) = G<,t...,lim(xi,...,xn) (xi,...,xn) € Ajlt...,fm.

It is immediate that G is a gradient function for (. |

Example 3.3. (Figure 5.) A gradient vector field in 82 is that given by

<[;H;M;f]'[;H**n;]|-
By theorem 3.2 this is an example of a gradient vector field. The symmetry that the theorem

demands is clearly evident.

Example 3.4. (Figure 6.) A gradient vector field in ft3 is that given by

.?]"[iii][i]+[i]|E][i] +1 + vl-i|-

This example was also constructed by the use of theorem 3.2. Again, the symmetry required for a

gradient vector field is clearly evident.

Definition 3.5. The vector e,- is the tth coordinate vector where all the entries are zero except for

a one in the tth row.

8



Corollary 3.6. Let £ be a lattice vector Geld of the form

Xi

LXnJ LOfnJ

<*1 *fell ... bin"\ fXi*

,6nl ... 6nn. LX„J •=i i=i

The lattice vector field £ is a gradient system ifand only if

r&n ... &in1

is symmetric and

Ibnl

Oiil

<*iin.

•» bnn•

= <Xiii*i

oryi

|«*-7«l

L^O'nj

for 1 < t < n, 1 < j < n,\

Proof. Immediate consequence of theorem 3.2.

Example 3.7. (Figure 7.) A gradient lattice vector field in ft2 is that given by

GafcHsH+RMsW
By corollary 3.6 this is an example of a gradient lattice vector field. The symmetry that the corollary

demands is clearly evident.

Example 3.8. (Figure 8.) A gradient lattice vector field in ft3 is that given by

X 0 14-1 X "l" V V "o
y = 1 + 4 2 0 y + 0 |* + 3| + 6 |y-3| + 0 k-2| + 0

z -2 -10 3 z m 0 0 2 3

l*+ 2|.

This example was also constructed by the use of corollary3.6. Again, the symmetry required for a

gradient lattice vector field is clearly evident.

Closely related to gradient systems are pseudo-gradient systems. Pseudo-gradient systems include

gradient systems as a proper subset and thus may be considered as an extension of gradient sys

tems. The remainder of this section is devoted to finding necessary and sufficient conditions for the

determination of psuedo-gradient systems.

Definition 3.9. A pseudo-gradient vector field £, is a vector field for which there exists a matrix

X and gradient vector field <such that either (X o£)(x) = <(x) or £(x) = (X o<)(x).

Definition 3.10. Given a matrix A, define the set

Pg(A) = {X : XA = A'X'}.



The matrix X is such that XA is a symmetric matrix.

Lemma 3.11. Considering a matrix X written in the form ofanx n-tuple

*ln

*nl

.xnn.

there exists a finite set of vectors vi,..., vp € Rnxn such that

Pg(A) = fov! + ...+ <pvp :<i,...,*p € »}.

Proof. To solve the equation XA = A'X1 is the same as solving
n n

22*ifco*i =22a*ixi*
fc=l i=l

which can be rewritten in the form

0 ... 0

Oln »•• Ont

22Xlk€ikn = si Q*l*nfc
Jt=l k=l

S,xnk<*kl = yjOfcnSU
k=l Jb=l

4=1 *=1

—On • • • —«nl

-ai, —Onn an «nl

0 ... 0 ... 0 ... 0

Thus, X € Pg(A) if and only if it solves the above equation. This means that

«ln

10

"Xn" -o*

I J

*ln 0

*
= J

*nl 0

•

:

.*nn. .0.



is in the kernel of the matrix in the right-handside of the above equation. By linear algebra, the

kernel is a linear subspace of %nxn which can written as the span of the linearly independent vectors

vi,...,vp. Thus,

Pg(A) = {tivj + ... + tpVp :<i,...,tp € »}. I

Lemma 3.12. Given two linear subspaces spanned by the vectors vi,..., vp and wi,..., w, re

spectively, the intersection of the two subspaces is given by the span ofsome vectors ui,..., ur with

r<P,«.

Proof. Let x € {tivi +... + tpvp : tu..., tp € &}n {«iwi +... + sqwq : si,..., sq € »}. Then

[Vl, .. ., Vp, Wl, . . . , Wg J
-«i

L~S,J

By linearalgebra, the solution for <i,..., tp, —«1$...,-sq is in the kernel of the matrix in the left of

the above equality. Let the kernel be spanned by the vectors y1,...,yr. Thus,

vl ... Vl

from which it follows that a spanningset of vectors for the intersection of the two subspaces is given

by
vl ... vi

[ui,...,uP] = [vi,...,vp]

ul vl
Without loss of generality, the vectors ui,...,ur may be assumed to be independent and form

a basis. The dimension of the intersection cannot exceed the dimension of the subspaces that it

intersects, thus r < p, q. |

Theorem 3.13. Let £ be a vector Geld of the form

*i

Lx.

ori *&U ... bin! fXi"

+E
La„J L6„i ... &nnJ LX„J i=i

There exists a matrix X such that (X o()(x) is a gradient vector Geld ifand only if

'bn ... bin'

<*H /%!
-It _

Xi

L">n J Lfi'*»
LXnJ

(\bn ... &i„l\ m

\L6„i ... bnn\) \i»l

<Xjlfa ... Ctjifa

.ainPil . •• <*inPin .

11

-H



Proof. Assume that there exists a matrix X such that (X o£)(x) is a gradient vector field. As in

the proof of theorem 3.2, it is necessary and sufficientthat

r&ii ... bin"\

and

X€

.bni ... bnn

<*iiPii ... atjifa

.<*inPii ... o:infa

to be symmetric matrices for (X o£)(x) to be a gradient vector field. Thus

- Ll ... j. w
<*iiPii «• • atjiflji

*jnfa ... OtjnPin.

Definition 3.14. For vectors v,w define the set

Ph(v,w) = U4€R{X : v = JbXw}.

Theorem 3.15. Let £ be a vector Geld of the form

*i <*i

Lx„J LOfnJ

mbu . •• bin' •*r m '<*ii' 'Ai'
t

•xr

I ; i +E i ; i
-7i

-bni . •• bnn. .*». i=i
.°i«. .&». -«n.

There exists matrix X and gradient vector field <(x) such that£(x) = (X o£)(x) if and only if

and

"*r vr
• = • +

.*n. X.

6ii . - ***' "*l" m "fti" 'Pil'
t

"*l"

•

•
i +£*» • •

J
-H

&in • - *nn. .*!». >=i .Pin. Jin. -*n-

X€f|Ph
i-i

°ii

L«i»J LA«.

-6n • &i«'

• bnn-

= x

tfi ... &i„'11

L*i» - *»»

ori

LOnJ

= X

"i

L<

Proof. If <(x) is a gradient vector field such that £(x) = (X o£)(x) then <in not differentiable

along the same points that { is not differentiable. As £ is also a gradient vector field then it has the
form

Xi a

Lxf L<*»J L"i»

«i ». *in'11

tf„ ... bnnj

•*r m "AT \Pil' t

'*r
J +E*i • •

j
-Ti

.*«. i=i .Pin J U». • In-

12



From the equalities

St'i,...,iJ_i,l,tj+lt...,im

(X OC)*it...t<i-nlt<i+if..»<»

Xi

Lx„

*i

LxnJ

~~«ii»<i'i-ji-Wtt»i<»i<«

•*r "<*ii" ( "Ai"
t

•xr

i + 2 • | j

.*». .ain. \ -ft*. .Xn.

—\A>oQii,~.,ij-u-lJj+it~,t**
*1

LXnJ

2Jb,X
'Pil' {'Pil'

t

**r

.Pin. \ .Pin. .*n-

-Ti

6l.".<i-l.l,<i+l.....<.»(X) = (X °C)<l,...,*i-l,M,+l,.«,tm(x)

^«l,».,«'i-l,-l,»i+l,...,tm(x) = (X O<)<ll...,ii_l,-l,i,+i,...,<m(x)

it follows that

'<*il'
= *,X

"ftl"

.ain. .Pin.
Thus

x€f|PM • . •

Now consider the two linear vector fields

"6n ... 6

6,..,i

•xr "«r

: =
i +

-*n- .^n- L6„l ... bnn J LxnJ isl

«il

and

(XoC)i 1
*il ... *in *1•xr orr

j = x
• +X

-*n. • <*n. .&in ." Kn] L*nJ

L"JnJ

+£*iX

which agree on the set Ai,...,i. Equating the derivatives

dx.«i,...,i

^(XoC)w

gives

•*r •6l.' ra "ii"
•

= •

• +£ •

.**. L*wJ i=i .ain.

"*r "*ST
j = x 1

-*n. Xi.

+£*;x

•&!*• X"
J = X ;

.bni. .Ki.

13

.Pin.

Pa

Pn

IPin}

ll

L&»

Xi

P7»

LXnJ

Pil

LA..

it

-Ti

«i

Lx„J

-li

-li



for 1 < t < n. Thus,
*6n ... bin' Ojj ... b'in

= X

.6»1 ... 6n„.

Equating the constant terms in the linear vector fields requires that
L°ln ..« °nnj

d«)...-.i =

d(Xo<)i,...,i = X

are identical from which it follows that

•«r m "<*ii"
•

• -E :
li

.<*... i=i
«in.

«r m 'Pii'
K • -£*ix i

a
n.

i=1 .Pin.

'<*!' '<
1 = x ^

.«n- .<.

li

Conversely, assuming that the stated equalities hold, then it is an easy matter to check that

£(x) = (X o£)(x) where C(x) is a gradient vector field. |

In many cases it is desirable to determine if a vector field ( canbe decomposed as the product of a

matrix X premultiplying a gradient vector field C- The most desirable situation would be that the

matrix X is invertible and symmetric.

In the case that there is an invertible andsymmetric matrix X'1 such that (X-1 o£)(x) = <(x)

is a gradient vector field then it is immediate that £(x) = (X oC)(x). Thus, by theorem 3.13 it is

sufficient to determine if there exbt such matrices X"1 from the linear subspace of allmatrices that

can cause (X-1 o£)(x) to be a gradient system. At the moment, determining the intersection ofa

linear subspace and the nonlinear manifold ofinvertible symmetric matrices is stillanopen problem.

If the matrix X cannot be both invertible and symmetric, then an invertible matrix wouldbe

thenext most desirable situation. This reduces to finding an invertible matrix such that(X"1 of)(x)
is a gradient system. A sufficient condition would be to determine if the linear subspace of matrices

such that (X o £)(x) is a gradient system intersects the nonlinear manifold of invertible matrices.

Again, this is still an open problem.

Lastly, if no such invertible matrix X exists then theorem 3.15 needs to be invoked to determine

if the decomposition ((x) = (X o£)(x) can be effected. By the necessary and sufficient conditions

of the theorem, if such a matrix exists then the given conditions must be satisfied. Testing the

conditions is tantamount to determining the intersection of three manifolds, one of which is a linear

subspace and thus a linear manifold.

14



§4. The Hamiltonian vector field.

In this section necessary and sufficient conditions are given for a vector field to be a Hamiltonian

system.

Lemma 4.1. Let £ be the linear vector Geld given by

Xi

Xn

Vl

Ly„J

1 l
m

n 1
m

n+1 1m

2n 1
m

m
in mln+l _ m12n ] r•xr • d1 •

Xn

Vl
+

d"

dn+1

J • yn.
J2n

n n
m

n n+1
m

n 2n
m

mn+ln mn+ln+l _ mn+l 2n

m2nn m2nn+l _ m,2n 2n

The vector field £ is a Hamiltonian system ifand only if the matrix

"_mn+l 1 ^ _mn+l n _mn+l n+1 ##^ —mn+l 2n

2n 1
—m

1 1
m

,n 1

2n n
—m

1 n
m

__m2n n+1

ml«+l

_m2n 2n
•m

1 2n
m

m" * ... mn n mn n+1 ... mn 2n

is symmetric.

Proof. If there exists a Hamiltonian function H(xi,..., xR, yi,..., yn) then

"xr
r dH -\

5»r

*
Xn

Vl

• Vn.

=

8H
5yT

6H

from which it follows that

"*r 171 ... mln m1"*1 ... m12n "
•

D£
Xn

Vi
=

mnl
mn+ll

... mn n mn n+1

... mn+ln m«+m+i
... m"2°
... mn+12n

• Vn.
m2nl ... m2nn m2nn+1 ... m2n2n .

P «*H
0*i0yi

a3* a9^
0*»0Vi "SJf 0y«0yi

=

a*H a*n 8*h
OxnVym OyiOffm

&H &H
0x«0xi OyxOxi

6*H
SyT
e*H

&y»&x\

ePn
L 0*i0xR . .. "Si

&H
t>Vit*x» <fy%tfxn

15



Thus
r-mn+1 1 ... -.m.n+1 n __mn+l n+1m' •nr

_m2n n+1

ml«+l

n n+1

_mn+l 2n H

-m*n 1

1 1
m

n 1
m

03H
•SxT

8*H
5x70x7

8*H
OxxOyx

8*H
LVxTBT,

-m'» «
1 n

m

m* m

b*h eaH
0xm0xi 0yi0xT

a8^ a3!?
3x»" aylaxT
6*H B*H

VxTByT T*yf

Oxmffyn 0yi0y.

_m2n 2n
•m

1 2n
m

n 2n
rn

d*H i
0y»0*i

ef*H
0y.0x»

8*H
OyTSyT

a*H
"SyT J

is a symmetric matrix.

Conversely, suppose that the matrix

r_m»+ll mmm -mn+ln _mn+ln+l _mn+l 2n

2n 1
—m _m2n n _m2n n+1 _m2n 2n

•m

l l
m

1 n
m

1 n+1
m

1 2n
m

n 1
m m* n n+1

m
n 2n

m

is symmetric, then a Hamiltonian function for £ is given by

H(xi,...,xn,yi,...,y„) =

-5EEm"+,i^-EE"»"+< "+i*<vi+?EE»»'"'w-t^'+E^+e
t=i >=i

for constant c.

i=i i=i i=i y=i t=i i=i

Theorem 4.2. Let £ be a vector Geld of the form

' bi i ... bi2n

-&2n 1 ... &2n2nJ

The vector Geld £ is a Hamiltonian system ifand only if

r—&n+l 1 ... —&n+l 2n

• xi • "«1 "

J = i +

• X2n. • <*2n.

-&2n 1
hi

" Xl "

+E
" <*i i ' 'Pil'

t
' Xi '

-li

-X2n. i=i .ai2n. .Pi 2n. .X2n-

• —&2n 2n
&1 2n

bn 1 ... bn 2n -i

16



is symmetric and

<*ii

.Qi 2n.

= k-I ^nXn ^nxn I
L"*lnxn 0BxnJ

Pil

iPi 2»

for 1 < j < m.

Proof. For the matrix

define the matrix

Mi

N •it—i»m —

p«,i im,
»l»—»*m

2n l .Lm:

r_m»+i i•m;
«li—t»m

"*n,..Mtm
,i lm
»ii-i'»

,n lL mj:* .•_ ... m;

Assume that the lattice vector field £ is a Hamiltonian system with Hamiltonianfunction H. For given

signatures (ti,...f*i-i»*i»«i+it...»*m)»(«ii...»«i-ii—*ii»i+i».-.»«m) Consider the linear vector

fields fcx,...,.-,.!,.-,,!,*!,...,^ and fo .i.1,-,i,,J+x,...l,m. By lemma 4.1, matrices N,-,,...,,-,._1 ,.»,„..,,•„

and N,lf..Mii-lf_litlj+Jf...>lm corresponding to these two linear vector fields are symmetric. The matrix

Njlf...,<i_1,<it</+,f...,illl - 1*iu„.tii_u-ii%ii+u„tim is symmetric from which it follows that

~<*i n+lPi 1 ... -<*j n+l/?j 2n

-*i 2n& 1
«j lft 1

-Inxn
.ai 2n

for 1 < j < m. Now consider the linear vector field 6i,,...f,

17

mn 2n

2n 2n
m

i»m

mn+l 2n

-m2n 2n;
,1 2n

m
•li"M*m

,n 2n

—«i 2n#; 2n
«j lPi 2n

*»2i»

.ft 2n

. The matrix Nit..Mi corresponding to



this linear vector field is symmetric, thus

—bn+i i + 53JLi *ift lft l

-&2n 1+ Y%Li fyPi nft 1
&1 1+ E/Ll fyPi n+lft 1

• bn 1+£JLi fyft 2nft 1

is symmetric from which it follows that

'—&n+l 1

—&2n 1
&11

is a symmetric matrix.

Conversely, assume that

is symmetric and

L Kl

r-fcn+1 1

"&2n 1
*11

L bn

-bn+l 2n + SJLl *ift lft 2n "

—&2n 2n +SJLl fyft nft 2n
&1 2n +£JLi *jft n+lft 2n

bn 2n +SJLl *ift 2nft 2n

—bn+l 2n

—&2n 2n
bl 2n

bn 2n J

• —&n+l 2n

• —&2n 2n
bl 2n

&n 2n J

<*H

.ai2n.

— L.I OnXn Inxn I
L""*nxn OnxnJ

Pil

.Pi 2n.

for 1 < j < m. Then for the linear vector fields &u...,im the matrices Njlf...,<m,

-bn+i i - S^l *i<*i n+lft 1 ... -&n+l 2n —2JLl *iai n+lft 2n

mb2n 1—EJLl*iai 2nft1
&i i + EJLi *i°i lft i

—&2n 2n —EJLi*iai 2nft 2n
&1 2n + J2jLl *iai lft 2n

bn 1+EjfLl *i°i nft 1 ... &n 2n +£JLi *i<*i nft 2n

—&n+l 1+Z)jLl iityPi lft 1 .«. -&n+l 2n +H/Li *i*ift lft 2n

-&2n 1+£JLl V*jft nft 1
&1 1+ SJLi WiPi n+lft 1

•• —&2n 2n + EJLiWiPi nft 2n
&1 2n +5ZJLi WiPi n+lft 2n

- &n 1+ 5Z>=1 V*ift 2nft 1 ... &n 2n +SJLl »i*ift 2nft 2n -

18



are symmetric. By lemma 4.1, there exists a Hamiltonian function 2Ttlt...|tm(xi,..., x2n) defined on
•A-ti,...i»m- Finally define

J(xi,...,x2n) = -ffil,...,im(xi,...,x2n) (xi,...,x2n) € A^,...,,^.

It is immediate that IT is a Hamiltonian function for £. |

Example 4.3. (Figure 9.) A Hamiltonian vector field in &2 is that given by

<[;H:W". -»][;]*[-'.]|ra'[;]-f[i]|[s]'[;]-!•
Example 4.4. A Hamiltonian vector field in &4 is that given by

r_i _4 4 _n run

3 -2 -1

14-1

L 4 3 4

r-4i

-5

1

L 3 J

~w' •-1"

X

y
=

-3

1
+

.z. . 2 .

x

V

LZ L5J Yz

This example was constructed with the aid of theorem 4.2.

Corollary 4.5. Let £ be a lattice vector Geld of the form

xi <*i Vbl l '1 2n Xl 2n ni

+?E
Lx2nJ La2nJ L^ni ... 62n2nJ Lx2nJ »=i i=i

The lattice vectorGeld £ is a Hamiltonian systemif andonlyif

' —bn+l 1 ... —bn+l 2n

-&2n 1
&11

—&2n 2n
bl 2n

is symmetric and

for 1 < t < n, 1 < j < n,-,

&n 1 ••• bn 2n J

<*0'i""
— <Xiin+i*n+i

L«un

*Vi

— aiii—n©»—n

.<*iin

for n + 1 < t < 2n, 1 < j < n$-.

Proof. This is an immediate consequence of theorem 4.2.
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Example 4.6. (Figure 10.) A Hamiltonian lattice vector field in $2 is that given by

Example 4.7. A Hamiltonian lattice vector field in R4 is that given by

'w' --1- -1 -4 4 -11 'w' o-

X

V
=

-3

1
+

3-2-15

14-13

X

V
+

0

3

.z. . 2 . .4 3 4 2 . .z. .0.

•1" -3' '0-

0

0
|y-2|+

0

0
|y+4| +

6

0

.0. .0. .0.

|w+l| +

|z-3| +

roi

o

2

L0J

roi

2

o

OJ

|t»-2| +

|z-5|.

roi

o

o

L2J

|x+3/-f

This example was constructed with the aid of corollary 4.5. In cases when graphical techniques are

not applicable, theorectical tools may provide insight into underlying structure.

§5. Vector fields invariant under post-composition with matrix multiplication.

A vector field { is invariant under post-composition with the matrix M if (Mo£)(x) = £(x). Lemma

5.1 proves the basic relationship between the vector field and the matrix. Given a vector field,

theorem 5.2 determines the form of the matrices which the vector field is invariant under post-

composition. It turns out that the matrices have a very restricted form. Conversely, given a matrix,

theorem 5.3 determines the vector fields that are invariant under post-composition with the matrix.

Examples at the end of the section will illustrate applications of the theorems.

Lemma 5.1. Let M be a n x n matrix and £ be a piecewise-linear vector Geld in %?. The equality

(M o 0(x) = £(x) holds ifand only if

Oil bn ... bin Oil <

M

(MoO

<*ml

LQtn &nl ••• &nn <*ln ••• Ofmnj

Proof. Assume that the stated equality holds, then

xi

LX.J

«i

.bni

rbn

= M

= M

= *

<*i

La„J

xi

Lx„j

+ M

Lft,nl

20

<*i &n

-On bni

bin on

bnn <*ln

Oml

<*mnJ

m "°iil ftl"
t

Z\ \
+E ; j : -H

i=i .ainj /%.. Xn. )
m '<*»' ffln' f

Xi'

+£m I
• • -li

i=i .ain. u *;». *».



Conversely, assume that (M o ()(x) = £(x) holds where

and

(Mofl

xi 01 "6n ... bin 1

.b„i ... 6nn.

"6n ... 6i„1 Txi"
• • •

• • •

• • •

.6„i ... bnn J LX„.

"xi" m '<*ii' 'Pil'
t

'Xl'

♦ +E • : I
-li

•xn. i=i .ain. .ft«. .Xn.Lx„J Lo„J

"Xl" -Qfl"

J = M j + M

-Xn. -On.

m '<*ii' TAi"
t

"Xi"

+£m 1 : j -H
i=i .ainJ Lftn. -Xn.

Notice that Part(M o £) = Part(£) and considering the following equalities

s»i....,»i-i,M/+i,...,«V

(M o£)ix Ii_lti,li+I,...,t-,

Xi

Lx„J

xi

Lx„J

— Sl'l,...,<j-l,-1,^+1,...,<m

"Xl" "«il" ( 'Pil'
t

"Xl* \
I + 2 j

•

J
-It

.Xn. .«i». \ .ftn. .In. )
Xl

= (M °0»l,...,<i-l,-l,»i+l,...,t'«
LX„J

"a;i" / 'fti"
t

"Xl"

2M j | •

.ain. I -ftn. -Xn-

-Ti

&i,...,«;-i.lI.J+i,...,«m(3C) = (M o£)il,...,*,_1,l,*i+t,...,<m(x)

^i,,...,<,_„-l,.i+1,...,im(x) = (M O0»l,...,t,-lt-l,ti+i,...,lm(X)

it follows that

<*;i "ii

M

.ain.

Now consider the two linear vector fields

Lainj

&,...,!

and

(Mo0w

"Xl" "or

•
= • +

-x„. • On- .6«1 ... &nn

"611 ... 6i«1 r

"Xl" m '<*ii' ( "Ai"
t

"Xi"

* +E :
•

j

•x„. i=i .ain. \ .ftn. -x„.

-Ti

"xi" "or

i = M j +M

-x„. -o„. .6„i ... bnn.

"Xl" m "«ii" / 'fti"
t

"xi"

i +£m : j |

-Xn- i=i .ain. V ./%.. .XB.

which agree on the set Ait...fi. Equatingthe derivatives

5x76 *

^(Mo«)w

"Xl" •*ir m "«ii"
•

=
• +E ;

.Xn- .*».. i=i .ain.

Xl

LX„J

= M

bul

.bm
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gives

l"6ii"| f&iil
M

.bni j L6ft.

for 1 < t < n.

Equating the constant terms in the linear vector fields requires that

d(Ow =

oi

Lo„J

-E
i=i

oi

L°j'nj

m

d(MoOi,.„,i = M

are identical from which it follows that

M

-£m
LonJ i=i

Oi Ol

Lo„J o„J

li

H

Lainj

Theorem 5.2. Let the vector Geld £ be given. Let r be the rank of the matrix

"oi &n ... bin on ••• oroi"

•On bni ..« bnn Oin ... Oron.

If M is a matrix for which (M o £)(x) = £(x) then either (i) r = n in which case M = I„xn or (ii)

r < n in which case there exist an invertible matrix S such that

MS =sfftIrxr Tl0rxn-r 1.
L**n-rxr **n-rxn-rj

Proof. By lemma 5.1 the given matrix equality must hold if the vector field is to be invariant

under post-composition with the matrix M. The value of r determines the number of independent

eigenvectors of eigenvalue 1 for the matrix M. If r = n then M has a full set of eigenvectors

corresponding to the eigenvalue 1. By linear algebra there exists an invertible matrix S such that

MS = InxnS from which it follows that M = Inxn> If r < n then M has a subspace of dimension

at least r for the eigenvalue 1. Again,by linear algebra there exists an invertiblematrix S for which

for some matrix Bn_,

MS =sLIrxr „°rxn-r 1
L^n-rxr »n-rxn-rj

Theorem 5.3. Let the matrix M begiven. If$ is a vector Geld for which (M o£)(x) = £(x) then
the defining constants of£ satisfy

oi

Lo„J

-&ii*

.b'm.

•bin!

.bnn
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"Oiu" Oln,l "Onii" Onn.l f •«i' "xi" "Xi"

I ,..., I ,..., • ,...,
I H • :M •

= ;

.on„. .Ol„in_ -Oni„. .0|»n„n. i -x„. .Xn. •Xn.

Proof. This is an immediate consequence of lemma 5.1 and

oi 6u ... 6i„ an ... omi"| Tori bn ... &i„ an

On 6ni ... bnn Oi„ ... Oto„.

Omi

M

•0„ bnl ... bnn <*ln ••• O,

Example 5.4. For the vector field given by

«[;]-[!]♦[; -][;]*[;]'»"
the rank of the matrix

fl 2 -1 1]
[2 4 -2 2J

is one. Any matrix which satisfies (M o£)(x) = £(x) is conjugate to the matrix

[1 0]

in the sense that there exists an invertibe matrix S such that

MS

Example 5.5. Let M be the matrix

-[J Ji

lt!]

}

which represents reflection about the line y = x. The eigenspace corresponding to the eigenvalue 1

is spanned by the vector

!!]•
A vector field for which (M o £)(x) = £(x) is given by

«[;]-[:]♦& fi]fc].§[:]|[srM-4
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§6. Lattice vector fields invariant under pre-composition with matrix multiplication.

A lattice vector field £ is invariant under pre-composition with the matrix M if (£ o M)(x) = £(x).

Theorem 6.1 proves the basic relationship between the lattice vector field and the matrix. Examples

at the end of the section will illustrate applications of theorem 6.1.

Theorem 6.1. Let M be a matrixand £ be a lattice vectorGeld. The equality (£ o M)(x) = ((x)

holds ifand only if
xi

M

Lx.

(-1)'1**

.<-!)'•«*..
for U6 {0,1}, and (tti, ..., irn) a permutation of (1,..., n) such that

tit = n».

Hi = ("I) *7ir« (l-li)i+li(n„.+l-i)
Ctijl <**i (l-l.)i+l<(n..+l-i) 1

.°»in J L<**i (l-li)i+li(nWi+l-i) n

and

[hn K-Whwi

unj L(-i)''»-»i.

Proof. Assume that the stated equality holds, then

xi

«oM)
LXnJ

Ol

Lo„

or

LonJ

Xi

UH

1 < t < n

1 < t < n, 1 < j < rii

1 < t < n, 1 < j < m

'bn ... &i„-| R-l^x^

.bni ... bnn J LC-1)'***..

L(-l)''4„, ... (-!)'•»„.

+EE
.=1 i=l

<**iii

L^iinJ

n »••<

L(-1)'-«*.J ,'=li=1Larii»J

= e
LX„J

Conversely, assume that ({o M)(x) = £(x) holds where

"Xl" 'ai'

I =
•

+

-x„. -o„.

"&11 ... bIn

24

Xi

+EE
L6„i ... bnnl Lx„J fcli=l

un

L«ynJ

\**i-l*ii\

\Xi-Hi\



and

"611 ... 6i«" xi oyi

tfoM)
"xi" "or

. = •

+

-x„. -o„.

M +EE |m<ixi+...+ m,„x„ - 7«i|.
L6„i ... 6nnJ LxnJ '=li-l laijn.

As (£ o M)(x) = £(x), the points at which the two functions ( o M, ( are not differentiable are the

same. Thus, the points along which £ o M is not differentiable are lines parallel to the coordinate

axes. Hence,

[m,i...mlo] = (-l),<ei.

where /,- € {0,1} and ir,- € {1,...,n}. The points at which £ is not differentiable are given by

xi = Til < . • • < 7lnj

Xn = lnl <...<7nn»

while the points at which (oM are not differentiable are given by

'*i
s/7ii<...<7m, *i =0

\-7in» <-..<-7ii 'i = l

, _ f 7nl < •••< 7nn„ In = 0
'*" \-7nn. <...<-7nl /» = 1*

If the set of points at which £ o M,£ are nondifferentiable are the same then (jti,..., irn) is a
permutation of (1,..., n). Thus

xi (-l)'»x,
M

Lx„J u-i)'-**.

Furthermore, it is easily observed that

n,- = nTi 1< t < n

_(l*ii '< = 0,l<t<n,l<i<nri
7" {-lnn..+1-i /. = l,l<*<n,l<i<nri

= {-!)'*In (i-u)i+ii(nmi+i-i) 1<t <n, 1< j < nXi.

Thus

"xi" "or

•
=

• +

-x„. -on. L(-i)'»»«*

•bni

while

tf°M)
"Xl" "Oi"

•

=
J +

-x„. -o„.

(-1)1-*!*,

(-l),:^.j

(-1)'**. n «»<

+EE
<=i i=iL(-i)'-«-.

bin! (-l^x,

6„nJ L(-l)'"«...
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Notice that Part(£ o M) = Part(() and considering the following equalities

Xl

sni,...,nw.i_1,j,nWi+i,...1n, —(ni,...,n<r{-ilj-l,nv<+i,...tn.
Lx„J

Xl

(s ° "*)nit..M„w.<_ltJ-,niri+l,...,„„
LXnJ

oyi

"xi" <x*iii'
i + 2 ;

.x„. .G'iin.

{xWi - 7*ii)

Xi
(»»t - Tii) '< = 0

(s ° M)ni,...,n|rj_i,i-l,n(r{+i,...,n» + <
L"»>nj

<*i nWi+l~i 1
LXnJ

{x*i-Hi) h = l
.<*i nWi+l-i n.

Sni,...,n«,_i,i,n,.+i,...,n»(x) -(?0 M)Blf..Mn«i..ilj,n,<+i,..Mn»00

*ni,..MnWi_l,<;-llnirj+I,...,nw(x) = (£OM)0ll...tflirj_Xfj-_i|nir<+1|..MfU(x)

it follows that

o,W

= <

LQijnj

*nii

/. = 0,l<t<n,l<i<n,j

L«*ijn J

0»< n^+l-i 1

^ = l|l<«,<n,l<i<n,i

.air< n.j+l-j n.

<**< (l-fi)i+fj(»v<+l-J) 1

L^irj (l-IOi+l^n^+l-i) nJ

Now consider the two linear vector fields

?ni,...,i

{-l)h**> 1
+EE

L(-i)'-**J <sli=1L

n n*i «*<ii

'xi'

a

-Xn.

"or

• +

.an-

(-1)'*^ ... (-l)'-6i„

U-i)'^ ... (-i)'-^w.j
{Xwi-lmi)

and

xi Oi

(£oM)ni,...,n,
LX„J LO„J

f*<jn J

"6ii ••• &ln" "(-l)'l«-»" n n,,. o,-,i"
l

•

I +EE j

.bni . • • bnn- .("I)'"*-.. i=i i=i
.°»in.
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which agree on the set A,,,,...,„„. Equating the derivatives

dxTi sni,...,n»

tfoM),,

Xi

LX«J

Xl

(-l)'*^! nWi \<**iil

L(-i)^»rJ i=1L^i»
rbui

+E
OCijl

d

dxWi
LX„J Lbnil >=1 L***jn J

gives

rfeii (-i)Hi...

L6« U-i)^Aft .

for 1< t < n.

Example 6.2. Let M be the matrix

Lattice vector fields for which ({ oM)(x) = £(x) (Le. £(-x) = £(x)) are given by

=fc]+Efc](l'-^l+l*+̂l)+(Ei te](hr-»l+b+i.D

Example 6.3. Let M be the matrix

-10 0

0-10

0 0-1

Lattice vector fields for which (£ oM)(x) =£(x) (i.e. {(-x) =£(x)) are given by

x" Oi" Oil"
V = o2 + ESLi o«
z m .a3. .0«.

(l*-7<l + l*+ 7.'l)+

En+m
t=n+l

Oil

Oi2

Oi3
dp- -r*i+1»+-y*i)+sr^."^.n+m+1

27
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§7. Lattice vector fields commuting with matrix multiplication.

Alattice vector field £commutes with the matrix M if(Mo£)(x) = (£oM)(x). Theorem 7.1 proves
the basic relationship between the lattice vector field and the matrix. Examples at the endofthe

section will illustrate applications of the theorem.

Theorem 7.1. Let M be a matrix and £ be a lattice vector Geld. The equality ({ o M)(x)

(M o £)(x) holds ifand only if

M

xi

L(-i)'-*..LXnJ

for U€ {0,1}, and (»i,..., irn) a permutation of (1,..., n) such that

and

Hi = nri

Hi = (-!)'* Tit* (l-li)i+li(nWi+l-i)
Otfl (-l)?»Or. (i_,.)i+|.(n|r.+!_,•) Wl

.<*iin J L(-I)'* <**« {l-li)i+ti(nri+l-i) *„ .
rbi.n {-i)h+lib.lXi

ibnii [{-iy^bWm

oi (-l)'io,

l«»J L(-ir«».J

Proof. Assume that the stated equality holds, then

xi

(MoO
Lx„J

28
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01

= M + M

LottJ

{-l)h<**>

'bn ... bin"] Vxi

.bni ... bnn. Lx.

n n<

+EEm
.=i >=i

(-l)'^l -.. W^n

L(-l)'-fcr.l .- (-1)^..J

Otfl

LaO'nJ

Xl

\Xi-lij\

•(-l)ll«o>l

.(-1)':"««J

n n;

Lx„J
+EE

.=1 i=i

I*.'-7.il

,. (_l)'»+*«6'iTlWn (-i)11^ (-l)'*o«"«»i

L(-i),-+,^.-1 ... (-ly-^-^J L(-i)'-«-nJ <sli=1L(-i)u^iirJ
Ol *6n ... bin' {-Vh oyi

+EE
6n„J LC-iy-^.J ^^L^inJ

|(-l)'*xri-70|
LO«J

= (£°M)

L6nl

Xl

L'XnJ

Conversely, assume that (M o £)(x) = (£ o M)(x) holds where

xi

(Mo© = M

LX,

and

xi Oi

oi "6ll ... 6l«" Xl

+ M

LOnJ .bni ... &nnJ Lx

"6l 1 ... bin ' Xi n ni

+EEm
t=l i=l

*«i

oyi

L°»jnJ

!**< - iwiil

\Xi-Hi\

tf°M) M

-X„J Lo„J Ibnl ... 6nn-
+EE

.=1 i=i

jmjixi +...+ m,nx„ - 7f,|.
LX. L««>n J

As (Mo£)(x) = (£oM)(x), the points at which the twofunctions Mo(,(oM, are not differentiable

are the same. Thus, the points along which £ o M is not differentiable are lines parallel to the
coordinate axes. Hence,

[mii...mi„] = (-l),<ei.

where i< € {0,1} and tt,- € {1,..., n}. The points at which Mo£is not differentiable are given by

xi = 711 < • • • < 7lnx

*n = 7nl<...<7nn.

while the points at which £oM are not differentiable are given by

s /Til <-..<7ln,
\-7lnj <-..<-

ll = 0

7n h = 1

x =(lnl<...<lnn» ln =0
*" \-7nn»<...<-7nl *« = 1
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If the set of points at which Mo{,£oM, are nondifferentiable are the same then (*i,..., jt„) is a
permutation of (1,..., n). Thus

Xl

(Mofl
LX„J

(-!)'»**i (-l)'1**! .- (-l)H'xn] fXi"! n ni r(-l)flO<yri"
: : +££ :

(-l)'-^.n JU J '=1 >=1 L(-1)':«0>. .

: +

(-l),1+,»ft»l* ... (-l)'*+H

while

»!*„

"6ll ... &in"|

.60i ... bnn

(-l)fl«r,

L(-l)'»+^6,nri ... (-!)'»+'»&„.,.] L(-i)1'"^

(-1)^0^^

+EE
faliolL(-l)'-«r,*rJ

Otfl

\Xi-Hi\

!**< ~ 7*«il

((oM)
"Xi" "or

I
= j +

-x„. -o„. L(-i)'-«r.J
+EE

.=1 i=i

\{-iy<xWi-yij\.

LaO'nj

Notice that Part(M o {) = Part(£o M) and considering the following equalities

(M O0*i,...fn«4-ni,n,4+i,...,nt

(M O?)ni,...,n,i_1,i-l,n»<+i,...,n<

\S° M)ni,...,n1,i_ililn»j+1,...,n1,

xi

Lx„J

Xl

LX„J

(£Ol*i)nlt...,nWi-lJ-l,nWi+lt...,n,

Xl

+ 2

L(-l)'-«rti».J

{xTi - 7*,;)
LX,

' oyi*

'Xl'

.Xn.

+ <

2

2

:atfn.
"<*«n»i+i-i 1"

•

h .<*• n. +Wn.

7, = 0

{**i-Hi) U = l

(M 0?)ni,...,n,j_ililnWj+i,...,nl,(x) —(< OM)Bj,...,ntri,;,i»,.+i,...,n»(x)

(M o0ni,...,n1,i_i,i-l,n.<+t,...,n»(x) = (£OMJnj,...^^.,,i-l,n«j+l,...,n»(x)
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it follows that

Otfl

«ijn.

LXnJ

(-l)'**,^

I L(-l),B^iir».
* r(-l)llO,inir.+W

h = 0,1 < t < n, 1 < j < n,.

/,- = 1,1 < t < n, 1 < j < nKi

.(-!)**<**< n..+1-j *,
(-l)rio,. (l-iOi+'̂ n-i+i-i) *»

.(-I)'*©,. (l-l,y+|«(n.,+l-i) *..
Now consider the two linear vector fields

(MO On, «,

L(-i)1"^-.
{-iy^bWlKl ... (-iy>+'-b

*l*n (-!)'*;

"6ii ... bin'

+EE
L(-iy-+n^ ... (-l^+'-ft^xj Lc-iy-^j tei'aiL(-i)'-«w.j

(-l)'»o,iiiri

Otfl

(**< - i*ii)

and

«oM)ni n„
"Xl" 'or

•
= •

+

-x„. -o„.

+EE
L6„i ... 6nnJ LC—1>*-*»»J <=li=1L^»j

(*»,-(-l)'"w)

which agree on the set An,,...,,!,,. Equating the derivatives

^-«oM)„„„.„

gives

Xl

Lx„J

Xl

LXnJ

L(-i)':*».*J
r^iii

= (-!)<< +E
i=iL6n,J

*ul r(-1)l,+,'*i»i

U„J L(-l),-+,-6,niti.

(-l)'»ori>ri

+E

oyi

L**»jn J

for 1 < t < n.

Equating the constant terms in the linear vector fields requires that

^oM)Bl nm =

[{-!)'*<**.
Oi

La„J

-EE
i=i i=i
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are identical from which it follows that

01 (-l^o.

La„J

Example 7.2. Let M be the matrix

Lattice vector fields for which (£ o M)(x) = (Mo £)(x) (Le. £(-x) = -£(x)) are given by

«[;Ms y[;]+ste]a-"-"-+*«>+Ste](br-*i-hr+i.D
Example 7.3. Let M be the matrix

-10 0

0-10

0 0 -1

Lattice vector fields for which (£ o M)(x) = (M o £)(x) (i.e- £(-*) = —£(*)) are given by

6ll &12 6i3 X Oil*
621 &22 &23 V + ELi Oi2

.&31 &32 &33. z m _Oi3_
(|x-7.|-|x + 7<IH

En+m
isn+1

Oil

Oi2

a«3.

(|y-7d-|y+7.l) +E?iT»r+i
Oil

0,2

Oi3

(|z-7,|-k + 7,|).

References.

[1] ChuaL.O. and Deng A., "Canonical piecewise-linear modeling." IEEE Transactions on Circuits

and Systems., vol.33, pp.511-525, May 1986.

[2] Chua L.O. and Deng A., "Canonical piecewise-linear representations." IEEE Transactions on

Circuits and Systems., vol.35, pp.101-111, January 1988.

[3] Parker T.S. and Chua L.O., "Practical numerical algorithms for chaotic systems." Springer-
Verlag, New York, 1989.

32



Figure captions.

Figure 1. This is the phase portrait corresponding to the vector field given by

fc]-[s].[j]|[i],fc]-+
Figure 2. Sample orbits corresponding to the vector field given by

x" 1 0 0 " X "l] r i *
t

"x" " 1 "1 rr
t

"x"

V = 0 2 0 V + 2 4 V -1 + 4 2 V + 1
z m 0 0 -3 z 3 -3 z -3 3 z

Figure 3. This is the phase portrait corresponding to the lattice vector field given by

<[;]-[;]+B -IfcHsi"-"^-*
Figure 4. Sample orbits corresponding to the lattice vector field given by

|x+l| +

Figure 5. This is the phase portrait corresponding to the vector field givenby

*i:.i = i;i + ;iim i:i+h+

X "o" '2 0 1 "
• «

X V
V

z m
—

1

2

+ 2 3 0

11-5
V
z a

+ 1

3

|x-l| + lv|.

[:]-[!M:]|[jrfc]4GlM'fc]|-
Figure 6. Sample orbits corresponding to the vector field given by

mm-
x" "l 0 0 " x" "l" P-2l

t
"x"

V = 0 2 0 V + 0 0 V + 1
z m 0 0 -3 z m 2} [-4 mzm

Figure 7. This is the phase portrait corresponding to the lattice vector field given by

:]-[i]+[?J][;]+[5]'-i'+[j]w+[;]''+ii-
Figure 8. Sample orbits corresponding to the lattice vector field given by

X 0

V = 1 +

z -2

1

4

-1

4 -1

2 0

0 3

fx] rr
V + o
z 0

|x + 3|+

fol "0* r°i
6 |V-3| + 0 l*-2| + 0

0 2 3

|* + 2|.

Figure 9. This is the phase portrait corresponding to thevector field given by

«fc]-[JMi -.][;] ♦[-'>]|[;]['.]-f [«]-•!•
Figure 10. This is the phase portrait corresponding to the lattice vector field given by

€[:]-[i]+Bi][;]+[!]'-"*[5]i-+^[:]^+[j]i'-*



O
O
O

in

o
o
in

♦

CM

O
O
O 3)

O
O
in
♦

CM
I

O
O
O

*

in
i

o
o
o

in

o
o
in

OJ

o
o
o

o
o
in

*

CM
I

o
o
o

♦

in
i



FIGURE: 2



5.000

2.500 —

0.000

y

-2.500 ^

-5.000

-5.000 -2.500 0.000 2.500 5.000

FIGURE: 3



FIGURE: 4



o
o
♦

o

O
O

in

o
o

zn

O
O

♦

in
i

o
o
♦

o

I

o
o

o
o

in

O
O

o
o

in
i

O
o

o
T-l

I

in

P-,



FIGURE: 6



5.000

2.500

0.000

y

-2.500 —

-5.000

-5.000 -2.500 0.000 2.500 5.000

X FIGURE: 7



>
7- I i ill
< j j // /

^\Y\\

FIGURE: 8



Oooi
n

ooi
n
♦

C
M

OOO
3
)

Ooi
n

C
Mi

oooi
ni

oooi
n

ooi
n

c
m

Oooooi
n
♦

C
MI

ooo
♦

i
n

O



10.00

5.00 —

0.00

y

-5.00 —

-10.00

-10.00 -5.00 0.00 5.00 10.00

X FIGURE: 10


