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INVARIANCE PROPERTIES OF CONTINUOUS PIECEWISE-LINEAR
VECTOR FIELDS. {

Robert Lum AND Leon O. Chua. tt

Abstract
In the application of continuous piecewise-linear vector fields to the modelling of sys-
tems, it is often desirable that the model preserve certain properties of the system that
it is supposed to emulate. These properties may represent fluid incompressibility, con-
servation of energy and symmetries. In this papar necessary and sufficient conditions
are stated for the identification and imposition of several such properties.

The first part of the paper addresses continuous piecewise-linear vector fields that
are divergence free, gradient systems, and Hamiltonian systems. The second half of
the paper determines possible relationships between a lattice piecewise-linear vector
field and a transformation matrix. This will facilitate the identification of symmetries
of a lattice vector field and the classification of lattice vector fields possessing certain
symmetry properties.

With these results, the modelling process via piecewise-linear vector fields will have

the capacity to preserve intrinsic structure of the modelled system.

t This work is supported in part by the Office of Naval Research under Grant N00014-89-J-1402.
tt The authors are with the Department of Electrical Engineering and Computer Sciences, Uni-

versity of California, Berkeley, CA 94720, USA.



§0. Introduction.

The modelling of physical systems may require certain salient properties of the original system to
be preserved. For example, in modelling a reciprocal RC or RL circuit, the vector field must be a
gradient system. In the modelling of fluid flow, the model should be divergence free to reflect the
incompressibility of the original fluid. In buckling plate problems, with the deformations of a square
plate under increaing pressure, the symmetry of the situation has to be taken into account. In this
paper, the identification of several important types of continuous piecewise-linear vector fields is
undertaken.

The first half of the paper is devoted to giving necessary and sufficient conditions for the
identification of divergence free, gradient, and Hamiltonian piecewise-linear vector fields. With these
results a researcher will be able to validate whether certain properties of the original vector field are
maintained under a piecewise-linear vector field modelling. On the other hand, the researcher may
a priori require that a piecewise linear vector field have certain properties, and determine whether
or not it is possible to model the original vector field under the condition of possesing this property.

The second half of this paper determines some results between lattice piecewise-linear vector
fields and symmetry. Given such a vector field and a matrix acting on the state space there are
several questions that can be asked about the relation between the lattice piecewise-linear vector
field and the matrix. Are the vectors of the lattice piecewise-linear vector field invariant under the
transformation induced by the matrix? Is the lattice piecewise-linear vector field invariant under
transformation of the state space by the matrix? Do the lattice piecewise-linear vector field and

matrix commute as functions? Answers to these questions form the second half of the paper.



§1. Definitions.

In this section the definition of a continuous piecewise-linear vector field and lattice piecewise-linear

vector field are presented.

Definition 1.1. A continuous piecewise linear vector field £ in n independent variables is given by

E 3 oy bir ... Dgn 2 ',,, ;51 ﬂjl ‘ z1
f[s]=[z]+[s z”s]+2 S [E]-'rj
Zn Qg ba1 ... bpa Zn i=1 Qjn ﬁjn Zn

where 0 < o}y + ...+ a},, 0 < ff +...+ B3, for j = 1...m. Henceforth, continuous piecewise
linear vector fields will be called vector fields.

Definition 1.2. The signature of a point x is the m-tuple given by
sig(x) = (sgn(Bx — m);-- ., 5g0(Bp X ~ Ym))
where sgn(z) is —1,0,1 depending on whether z < 0,z = 0,0 < z respectively.

Definition 1.3. Given a vector field ¢ in n independent variables there is an associated partition

of R"® where
Pa'rt(f) = {A-t‘;,...,-'.. : Ai;....,t',. = {x : Sig(x) = (ily eeey im)}a (ih ceey im) € {—19 l}m}

and &, i, is the closure of the set A;,,.. ;.. The set A;,... . is open, being the intersection of

half-plénes of the form 0 < Bix — 7; or fix—~; <0.

Lemma 1.4. For every A, ...;. € Part(£) of a piecewise-linear vector field £ there is a unique linear

vector field §;, ....i,. such that &, . ;. lAiyssim = &ElAiy, i -

PROOF. For x € A, ,....i,. the vector £(x) is given by

) (al 1 F012 oo b1n Y 21 m | @it Bin ¢ z1
e[z]= Pl HIEEEDM : [E]—'ﬁ

To L ag | Lbar oo bpad Lzad 51| g4, Bijn £

[ oy T 611 ... binl [21] m ajy ﬁjl ¢ z)
=|i[+]: NI E : [s]—w

- Qi L1 ooo bpad Lzgld 551 Ajn ﬁju Zn
[ -YGeny] [m+Xhidienbfin ... bint Thyiiaibin] [
Lom ~ i1 d5ar ) Lo+ TR djainBin ... baa+ LjgijejeBin] Lon

It is immediately clear that there exists a unique linear vector field &,,...im With the property
that &,,...imlA,....in = €las,....i..- The linear vector field ;.. ;. will be written as Giyponyin (X) =
diy,.pim + M, i X ' ' il



Definition 1.5. A lattice continuous piecewise linear vector field £ in n independent variables is

z; (21 by ... 51“ z; n; | @ij1
Tn [ % bn] oo bnn z” =1 j=1 a.’j”

where 0 < o? fateot a,,,., %1 < ... < %Yin, for § = 1...n. Henceforth, lattice continuous piecewise
linear vector fields will be called lattice vector fields.

given by

Definition 1.6. Given a lattice vector field £ in n independent variables there is an associated

partition of R® where
Part(§) = {As,,...k. = Laa, X ... X Lgg, :0< k1 < ny,y..0y 0< kg < 1p}
with
Lio = (=00, 7i1}

Lij = [%js Wij41) 1<j<n;

Lin.- = ['Yin., OO).

Lemma 1.7. For every Ay,, ... k. € Part(€) of a lattice vector field £, there is a unique linear vector
ﬁe‘ld 6&1‘---'kn SUCb tbat skh-"ykn 'Alh....i‘ = CIAk,....,l.’

PRroOF. For x € Ay,,....:, the vector §(x) is given by

FAREA R [ >

K3 buu ... ] [2a o [ [@in] a | @i
= 5]"'[5 H]+E Z Pl @Ei- )+ 2 P (i — =)

L Oy bn]_ vee bun Ta i=1 j=1 j=k‘+l

Q;‘"n J aijn

(o -Yr, (E,_; 1% — L ek a.-,-n.-,-)

= : +
-Xia1 (E,-l QijnYij — Ej'—k. 1 "‘-:n‘Y-:)

bu + 2,-:: a1 = Xt o bind Z;;; Cnj1 = 252k 41 Onjl [21 ]

k . . . .
bﬂl + 2,-‘:1 al"n - J“'-l-kl'*'l 0'15“ eee bn” + E;=1 a“"“ - 2;‘;&.4-1 aﬂjﬂ zﬂ

It is immediately clear that there exists a unique linear vector field &,,... k. with the property
that &x,,....k. |As,,..an = ElAs,,..n.- The linear vector field &,,....x, will be written as &, ,... k. (%) =
di,,...k. +Mp,,.. kX |



§2. The divergence free vector field.

In this section necessary and sufficient conditions are given for a vector field to be divergence free.

Theorem 2.1. Let £ be a vector field of the form

31 oy bia ... big 3 m | %1 ﬂjl ‘ z:1 |
sz=[z+s SN EREDM I I N
zu an bnl see b“” zn j=1 ajn ﬂjn zﬂ
The vector field ¢ is divergence free if and only if

N
Ebi.'=0

i=1

and Y p_;aiBjr=0fori<j<m.
PROOF. First note that if a linear vector field {(x) = d + Mx is divergence free then the trace
of the matrix M is zero. Assume that the vector field £ is a divergence free. For given signa-
tures (f1y-..y85-1y8js8542s0r8m)s (19 oy 8j—1y=Fjs {41y .,4m) consider the linear vector fields
Eirennsiim1,igiigaarenim 80 &y i g, =ijiig10mmim ThUS, 85 divergence free linear vector fields, the traces
of the matrices Mi,,....i;_1,5,6541,im 80 My, ,ijm1y=i5185410nim COTTESPODRding to these two linear
vector fields are zero. In particular, the matrix Mi,,obim 1z rrmim = Misnijo1i=6is6i4100min D8S
zero trace from which it follows that
aiiBjpn ... ajfia
2| : :

ajnfjn ... @jnPian
has zero trace. Thus >3, ajxfjr = 0 for 1 < j < m. Now consider the linear vector field &, 1.
The matrix Mj,...,1 corresponding to this linear vector field also has zero trace, thus

bu+Xit @b ... b+ Xy @1Bin

bn1 + 2:;1 ajnfin ... ban+ 2;’:_.1 @jnfin
has zero trace from which it follows that 37, b; = 0.
Conversely, assume that 3., b;; = 0 and Y7 _; ejiBjx = 0 for 1 < j < m. Then for the linear
vector fields §;,,...,i,. the matrices M, ,... i,
bu+ X% e ... bia+ X ijejifia

.
.

bar + X5ty fi@inBin «.. ban+ Xjn, ij0jaBin

have trace
n m ;] m !
> (o + Z ijaeBie | = Z it Y i ) aufi=0.
k=1 Jj=1 =1 j=1 k=1
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Thus, the linear vector field &;, ,....,. is divergence free, from which it follows that the original vector
field £ is divergence free. |

ExampLE 2.2. (Figure 1.) A divergence free vector field in ®? is that given by

[:]= L1+ Gl|4] 2]

It is clear that the defining constants of the vector field satisfy the conditions of theorem 2.1, thus

implying that the vector field is divergence free.
ExampLE 2.3. (Figure 2.) A divergence free vector field in ®3 is that given by

i) & 3R EIETEA- (IR E)-

This is another application of theorem 2.1 to construct a divergence free vector field, this time in
R3,

Corollary 2.4. Let £ be a lattice vector field of the form

zy o buu ... b [ n n; | @
£l 1=]:|+]: : R EDI) M BEN L
Zn Qg bar ... ban Zn i=1j=1 Qijn

The lattice vector field £ is divergence free if and only if
a
: bi=0
=1
and a;ji=0for1<i<n, 1<j<nm;.

Proor. Immediate conseqgence of theorem 2.1. [ |
ExamPLE 2.5. (Figure 3.) A divergence free lattice vector field in %2 is that given by

elz]=[3)+[2 S]]+ 5] -2+ [3])w-n

It is clear that the defining constants of the lattice vector field satisfy the conditions of corollary 2.4,
thus implying that the lattice vector field is divergence free.

ExamPLE 2.6. (Figure 4.) A divergence free lattice vector field in ®? is that given by

-1 3] e e

This is another application of corollary 2.4 to construct a divergence free lattice vector field, this

time in R3,



§3. The gradient vector field.

In this section necessary and sufficient conditions are given for a vector field to be a gradient system.

Lemma 3.1. Let £ be the linear vector field given by

z mil! ... m*1[2 d!
Za ml .. m™] |z, a

Then £ is a gradient system if and only if the matrix
mi! ... ml®
lim."1 cee m;‘“ ]

PRoOF. Assume that £ is a gradient system with gradient function G(21,...,24). Then

is symmetric.

3G

31 Bz,
El:1=]:
8G
T m
from which it follows that
z "mll ... ml®
pef:|=]| : :
Zn [ m®l ... m"®
r 8°G 8%G
7 5210z,
sic 823G
- 52,0z, e

Thus

is a symmetric matrix.

Conversly, suppose that the matrix

mil ... mi®
[ m"‘l cee m;‘“ ]
is symmetric, then a gradient function for £ is given by

fa n a
G(21y...yZ0) = %sz‘izazj+2d‘z.- +c

=1 §=1 =1

for some constant c. |



Theorem 3.2. Let £ be a vector field of the form

21 ay buu ... bin z m | @51 ﬂjl ¢ z1
es=z+[z S IERED M IR 1 N 1P
Tn Qan bai ... ban Zn i=1 Ojn ﬂjn ZTa

The vector field £ is a gradient system if and only if
[bu ees bin ]
bnl cee bn"

aj Bi
= kj .

Qjn Bijn

is symmetric and

forl1< j<m.

PROOF. Assume that the vector field £ is a gradient system with gradient function G. For given sig-
natures (1,.. .y -1y s §j415++ s ¥m)s (8152« s §5-1, =45y {41 . . ., im) comsider the linear vector fields
Girpensiicnijrisarneim 80 &iyyoiiog=isij41mmime BY lemma 3.1, the matrices M, ,....i;_ 1,656 5410im
and M, .. ijo1,=ij,85410im COITesponding to these two linear vector fields are symmetric. In partic-
ular, the matrix ., CTN P PR S Miy,ijc11=iisij41renrim 18 Symmetric from which it follows

that
aj1fi1 ... aj1Bjn
2| :
ajuﬂjl ces ojnﬂjn
is symmetric. Thus a;xBj1 = ajifjx. As0< fh +...+ B3 then B # 0 for some 1 < 1< n. Assume
that ﬁjl # 0, then ajx = (ajl/ﬂjl)ﬂﬂ. Let kj = (ajl/ﬂ,-l), then

aj1 Bi
P=k
Qjn ﬁjn

Now consider the linear vector field §,...,1. The matrix M, . corresponding to this linear vector
field is symmetric, thus

bu+ 3L kBB -.. bia+ XL, kiBirBin

ba1 + 2;'-'_-,1 kjﬂjuﬂjl coo ban+ 2;';1 kjﬁjnﬂjn
is symmetric from which it follows that

[bu eee D1g ]
bnl see bn“

is a symmetric matrix.



Conversely, assume that
[bll coe bIn ]
bnl ese bnn

aj1 Pin
=k o
Qjn pjn

for 1 < j < m. Then for the linear vector fields ;,,... ;.. the matrices M, ... in»

is symmetric and

bu+ ey fieinfin ... bin+ X5 fiai1Bin

bar+ 2711 4@nBj1 --r ban+ 17 ij0inBin

b + E;';l iikiBirBin ... b+ E;';l ijk;Bj1Bjn
) bn1 + E"; ijkjﬁjuﬁjl eee ban+ 2;":1 ijkjﬂjnﬁjn
are symmetric. By lemma 3.1, there exists a gradient function Gi,,....in(Z15...12a) defined on
Aj,,....in- Finally define

G(Zl, .. -vzn) = Gi;,....l',.(zls .o .,-’B“) (zla ceey zu) € Ai;,...,i,..-

It is immediate that G is a gradient function for &. |

ExaMmpLE 3.3. (Figure 5.) A gradient vector field in R2 is that given by

+[:]

By theorem 3.2 this is an example of a gradient vector field. The symmetry that the theorem

t

z -1
+1

y

demands is clearly evident.
ExaMPpLE 3.4. (Figure 6.) A gradient vector field in R3 is that given by

-+ 3161 BT B BIET

This example was also constructed by the use of theorem 3.2. Again, the symmetry required for a
gradient vector field is clearly evident.

Definition 3.5. The vector e; is the ith coordinate vector where all the entries are zero except for

a one in the ith row.



Corollary 3.6. Let £ be a lattice vector field of the form

z; o bin ... Y] [.1 a n | f
el:=:1+]: : RS 3D DN BN TR
Ty [« 27 b“]. e buu Tn =1 j=1 aij"

The lattice vector field € is a gradient system if and only if

[bu vee bin ]
bﬂl ese ban

is symmetric and
aij1
= gjie;
Aijn
for1<i<n,1<j<m;
PRoOF. Immediate consequence of theorem 3.2. [ |

ExXAMPLE 3.7. (Figure 7.) A gradient lattice vector field in R2 is that given by

] _[11.[2 1][=] . [5],._ 4 0
)=+ 3 S]]+ (8] [o] s [B] s
By corollary 3.6 this is an example of a gradient lattice vector field. The symmetry that the corollary

demands is clearly evident.

ExaMPLE 3.8. (Figure 8.) A gradient lattice vector field in R3 is that given by

L2115 D s e s o

This example was also constructed by the use of corollary 3.6. Again, the symmetry required for a
gradient lattice vector field is clearly evident.

Closely related to gradient systems are pseudo-gradient systems. Pseudo-gradient systems include
gradient systems as a proper subset and thus may be considered as an extension of gradient sys-
tems. The remainder of this section is devoted to finding necessary and sufficient conditions for the
determination of psuedo-gradient systems.

Definition 3.9. A pseudo-gradient vector field &, is a vector field for which there exists a matrix
X and gradient vector field ¢ such that either (X o £)(x) = {(x) or £(x) = (X 0 {)(x).

Definition 3.10. Given a matrix A, define the set

Pg(A) = {X : XA = A'X').

9



The matrix X is such that XA is a symmetric matrix.

Lemma 3.11. Considering a matrix X written in the form of a n x n-tuple

- 211
Zin
Zal

LZan .
there exists a finite set of vectors vy, ..., vp € R"*® guch that

Pg(A)={tivi+...+tvp i ty,..., 1, ER).

Proor. To solve the equation XA = A*X! is the same as solving

n n
Z ZT1x0x1 = Z Gk1T1k

k=1 k=1

) . n
Y zutia =Y anZak

k=1 k=1

n n
PIENTIED Pr e

k=1 =1

n ) n
Z TokGin = E GrnZak

k=1 k=1
which can be rewritten in the form
[0 ... 0 ... 0 .. O0 7[z1u] 0"
aln a"“ e —011 -anl zln 0
~Glg .:c —Gpp ee. @11 ... Ggpl ZTal 0
L 0 0 e 0 XK o o _znn - '0‘

Thus, X € Pg(A) if and only if it solves the above equation. This means that

[ z11
Zin

.
.

Za1

L Zan J

10



is in the kernel of the matrix in the right-handside of the above equation. By linear algebra, the
kernel is a linear subspace of R"*" which can written as the span of the linearly independent vectors

V1,...,Vp. Thus,

Pg(A):{t1V1+-..+t,Vp2t1,...,t,€a}. .

Lemma 3.12. Given two linear subspaces spanned by the vectors vy,...,vp and wy,..., Wy re-
spectively, the intersection of the two subspaces is given by the span of some vectors 1, ..., u, with
r<pq.

PROOF. Let x € {tivi+ ... +tpvp ity .., tp ER}N{81W1 +...+ 84w, : 81,...,8¢ € R}. Then

- tl - "0
t 0

[vl,...,v,,wl,...,wq] _:1 = 0
."’81. .o-

By linear algebra, the solution for t;,...,¢p, —81,...,—84 is in the kernel of the matrix in the left of
the above equality. Let the kernel be spanned by the vectors y!,...,y". Thus,

[tz ] v ¥ [u
tp yp .- y5) Lt
from which it follows that a spanning set of vectors for the intersection of the two subspaces is given

by
vio-.. o

.

[ugyecur] =[vyy.e0yvp] | ¢ :

vy --- Yh
Without loss of generality, the vectors u;,...,u, may be assumed to be independent and form
a basis. The dimension of the intersection cannot exceed the dimension of the subspaces that it -

intersects, thus r < p, q. [ |

Theorem 3.13. Let £ be a vector field of the form

z ai bin ... bin z m | 2 Bix ¢ z)
el:l=]:1+]|: S EEEED B S R EEE
Tn Qan ba1 ... ban ZTn =1 Qjn Bijn Za

There exists a matrix X such that (X o £)(x) is a gradient vector field if and only if

b1z ... bia m aj[ﬁjl cee ajlﬁjn
XePg([ : : Dﬂ N Pg : :

ba1 ... Dan i=1 @inBj1 ... @jaPin

11



PROOF. Assume that there exists a matrix X such that (X o £)(x) is a gradient vector field. As in
the proof of theorem 3.2, it is necessary and sufficient that

bll eee blg
X|: :
bul oo buu
aifin ... ajbin
x 3 .

ajnBji «o. ajnbBin
to be symmetric matrices for (X o £)(x) to be a gradient vector field. Thus

by ... bia - ai1bin ... aj1Bia
xapg([g ])n NP : : . |

bar ... bpn j=1 ajnﬁjl voe ajnﬁjn
Definition 8.14. For vectors v, w define the set

Ph(v,w) = Upenr{X : v = kXw}.

Theorem 3.15. Let £ be a vector field of the form

LG AEEEIETE

There exists matrix X and gradient vector field {(x) such that £(x) = (X o {)(x) if and only if

2 o By oo Mal (211 w  [Bin]|[Bin] [z
B HE:THIE e
Tq KA b’ln eee b:m Zq =t _ﬁjn ﬁju Tn

m ein] [Bin]
xepa|| : [,]:
i=1 Qjn Bin |

and

by ... bia b ... ba oy
E S =X E E [ 5 =
bnl soe bun Vln cee b‘m Qqn

Proor. If {(x) is a gradient vector field such that £(x) = (X o ¢)(x) then ¢ in not differentiable
along the same points that £ is not differentiable. As ¢ is also a gradient vector field then it has the

form
z o by ... B, z m Bi Bin ¢ z1
lif=]:|+]: SRR R3] I 1| IS R 1
Za a:‘ b’l'l vee b’“ﬂ Tq j=l ﬂjn ﬂ"n Tn

12



From the equalities

- - B ¢
zy z ajy Bir| [z
fl';,...,i,'- Lhiia1seeim E = el';,...,i,'-;,—l,‘j.“,...,i. E +2 E E E - %
- Zn Zn | &jn Bin ZTn
[ T z1
(x ° ()‘.I ""I‘j—l'lli)’+ll"°t‘.ﬂ E = (x ° ()il'«'o‘j-h“ ln‘j-bh“-"u E +
L Zq J Ty

Bj1 Binl'rz
25X | : N

ﬁ:’n p;'u Tn
f‘; ,"o‘..j-l'l'.".+l’0bv,‘m (x) = (x o C)ﬁ,...,‘j-;.l,‘,'.’.;,u.,!‘. (x)

(ﬁ RS FERYES W F ST Sy (x) = (x o ()ﬁ,...,.'j- 1= 54 1500fm (x)

it follows that

ajy [ Bjr
=kX1 :
Qja  Bin

Thus .
m flon] [Bn
xeeu|| :|.]:

i=1 Qjn | ﬂjn

Now consider the two linear vector fields
z ay b1z ... B1a z m | @5 pjl ¢ z)
f.a|i|=]:|+]: IR ED : P -w
Tn Qn bai ... Dan Ta =1 Qjn Bjn Tn
and

z) o By oo W] [#51] w Pin Bin]' [
(X%):....,x[§]=x[§]+x : : [§]+Eij : : [;]—1,-

:B“ au b’lﬂ eoe b:lﬂ 3“ ’.= ﬂjﬂ p"“ zu

which agree on the set A;,.. 1. Equating the derivatives

N [ 21 by m | %1
3;51.....1 =1+ E 2| By
L Zp Oai j=1 Ojn
P) Z1 T b'll’ m ﬂj 1
8_.1:;(x oOa|:]=X|:]|+ Z:":'x 2| Bii
5‘:: =1 ﬁin

’
14
’

ni

L2y J

gives
by

N



for 1 < i < n. Thus,
[bu ces ] [b’n ces
bnl e ““ cee

Equating the constant terms in the linear vector fields requires that

dés,..1 = ] [ ]
j=1 Qjn

- Bi1
dXol),.1=X 5 E EX| 2 |
aj = Bjn

are identical from which it follows that

Conversely, assuming that the stated equalities hold, then it is an easy matter to check that
&(x) = (X 0¢)(x) where {(x) is a gradient vector field. |

In many cases it is desirable to determine if a vector field £ can be decomposed as the product of a
matrix X premultiplying a gradient vector field (. The most desirable situation would be that the
matrix X is invertible and symmetric.

In the case that there is an invertible and symmetric matrix X~! such that (X~ 0£)(x) = ¢(x)
is a gradient vector field then it is immediate that £(x) = (X o ¢)(x). Thus, by theorem 3.13 it is
sufficient to determine if there exist such matrices X! from the linear subspace of all matrices that
can cause (X~10£)(x) to be a gradient system. At the moment, determining the intersection of a
linear subspace and the nonlinear manifold of invertible symmetric matrices is still an open problem.

If the matrix X cannot be both invertible and symmetric, then an invertible matrix would be
the next most desirable situation. This reduces to finding an invertible matrix such that (X-! o§)(x)
is a gradient system. A sufficient condition would be to determine if the linear subspace of matrices
such that (X o £)(x) is a gradient system intersects the nonlinear manifold of invertible matrices.
Again, this is still an open problem.

Lastly, if no such invertible matrix X exists then theorem 3.15 needs to be invoked to determine
if the decomposition £(x) = (X o {)(x) can be effected. By the necessary and sufficient conditions
of the theorem, if such a matrix exists then the given conditions must be satisfied. Testing the
conditions is tantamount to determining the intersection of three manifolds, one of which is a linear
subspace and thus a linear manifold.

14



§4. The Hamiltonian vector field.

In this section necessary and sufficient conditions are given for a vector field to be a Hamiltonian

system.

Lemma 4.1. Let £ be the linear vector field given by

23y [ ml! ... ml® mindl glon (o " dl
elz=] = mrl m*® mqretl . mqndn Za | L an
Vi - mﬂ+1 1 e mn+1 o mu+1 [T 8 ves mn+l 2n " dn-i-l
L Y | m2n1 mznn mzu n+1 e m2n 2n J 1y, i dzn )
The vector field £ is a Hamiltonian system if and only if the matrix
Fmntl 1 _mn-l-l n _mntl ntl —mptl 2n 7
_mcﬁu 1 _m.ﬁn n _mz;: a4+l _m'.;n 2n
ml 1 ml n ml n+l . ml 2n
m;' 1 .. m'.' n m".""'1 m': 2n
is symmetric.
PRoOF. If there exists a Hamiltonian function H(21,...,2Zn,¥1,-..y¥n) then
- OH -
[ 21 ] 3y
; oH
3 i el B
n —m
| Yn . oH
Yn | -$Z |
from which it follows that
" 21 " mll ... mln ml o+l ml2n
D zo | _ m" 1 oes mP » m®? 41 .. mn' 2n
f " - mn+l 1 vee mn+1 n mn+1 a4+l ma-i-l 2n
y° man 1 m2.n n mzn' a4l mz; 20
L Yn | i
r  8°H 83H ®H 8H 1
Gz15y1 °t TxaOp oy ***  Byady:
o oH &PH o H
= Z10yn coe z. 0y mv—. P 'BTy.
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Thus

[—mnrtl 1 . —mntln _mn+1 atl o _qntl 207
—ymin 1 —m2n n _mﬁn n+l ve. ~—minn
ml 1 . ml n ml n+l .. ml 2n
m;l vee m" ® m? n+1 cee muzn
- 8°H °H 8H H 1
23 °*° Pzad;  Oyidz =
o 8 H 8K o
?’ BRTRRE o Wg‘: = - 3—5—?; =
H 8 H H H
Bz ' Tz 0y Oyt Byadnm
8H oy o'y oH
L Jz:0ya *°° Tzadya Dyidya °°° va -
is a symmetric matrix.
Conversely, suppose that the matrix
‘_mn+1 1 _mn-l-l n _mn+1 a4+l _mn+1 2n
_mzu 1 ~—min n —m?3n ntl oes _mzn 2n
ml 1 ml n ml 41 oen ml 2n
mrl .. mnn mretl . gn2e

is symmetric, then a Hamiltonian function for £ is given by

—-ZZm""" jz,z,—zzm""" iz + = EZm‘ iy —Zd"""z +Zd‘y.+c

i=1 j=1

for constant c.

H(zla--nzmyhu-’yn) =

=1 j=1 u—l =1

Theorem 4.2. Let £ be a vector field of the form

)

Z2n

o b1 ... B n aj1
O o :
Q2q b1 ... bzn 20 d ‘1 5 20

The vector field ¢ is a Hamiltonian system if and only if

3 -b,.+1 1 eee ‘-bn+l 2n ]
—bzu 1 (XX "bﬁn 2n
bl 1 cee bl 2n
L bn 1 coe bu 2n 4

=1

>
-t

ece
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is symmetric and

a1 Bi1
. -0, Ouxn Iaxa .
° 4 —Inxn onxn °
Qj 2n , i 2n
for1<j<m.
ProoF. For the matrix . 12
- n . -
m};,...,l'm . mu....,!u
51 B 2n
M. J— $hysoerbm  °°° m.;....,‘..
$1yeenybm = mf_c+1 1 ms_t-l-l 2n
Chyooerm  °°° $39000sbrm
2nl 2n 2n
T i *** Ty im =
define the matrix 1 412
 —n® : —tmn® N =
mt;,...,au oo mi;....,i..
—mnin 1, —min 2n
N. . m’h---x'u b m'h”-o ™
01 geeeylm m! 1 A m; 2n 3
$1yeeerbm LA $2 900008
nl n 2n
L My im0 TRy i -

Assume that the lattice vector field £ is a Hamiltonian system with Hamiltonian function H. For given
signatures (i1y...,%j—1,%js8j410+++18m)s (15+++18j=10 =1y §j415--.,im) Consider the linear vector
fields &i,,....ij-1,05005410rim 80D Eiyeerpijo s, =i5ij4100mim» BY lemma 4.1, matrices Ny, ...ii165i5410mmrim
and Ny, .. ijo1,=i50541,mim COIresponding to these two linear vector fields are symmetric. The matrix

Ny yeesiicssisrigarrmmim = Nizyriic1y=i56i4100im 18 Symmetric from which it follows that

[—aja41Bj1 . —Qjn41Bj2n

. .
. -
. .

9| —®i2Bi1 ... —aj2aPj2a
aj18i1 ... @jiBjan

| @iafi1 ... @jafBian

is symmetric. As0 < 87 ;+...+7 ,, then §; ; # 0 for some 1 < I < 2n. Assume that §; ; # 0, then
from the symmetry of the above matrix, a; 18 1 = —@j n4+15j a4+ and —q; B 1= —0j a41Bj k-n
for 1 <k < nyn+1 <k < 2n respectively. It follows that aj x = (—aj nt1/8j 1)Bj nst 80d aj ; =
—(—j 041/B;j 1)Bj k—n for 1 <k < n,n+1< k < 2n respectively. Thus, with kj = —a; a41/5;j 15
o [ Ouxn qua] i
* —Iaxn Onxn *

aj 2n ﬂj 2n

;i1

for 1 < j < m. Now consider the linear vector field £,,...,n,,- The matrix N; ) corresponding to
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this linear vector field is symmetric, thus

T =ba+11+ Ljey kiBj1Bj1 -o- —bat1 3+ L=y kiBj 1Pj 2a

=ban 1+ 2701 kiBiaBi1 .o —banzn+ 2711 kiBj abj 2n
b1+ X5y kiBj ae1Bjn ... braat E;’;; k;Bj n+1Pj an

.
.

| bar+ 3701 kiBi2mBi1  ooo ba2n+ 2501 kiBj 2nBj2n

is symmetric from which it follows that

[ —bnt+11 --o —bn+412n]

-bzul oo “bznzn
bll coe bl n

.

L b,:l soe bnzu e

is a symmetric matrix.

Conversely, assume that
—bat11 oo —bat13n]

.
.
.

—bzn 1 vee —b2n 2n
bl 1 .o bg 2n

L bnl coe bg 2n 4

is symmetric and
aj 1 ﬁj 1
=k; [ Onxn Inxn] .
4 -luxn ouxn

Qj 2n )j 2n

for 1 < j < m. Then for the linear vector fields §;,,....i,. the matrices N;,.....i..,

- m . o -
=ba411— Z,'=1 a4 u+1ﬂj 1 eer =ba4120— 2:;1 tja5 u+1ﬂj 2n

—b2a1— 7L 805 20Bi1 ... —baaan— Xjr;4ij 205 an
bi14+ Tio 5051851 e b1 an + 372, 8595 155 20

L ba1+ 23695 b1 ba 20 + 272, 6505 B2

[ —bn41 1+ E;';l $ikiBj 181 ... —bas12a+ 2;'-‘_-1 ijk;Bj 18 an

—ban 1+ 3001 6ikiBi aBs1 ... —baaza+ XjiyiikiBj abi 2n
bia+ 27ty kB ne1Bi1  ooo b1+ X5, iikiB av1B 20

L b1+ 3250 3kiBiamBi1 oeo bnaa+ 5L, kB 20Bj 20
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are symmetric. By lemma 4.1, there exists a Hamiltonian function H, $1000eyim (13« o o3 Z2n) defined on
Ai,,...,in- Finally define

H(z1y...y2320) = Hiy,...im (215 -+ .1 Z20) (Z1,--+1Z2n) € Ai,,... in-
It is immediate that H is a Hamiltonian function for £. ]

ExampLE 4.3. (Figure 9.) A Hamiltonian vector field in 2 is that given by
z] _[3 3 4][= 11{[3]"[= 2 1{[11°[=
1=l (& SIE1+ (AT G-+ L2 T3] -

ExaMPLE 4.4. A Hamiltonian vector field in R4 is that given by

w -1 -1 -4 4 -17Tw -47|r11'rwy] r3 57" rw
z -3 3 -2 -1 5 z -5 3 z 2 4 z
Slyl=la 1 &« -1 3 y+[1]4 yl[T1-slis] |o]| 3
z 2 4 3 4 2 z 3 5 z -4 2 2
This example was constructed with the aid of theorem 4.2.
Corollary 4.5. Let £ be a lattice vector field of the form
A ) byr ... bi2a T 20 n; | @ijt
el : =] |+] SRR RPN I UL
T2n a2q ban1 ... ban2nd Lzag i=14=1 | ajin
The lattice vector field £ is a Hamiltonian system if and only if 4
'_bn+l 1 .. "bu-H 2n ]
-bzn 1 vee —bzn 2n
bl 1 cee bl 2n
b bﬂ 1 cos b“ n -
is symmetric and _ .
aij51
i | = Qijnsieasti
[ Xijn |
for1<i<n1<ji<n, o
Qij1
i | = Qiji-n€i-n
| Xijn |
forn+1<i<2n,1< j<n;.
ProoF. This is an immediate consequence of theorem 4.2. ]
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ExaMPpLE 4.6. (Figure 10.) A Hamiltonian lattice vector field in 2 is that given by
2] _[11.[3 11[=]_[o 0 5 3], _
JH R H R HI W R H B H R H AR B

EXAMPLE 4.7. A Hamiltonian lattice vector field in R4 is that given by

w -1 -1 -4 4 -1 w 0 0 0
z| _|-3 3 -2 -1 5 ||z 0 0 0
z 2 4 3 4 2 z L0 L0 2

1 3 0 0]

0 0 6 2

0 Iy—2|+ 0 |y+4l+ 0 IZ-—3|+ 0 |z-5|'

0 0 L0 L0

This example was constructed with the aid of corollary 4.5. In cases when graphical techniques are
not applicable, theorectical tools may provide insight into underlying structure.

§5. Vector fields invariant under post-composition with matrix multiplication.

A vector field £ is invariant under post-composition with the matrix M if (M o §)(x) = §(x). Lemma
5.1 proves the basic relationship between the vector field and the matrix. Given a vector field,
theorem 5.2 determines the form of the matrices which the vector field is invariant under post-
composition. It turns out that the matrices have a very restricted form. Conversely, given a matrix,

theorem 5.3 determines the vector fields that are invariant under post-composition with the matrix.

Examples at the end of the section will illustrate applications of the theorems.

Lemma 5.1. Let M be a n x n matrix and £ be a piecewise-linear vector field in ®2. The equality
(M o £)(x) = &(x) holds if and only if

a) bn ves 51,. Q11 e Q1 431 bn cos b;n 11 ... Q1
M . . . . . = . . . . . .

Qq bnl see bn“ aln ese Omn

Qn b“]_ see bnn 01“ see Qmn
PROOF. Assume that the stated equality holds, then
z

z ( o bin ... bia 1 m | @1 Binl' 21
B R I
E2Y \ Qg bar ... ban Za =1 Qjn Bjn Zn
"oy bu ... hia] .1 m a1 Bi ‘rz
S A AL [

Zq

b an bul eve b““ 3'; j=1 aju ﬂjn

20



Conversely, assume that (M o §)(x) = £(x) holds where
z1 ay bis ... Oyn z; m | & ﬂjl 1 Z1
Tn Qn ba1 ... ban ZTon i=1 Ajn ﬁjn i Tn
and

31 oy by ... b z m ’ajl- ﬂjl ‘ z)
(Moe)[z]=M[s]+M[s s”z]+2M ] [z]-vs-
Zn Qg ba1 ... ban Ta i=1 | O5n ] ﬁju Tn

Notice that Part(M o §) = Part(§) and considering the following equalities

_ - - - t
3 1 Qa;1 Bi 1
Sirrniicilisgrinnim | 0 | = Sinpensbicrs=Lisarrenim | = | +2] : 3 /]
-Za Zn (@jn] \LBjn] Lzn

Z1 ] K3
(M ° 6)’.19---1‘}'—Io‘oiﬁlr-“’ia E = (M °5)‘!;---0‘;’-!'-19‘:'4»!"“!'.'! E ] +
.z,. o -z“

2M =%

aj1 Bl [21 1
Qjn Bin Tn -
E’.I v---".j- lvla"."-l-h""im (x) = (M ° 6)‘3 v--s‘:‘- l'll‘“l""'iﬂ (x)
e‘l 9o '1‘.1'— 1= 11‘)'-!- 1geensim (x) = (M ° E)‘h“-y‘.:'— b ¥ i 1"‘j+1"""ll (x)

it follows that

Qj1 ajl
Mi:=]:
ajn aj"

Now consider the two linear vector fields

z a buu ... hin] 21 m [ain] Bi ‘rz;
Galif=]:]+]: SRR ED M B s ]-w
Tn Qan bay ... ban Tn i=1 Qjn Bin Zn
and

1 g bn oo bla EY m [ aj) ﬂjl ' EA1
Zn Qg ba1 ... bam Zq i=1 | O5n ﬁjn Zn

which agree on the set A; .. ;. Equating the derivatives

o z b1i m | @i
3;;51,....1 1= +Z : | By

LT J bg.’ J=1 ajg J

s 23 by m a@j1
g(M °on.a| : |=M| |+ Z M| : |8

LTp J bai =1
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gives

b bii
2]
bm’ bm'
for1<i<n.

Equating the constant terms in the linear vector fields requires that

(41 m aj1 T
dé,..1= [ : ] >N ERE
and 77! | aja
al m [en
dMof),.a=M [ : ] -3 i/
an j=1 ajn

are identical from which it follows that

-2 :

Theorem 5.2. Let the vector field £ be given. Let r be the rank of the matrix
[01 b1z ... b1n a1 ... aml]

Qn bnl coe bn“ 01,. coe amn
IfM is a matrix for which (M o §)(x) = £(x) then either (i) r = n in which case M = I,x, or (ii)
r < n in which case there exist an invertible matrix S such that

MS = s Irxr orxn-r ] .

oﬂ—f)(f Bn-rxn-r
ProoF. By lemma 5.1 the given matrix equality must hold if the vector field is to be invariant
under post-composition with the matrix M. The value of r determines the number of independent
eigenvectors of eigenvalue 1 for the matrix M. If r = n then M has a full set of eigenvectors
corresponding to the eigenvalue 1. By linear algebra there exists an invertible matrix S such that
MS = I,xnS from which it follows that M = Ioxg. If r < n then M has a subspace of dimension
at least r for the eigenvalue 1. Again, by linear algebra there exists an invertible matrix S for which

Ms = s lrxr orxn—r ]

ou-—rxr Bn—rxn-r

for some matrix By _rxnr- | |

Theorem 5.3. Let the matrix M be given. If § is a vector field for which (M o £)(x) = &(x) then
the defining constants of £ satisfy

(2L
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111 Q1n,1 Qaq11 Qnn,l z3 z3 z
S I B R N R e N X B =[]}
Q110 Xinn Qnln Qan.n Tn Za Zn

Proor. This is an immediate consequence of lemma 5.1 and

(441 bu Xy blu Q11 eee QO ag bn Xy bln Q11 .. Q1
M| P fl=]: P : |

a“ bnl Ly bnn (!1,, eee Omp an bul Y b"" [« 4T°Y s am“

ExXAMPLE 5.4. For the vector field given by
] _[1 2 -1][=], 1
1=+ 2 2] ]+ 2]

1 2 -1 1]
2 4 -2 2

the rank of the matrix

is one. Any matrix which satisfies (M o £)(x) = £(x) is conjugate to the matrix

10
0 )]’
in the sense that there exists an invertibe matrix S such that

<1 0
ws=s[3 .

EXAMPLE 5.5. Let M be the matrix
01
10

which represents reflection about the line y = z. The eigenspace corresponding to the eigenvalue 1

H

A vector field for which (M o £)(x) = £(x) is given by

[s]=el+ o ]+ [

is spanned by the vector

27
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§6. Lattice vector fields invariant under pre-composition with matrix multiplication.

A lattice vector field ¢ is invariant under pre-composition with the matrix M if (£ o M)(x) = §(x).

Theorem 6.1 proves the basic relationship between the lattice vector field and the matrix. Examples

at the end of the section will illustrate applications of theorem 6.1.

Theorem 6.1. Let M be a matrix and £ be a lattice vector field. The equality (€ o M)(x) = §(x)

bolds if and only if

z (-1)rz,,
. [ z ] |
Za (-1)~z,,

for I; € {0,1}, and (7y,...,7,) a permutation of (1,...,n) such that.

ni = ng;

%ii = (=1 %, (1=1)i+bi(ne, +1-7)
aij1 Oy (1=1)j+li(ne; +1=5) 1

Qijn Cx; (1-1)j+li(ne;+1-5) n

[bxi ] (=1)!ibyy,
bm’ (- 1)" bnn
PROOF. Assume that the stated equality holds, then

T
(£°M)[ : ]

a biy ... bia] [(-1)h2y, n g | X1
[z]+[s ] S LM I

a“ bnl coe bnn (-1)" zt. ‘=l j=1 aijﬁ

) (_l)hblh oo (-l)l'blfa (-1)"2": n
[ ] N )

Qq

f]

Conversely, assume that (£ o M)(x) = £(x) holds where

JHEHER R

4

[(=1)lze; — %;)

Aw;

- D »>

(=1)"bag, oe. (=1)nbpy, (_1);.,,'_ i=1 j=1

Qij1

Qijn

al’dl
: |zx; — Txij |
QAxin
|2 = %1



and

I a) by ... o n [@in
(€M) [ : ] = [ : ]+[ ] [ ]+ZE 2| Imazi+...+ minza — %jl.

Tn Qn bn1 =14=1 Qijn

As (¢ o M)(x) = £(x), the points at which the two functions £ o M, £ are not differentiable are the
same. Thus, the points along which £ o M is not differentiable are lines parallel to the coordinate

axes. Hence,

[mu ese mg,‘] = (_1)1.' e: .

where I; € {0,1} and #; € {1,...,n}. The points at which £ is not differentiable are given by

Bn1EMm<... <M,

Zn =1 <...< Tan,
while the points at which £ o M are not differentiable are given by

2o =4 M <o < Nny h=0
Tl =N <eee<=m h=1

2. = Tl < oo < Ton, lna=0
Ta = -7”ﬂ.<ooo<-7ﬂ1 ln=1'

If the set of points at which £ o M, ¢ are nondifferentiable are the same then (71,0

permutation of (1,...,n). Thus

z; (-1)hz,,
M [ : ] = E

z.,. (—1)lrz,,

Furthermore, it is easily observed that

“wTg) is a

n; = ng, 1<i<n
) Txid i=0,1<i<n1<j< ny
T = =t negt1-i i=1,1<i<n,1<j<ny,
= (_1)'i Tri (1=1)j+li(ne,+1-5) 1<i<n1<j< n,.
("1)" biey ... (=1)nbye, (-1)hz,, n B | @il
: S D D5 DY B I LNy A
(‘1)'l bawy, .- (—1)" bar. (-1)"3'-'. i=1j=1 Qx;jn

bn ... bia (-—1)“33, ne; | @is1
(€°M)[ ] [ ] [ : ] : +ZZ 2o =Dz, — %5

bﬂl cee bnn ("'1)" ZTaa i=1j=1 aijn
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Notice that Part(§ o M) = Part(£) and considering the following equalities

z ) Qx;j1
fm,...,u.....l.j,n....;.;....,n.. : = fn;,...,u..._;,j-l.n.'.“,...,n. E +2 : (31'.- - ’Yr.-j)
Zq Zq Qx;in
1
(EO M)nh---’“ti-lljtﬂt.~+1'---y". [ E =
Zn
[ [ain
2 2 : (Zx; — 7i5) L=0
. Qij
(e oM)”h--w"l’,‘—hj-lv“'.'-"h-“)”l [ H ] + S =a.::"+l—j 1
Zz
" 2 : (zxi —75) Li=1
\ L@in, +1-jn

fm,...,n..._;,j,n.‘“,...,n.(x) = (f ° M)u;,...,u.i-x,j,n.‘“,...,n.(x)

£ﬂ JETLY ST Y J=1,n wiklyeeey N (x) = (£ o M)“h"'vnr.’-lrj- 1,n widlyeenrBn (x)

it follows that

—
Ox, 51
. Ii=0,15i5n’15jsnﬂ
aij1
| =9 pomin
. a"i ﬂr""'l-j 1
Qijn : i=1,1<i<n,1<j<ny

\ LOx; ne +1-5 n
Cx; (1-1:)j+li(ne;+1-§) 1

| Oy, (l”li)j""i("t.' +1-§) n

Now consider the two linear vector fields

1
fn......n“ [ E ] =
. Zq

[01 ] (-—1)" blg, oo (—1)" bu-. (—1)" Zx, ae; | Omis1
+ . . .

.

: : + i E (zx: — 7:5)

an (—1)‘l bn" sece (-' 1)" bng. ("’1)'. zg' =1 j=1 a"ju

and

z; o by ... bia] [(-1)hzs, n % | @1
(soM)n,,...,u.[z]=[s]+[z ] o+ | en— (1))

Tn ba1 ... ban (—1)"‘2,‘ =1 j=1 Qijn
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which agree on the set A,,...,n.. Equating the derivatives

-——8 [21] [ (—1)“ bix, fe; | Oxij1
8::,. fn,,,,_'n. E = E + ' :
i L Zq ;(—l)li bax, j=1 Onijn
L] [ 21 T [ 014 ae; | Qi1
83... (€ o M)ﬁ]'n-'ﬂ. E - E + . .
‘ L2y L bns j=1 aijn
gives
[bli } (_1)'i bix;
bai (—~1)libag,
for1<i<n. l

EXAMPLE 6.2. Let M be the matrix

3 4]

Lattice vector fields for which (£ o M)(x) = £(x) (i.e. £(—x) = £(x)) are given by

3 [:] = [g;] +g [z::] (lz = wul+ I==+°/s|)+:z“;':'1 [z:;] (ly = %l + ly + %D).

EXAMPLE 6.3. Let M be the matrix

-1 0 0
0 -1 o0].
0 0 -1

Lattice vector fields for which (£ o M)(x) = £(x) (i.e. £(—x) = &(x)) are given by

z Qi iy
§ [y] = [02] + 2 [0-'2] (I2 = %l + |z + %)+

z a3 i3

a1 @1
e [an] (ly—wl+ly+ %)+ X240te,, [asz] (Iz = %l + )z + %)
i3 ;3
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§7. Lattice vector fields commuting with matrix multiplication.

A lattice vector field £ commutes with the matrix M if (M o £)(x) = (€ o M)(x). Theorem 7.1 proves
the basic relationship between the lattice vector field and the matrix. Examples at the end of the

section will illustrate applications of the theorem.

Theorem 7.1. Let M be a matrix and § be a lattice vector field. The equality (€ o M)(x) =
(M o §)(x) holds if and only if

z (—1)"3'1
L

zn (—1)1' 2.-“

for l; € {0,1}, and (7y,...,7,) a permutation of (1,...,n) such that

ni = ng, 1<i<n

%ij = (1) Y, (-ti)jH(n e, +1-5) 1<i<n1<j<n;
ain] [ (D)1ar a-t)ithine+1-7) =

: = : 1<t<n,1<5<n;

aijn)  L(=1)=ag a-L)iti(ne;+1-1) 7a
[ bla‘ b i (_1)"-”" bnﬂ

bai | (=1)laHibg g,

and
[al] (-)hay,
Qn (_1)" Qr,
PRrooOF. Assume that the stated equality holds, then

1
o]
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o by ... bl [ n 0 i
=M[5]+M[s s”s]+22m t o el
ag bar ... bpad Lz, i=1j=1 Qijn
= : + : : : lzi — 751
| (-1)ay, ] (—1)*bea1r ... (=1)'*br.n =121 | (~1) Qijxy
[ (—1)1l Qx, ]
= E +
[ (~1)an, |
(=1)athbe,y, ... (<1)l¥indg,,, (-1)hz,,

.

.
.
.

[(~1)1a, ] (=111 oo (=1)0ben | [21 n a [ (DMaije

Zn

n (-1 remin
+ z : [2x: = 7xi5l

(-1)'“';" brawy oo (=1)Intlab, o (“l)l" Tx, =14=1 (—1)" Oxijxa

a by .o bin] [(~1)nzs, n nr | @ig1
=]|:|+]: : S EDD9D BERN 1 C VS

Qqn b“]_ cee b”n (-1);' zg- i=1j=1 a.'jg
1
= ({ o M) [: ] .
ozn

Conversely, assume that (M o §)(x) = (£ o M)(x) holds where

z oy by ... b= n n aiji
(Moe)[s]=M z]+M[s z][s]+22M N A

Zn L Oy ba1 ... ban Za i=14=1 QAijn

and

z3 ay "b11 ... bin ) n n; | st
EoM)| =] |+]: M| +ZE P Imazi ...+ minza — il

3“ an .bnl see b“n .1.',, i=1 j=1

Xijn
As (Mo§)(x) = (6o M)(x), the points at which the two functions Mo §, £ oM, are not differentiable
are the same. Thus, the points along which £ o M is not differentiable are lines parallel to the

coordinate axes. Hence,
[mi1...mia) = (—1)%ef,
where I; € {0,1} and #; € {1,...,n)}. The point.s at which M o £ is not differentiable are given by
n1=EMm<...< Mg,
Tn =M1 <...< Tan,
while the points at which £ o M are not differentiable are given by

z E{‘h[(...(‘nm L=0
n N, <.ee <=M L =1

.
.

z ={7ﬂl<-.o<7ﬁu. ln=0
= Z L ~Yape <o < =Tm1 lp=1°
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If the set of points at which M o £, £ o M, are nondifferentiable are the same then (T1yeeyTq) IS 2
permutation of (1,...,n). Thus

z
Mog) [ : ]
Tn

[ (-1)'l Cx, ] ("1)" bay1 .o. (—1)" brin n n (-1)" Kijxy
: + : [ ] + E Z : =i — ;1
.(_1)'“ Qx, - (_1)'n b'ul . (-1) .b‘a“ =14=1 (-1)‘- a'lj'n
[ (—1),‘ Qx, T
= E +
! (=1)=ay, .
(=) Hhbe,, o (S1)Heb, (-1)hz,, n e | (=1)10xin
: P S EDHD : l2x = 7wl
(_]')'“-Hl b*n'l oo (—1)'u+l. bﬂ'.'u (._.1)'» x'u i=1j=1 (-1)'- a*l’j"l

while

z1 a by ... bia] [(-1)12s, n ne | @2
(eoM)[;]=[z}+[s ] P2 D =l

xn an bnl oo bnn (—1)1- zr- ..=1 j=1 au’jn

Notice that Part(M o §) = Part(§{ o M) and considering the following equalities

z
(Mo6)7‘1'---’“:;-1'js”r,--ﬂv"v”l [ E ] =

Tn

z) (-1 oxijr,
] +2 : (zx — Tid)

(M ° £)"h---,ﬂw.'-hj"1"‘-.--0-1'---'“- [ E

znl  [(-)raum
z1
(s°M)n;,...,u,‘._;,j,n,‘....,...,n. [ E ] =
Zn
[ [aipn
2| | (on—m) L=0

z
. Laij
(f °M)m.--.,n-;-n-J'—l.nc;-h.-..,n.. { M ] + < r an',:.‘-+l—,i 1
Zn

2 : (zx; — 7.',') =1

\ L@ig, 41-jn

(M ° f)“h---v“r;-l 1B w1100 N (x) = (€ ° M)ﬂhmo“t‘-l,io“rﬁ-hm’“u(x)
(M o s)nh-"a"!;—l tj-ltnv.‘-l-hm”'u(x) = (6 ° M)nlv--vnﬂi-l J-ln"!i+ll-~-1“n (x)
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it follows that

L

[ (_1)'l Qx;jx,

-1)"‘ Ax;jxa
(_1)'l Qx; Re; +l-jm

L (~1)ay, ey +l—j xa

5=0,1<i<n1<j<ny,

i=11<i<n,1<j< ny

(=1 ax; (1-1)jtli(ne +1-5) 1

L (—1)ag; (1-1)j+li(ne; +1-7) 7a

Now consider the two linear vector fields

31 (_1),! a"
(M o 6)“1----9"» [ E } = E +
Tp (=1)~ay,
(_l)h +h bh 2 (-1)1‘ +a bl‘: Tn (—1)" Tx, n Ne; (—1)“ Ax;jx;
; s N B DI : (Tx: = Ta:s)
(_1)'“4.1l bful’l (-1)".”. b*n’u (-1),- zl’n i=1j=1 (-1)" a"ij"n
and
z; o b (-1)" Zx, ne; | @is2
(§oM)q,,...,n, [ ] = [ ] + [ ] +Z 2 P (ze = (-1)% %;)
Zn Qg bnl (-1)"‘3 i=1j=1 Qijn
which agree on the set Ag,,... .. Equating the derivatives
P [ Z1 T (_1)'l b"n i Re; (-'1)h Cr;jx,
Oz, N + z_: :
-Zn - (=1)!nbe =1 [(-1) ey, jx,
P [ 21 bu ne, | Xij1
82 (e ° M)”h-")“n . = (—1)'. [ E + E
i j=1
L2g J b“i J a"j“
gives
[ 1 T (=1)h+ip,,,
L g (-1)".”‘ bur;

for1<i<n.

Equating the constant terms in the linear vector fields requires that

I (_1)" Qax, a n (—1)" Ax;jx,
d(M ° f)“h-"’“n = . - E 7l'ij
L(-1)ay, == (D) axjn,
[ a n; | %1
d(€ ° M)n;,...,n. = E Z : Y5
R a,. =1 j=1 Qijn
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are identical from which it follows that
ay (" 1)" Qxy
[ . ] = : . |
Qan (_1)la Ay,

v 4]

Lattice vector fields for which (§ o M)(x) = (M o £)(x) (i.e. £(—x) = —&(x)) are given by

)=l )] e > [o8] Ge-mi-tesn+ 3 [22] Gy nl -+ m

t=n+1
-1 0 O
0 -1 0|.
o 0 -1

Lattice vector fields for which (§ o M)(x) = (M o £)(x) (i.e. §(—x) = —&(x)) are given by

z by b2 bis| |z i1
Ely|=|ba bz bas| |y|+2i; |aia| (2= %l—lz+ %))+
z

ba1 b3z baz] |z Qi3

EXAMPLE 7.2. Let M be the matrix

EXAMPLE 7.3. Let M be the matrix

;1 (53]
Ry [aa] (y-%l-ly+ %D+ 2”.:'.:.*{.&1 [052] (Iz = %l = lz + %l)-
a3 i3
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Figure captions.

Figure 1. This is the phase portrait corresponding to the vector field given by

e[3]=L:]+[2]

Figure 2. Sample orbits corresponding to the vector field given by

-6 0BT B

Figure 3. This is the phase portrait oortespo nding to the lattice vector field given by
' ] _[1]1.[2 4][=2]
[Gl=]+ 2 S]]+ (2] eme o]

Figure 4. Sample orbits corresponding to the lattice vector field given by

z 0 20 1][z] [o 0] 1
Elyl=]1]+]2 3 o yl+]|1|lz=1+ |3]lz+2|+]| O ||y
z 2 11 -5)|z] |3 | 1] -2

Figure 5. This is the phase portrait corresponding to the vector field given by

e[s1= Gl GIET 1+ BT [2])

Figure 6. Sample orbits corresponding to the vector field given by
21 [=
4 yi-1].
0] |-z

il 5 3EREIETE)

Figure 7. This is the phase portrait corresponding to the lattice vector field given by

A E I 5 SF B

Figure 8. Sample orbits corresponding to the lattice vector field given by

(2] 15 £ 2] o]
[o] . 3'*[2_ - 2|+[§ 42t

-3

Figure 9. This is the phase portrait corresponding to the vector field given by

lsl=Fl+ (2 SIETLANEIET -+ [ATBI ] -+

Figure 10. This is the phase portrait corresponding to the lattice vector field given by

(5= B+ 2 A1 [emne [ivae e [on
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